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Abstract. Empirical researchers are usually interested in investigating
the impacts that baseline covariates have when uncovering sample het-
erogeneity and separating samples into more homogeneous groups. How-
ever, a considerable number of studies in the structural equation mod-
eling (SEM) framework usually start with vague hypotheses in terms of
heterogeneity and possible causes. It suggests that (1) the determination
and specification of a proper model with covariates is not straightfor-
ward, and (2) the exploration process may be computationally intensive
given that a model in the SEM framework is usually complicated and
the pool of candidate covariates is usually huge in the psychological and
educational domain where the SEM framework is widely employed. Fol-
lowing Bakk and Kuha (Bakk & Kuha, 2017), this article presents a
two-step growth mixture model (GMM) that examines the relationship
between latent classes of nonlinear trajectories and baseline character-
istics. Our simulation studies demonstrate that the proposed model is
capable of clustering the nonlinear change patterns, and estimating the
parameters of interest unbiasedly, precisely, as well as exhibiting appro-
priate confidence interval coverage. Considering the pool of candidate
covariates is usually huge and highly correlated, this study also proposes
implementing exploratory factor analysis (EFA) to reduce the dimension
of covariate space. We illustrate how to use the hybrid method, the two-
step GMM and EFA, to efficiently explore the heterogeneity of nonlinear
trajectories of longitudinal mathematics achievement data.
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1 Introduction

1.1 Motivating Example

Earlier studies have examined the impacts of time-invariant covariates (TICs) on
nonlinear mathematics achievement trajectories. For example, Liu, Perera, Kang,
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Kirkpatrick, and Sabo (2019) associated nonlinear change patterns of mathemat-
ics IRT scaled scores to baseline covariates, including demographic information,
socioeconomics factors, and school information. With the assumption that all
covariates explain sample variability directly, this study showed that some base-
line characteristics, such as sex, school type, family income, and parents’ highest
education, can explain the heterogeneity in the nonlinear trajectories of math-
ematics scores. However, Kohli, Hughes, Wang, Zopluoglu, and Davison (2015)
showed that latent classes of change patterns of mathematics achievement ex-
ist. Accordingly, these covariates may also inform latent class formation. In this
study, we want to investigate the indirect impacts the baseline characteristics
have on sample heterogeneity.

1.2 Finite Mixture Model

The finite mixture model (FMM) represents heterogeneity in a sample by al-
lowing for a finite number of latent (unobserved) classes. The idea of mixture
models is to put multiple probability distributions together using a linear com-
bination. Although researchers may want to consider two different or multiple
different families for the different kernels in some circumstances, the assumption
that all latent classes’ probability density functions follow normal distributions
with class-specific parameters is common in application.

This framework has gained considerable attention in the past twenty years
among social and behavioral scientists due to its advantages over other cluster-
ing algorithms such as K-means for investigating sample heterogeneity. First, in
the SEM framework, the FMM can incorporate any form of within-class models.
For instance, Lubke and Muthén (2005) specified factor mixture models, where
the within-class model is a factor model to investigate heterogeneity in common
factors. In contrast, Muthén and Shedden (1999) defined growth mixture models
(GMM), where the within-class model is a latent growth curve model to exam-
ine heterogeneity in trajectories. More importantly, the FMM is a model-based
clustering method (Bouveyron, Celeux, Murphy, & Raftery, 2019) so that re-
searchers can specify a model in this framework with domain knowledge: which
parameters can be fixed to specific values, which need to be estimated, and
which can be constrained to be equal (for example, invariance across classes).
Additionally, the FMM is a probability-based clustering approach. Unlike other
clustering methods, such as the K-means clustering algorithm, which aims to
separate all observations into several clusters so that each entry belongs to one
cluster without considering uncertainty, the FMM allows each element to belong
to multiple classes simultaneously.

This article focuses on the GMM with a nonlinear latent growth curve model
as the within-class model. Specifically, trajectories in each class in the proposed
GMM is a linear-linear piecewise model (Harring, Cudeck, & du Toit, 2006;
Kohli, 2011; Kohli & Harring, 2013; Kohli, Harring, & Hancock, 2013; Kohli et
al., 2015; Sterba, 2014), also referred to as a bilinear growth model (Grimm,
Ram, & Estabrook, 2016; Liu, 2019; Liu et al., 2019) with an unknown change-
point (or knot). We decide to use the bilinear spline functional form for two
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considerations. First, in addition to examining the growth rate of each stage
directly, this piecewise function allows for estimating the transition time from
one stage to the other. Additionally, Kohli et al. (2015) and Liu et al. (2019), have
shown that a growth model with this functional form can capture the underlying
change patterns of mathematics achievement and outperforms several parametric
functions: linear, quadratic, and Jenss-Bayley from the statistical perspective.

Similar to Liu et al. (2019), we propose the model in the framework of indi-
vidual measurement occasions to account for possible heterogeneity in the mea-
surement time in longitudinal studies (Cook & Ware, 1983; Finkel, Reynolds,
Mcardle, Gatz, & Pedersen, 2003; Mehta & West, 2000). Earlier studies, for
example, (Preacher & Hancock, 2015; Sterba, 2014) have demonstrated one pos-
sible solution to individual measurement occasions is to place the exact time to
the matrix of factor loadings, termed the definition variable approach (Mehta
& Neale, 2005; Mehta & West, 2000). Earlier studies have shown that the def-
inition variable approach outperforms some approximate methods such as the
time-bins approach (where the assessment period is divided into several bins,
and the factor loadings are set as those time-bins) in terms of bias, efficiency,
and Type I error rate (Blozis & Cho, 2008; Coulombe, Selig, & Delaney, 2015).

1.3 Challenges of Finite Mixture Models Implementation

Many studies in the SEM framework start from an exploratory stage where even
empirical researchers only have vague assumptions about sample heterogeneity
and possible reasons. It suggests that we usually have two challenges when im-
plementing a FMM, deciding the number of latent classes and selecting which
covariates need to be included in the model. To investigate which criterion can
be used to decide the number of latent classes, Nylund, Asparouhov, and Muthén
(2007) evaluated the performance of likelihood-based tests and the traditionally
used information criteria and showed that the bootstrap likelihood ratio test is
a consistent indicator while the Bayesian information criterion (BIC) performs
the best among all information criteria. Note that in practice, the BIC, which is
calculated from the estimated likelihood directly, is usually more favorable due
to its computational efficiency.

