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Abstract. Understanding causal effects of a treatment is often of in-
terest in the social sciences. When treatments cannot be randomly as-
signed, researchers must ensure that treated and untreated participants
are balanced on covariates before estimating treatment effects. Conven-
tional practices are useful in matching such that treated and untreated
participants have similar average values on their covariates. However, sit-
uations arise in which a researcher may instead want to match on model
parameters. We propose an algorithm, Causal Mplus Trees, which uses
decision trees to match on structural equation model parameters and es-
timates conditional average treatment effects in each node. We provide
a proof of concept using two small simulation studies and demonstrate
its application using COVID-19 data.
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1 Introduction

Understanding the causal effect of a treatment has historically been of great
scientific interest and remains one of the most frequently pursued objectives in
scientific research today. The gold standard for evaluating treatment effects is
the randomized controlled trial, where the researcher randomly assigns treatment
status to each individual. The benefit of this approach is that the causal effect
of the treatment can be estimated by simply comparing outcomes between those
who were treated and those who were not (Greenland, Pearl, & Robins, 1999).
Random assignment of treatment guarantees that, on average, the treated and
untreated individuals will be equal on all potential confounding variables, both
measured and unmeasured. Eliminating the possibility of confounding clears the
way for a direct comparison to be made.

However, random assignment is not always possible. This can be for ethical
reasons, since researchers cannot, for example, force participants to smoke to
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investigate the effects of smoking. It can also be for practical reasons, where
the researcher cannot control the assignment of a treatment. For example, re-
searchers cannot randomly assign depression to some participants, enact a law
or policy in a randomly assigned jurisdiction, or choose where their participants
live. An observational study, where treatment is not randomly assigned, may be
the only available option in these cases. Unlike randomized controlled trials, di-
rect comparisons between treated and untreated individuals in an observational
study cannot be made as easily. This is because treated and untreated partic-
ipants may not be equal in all other characteristics, creating the potential for
confounding effects. In fact, it may be differences in these very characteristics
that lead some participants to select treatment, making the estimation of the
treatment’s effect less straightforward. To estimate a treatment’s effect, it must
first be defined, which we do in the context of the potential outcomes framework.

1.1 Potential Outcomes Framework and Assumptions

The foundations for the potential outcomes framework were laid out by Neyman,
Iwaszkiewicz, and Kolodziejczyk (1935) and further developed by Rubin (1974),
resulting in it also being called the Rubin Causal Model, Neyman-Rubin Causal
Model, and Neyman-Rubin counterfactual framework of causality. The model
can be conceptualized as follows. Let Y1i be the potential outcome of individual
i if they received the treatment and Y0i be the potential outcome of individual
i if they did not receive the treatment. The observed score Yi, can be written as

Yi = WiY1i + (1−Wi)Y0i (1)

where Wi = 1 if the individual received treatment and Wi = 0 if they did not.
Wi simply acts as an indicator variable denoting the receipt of treatment. The
term treatment here and throughout the paper is used rather loosely and can be
used interchangeably with exposure.

The effect of the treatment is simply Y1i − Y0i, the difference between the
potential outcomes if the individual had received treatment and if they had not.
The fundamental problem of causal inference, as stated by Holland (1986), is
that it is impossible to observe both Y1i and Y0i for the same individual. If the
individual received treatment, we can observe Y1i, but not its counterfactual,
Y0i . The inverse is also true: if the individual did not receive treatment, we
can observe Y0i , but not its counterfactual, Y1i. Therefore, it is impossible to
observe the effect of the treatment on the individual. As an example, we can see
that it is impossible to observe the effect of divorce on a child’s academic test
scores because at a given moment in time, the parents can either be divorced
or not divorced, but not both. We cannot observe the test scores under both
conditions, so we cannot observe the effect of divorce on that child’s scores.

Though we cannot observe the effect of the treatment on a given individual,
we can estimate the average treatment effect (ATE) on a population. The ATE
is the average effect expected from taking a population where no individuals re-
ceived the treatment and providing the treatment to all of them (Austin, 2011).
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The ATE is defined as ATE = E(Y1i − Y0i) = E(Y1i) − E(Y0i), where E(·) is
the expected value operator. Conceptually, this implies that although we cannot
observe the treatment effect at the individual level, we can do so at a popula-
tion level by using the average of the untreated participants as a proxy for the
unobservable counterfactual (Guo & Fraser, 2010). A related effect of interest
in this paper is the conditional average treatment effect , or CATE, (Abrevaya,
Hsu, & Lieli, 2015), defined as CATE = E(Y1i − Y0i|Xi), where Xi is a vector
of covariates. The CATE allows us to evaluate heterogeneity in treatment effects
between subpopulations, for example, allowing for separate estimation of the
ATE in males and females if they are believed to be different.

One important assumption of the potential outcomes framework is the Stable
Unit Treatment Value Assumption, or SUTVA (Rubin, 1980, 1986). It repre-
sents the assumption that the potential outcomes would be the same no matter
how an individual came to be assigned to a treatment, and no matter what
treatments are received by other individuals. It assumes that neither treatment
assignment mechanisms nor social interactions affect potential outcomes. An-
other assumption, one we give more attention due to the focus of this paper,
is known as the strong ignorability assumption (Rosenbaum & Rubin, 1983).
Treatment assignment is strongly ignorable if two conditions collectively hold.
The first condition is (Y0, Y1) ⊥ W |X, that treatment assignment is indepen-
dent of the potential outcomes conditional on covariates. The second condition
is 0 < P (W = 1|X) < 1, that every participant has a nonzero probability of
receiving either treatment, conditional on covariates.