It is also challenging to decide to include which covariates as predictors of
class membership. Previous studies have shown that including subject-level pre-
dictors for latent classes can be realized by either one-step models (Bandeen-
Roche, Miglioretti, Zeger, & Rathouz, 1997; Clogg, 1981; Dayton & Macready,
1988; Goodman, 1974; Haberman, 1979; Hagenaars, 1993; Kamakura, Wedel,
& Agrawal, 1994; Vermunt, 1997; Yamaguchi, 2000), two-step models (Bakk &
Kuha, 2017) or three-step models (Asparouhov & Muthén, 2014; Bolck, Croon,
& Hagenaars, 2004; Vermunt, 2010). The one-step model is suitable if a study
is conducted in a confirmatory way or driven by answering a particular ques-
tion, where specifying a proper mixture model for the covariates is usually a
knowledge-driven process. On the contrary, the stepwise model is more suitable
for an exploratory study in which empirical researchers usually have limited a
priori knowledge about possible class structure. For such studies, the current
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recommended approach is to investigate the number and nature of the clusters
without adding any covariates so that they do not inform class formation.

In this study, we utilize the two-step model given that a considerable number
of studies investigated in the SEM framework start from the exploratory stage
and that Bakk and Kuha (2017) has shown that the two-step procedure is con-
sistently better than the three-step approach as it does not ignore the presence
of uncertainty in the modal class assignments. Accordingly, by extending the
method proposed in Bakk and Kuha (2017) to the FMM with a bilinear spline
growth curve as the within-class model, we first group nonlinear trajectories and
estimate class-specific parameters with a pre-specified number of clusters by fit-
ting the measurement-model portion of the mixture model; we then investigate
the associations between the ‘soft clusters’, where each sample is assigned with
different posterior weights, and the individual-level covariates by fitting the mea-
surement and structural model but fixing the measurement parameter estimates
as their values from the first step. By utilizing the two-step model, we only need
to refit the model in the second step rather than the whole model when adding
or removing covariates, saving the computational budget.

However, the covariate space in the psychological and educational domains
where the SEM framework is widely utilized is usually large, and some covariates
are highly correlated. To address this issue, we propose to leverage a common
multivariate data analysis approach in the SEM framework, exploratory factor
analysis (EFA), to reduce the covariate space’s dimension and address potential
multicollinearity. Note that in this current study, it is not our aim to examine
EFA comprehensively. We only want to demonstrate how to use the individual
scores, for example, Thompson’s scores (Thomson, 1939), or Bartlett’s weighted
least-squares scores (Bartlett, 1937), based on the output of EFA, with a basic
understanding of its algorithm.

EFA is a useful multivariate data analysis approach to explain the variance-
covariance matrix of the dataset by replacing a large set of manifest variables
with a smaller latent variable set. In this approach, manifested variables are as-
sumed to be caused by latent variables. When implementing EFA, we impose no
constraints on the relationships between manifested and latent variables. Assum-
ing that all manifested variables are related to all latent variables, this approach
aims to determine the appropriate number of factors and factor loadings (i.e.,
correlations between observed variables and unobserved variables). Next, we cal-
culate a score for each factor of each individual based on the factor loadings and
standardized covariate values. We then view these individual-level scores instead
of the covariates as baseline characteristics in the second step.

The proposed hybrid method aims to provide an analytical framework for ex-
amining heterogeneity in an exploratory study. We extend the two-step method
proposed by Bakk and Kuha (2017) to investigate the heterogeneity in nonlin-
ear trajectories in the framework of individually varying time points (ITPs).
Specifically, we consider the bilinear spline growth curve with an unknown knot
as the within-class model. We specify the model with truly individual measure-
ment occasions, which are ubiquity in longitudinal studies, to avoid unnecessary
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inadmissible estimation. Additionally, we propose to use EFA to reduce the di-
mension of the covariate space.

The remainder of this article is organized as follows. We describe the model
specification and model estimation of the two-step growth mixture model in the
framework of ITPs in the method section. In the subsequent section, we describe
the design of the Monte Carlo simulation for model evaluation. We evaluate the
model performance through the performance measures, which include the rela-
tive bias, the empirical standard error (SE), the relative root-mean-squared-error
(RMSE), and the empirical coverage for a nominal 95% confidence interval of
each parameter of interest, as well as accuracy. We then introduce the dataset of
repeated mathematics achievement scores from the Early Childhood Longitudi-
nal Study, Kindergarten Class of 2010-11 (ECLS-K: 2011), and demonstrate the
implementation of the hybrid method in the application section. Finally, discus-
sions are framed concerning methodological considerations and future directions.

2 Method

2.1 Model Specification

In this section, we specify the GMM with a bilinear spline growth curve as the
within-class model. Harring et al. (2006) showed there are five parameters in the
bilinear spline functional form: an intercept and slope of each linear piece and
a change-point, yet the degree of freedom of the bilinear spline is four since two
linear pieces join at the knot. In this study, we view the initial status, two slopes,
and the knot as the four parameters. We construct the model with consideration
of the variability of the initial status and two slopes, but assuming that the class-
specific knot is the same across all individuals in a latent class though Liu et al.
(2019); Preacher and Hancock (2015) have shown that the knot can also have a
random effect by relaxing the assumption. Suppose the pre-specified number of
latent classes is K, for i = 1 to n individuals and k = 1 to K latent classes, we
express the model as

p(yi|zi = k,xi) =

K∑
k=1

π(zi = k|xi)× p(yi|zi = k), (1)

π(zi = k|xi) =


1

1+
∑K

k=2 exp(β
(k)
0 +β(k)Txi)

Reference Group (k = 1)

exp(β
(k)
0 +β(k)Txi)

1+
∑K

k=2 exp(β
(k)
0 +β(k)Txi)

Other Groups (k = 2, . . . ,K)
, (2)

yi|(zi = k) = Λi(γ
(k))ηi|(zi = k) + εi|(zi = k), (3)

ηi|(zi = k) = µη
(k) + ζi|(zi = k). (4)

Equation (1) defines a FMM that combines mixing proportions, π(zi = k|xi),
and within-class models, p(yi|zi = k), where xi, yi and zi are the covariates,
J × 1 vector of repeated outcome (where J is the number of measurements)
and membership of the ith individual, respectively. For Equation (1), we have
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two constratints: 0 ≤ π(zi = k|xi) ≤ 1 and
∑K
k=1 π(zi = k|xi) = 1. Equation

(2) defines mixing components as logistic functions of covariates xi, where β
(k)
0

and β(k) are the class-specific logistic coefficients. These functions decide the
membership for the ith individual, depending on the values of the covariates xi.

Equations (3) and (4) together define a within-class model. Similar to all
factor models, Equation (3) expresses the outcome yi as a linear combination of
growth factors. When the underlying functional form is bilinear spline growth
curve with an unknown fixed knot, ηi is a 3× 1 vector of growth factors (ηi =
η0i, η1i, η2i, for an initial status and a slope of each stage of the ith individual).
Accordingly, Λi(γ

(k)), which is a function of the class-specific knot γ(k), is a J×3
matrix of factor loadings. Note that the subscript i in Λi(γ

(k)) indicates that it
is a function of the individual measurement occasions of the ith individual. The
pre- and post-knot yi can be expressed as

yij =

{
η0i + η1itij + εij tij ≤ γ(k)

η0i + η1iγ
(k) + η2i(tij − γ(k)) + εij tij > γ(k)

,

where yij and tij are the measurement and measurement occasion of the ith

individual at time j. Additionally, εi is a J × 1 vector of residuals of the ith

individual. Equation (4) further expresses the growth factors as deviations from
their class-specific means. In the equation, µη

(k) is a 3×1 vector of class-specific
growth factor means and ζi is a 3×1 vector of residual deviations from the mean
vector of the ith individual.

To unify pre- and post-knot expressions, we need to reparameterize growth
factors. Earlier studies, for example, Grimm et al. (2016); Harring et al. (2006);
Liu et al. (2019), presented multiple ways to realize this aim. Note that no matter
which approach we follow to reparameterize growth factors, the reparameterized
coefficients are not directly related to the underlying change patterns and need
to be transformed back to be interpretable. In this article, we follow the reparam-
eterized method in Liu et al. (2019) and define the class-specific reparameterized
growth factors as the measurement at the knot, mean of two slopes, and the half
difference of two slopes. Note that the expressions of the repeated outcome yi
using the growth factors in the original and reparameterized frames are equiva-
lent. We also extend the (inverse-)transformation functions and matrices for the
reduced model in Liu et al. (2019), with which we can obtain the original pa-
rameters efficiently for interpretation purposes. Detailed class-specific reparam-
eterizing process and the class-specific (inverse-) transformation are provided in
Appendix 6.2 and Appendix 6.2, respectively.

2.2 Model Estimation

To simplify the model, we assume that class-specific growth factors follow a mul-
tivariate Gaussian distribution, that is, ζi|k ∼ MVN(0,Ψη

(k)). Note that Ψη
(k) is

a 3×3 variance-covariance matrix of class-specific growth factors. We also assume
that individual residuals follow identical and independent normal distributions
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over time in each latent class, that is, εi|k ∼ N(0, θ
(k)
ε I), where I is a J×J iden-

tity matrix. Accordingly, for the ith individual in the kth unobserved group, the

within-class model implied mean vector (µ
(k)
i ) and variance-covariance matrix

(Σ
(k)
i ) of repeated measurements are

µ
(k)
i = Λiµη

(k), (5)

Σ
(k)
i = ΛiΨη

(k)ΛTi + θ(k)ε I. (6)

Step 1 In the first step, we estimate the class-specific parameters and mixing
proportions for the model specified in Equations (1), (2), (3) and (4) without
considering the impact that covariates xi have on the class formation. The pa-
rameters need to be estimated in this step include

Θs1 = {µ(k)
η0 , µ

(k)
η1 , µ

(k)
η2 , γ

(k), ψ
(k)
00 , ψ

(k)
01 , ψ

(k)
02 , ψ

(k)
11 , ψ

(k)
12 , ψ

(k)
22 , θ

(k)
ε , π(2), · · · , π(K)}.

We employ full information maximum likelihood (FIML) technique, which ac-
counts for the potential heterogeneity of individual contributions to the like-
lihood, to estimate Θs1. The log-likelihood function of the model specified in
Equations (1), (2), (3) and (4) without the effect of xi is

log lik(Θs1) =

n∑
i=1

log

( K∑
k=1

π(zi = k)p(yi|zi = k)

)

=

n∑
i=1

log

( K∑
k=1

π(zi = k)p(yi|µ
(k)
i ,Σ

(k)
i )

)
.

(7)

Step 2 In the second step, we examine the associations between the ‘soft clus-
ters’, where each trajectory is assigned with different posterior probabilities, and
the baseline characteristics by fixing the class-specific parameters as their esti-
mates from the first step, that is, the parameters need to be estimated in this

step are those logistic coefficients, Θs2 = {β(k)
0 ,βT (k)} (k = 2, . . . ,K), in Equa-

tion (2). The log-likelihood function in Equation (7) also needs to be modified
as

log lik(Θs2) =

n∑
i=1

log

( K∑
k=1

π(zi = k|xi)p(yi|zi = k)

)

=

n∑
i=1

log

( K∑
k=1

π(zi = k|xi)p(yi|µ̂
(k)
i , Σ̂

(k)

i )

)
.

(8)

We construct the proposed two-step GMM using the R package OpenMx
with the optimizer CSOLNP (Boker et al., 2020; Hunter, 2018; Neale et al.,
2016; Pritikin, Hunter, & Boker, 2015), with which we can fit the proposed
GMM and implement the class-specific inverse-transformation matrices to obtain
coefficients that are directly related to underlying change patterns as shown in
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Appendix 6.2. In the online appendix (https://github.com/Veronica0206/
Dissertation projects), we provide the OpenMx code for the proposed model
as well as a demonstration. For the researchers interested in using Mplus, we
also provide Mplus 8 code for the model in the online appendix.

3 Model Evaluation

We evaluate the proposed model using a Monte Carlo simulation study with
two goals. The first goal is to evaluate the model performance by examining the
relative bias, empirical SE, relative RMSE, and empirical coverage for a nominal
95% confidence interval (CI) of each parameter. Table 1 lists the definitions and
estimates of these performance metrics.

Table 1. Performance Metrics: Definitions and Estimates

Criteria Definition Estimate

Relative Bias Eθ̂(θ̂ − θ)/θ
∑S
s=1(θ̂s − θ)/Sθ

Empirical SE

√
V ar(θ̂)

√∑S
s=1(θ̂s − θ̄)2/(S − 1)

Relative RMSE
√
Eθ̂(θ̂ − θ)2/θ

√∑S
s=1(θ̂s − θ)2/S/θ

Coverage Probability Pr(θ̂low ≤ θ ≤ θ̂upper)
∑S
s=1 I(θ̂low,s ≤ θ ≤ θ̂upper,s)/S

Note. θ: the population value of the parameter of interest; θ̂: the estimate of θ; S: the

number of replications and set as 1, 000 in our simulation study; s = 1, . . . , S: indexes
the replications of the simulation; θ̂s: the estimate of θ from the sth replication; θ̄: the
mean of θ̂s’s across replications; I(): an indicator function

The second goal is to evaluate how well the clustering algorithm performs
to separate the heterogeneous trajectories. To evaluate the clustering effects, we
need to calculate the posterior probabilities for each individual belonging to the
kth unobserved group. The calculation is based on the class-specific estimates and
mixing proportions obtained from the first step and realized by Bayes’ theorem

p(zi = k|yi) =
π(zi = k)p(yi|zi = k)∑K
k=1 π(zi = k)p(yi|zi = k)

.