The necessity of the conditional independence piece of the strong ignorability
assumption becomes evident when considering the necessary conditions for using
untreated participants as a proxy for the counterfactual. To estimate the ATE
by taking the difference between the averages of treated and untreated partici-
pants, we implicitly assume that the average scores produced by the untreated
participants are an unbiased estimate of what the average scores produced by
the treated participants would have been had they not received the treatment.
In doing so, we must ensure that the treated and untreated participants are sim-
ilar in relevant characteristics, so that the untreated participants can serve as a
faithful representation for their treated counterparts. For example, if the treated
group contained only males and the untreated group contained only females,
using the untreated group as a proxy for the treated group might not produce
a fair comparison, depending on what is being studied. This is why randomized
controlled trials are considered the gold standard: random assignment ensures
that, on average, all such possible confounders are balanced, making the treated
and untreated participants comparable.

As pointed out by Thoemmes and Kim (2011), the strong ignorability as-
sumption cannot be empirically tested. This is because treatment assignment
must be conditionally independent of all relevant covariates both observed and
unobserved, and it is not possible to empirically verify that variables that are
not collected do not play a role. As such, researchers who attempt to justify this
assumption are limited to making a convincing argument that they have mea-
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sured the relevant covariates and showing that these are balanced across treated
and untreated participants. The most common way of demonstrating balance
in an observed covariate across groups is via a standardized mean difference.
This takes the form of the mean difference in the covariate between groups (in
absolute value) divided by either a pooled standard deviation or an unpooled
standard deviation of one of the groups.

A standardized mean difference of 0 would indicate the covariate has the
same mean across groups. However, there is no universally agreed upon metric
for judging how small a nonzero standardized mean difference must be to be
considered negligible enough for the groups to be considered balanced on the
covariate for practical purposes. Many recommendations exist in the method-
ological literature. Harder, Stuart, and Anthony (2010) use a value less than
0.25, based on a suggestion by Ho, Imai, King, and Stuart (2007). Austin (2011)
suggests a stricter value of less than 0.1, based on work by Normand et al. (2001).
Leite, Stapleton, and Bettini (2018) point out that for educational research, the
What Works Clearinghouse Procedures and Standards Handbook (version 4.0)
requires a value less than 0.05 without additional covariate adjustment, or be-
tween 0.05 and 0.25 with additional regression adjustment (U.S. Department
of Education, Institute of Education Sciences, & What Works Clearinghouse,
2017).

Analyzing standardized mean differences is reasonable when attempting to
balance across demographic covariates such as sex, age, race, etc. Yet some char-
acteristics do not lend themselves well to being assessed in this way. Consider
an example where we are interested in evaluating the effects of a breakup from
a romantic relationship (the treatment) on life satisfaction (the outcome). For
simplicity, let us assume that we only collect data from one partner per couple.
Putting demographics aside, affect might be an important covariate to balance
on. However, ensuring that couples who do and do not break up have the same
average affect might not be especially useful. Stability of affect has been shown
to be predictive of whether couples remain together or break up (Ferrer, 2016;
Ferrer, Steele, & Hsieh, 2012). That is, fluctuations in affect are what need to
be balanced, not simply average affect. Consider the plot given in Figure 1 of
two hypothetical individuals, J and K, and their affect over time. J has highly
variable affect, whereas K has relatively stable affect. Based on the aforemen-
tioned research, J is more likely to experience a breakup, given their instability.
However, both J and K have the same average affect. Imagine a treatment group
filled with individuals like J and an untreated group filled with individuals like
K. According to the standardized mean difference, these two groups would be
balanced across affect, because they have the same mean affect. The fact that
they have different patterns with regard to the variability would be entirely
missed.

The literature does recommend that covariates should be balanced across
groups on not just the mean, but the distribution of the variables (Austin, 2011;
Ho et al., 2007). Researchers are encouraged to examine higher-order moments,
as well as interactions between covariates. Graphical methods are often used
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Figure 1. Stability of Affect in Two Hypothetical Individuals

to make these comparisons, including quantile-quantile plots, boxplots, density
plots, etc. Though visualizations can be helpful for univariate or even bivariate
data, they become less useful with higher-dimensional data, as in our example.
Furthermore, in this case, they do not quite address the issue directly. We would
like to balance on stability of affect, which is not entirely captured by either
univariate higher order moments or interactions.

1.2 Purpose

Although conventional approaches can be useful when balancing on demographic
variables and other such covariates, they are not as well suited for balancing
on more complex functions of the data, such as stability of affect. This paper
seeks to develop an approach that allows us to balance on more flexibly defined
characteristics of interest. We begin by reviewing some classic and recent ap-
proaches to matching. We then provide an introduction to structural equation
model trees and their variations. Drawing from these, we propose our own algo-
rithm, Causal Mplus Trees, and describe its implementation. We then conduct
two small simulation studies demonstrating our algorithm’s effectiveness and an
empirical analysis of COVID-19 data. We conclude with a discussion of practical
recommendations and future directions.

1.3 Propensity Score Matching

Thus far we have discussed ways to evaluate whether treated and untreated
participants are balanced on covariates. If they are found to be unbalanced, we
can turn to statistical approaches to balance them. A natural initial thought
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would be to use ordinary least squares regression, conditioning on covariates
within the model. However, Berk (2004) points out that simply calculating a
conditional distribution of the outcome is not sufficient to draw causal inference
and that stronger assumptions are needed.