We then assign each individual to the latent class with the highest posterior
probability to which that observation most likely belongs. If multiple posterior
probabilities equal to the maximum value, we break the tie among competing
components randomly (McLachlan & Peel, 2000). We evaluate the clustering
effects by accuracy and entropy. Since the true membership is available in simu-
lation studies, we are able to calculate accuracy, which is defined as the fraction
of all correctly labeled instances (Bishop, 2006). Entropy, which is given

Entropy = 1 +
1

n log(K)

( n∑
n=1

K∑
k=1

p(zi = k|yi) log p(zi = k|yi)
)
, (9)

https://github.com/Veronica0206/Dissertation_projects
https://github.com/Veronica0206/Dissertation_projects
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is a metric based on the average posterior probabilities (Stegmann & Grimm,
2018). It ranges from 0 to 1, where 0 and 1 suggesting no cluster separation
and complete separation, respectively. It is an indicator of the quality of the
mixture model. In the current study, entropy reflects separation only based on
the trajectories as shown in Equation (9). Earlier studies, for example, Lubke and
Muthén (2007), have demonstrated that entropy is a good indicator of accuracy
when we exclude all covariates from the mixture model. It is our interest to test
the robustness of this recommendation in the context of the growth mixture
model with nonlinear trajectories.

We decided the number of repetitions S = 1, 000 by an empirical approach
proposed by Morris, White, and Crowther (2019) in the simulation design. The
(relative) bias is the most important performance metric in our simulation, so
we want to keep its Monte Carlo standard error3 less than 0.005. We ran a pilot
simulation study and noted that standard errors of all parameters except the
intercept variances were less than 0.15, so we needed at least 900 replications to
ensure the Monte Carlo standard error of bias is as low as we expected. We then
decided to proceed with S = 1, 000 to be more conservative.

3.1 Design of Simulation Study

The simulation study has two parts. As mentioned earlier, we propose the two-
step model with a bilinear spline growth curve with an unknown knot as the
within-class model, assuming that the change-point is roughly similar for all
individuals in each latent class as the knot variance is not the primary interest
of this study. In the first part, we restricted the knot to be identical for all
trajectories in a latent class to evaluate the model performance when being
specified correctly. We are also interested in examining how the proposed model
works when relaxing the restriction. Accordingly, in the second part, by allowing
for the individual difference in the knot, we investigated the robustness of the
proposed model by assessing the model performance in the presence of knots
with the standard deviation set as 0.3.

We list all conditions of simulation studies for Part 1 and Part 2 in Table 2.
All conditions except the knot variance for both parts were set to be the same.
For both parts, we fixed the conditions that are not of the primary interests of the
current study. For example, we considered ten scaled and equally-spaced waves
since Liu et al. (2019) has shown that the bilinear growth model had decent per-
formance concerning the performance measures to a longitudinal data set with
ten repeated measures and fewer number of measurements only affected model
performance slightly. Similar to Liu et al. (2019), we allowed the time-window
of individual measurement occasions ranging from −0.25 and +0.25, which was
viewed as a ‘medium’ deviation, as an existing simulation study (Coulombe et
al., 2015), around each wave. We also fixed the variance-covariance matrix of
the class-specific growth factors that usually change with the time scale and
the measurement scale in practice; accordingly, we kept the index of dispersion

3 Monte Carlo SE(Bias) =

√
V ar(θ̂)/S (Morris et al., 2019).
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(σ2/µ) of each growth factor at the one-tenth scale, guided by Bauer and Curran
(2003); Kohli (2011); Kohli et al. (2015). Further, the growth factors were set to
be positively correlated to a moderate degree (ρ = 0.3).

For both parts, the primary aim was to investigate how the separation be-
tween latent classes, the unbalanced class mixing proportion, and the trajectory
shape affected the model performance. Utilizing a model-based clustering al-
gorithm, we are usually interested in examining how well the model can detect
heterogeneity in samples and estimate parameters of interest in each latent class.
Intuitively, the model should perform better under those conditions with a larger
separation between latent classes. We wanted to test this hypothesis. In the sim-
ulation design, we had two metrics to gauge the separation between clusters: the
difference between the knot locations and the Mahalanobis distance (MD) of the
three growth factors of latent classes. We set 1, 1.5 and 2 as a small, medium,
and large difference between the knot locations. We chose 1 as the level of small
difference to follow the rationale in Kohli et al. (2015) and considered the other
two levels to investigate whether the more widely spaced knots improve the
model performance. We considered two levels of MD, 0.86 (i.e., small distance)
and 1.72 (i.e., large distance), for class separation. Note that both the small
and large distance in the current simulation design was smaller than the corre-
sponding level in Kohli et al. (2015) because we wanted to examine the proposed
model under more challenging conditions in terms of cluster separation.

We chose two levels of mixing proportion, 1:1 and 1:2, for the conditions with
two latent classes and three levels of mixing proportion, 1:1:1, 1:1:2 and 1:2:2, for
the scenarios with three clusters. We selected these levels because we wanted to
evaluate how the challenging conditions (i.e., the unbalanced allocation) affect
performance measures and clustering effects. We also examined several common
change patterns shown in Table 2 (Scenario 1, 2 and 3). We changed the knot
locations and one growth factor under each scenario but fixed the other two
growth factors to satisfy the specified MD. We considered θ = 1 or θ = 2 as two
levels of homogeneous residual variances across latent classes to see the effect of
the measurement precision, and we considered two levels of sample size.

3.2 Label Switching

All mixture models suffer from the label switching issue: inconsistent assign-
ments of membership for multiple replications in simulation studies. The label
switching does not hurt the model estimation in the frequentist framework since
the likelihood is invariant to permutation of cluster labels; however, the esti-
mates from the first latent class may be mislabeled as such from other latent
classes (Class 2 or Class 3 in our case) (Tueller, Drotar, & Lubke, 2011). In this
study, we utilized the column maxima switched label detection algorithm devel-
oped by Tueller et al. (2011) to check whether the labels were switched; and if
it occurred, the final estimates were relabeled in the correct order before model
evaluation.



64 J. Liu et al.

Table 2. Simulation Design for the Proposed Two-step Growth Mixture Model

Fixed Conditions

Variables Conditions

Variance of Intercept ψ
(k)
00 = 25

Variance of Slopes ψ
(k)
11 = ψ

(k)
22 = 1

Correlations of GFs ρ(k) = 0.3

Time (t) 10 scaled and equally spaced tj(j = 0, · · · , J − 1, J = 10)

Individual t tij ∼ U(tj −∆, tj +∆)(j = 0, · · · , J − 1;∆ = 0.25)

Manipulated Conditions

Variables 2 latent classes 3 latent classes

Sample Size n = 500 or 1000 n = 500 or 1000

Variance of Knots
ψ

(k)
γγ = 0.00(k = 1, 2) ψ

(k)
γγ = 0.00(k = 1, 2, 3)

ψ
(k)
γγ = 0.09(k = 1, 2) ψ

(k)
γγ = 0.09(k = 1, 2, 3)

Ratio of Proportions
π(1) : π(2) = 1 : 1 π(1) : π(2) : π(3) = 1 : 1 : 1

π(1) : π(2) = 1 : 2 π(1) : π(2) : π(3) = 1 : 1 : 2

π(1) : π(2) : π(3) = 1 : 2 : 2

Residual Variance θ
(k)
ε = 1 or 2 θ

(k)
ε = 1 or 2

Locations of knots
µγ = (4.00, 5.00) µγ = (3.50, 4.50, 5.50)
µγ = (3.75, 5.25) µγ = (3.00, 4.50, 6.00)
µγ = (3.50, 5.50)

Mahalanobis distance d = 0.86 or 1.72 d = 0.86

Scenario 1: Different means of initial status and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Slope 1’s µ
(k)
η1 = −5 (k = 1, 2) µ

(k)
η1 = −5 (k = 1, 2, 3)

Means of Slope 2’s µ
(k)
η2 = −2.6 (k = 1, 2) µ

(k)
η2 = −2.6 (k = 1, 2, 3)

Means of Intercepts
µη0 = (98, 102), (d = 0.86) µη0 = (96, 100, 104)
µη0 = (96, 104), (d = 1.72)

Scenario 2: Different means of slope 1 and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Intercepts µ
(k)
η0 = 100 (k = 1, 2) µ

(k)
η0 = 100 (k = 1, 2, 3)

Means of Slope 2’s µ
(k)
η2 = −2 (k = 1, 2) µ

(k)
η2 = −2 (k = 1, 2, 3)

Means of Slope 1’s
µη1 = (−4.4,−3.6), (d = 0.86) µη1 = (−5.2,−4.4,−3.6)
µη1 = (−5.2,−3.6), (d = 1.72)

Scenario 3: Different means of slope 2 and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Intercepts µ
(k)
η0 = 100 (k = 1, 2) µ

(k)
η0 = 100 (k = 1, 2, 3)

Means of Slope 1’s µ
(k)
η1 = −5 (k = 1, 2) µ

(k)
η1 = −5 (k = 1, 2, 3)

Means of Slope 2’s
µη2 = (−2.6,−3.4), (d = 0.86) µη2 = (−1.8,−2.6,−3.4)
µη2 = (−1.8,−3.4), (d = 1.72)
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3.3 Data Generation and Simulation Step

For each condition listed in Table 2, we used two-step data generation to obtain
a component label zi for each individual and then generated data for each com-
ponent. The general steps of the simulation for the proposed two-step model in
the framework of individual measurement occasions were carried out as follows:

1. Create component label zi for the ith individual:
(a) Generate data matrix of exogenous variables,
(b) Calculate the probability vector for each entry with a set of specified

regression coefficients using a multinomial logit link and assign a com-
ponent label zi to each observation,

2. Generate data for growth factors and a knot of each latent class using the
R package MASS (Venables & Ripley, 2002),

3. Generate the time structure with J scaled and equally-spaced waves tj and
obtain individual measurement occasions: tij ∼ U(tj−∆, tj+∆) by allowing
disturbances around each wave,

4. Calculate factor loadings, which are functions of ITPs and the knot, for each
individual,

5. Calculate values of the repeated measurements based on the class-specific
growth factors, corresponding factor loadings, and residual variances,

6. Apply the proposed model to the generated data set, estimate the parame-
ters, and construct corresponding 95% Wald CIs, as well as calculate poste-
rior probabilities that each individual belongs to each of the multiple latent
classes, followed by accuracy and entropy,

7. Repeat the above steps until after obtaining 1, 000 convergent solutions to
calculate the mean accuracy and mean entropy, perform the column maxima
switched label detection algorithm, relabel the clusters if labels had been
switched, and calculate the relative bias, empirical SE, relative RMSE and
coverage probability of each parameter under investigation.

4 Result

4.1 Model Convergence

In this section, we first examine the convergence4 rate of two steps for each
condition. Based on our simulation studies, the convergence rate of the proposed
two-step model achieved around 90% for all conditions, and the majority of non-
convergence cases occurred in the first step. To elaborate, for the conditions with
two latent classes, 96 out of total 288 conditions reported 100% convergence rate,
while for the conditions with three latent classes, 12 out of total 144 conditions
reported 100% convergence rate. Among all conditions with two latent classes,
the worst scenario regarding the convergence rate was 121/1121, indicating that

4 In our project, convergence is defined as to reach OpenMx status code 0, which
indicates a successful optimization, until up to 10 attempts with different collections
of starting values (Neale et al., 2016).
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we need to replicate the procedure described in Section 3.3 1, 121 times to have
1, 000 replications with a convergent solution. Across all scenarios with three
latent classes, the worst condition was 134/11345.

4.2 Performance Measures

Performance Measures of the First Part of Simulation Study In this
section, we evaluate the performance measures of the proposed model across the
conditions with fixed knots (i.e., knots without considering variability), under
which the proposed model was specified correctly. In the result section, we named
the latent classes from left to right as Class 1 (the left cluster) and Class 2
(the right cluster) and called them as Class 1 (the left cluster), Class 2 (the
middle cluster) and Class 3 (the right cluster) for the model with two and three
pre-specified clusters, respectively. We first calculated each performance metric
across 1, 000 replications for each parameter of interest under each condition
with two latent classes and fixed knots. We then summarized each metric across
all conditions as the corresponding median and range.