A popular alternative is to use propensity scores, defined as the probability
of treatment conditional on observed covariates (Rosenbaum & Rubin, 1983). It
has been shown that propensity scores can balance treated and untreated par-
ticipants in the sample, and that both treatment assignment as well as observed
covariates are conditionally independent given the propensity score (Rosenbaum
& Rubin, 1983). This implies that for participants with the same propensity
score, the mean difference in the outcome between treated and untreated partic-
ipants is an unbiased estimate of the ATE at that propensity score (Guo & Fraser,
2010). Propensity scores are typically calculated using logistic regression, with
the observed covariates predicting treatment status (W ). The estimated regres-
sion coefficients are then used as weights in a model predicting the probability of
treatment for each individual. The estimated propensity score is this predicted
probability of treatment.

Once propensity scores have been calculated, they can be used in various
ways, including propensity score matching (Rosenbaum & Rubin, 1985), strati-
fication on the propensity score (Rosenbaum & Rubin, 1984), and inverse prob-
ability of treatment weighting using the propensity score (Hirano & Imbens,
2001). Of these three, propensity score matching seems to eliminate more of
the systematic differences in covariates (Austin, 2009) and also seems to be the
most popular (Thoemmes & Kim, 2011), so we limit our focus to propensity score
matching. Propensity score matching involves finding treated and untreated par-
ticipants with similar propensity scores to use as each other’s counterfactuals.
According to Austin (2011) and the systematic review conducted by Thoemmes
and Kim (2011), the most commonly used form of matching is 1:1 matching,
where each treated participant is matched with a single untreated participant,
forming a pair. Thoemmes and Kim (2011) found that the most popular way to
do this in the social sciences was to use greedy matching, in which a treated sub-
ject is selected at random and the untreated subject with the closest propensity
score is paired with them. The process is repeated until all treated subjects have
a match. This is in contrast to optimal matching, where matches are selected
to optimize the distance between propensity scores for the entire sample, which
has been shown to perform comparably to greedy matching (Gu & Rosenbaum,
1993). The 1:1 matching scheme produces pairs of treated and untreated par-
ticipants who should in theory be balanced on the propensity scores. The ATE
can then be estimated simply by performing a paired t test (Austin, 2011).

Of course, one must still ensure that the propensity scores are balanced across
treated and untreated participants. If they are not, it is recommended that the
logistic regression model be iteratively refined by including nonlinear terms and
interactions between covariates until balance has been achieved (Austin, 2011;
Rosenbaum & Rubin, 1984, 1985; West et al., 2014). Latent variable models can
be used to calculate propensity scores by balancing on latent covariates whose
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scores are estimated via factor score estimation (Raykov, 2012), or by using
structural equation modeling to estimate propensity scores directly (Leite et
al., 2018). Machine learning techniques including bagging, boosting, trees, and
random forests, have also been used for the estimation of propensity scores (Lee,
Lessler, & Stuart, 2010).

1.4 Causal Trees

A recent alternative to propensity score matching is the causal tree approach
proposed by Athey and Imbens (2016). Essentially, they use decision trees to
partition the sample into groups of individuals who are similar on important
dimensions. They then treat these groupings as matched, and use them to es-
timate the ATE. Decision trees (Breiman, Friedman, Olshen, & Stone, 1984),
use recursive partitioning to separate a predictor space into regions that are as
homogeneous as possible on a target variable of interest. Binary splits are made
on predictors (e.g. female vs. male, age ≤ 60 vs. age > 60, etc.), splitting the
sample into two nodes. All possible splits are made on all predictors, and the
split that makes the resulting samples in each node as homogeneous as possible is
presented as a candidate split. If this split exceeds a predetermined fit criterion,
the split is made, partitioning the sample into the two daughter nodes. Other-
wise, the split is not made, and the parent node becomes a terminal node. The
process continues recursively on each daughter node until all nodes are terminal
nodes. We refer readers to Serang et al. (2021) for additional description of the
procedure.

Decision trees are most often used for prediction of a target variable. The
critical insight of Athey and Imbens (2016) is that trees have a natural procliv-
ity for creating homogeneous subgroups. Instead of trying to predict a target
variable, we can substitute the vector of covariates, X. The tree will then pro-
duce terminal nodes where the observations in each terminal node are as similar
as possible on the covariates, achieving the same aim as matching. Each termi-
nal node is characterized by splits on predictors (separate from X) that define
membership in that node. In what they call an honest approach to estimation,
the authors recommend that these subgroup definitions be applied to a fresh
holdout sample not involved in the construction of the tree, to create subgroups
using the new data. CATEs (ATEs conditional on subgroup membership) can
then be estimated in each subgroup via mean differences between treated and
untreated participants within the subgroup. Causal inference can also be drawn
using standard approaches, such as an independent-samples t test.

The advantage of causal trees over propensity score methods is that one need
not worry about the estimation of or balancing on propensity scores. Propensity
scores only serve as a middleman in propensity score matching, and causal trees
use the properties of decision trees to bypass them entirely. Additionally, causal
trees easily accommodate heterogeneity in causal effects. In our running exam-
ple, we wish to match on stability of affect. If we use demographic variables as
splitting variables in the tree, we can potentially find subgroups defined by these
demographic characteristics (e.g. sex, age, etc.) that have different levels of affect
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stability. The causal tree approach would then allow us to estimate the causal
effect of a breakup separately in each of these subgroups, as well as compare
them to see if the causal effect differs by subgroup.