Tables 3 and 4 present the median (range) of the relative bias and empirical
SE for each parameter of interest of the two-step model, respectively. We ob-
served that the proposed model generated unbiased point estimates with small
empirical SEs when being specified correctly in the first step. Specifically, the
magnitude of the relative biases of the growth factor means and growth factor
variances across all conditions were under 0.016 and 0.038, respectively. In the
second step, the median of relative bias of the logistic coefficients was around
−0.010, although they may be underestimated under conditions with the small
sample size (i.e., n = 500), the small difference in knot locations (i.e., the dif-
ference is 1) and less precise measurements (i.e., θε = 2). From Table 4, the
magnitude of empirical SE of all parameters except intercept means and vari-
ances were under 0.52 (i.e., the variances of estimates were under 0.25), though
the median value of empirical SE of µη0 and ψ00 were around 0.40 and 2.50,
respectively.

Table 5 list the median (range) of relative RMSE of each parameter, which
assesses the point estimates holistically. From the table, the model was capable
of estimating the parameters accurately in the first step. Under the conditions
with two latent classes and fixed knots, the magnitude of the relative RMSEs of
the growth factor means and variances were under 0.081 and 0.296, respectively.
The relative RMSE of the logistic coefficients was relatively larger under some
conditions due to their larger relative biases.

Table 6 shows the median (range) of the coverage probability for each param-
eter of interest of the two-step model with two latent classes under conditions
with fixed knots. Overall, the proposed model performed well regarding empirical
coverage under the conditions with the relatively large separation between two

5 Conditions of these worst cases were the small sample size (n = 500), unbalanced
allocation rate, small residual variance, small distance between the latent classes,
and small or medium difference in the knot locations.
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Table 3. Median (Range) of the Relative Bias over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Parameters Latent Class 1 Latent Class 2

Mean

µη0 0.000 (0.000, 0.001) 0.000 (−0.001, 0.000)
µη1 0.000 (−0.008, 0.003) 0.001 (−0.001, 0.012)
µη2 0.000 (−0.009, 0.016) −0.002 (−0.012, 0.003)
µγ 0.000 (−0.001, 0.002) 0.000 (−0.001, 0.002)

Variance

ψ00 −0.002 (−0.014, 0.006) −0.005 (−0.031, 0.005)
ψ11 −0.005 (−0.028, 0.028) −0.007 (−0.038, 0.003)
ψ22 −0.005 (−0.026, 0.031) −0.007 (−0.037, 0.005)

Path Coef.

β0 — −0.009 (NA, NA)
β1 — −0.012 (−0.225, 0.018)
β2 — −0.010 (−0.218, 0.015)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
NA: Note that for the conditions with balanced allocation, the population value of
β0 = 0 and its relative bias goes infinity. The bias median (range) of β0 is −0.002
(−0.070, 0.017).

Table 4. Median (Range) of the Empirical SE over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Parameters Latent Class 1 Latent Class 2

Mean

µη0 0.422 (0.242, 0.933) 0.336 (0.198, 0.709)
µη1 0.101 (0.051, 0.276) 0.073 (0.042, 0.175)
µη2 0.100 (0.054, 0.276) 0.072 (0.042, 0.160)
µγ 0.039 (0.017, 0.110) 0.046 (0.020, 0.134)

Variance

ψ00 2.662 (1.692, 5.073) 2.173 (1.423, 3.942)
ψ11 0.124 (0.073, 0.296) 0.093 (0.059, 0.168)
ψ22 0.126 (0.072, 0.286) 0.095 (0.062, 0.178)

Path Coef.

β0 — 0.168 (0.083, 0.516)
β1 — 0.120 (0.080, 0.200)
β2 — 0.124 (0.082, 0.198)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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Table 5. Median (Range) of the Relative RMSE over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 0.004 (0.002, 0.009) 0.003 (0.002, 0.007)
µη1 −0.021 (−0.063, −0.010) −0.016 (−0.045, −0.009)
µη2 −0.045 (−0.112, −0.020) −0.028 (−0.081, −0.012)
µγ 0.010 (0.005, 0.028) 0.009 (0.004, 0.027)

Variance

ψ00 0.106 (0.068, 0.203) 0.087 (0.057, 0.161)
ψ11 0.124 (0.074, 0.296) 0.093 (0.060, 0.172)
ψ22 0.126 (0.072, 0.288) 0.095 (0.062, 0.182)

Path Coef.

β0 — NA (0.121, NA)
β1 — 0.297 (0.197, 0.542)
β2 — 0.234 (0.155, 0.431)

Note. Para.: Parameters. —: when fitting the proposed model, we set the first latent

class as the reference group; accordingly, the coefficients of that class do not exist.
NA: Note that for the conditions with balanced allocation, the population value of
β0 = 0 and its relative RMSE goes infinity. The RMSE median (range) of β0 is 0.168
(0.083, 0.521).

latent classes and the higher measurement precision. Specifically, coverage prob-
ability of all parameters except knots and intercept coefficient β0 can achieve at
least 90% across all conditions with a medium or large separation between the
knot locations (i.e., 1.5 or 2) and small residual variance (i.e., θε = 1).

Additionally, when being specified correctly, the model with three latent
classes, similar to that with two clusters, performed well in terms of performance
measures, though we noticed that the empirical SE of parameters in the middle
cluster were slightly larger than those in the other two groups.

Performance Measures of the Second Part of Simulation Study In
this section, we assess the robustness of the proposed model by examining the
performance measures in the presence of random knots (i.e., the knots with the
standard deviation set as 0.3), under which the model was underspecified. We
noted that the relative biases increased slightly and that the empirical SE did not
change meaningfully when the proposed model was misspecified, which decreased
the performance of relative RMSE and coverage probability. For those conditions
under which the model was underspecified, the summary of the relative bias and
empirical SE were provided in 6.2.

4.3 Accuracy and Entropy

In this section, we evaluate the clustering effects across all conditions that we
considered in the simulation design. We first calculated mean values of accuracy
and entropy across 1, 000 Monte Carlo replications for each condition. Of all
the conditions we investigated, the mean entropy ranges from 0.3 to 0.8, while
the mean accuracy ranges from 0.55 to 0.95. Factors such as the separation
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Table 6. Median (Range) of the Coverage Probabilities over 1, 000 Replications of
Parameters of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Small Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .937 (.913, .961) .915 (.866, .950) .942 (.920, .971) .919 (.867, .952)
µη1 .919 (.861, .948) .874 (.766, .942) .936 (.901, .962) .904 (.819, .941)
µη2 .926 (.849, .949) .893 (.747, .940) .938 (.888, .956) .913 (.855, .949)
µγ .629 (.493, .724) .476 (.290, .623) .522 (.406, .685) .355 (.227, .541)

ψ00 .939 (.916, .954) .932 (.896, .950) .939 (.927, .957) .925 (.888, .963)
ψ11 .933 (.878, .950) .921 (.831, .957) .935 (.911, .966) .927 (.877, .947)
ψ22 .929 (.862, .950) .904 (.809, .935) .938 (.902, .961) .930 (.888, .957)