1.5 Structural Equation Model Trees

One limitation of causal trees as described is that they assume we wish to match
on observed covariates. However, stability in our example is not an observed vari-
able in the data: it is a characterization based on a pattern. One way to charac-
terize stability for the data in our example would be to fit a simple intercept-only
growth curve model and examine the residual variance. A model fit to individ-
uals such as J would produce a large residual variance, whereas a model fit to
individuals like K would yield a relatively small residual variance. Thus, stability
of a group can be characterized by model-based parameter estimates, in lieu of
observed variables.

To do this within the causal tree framework, we would need a mechanism
to fit a model within each node. For longitudinal models, we can use an ap-
proach like the nonlinear longitudinal recursive partitioning algorithm proposed
by Stegmann, Jacobucci, Serang, and Grimm (2018), which allows the user to
fit linear and nonlinear longitudinal models within each node. A more general
approach is the structural equation model tree (SEM Tree) proposed by Brand-
maier, Oertzen, McArdle, and Lindenberger (2013), which allows for structural
equation models (SEMs) to be fit within each node. A benefit of the latter is
the flexibility of the SEM framework, which can accommodate a wide range of
models, including many longitudinal models, via latent growth curve modeling
(Meredith & Tisak, 1990).

The logic of SEM Trees is similar to that of standard decision trees, with
some minor variations. A prespecified SEM is first fit to the full sample, and
the minus two log-likelihood (−2LogL) is calculated. Then, the −2LogL for
the candidate split is calculated. Since the split can be conceptualized as a
multiple group model (Jöreskog, 1971), the −2LogL for the split is simply the
sum of the −2LogL values for each daughter node. A likelihood ratio test is then
conducted with these two −2LogL values. If it rejects, the split is made. As in
other decision trees, this process is recursively repeated until all daughter nodes
are terminal nodes. Unlike conventional decision trees, terminal nodes in SEM
Trees do not provide a predicted proportion or mean. Rather, each terminal
node is characterized by a set of parameter estimates for the SEM fit to the
sample in that node. In this way, SEM Trees can be used to identify subgroups
of people who are similar in that they can be represented by a set of parameter
estimates that is distinct from the parameter estimates that characterize those in
other nodes. SEM Trees can therefore identify subgroups with distinct patterns
of stability, growth, or other patterns reflected in the parameter estimates.
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1.6 Mplus Trees

The SEM Trees algorithm is implemented in the semtree (Brandmaier, Prindle,
& Arnold, 2021) package in R (R Core Team, 2020). The SEMs are fit in either
the OpenMx package (Neale et al., 2016) or the lavaan package (Rosseel, 2012).
The OpenMx package is flexible but challenging to use, especially for casual users,
given the need to specify the entirety of the model with limited defaults. The
lavaan package is much easier to use given the ease with which one can specify
models, however it is currently more limited in the scope of the models it can
fit. The MplusTrees package (Serang et al., 2021) is an implementation of SEM
Trees which uses Mplus (Muthén & Muthén, 1998-2017) to fit the models, the
rpart package (Therneau & Atkinson, 2018) to perform the recursive partition-
ing needed to grow the trees, and the MplusAutomation package (Hallquist &
Wiley, 2018) to interface between R and Mplus. MplusTrees capitalizes on the
wide variety of complex models that can be specified in Mplus, the ease with
which they can be specified, and the currently superior estimation algorithms it
uses for fitting these models.

The Mplus Trees algorithm itself (Serang et al., 2021) is very similar to the
SEM Trees algorithm (Brandmaier et al., 2013). However, one key difference is
the criterion used for splitting. Although the MplusTrees package also has the
capability to split using the likelihood ratio test, this is not the primary method.
Instead, Mplus Trees uses a complexity parameter, cp. This cp parameter is a
proportion specified in advance by the user. A split will be made if that split
improves on the -2LogL of the full sample (the parent node) by at least cp times
that -2LogL. Smaller values of cp result in more splits since a relatively smaller
improvement in the -2LogL is needed for a split to be made, whereas larger
values lead to fewer splits. As such, the use of cp serves more as a heuristic than
a formal test based on statistical significance. Ideally, cp would be selected by
cross-validation, and this functionality is available in the MplusTrees package.
However, long computational times may require users to simply try a handful of
cp values and select the most appropriate one given the context.

2 Causal Mplus Trees

We now propose our own matching algorithm, Causal Mplus Trees, using Mplus
Trees to create causal trees that match on parameters from an SEM, and esti-
mating CATEs in a holdout sample. We begin by first randomly partitioning the
dataset into two parts, one subsample to perform the matching and the other to
perform the estimation of the CATEs. In most cases, the matching subsample
will require more participants, since fitting an SEM and building a decision tree
is more sample intensive than estimating a mean difference. We suggest devot-
ing 80% of the sample to the matching subsample and 20% to the estimation
subsample, though this ratio can be adjusted depending on the complexity of
the SEM, the overall sample size, etc.

Beginning with the matching subsample, we can partition X into two parts:
XM , the modeled covariates modeled in the SEM whose parameters we wish to
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match on, and XS , the splitting covariates we want to split on in the recursive
partitioning process which define the subgroups of the tree’s terminal nodes.
Guidance for whether a covariate should be a modeled covariate or a splitting
covariate is provided in the discussion. Let M be an SEM with parameters θ
that produces XM , so that M(θ) = XM . In our running example, M would be
the intercept-only growth model and θ would be its parameters. For properly
specified M , XM can be used to estimate θ, resulting in parameter estimates θ̂.
Using Mplus Trees, we can build a tree that matches on θ̂, with groups (terminal
nodes) defined by their covariate patterns on XS . The treatment assignment
information,W , is not provided to the recursive partitioning algorithm and so the
tree is built blind to W . In the estimation subsample, we can divide participants
into groups according to the splits found by the tree. Within each group, we
can estimate the CATE as defined before by taking the difference between the
means of the outcomes of the treated and untreated participants in each group.
Since we are using a fresh sample, we can draw inference using hypothesis tests
such as an independent-samples t test or another suitable alternative. We can
also test whether the CATE differs by group by testing the interaction effect in
a two-way independent ANOVA.

3 Simulation Studies

As a proof of concept for Causal Mplus Trees, we performed two small simulation
studies. The simulation studies were conducted in R using the lavaan package
to simulate data and the MplusTrees package for analysis. Readers are referred
to the package documentation for details regarding the implementation of the
algorithm in the software. Each simulation consisted of 1,000 replications.

3.1 Longitudinal Simulation

The first simulation mapped onto our running example regarding stability of
affect. Each sample consisted of N = 2,000 individuals, 1,000 in each of two
groups. The data were generated from an intercept-only (no growth) model with
10 time points. The intercept had a mean of 10 with a variance of 1. The only
difference between the groups was in the residual variance, σ2

ε . One group had a
residual variance of 1 (the group with stable affect), and the other had a residual
variance of 10 (the group with unstable affect). The group memberships were
identified by a dichotomous covariate, used as a splitting variable. Thus, the
tree matched on the growth curve, using the group membership to split. Within
each group, treated and untreated participants were evenly split (500 each).
A diagram of this population tree is given in Figure 2. For the stable affect
group, outcomes were generated using a standard normal distribution, N(0, 1),
for the untreated group and a N(0.5, 1) distribution for the treated group, to
represent a medium-sized CATE. However, for the unstable affect group, the
outcome distributions were flipped, with the untreated group’s outcome being
generated from a N(0.5, 1) distribution, whereas the treated group’s outcome
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was generated from a N(0, 1) distribution. In this way, although the ATE for
the full sample was 0, the CATE for each group was 0.5 in absolute value.

Figure 2. Population Tree for Longitudinal Simulation

It should be noted that these groups are, from the start, balanced on the
modeled covariates. Since the growth curve variables were all generated to have
a mean of 10, they would be considered balanced according to the standardized
mean difference. Thus, if one were to follow conventional procedure, propensity
scores would not be needed here, and the estimation of the ATE would consist
of simply the mean difference between treated and untreated participants, which
would be 0 on average.

The Causal Mplus Trees algorithm was implemented as described in the prior
section, with 80% of the sample (1,600 individuals) used for matching and 20%
(400 individuals) used to estimate CATEs. A cp value of .01 was used to split,
with a minimum of 100 individuals required to consider splitting on a node. Each
terminal node was also required to have at least 100 individuals within it. For
each replication, the CATE was estimated in each group using an independent
samples t test. A two-way independent ANOVA was also conducted to determine
if CATEs differed by group.

Overall, the results demonstrated the effectiveness of the algorithm. Across
all replications, 94.5% of CATEs were detected. Additionally, 99.8% of the in-
teractions from the two-way ANOVA were detected, showing that the algorithm
can detect differences in CATEs by group. As a comparison, we also analyzed
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these data as they would have been analyzed using the conventional approach.
Since the covariates were on average balanced according the standardized mean
difference, the ATE would have been estimated by using the full sample to esti-
mate the mean difference between treated and untreated participants. Despite a
sample size of 2,000 to do this (relative to the only 400 available to Causal Mplus
Trees after performing the matching), only 3.4% of datasets yielded statistically
significant ATEs, consistent with a nominal false positive rate of 5%.

3.2 Measurement Simulation

The second simulation study is similar to the first, but used a measurement
model as opposed to a longitudinal model for the matching. For the second study,
each sample consisted of N = 3,000 individuals, divided into three groups. One
group (the small loading group) contained 1,500 individuals, while the remaining
two groups (the medium and large loading group) each contained 750. Data were
generated from a one-factor confirmatory factor analysis model with 15 items.
Factor variances were fixed to 1, and uniquenesses were also simulated to be
1. As implied above, the only differences were in the loadings, λ. In the small
loading group, all loadings were simulated to be 0.1, in the medium loading
group they were 0.5, and in the large loading group they were 0.9. The model was
generated to reflect the case where items are more related to a latent construct for
some people than for others. If the latent variable were a psychological disorder,
this would map onto the idea that the items better reflect the presence of that
disorder in some groups relative to others.

As with the previous simulation study, a single splitting covariate denoting
group membership was used as the splitting variable, albeit with three values
given the three groups. Figure 3 shows a diagram for this population tree. As
with the other simulation study, each group was evenly divided on treated and
untreated participants. In the small loading group untreated participants had
outcomes generated from a N(0, 1) distribution, whereas the treated group’s
outcome was generated from a N(0.5, 1) distribution. In the medium and large
loading groups this was reversed: untreated participants had outcomes from a
N(0.5, 1) distribution whereas treated participants had outcomes from a N(0, 1)
distribution. In this way, these samples too had an average ATE of 0, in addi-
tion to being on average balanced on the modeled covariates according to the
standardized mean difference, since all items had an average score of 0.