β0 — — .789 (.665, .854) .643 (.502, .739)
β1 — — .950 (.935, .960) .936 (.891, .957)
β2 — — .944 (.930, .959) .933 (.873, .958)

Medium Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .944 (.918, .959) .929 (.899, .951) .943 (.923, .957) .932 (.905, .955)
µη1 .938 (.897, .957) .922 (.833, .951) .947 (.917, .959) .932 (.884, .959)
µη2 .935 (.910, .948) .913 (.835, .947) .940 (.913, .959) .934 (.883, .954)
µγ .814 (.786, .854) .740 (.684, .800) .767 (.721, .833) .682 (.626, .780)

ψ00 .940 (.925, .953) .935 (.912, .955) .944 (.927, .953) .939 (.901, .950)
ψ11 .939 (.905, .952) .929 (.853, .953) .939 (.914, .961) .937 (.909, .952)
ψ22 .930 (.906, .958) .920 (.878, .951) .939 (.917, .962) .934 (.889, .951)

β0 — — .858 (.782, .905) .770 (.658, .839)
β1 — — .954 (.937, .961) .944 (.921, .965)
β2 — — .949 (.934, .964) .942 (.923, .961)

Large Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .946 (.931, .955) .938 (.921, .965) .946 (.932, .959) .940 (.921, .967)
µη1 .938 (.921, .959) .936 (.875, .953) .947 (.926, .958) .937 (.893, .961)
µη2 .939 (.907, .956) .928 (.876, .951) .949 (.937, .964) .940 (.916, .955)
µγ .952 (.935, .970) .946 (.935, .961) .950 (.933, .965) .946 (.932, .960)

ψ00 .946 (.929, .957) .944 (.916, .963) .943 (.916, .958) .942 (.921, .959)
ψ11 .938 (.917, .952) .934 (.859, .951) .942 (.918, .955) .938 (.902, .956)
ψ22 .935 (.910, .950) .928 (.857, .951) .946 (.925, .959) .938 (.919, .953)

β0 — — .892 (.825, .924) .805 (.703, .865)
β1 — — .950 (.927, .958) .949 (.937, .960)
β2 — — .950 (.934, .964) .946 (.924, .958)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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between two latent classes and the precision of measurements were the primary
determinants of entropy and accuracy.
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Figure 1. Accuracy vs Entropy of the Proposed Mixture Model (Step 1) with 2-
Clusters and Small Mahalanobis Distance

Figure 1 depicts the mean accuracy against the mean entropy for each condi-
tion with two latent classes, the small Mahalanobis distance, and change patterns
of Scenario 1 listed in Table 2. In the plot, we colored the conditions with the
smaller and the larger residual variances black and grey, respectively. Squares,
triangles, and circles are for the small, medium, and large differences between
the locations of the knots. Additionally, we set solid and hollow shapes for the
proportions 1:1 and 1:2, respectively. From the figure, we observed that both
entropy and accuracy increased when the separation between two latent classes
increased and as the residual variances were small. Additionally, unbalanced al-
location tended to yield relatively larger accuracy and entropy. We also noticed
that the scenario of change patterns only affected entropy and accuracy slightly,
while other factors such as the knot standard deviation and the sample size did
not have meaningful impacts on entropy and accuracy. We observed the same
patterns between the mean accuracy and the mean entropy of conditions with
three latent classes.

5 Application

In this section, we demonstrate how to fit the proposed model to separate non-
linear trajectories and associate the ‘soft clusters’ to the baseline characteristics
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using the motivating data. We extracted a random subsample (n = 500) from the
Early Childhood Longitudinal Study Kindergarten Cohort: 2010-11 (ECLS-K:
2011) with complete records of repeated mathematics IRT scaled scores, de-
mographic information (sex, race, and age in months at each wave), baseline
school information (school location and baseline school type), baseline social-
economic status (family income and the highest education level between parents),
baseline teacher-reported social skills (including interpersonal skills, self-control
ability, internalizing problem, externalizing problem), baseline teacher-reported
approach to learning, and baseline teacher-reported children behavior question
(including inhibitory control and attentional focus)6.

ECLS-K: 2011 is a nationally representative longitudinal sample of US chil-
dren enrolled in about 900 kindergarten programs beginning with 2010 − 2011
school year, where children’s mathematics ability was evaluated in nine waves:
fall and spring of kindergarten (2010 − 2011), first (2011 − 2012) and second
(2012 − 2013) grade, respectively as well as spring of 3rd (2014), 4th (2015)
and 5th (2016), respectively. Only about 30% students were assessed in the fall
of 2011 and 2012 (Lê, Norman, Tourangeau, Brick, & Mulligan, 2011). In the
analysis, we used children’s age (in months) rather than their grade-in-school to
obtain the time structure with individual measurement occasions. In the subset
data, 52% of students were boys, and 48% of students were girls. Additionally,
50% of students were White, 4.8% were Black, 30.4% were Hispanic, 0.2% were
Asian, and 14.6% were others. We dichotomized the variable race to be White
(50%) and others (50%) for this analysis. At the beginning of the study, 87%
and 13% students were from public and private schools, respectively. The covari-
ates including school location (ranged between 1 and 4), family income (ranged
between 1 and 18) and the highest parents’ education (ranged between 0 and 8)
were treated as a continuous variables, and the corresponding mean (SD) was
2.11 (1.12), 11.99 (5.34) and 5.32 (1.97), respectively.

Step 1

In the first step, we first fit a latent growth curve model with a linear-linear
piecewise functional form and three GMMs with two-, three- and four-class and
provided the obtained estimated likelihood, information criteria (AIC and BIC),
residual of each latent class in Table 7. All four models converged. As introduced
earlier, the BIC is a compelling information criterion for the enumeration process
as it penalizes model complexity and adjusts for sample size (Nylund et al., 2007).
The four fits led to BIC values of 31728.23, 31531.60, 31448.99, and 31478.35,
respectively, which led to the selection of the GMM with three latent classes.