The algorithm again used 80% of each sample (2,400 participants) for match-
ing and 20% (600 participants) for estimation. As before, a minimum of 100
individuals was required to consider splitting a node and in each terminal node,
however this study used a cp value of .001. Unlike the previous study where
the split was made in every replication, the algorithm had some slight trouble
finding all the groups in this study. All three groups were found in 92.7% of
simulations, but only two groups were found in the remaining 7.3%. Among all
the groups found, 88.3% of the CATEs were detected, along with 99.7% of the
interactions. Alternatively, when using the entire sample to calculate the ATE,
only 3.5% of simulations yielded significant results. These results are similar
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to those found in the first simulation study. Taken together, they show that
the Causal Mplus Trees algorithm is able to estimate CATEs and support hy-
pothesis testing to determine their statistical significance. It can also determine
whether the CATEs differ by group. Notably, CATEs were found in the absence
of ATEs, with modeled covariates already balanced across treated and untreated
participants according to the standardized mean difference.

Figure 3. Population Tree for Measurement Simulation

4 Empirical Example

As an illustration of how Causal Mplus Trees can be used in practice, we present
an analysis of COVID-19 data. The dataset contains information from four dif-
ferent sources: public health data from the COVID-19 Data Repository by the
Center for Systems Science and Engineering (CSSE) at Johns Hopkins Univer-
sity (Dong, Du, & Gardner, 2020), demographic data from the 2010 US Decen-
nial Census (U.S. Census Bureau, 2010), governor’s party information obtained
from the National Governors Association Roster (National Governors Associa-
tion, 2020), and mobility data from Unacast, a location data analytics company
(Unacast, 2020).
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To capture how individuals’ travel activity patterns responded to the spread
of COVID-19, we utilized Unacast’s measure of the change in average distance
traveled. Travel distance was measured using the GPS positions of millions of
mobile devices and aggregated each day to a county-level average. For a detailed
overview of variable construction and discussion of potential sources of bias, see
Sears, Villas-Boas, Villas-Boas, and Villas-Boas (2020). The data were analyzed
at the county level, consisting of 3,030 counties or county-equivalents from all
50 US states except Alaska. This represents over 95% of counties in the US.

The goal of this analysis was to estimate the CATE of the governor’s party
(Democrat or Republican) on mobility in counties matched on the trajectory
of COVID-19 cases early in the pandemic. We sought to answer the question:
“for counties with similar trajectories of the rise in COVID-19 cases from March
through June 2020, could differences in mobility in July 2020 be attributed
to the governor’s party?” Prior studies reveal strong links between political
partisanship and the adoption of stay-at-home and social distancing orders as
well as changes in residents’ travel behavior and time spent at home (Adolph,
Amano, Bang-Jensen, Fullman, & Wilkerson, 2020; Allcott et al., 2020; Brzezin-
ski, Deiana, Kecht, & Van Dijcke, 2020; Gadarian, Goodman, & Pepinsky, 2020).
We provide a complementary analysis allowing us to understand whether the ef-
fect of gubernatorial political alignment extended beyond stay-at-home adoption
timing to continued behavioral changes among constituents. Our analysis also
examined how this effect differed across counties depending on demographic
characteristics.

Case trajectories were modeled using the cumulative cases in the county
divided by the population per 10,000 residents, hereafter referred to as COVID
rates. COVID rates were calculated weekly from March 9, 2020 (around when
states began reporting their first cases) until June 29, 2020, resulting in 17 time
points of data per county. The SEM fit within each node of the tree was the
logistic growth model given by

COV IDi =
β1i

1 + e−(t−γ)α + εi (2)

where COV IDi is the COVID rate for county i, β1i is the county-specific COVID
rate when the “curve has flattened” (the upper asymptote), t is the number of
weeks (t = 1, 2, . . . , 17), γ is the inflection point, α is the rate of change, and ε is
the residual. The model was specified using Taylor-series approximation (Browne
& Toit, 1991; Grimm & Ram, 2009) with equal residual variances across time,
σ2
ε , to aid estimation.

We used six demographic splitting variables: population (the total population
of the county), white (the percentage of non-Hispanic Whites), age65 older (the
percentage of people ages 65 years and older), median inc (the median household
income), bachelors (the percentage of people with at least a bachelor’s degree),
and rural (the percentage of the population considered rural). To reduce the
computational burden of the algorithm, we reassigned values from 1 to 4 to each
of these splitting covariates depending on the quartile in which they fell relative
to the other counties.
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In implementing the Causal Mplus Trees algorithm, we used 2,424 counties
to match the data and the remaining 606 to estimate the CATEs. We required
that a minimum sample size of 300 was required to both attempt a split and
to remain in each terminal node. A cp value of .01 was used to split. The tree
grown from the training data is given in Figure 4, with corresponding parameter
estimates provided in Table 1. Group 1 consisted of those in the bottom three
quartiles (<93.1%) on white, below the median (<17.2%) on age65 older, and
in the bottom three quartiles of median inc (<$53,601). It contained 29% of the
counties, and was characterized by the highest asymptote, 61.33 cases per 10,000.
Group 2 was made up of those in the bottom three quartiles (<93.1%) on white,
below the median (<17.2%) on age65 older, but in the top quartile of median inc
(>$53,601). It represented 15% of the counties, and was characterized by the
second highest asymptote, 50.19 cases per 10,000. Group 3 contained those in the
bottom three quartiles (<93.1%) on white, but above the median (>17.2%) on
age65 older. This group had 31% of counties, with the second lowest asymptote,
35.88 cases per 10,000. Group 4 consisted of those in the top quartile (>93.1%) on
white, with 26% of counties and the lowest asymptote at 19.04 cases per 10,000.
Group 4 also happened to be the most rural and least populated, potentially
explaining the low asymptote.

Figure 4. Tree from COVID-19 Data Matching Subsample

Governor’s party (with Republican arbitrarily selected as the treatment) was
used as the treatment variable in part because much of the policy, coordination,
and messaging thus far has occurred via executive action at the state level.
The outcome, mobility, was operationalized as the change in average distance
traveled, or CADT. CADT for each day in July was calculated as the county-
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Table 1. Parameter Estimates for SEMs from the Groups in Figure 4

Group 1 Group 2 Group 3 Group 4

n 696 362 744 622
β1 (Mean) 61.33 50.19 35.88 19.04

β1 (Variance) 13,377.34 7,767.81 2,425.19 455.58
γ 9.33 6.94 10.23 10.44
α 0.69 0.56 0.44 0.40
σ2
ε 554.05 139.86 88.02 18.73

day level percentage point change in average travel distance relative to that
day-of-week’s average in early 2020 (average for Feb 10 to March 8, prior to
the presence of COVID-19 in the US). Accordingly, a value of –3 indicates a
3 percentage point decline in average travel distance relative to baseline levels.
A positive value of CADT signals that residents of that county increased their
travel distances relative to their pre-COVID-19 patterns, whereas a negative
value indicates reduced travel distances (that can occur through reductions in
both the distances traveled per trip as well as the overall number of trips taken).
Each county’s average CADT for July was estimated by taking the mean of the
daily CADT for each day from July 1, 2020 until July 31, 2020. The estimate
of the CATE in each group, along with corresponding information, is given in
Table 2.

Table 2. CATEs and Significance Tests for COVID-19 Groups

Group 1 Group 2 Group 3 Group 4

nRep;nDem 104; 59 58; 55 104; 94 76; 60

CADTRep -0.93% -4.47% -0.58% -0.78%

CADTDem -2.47% -10.92% 0.88% -2.30%
CATE 1.54% 6.46% -1.46% 1.53%
t test t(104.08) = 0.94 t(108.76) = 2.84 t(186.87) = -0.86 t(122.99) = 1.15
p value .349 .006 .389 .252

Of the four groups, the only one with a statistically significant CATE was
Group 2, where counties in states with Democratic governors had an average
CADT that was 6.46 percentage points less than counties in states with Repub-
lican governors t(108.76) = -2.84, p = .006. Group 2 was on average the most
populous, least rural group of the four, as well as the most educated with highest
median incomes. As such, Group 2 contained the country’s more metropolitan
areas. We interpret this result to mean that in metropolitan counties matched
for COVID rates, people in counties in states with Democratic governors trav-
eled 6.5 percentage points less in July than people in comparable counties in
states with Republican governors. Of note, the two-way independent ANOVA
found that in the estimation subsample, a significant main effect of party was
not found F (1, 598) = 3.76, p = .053, whereas a main effect of Group F (3, 598)
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= 13.45, p < .001, and an interaction F (3, 598) = 3.41, p = .017 were. This
suggests that the party effect is more prominent for more metropolitan counties,
but would be obscured if examining the country as a whole. The mean difference
between parties in CADT for all 3,030 counties was only 0.60 percentage points,
with a t test on the full dataset yielding t(2422.6) = -1.50, p = .133, though this
result should be read with the caveat that nearly all counties were represented in
the sample. The value of Causal Mplus Trees in analyzing these data is evident
in its ability to find a group of counties exhibiting stronger party effects, while
simultaneously matching on COVID-19 trajectories.

Our findings corroborate those of previous COVID-19 partisanship studies.
Allcott et al. (2020) found evidence of 3.6 percent fewer point of interest visits
associated with a 10 percentage point decrease in the Republican vote share
(roughly equivalent to shifting from the median to the 25th percentile Republi-
can vote share county for the 2010 presidential election). Brzezinski et al. (2020)
estimated a 3 percentage point difference in the share of devices staying fully
at home for the 90th vs 10th percentile Democrat vote share counties 15 days
after a county’s first case. Areas with relatively greater viewership of conserva-
tive news shows that initially downplayed the threat of coronavirus (versus those
that accurately portrayed the pandemic) have also been linked to delayed behav-
ior changes and higher initial occurrences of cases and deaths (Bursztyn, Rao,
Roth, & Yanagizawa-Drott, 2020). Further, our Group 2 CATE is comparable
in magnitude to the decline in travel distance attributable to statewide stay-
at-home mandates (Sears et al., 2020). While prior studies employ traditional
approaches for discussing treatment effect heterogeneity (i.e. running difference-
in-differences or event study regressions on subgroups of interest), the Causal
Mplus Trees method provides a data-driven approach to identifying comparable
groups on model fit and analyzing treatment effect heterogeneity.

5 Discussion

In this paper, we proposed the Causal Mplus Trees algorithm, which matches
on parameter estimates of an SEM using a tree-based approach and uses these
groupings to estimate CATEs in a holdout sample. We used two small simulation
studies to demonstrate a proof of concept for the approach. We also showed
how it could be used to estimate party effects on mobility using COVID-19
data. We reiterate that we do not see Causal Mplus Trees as a substitute for
traditional matching methods. Propensity score matching and related methods
have their place and can be effective in matching on covariates, both observed
and latent. We believe that our approach offers an alternative option to those
whose research questions would be better addressed by the ability to match on
parameter estimates from an SEM.

5.1 Practical Recommendations

We encourage users of Causal Mplus Trees to carefully consider how they select
and differentiate between modeled covariates and splitting covariates. Although
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the procedure ultimately matches on both, the way it does so differs by co-
variate type. Matching is performed on modeled covariates indirectly through
the parameter estimates produced by the model, whereas splitting covariates
are matched more directly on the observed values of the scores. The choice of
whether a covariate should be used as a modeled or splitting covariate depends
upon what specifically the user wants to match, which can vary based on the
research question, study design, and characteristics of the sample collected.

Another consideration for researchers using Causal Mplus Trees is the depth
to which the tree should be grown. Cross-validation is the most commonly used
approach for this in the context of conventional decision trees. However, we
believe that cross-validation may not be as well suited for our purposes primarily
because it is designed to optimize predictive accuracy. In our algorithm, the goal
of the tree is not to optimize predictive accuracy, but rather to partition the
sample into groups that are matched well enough on θ̂ to justify causal inference
in the holdout sample. As in propensity score matching, there is no objective
criterion for this, so the researcher must make a subjective judgment and make
a case to justify it.

We urge researchers to take into account the following considerations. First,
the sample size in each parent node must be large enough to estimate M in not
only the parent node, but also each of the daughter nodes. SEMs can require
larger sample sizes to estimate, so limits should be placed on the splitting pro-
cedure so as not to consider splitting on a sample that does not have a large
enough sample to do this. Related to this is the need for a sufficient number of
treated and untreated participants in each terminal node to be able to estimate
the CATEs in the holdout sample. If a group has no treated (or no untreated)
participants, the CATE cannot be estimated. Of course, it is possible that the
mix in the tree differs from the mix in the holdout sample, but to the extent
that the matching subsample is a reflection of the estimation subsample, the
matching subsample can give a sense of the mix one would expect in the estima-
tion subsample. If performing hypothesis tests, certain minimum sample sizes
are required to meet the assumptions of the test as well as to detect the effects,
so these must also be kept in mind when deciding how deep to grow the tree.

Parsimony is also important to consider, especially with respect to building a
coherent narrative with policy implications. We are typically searching for groups
with qualitative meaning given the relevant theoretical framework. If the tree
were to produce a dozen groups, it may be challenging to map this onto available
theory in order to interpret the results. The relative importance of parameters
in characterizing a pattern should be taken into account as well. Theory may
dictate that some parameters may be more important to match on than others
for a given context (e.g., the residual variance in our stability example). As such,
it could be justifiable to trim the tree earlier if splits begin resulting in differences
in less relevant parameters. The size of parameter estimates may also play a role.
For example, the algorithm could decide on a split that results in two daughter
nodes with only small differences in their parameter estimates. Treating these
as two separate groups for the purpose of estimating the CATE may not be
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worthwhile. Similar to the logic used in propensity score analysis, the treated
and untreated participants in each node should be compared on their parameters
estimates, to verify, even if only subjectively, that they are similar and therefore
matched to some degree.

The choice for the depth of the tree depends on a trade-off between inter-
pretability of a result and the validity of the causal inference. If one were to view
the ability to draw causal inference as how well treated and untreated partici-
pants are matched, then the ability to draw causal inference can be conceptu-
alized not as a dichotomy but as a continuum with perfectly matched partici-
pants on one end and perfectly unmatched participants on the other. The better
matched participants are, the greater the ability to draw causal inference. How-
ever, better matching requires a deeper tree, which becomes less interpretable
and generalizable as the depth grows. This trade-off exists in propensity score
matching as well but is more apparent in the context of decision trees where
such trade-offs are more apparent and a language with which to conceptualize
and discuss them already exists.

5.2 Future Research and Conclusions

Plenty of opportunities exist to expand on this work. Although two simulation
studies were conducted, they only served as a proof of concept. Additional simu-
lations would be helpful in evaluating the effectiveness of the algorithm across a
variety of conditions. The causal tree approach has been extended to use random
forests (Wager & Athey, 2018), which are known to be more stable than decision
trees. These causal forests have also been modified to accommodate multilevel
data structures (Suk, Kang, & Kim, in press). SEM Trees have been expanded
to SEM Forests (Brandmaier, Prindle, McArdle, & Lindenberger, 2016), so ex-
panding our algorithm to use random forests would be a natural next step.
Additionally, we note that our discussion of treatment effects was limited to
mean differences in univariate outcomes. However, given that SEM is already
being employed as well as the flexibility of Causal Mplus Trees, it is possible
that the outcome measure could be generalized to the multivariate context, with
treated and untreated participants being compared on a model using, for ex-
ample, a multiple group SEM. To conclude, we believe our proposed algorithm
can provide researchers with the opportunity to match on SEM parameter esti-
mates, thereby allowing them greater flexibility in what they can match on and
the kinds of research questions they can address as a result.
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