Table 8 presents the estimates of growth factors from which we obtained
the model implied trajectory of each latent group, as shown in Figure 2. The
estimated proportions in Class 1, 2 and 3 were 29.6%, 47.8% and 22.6%, re-
spectively. On average, students in Class 1 had the lowest levels of mathematics

6 The total sample size of ECLS-K: 2011 n = 18174. The number of entries after
removing records with missing values (i.e., rows with any of NaN/-9/-8/-7/-1) is
n = 1853.
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Table 7. Summary of Model Fit Information For the Bilinear Spline Growth Models
with Different # of Latent Classes

1-Class 2-Class 3-Class 4-Class

-2LL 31659.87 31388.67 31231.48 31186.26
AIC 31681.87 31434.67 31301.48 31280.26
BIC 31728.23 31531.6 31448.99 31478.35
Residual 1 35.6 28.57 28.47 26.78
Residual 2 - 35.02 33.89 32.51
Residual 3 - - 32.03 33.36
Residual 4 - - - 26.63

Note. − indicates that the metric was not available for the model.

achievement throughout the entire duration (the fixed effects of the baseline and
two slopes were 24.133, 1.718 per month, and 0.841 per month, respectively).
On average, students in Class 2 had a similar initial score and slope for the
first stage but relatively lower slope in the second stage (the fixed effects of the
baseline and two slopes were 24.498, 1.730 per month, and 0.588 per month, re-
spectively) compared to the students in the Class 1. Students in Class 3 had the
best mathematics performance on average (the fixed effects of the baseline and
two slopes were 36.053, 2.123 per month, and 0.605 per month, respectively).
For all three classes, post-knot development in mathematics skills slowed sub-
stantially, yet the change to the slower growth rate occurred earlier for Class 1
and 3 (around 8-year old: 91 and 97 months, respectively) than Class 2 (around
9-year old, 110 months). Additionally, for each latent class, the estimates of the
intercept variance and first slope variance were statistically significant, indicat-
ing that each student had a ‘personal’ intercept and pre-knot slope, and then a
‘personal’ trajectory of the development in mathematics achievement.

Step 2

Table 9 summarizes the estimates of the second step of the GMM to associate
‘soft clusters’ of mathematics achievement trajectories to individual-level co-
variates. From the table, we noticed that the impacts of some covariates, such
as baseline socioeconomic status and teacher-reported skills, may differ with or
without other covariates. For example, higher family income, higher parents’
education, higher-rated attentional focus, and inhibitory control increased the
likelihood of being in Class 2 or Class 3 in univariable analyses, while these four
baseline characteristics only associated with Class 3 in multivariable analyses. It
is reasonable that the effect sizes of the Class 3 were larger than those of the Class
2, given its more evident difference from the reference group, as shown in Table
8 and Figure 2. However, it is still too rush to neglect that students from families
with higher socioeconomic status and/or higher-rated behavior questions were
more likely to be in Class 2 at the significant level of 0.05 in an exploratory
study. Another possible explanation for this phenomenon is multicollinearity.
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Table 8. Estimates of the Proposed Mixture Model with 3 Latent Classes (Step 1)

Estimate (SE) P value

Class 1

Mean

Intercept1 24.133 (1.250) < 0.0001∗

Slope 1 1.718 (0.052) < 0.0001∗

Slope 2 0.841 (0.031) < 0.0001∗

Knot 90.788 (0.733) < 0.0001∗

Variance
Intercept 79.696 (17.419) < 0.0001∗

Slope 1 0.104 (0.023) < 0.0001∗

Slope 2 0.049 (0.011) < 0.0001∗

Class 2

Mean

Intercept1 24.498 (0.813) < 0.0001∗

Slope 1 1.730 (0.024) < 0.0001∗

Slope 2 0.588 (0.032) < 0.0001∗

Knot 109.653 (0.634) < 0.0001∗

Variance
Intercept 77.302 (11.973) < 0.0001∗

Slope 1 0.026 (0.007) 0.0002∗

Slope 2 0.012 (0.011) 0.2753

Class 3

Mean

Intercept1 36.053 (1.729) < 0.0001∗

Slope 1 2.123 (0.035) < 0.0001∗

Slope 2 0.605 (0.027) < 0.0001∗

Knot 97.610 (0.068) < 0.0001∗

Variance Intercept 211.198 (36.057) < 0.0001∗

Slope 1 0.065 (0.017) 0.0001∗

Slope 2 −0.002 (0.006) 0.7389

Note. 1Intercept was defined as mathematics IRT scores at 60-month old in this case.
∗ indicates statistical significance at 0.05 level.



74 J. Liu et al.

Table 9. Odds Ratio (OR) & 95% Confidence Interval (CI) of Individual-level Predic-
tor of Latent Class in Mathematics Achievement(Reference group: Class 1)

Class 2

Predictor Uni-variable Multi-variable

OR 95% CI OR 95% CI

Sex(0−Boy; 1−Girl) 0.435 (0.254, 0.745)∗ 0.332 (0.174, 0.633)∗

Race(0−White; 1−Other) 0.764 (0.455, 1.281) 1.249 (0.624, 2.498)
School Location 1.407 (1.093, 1.811)∗ 1.357 (0.981, 1.877)
Parents’ Highest Education 1.208 (1.051, 1.388)∗ 1.155 (0.933, 1.431)
Income 1.074 (1.023, 1.128)∗ 1.067 (0.987, 1.154)
School Type (0−Public;
1−Private)

0.573 (0.250, 1.317) 0.442 (0.149, 1.313)

Approach to Learning 1.305 (0.883, 1.929) 0.957 (0.384, 2.389)
Self-control 1.146 (0.764, 1.718) 0.663 (0.272, 1.616)
Interpersonal Skills 1.479 (0.959, 2.282) 1.276 (0.513, 3.175)
External Prob Behavior 0.858 (0.559, 1.319) 1.391 (0.571, 3.386)
Internal Prob Behavior 1.139 (0.658, 1.972) 1.190 (0.589, 2.406)
Attentional Focus 1.251 (1.035, 1.511)∗ 1.139 (0.764, 1.698)
Inhibitory Control 1.238 (1.007, 1.520)∗ 1.557 (0.915, 2.649)

Class 3

Predictor Uni-variable Multi-variable

OR 95% CI OR 95% CI

Sex(0−Boy; 1−Girl) 0.379 (0.205, 0.700)∗ 0.212 (0.098, 0.459)∗

Race(0−White; 1−Other) 0.397 (0.219, 0.721)∗ 0.943 (0.429, 2.073)
School Location 1.266 (0.957, 1.676) 1.211 (0.835, 1.755)
Parents’ Highest Education 1.713 (1.418, 2.068)∗ 1.345 (1.043, 1.734)∗

Income 1.241 (1.155, 1.334)∗ 1.195 (1.083, 1.318)∗

School Type (0−Public;
1−Private)

1.437 (0.661, 3.124) 0.665 (0.234, 1.892)

Approach to Learning 2.624 (1.590, 4.332)∗ 5.363 (1.731, 16.612)∗

Self-control 1.436 (0.903, 2.284) 0.414 (0.136, 1.265)
Interpersonal Skills 1.740 (1.057, 2.862)∗ 0.771 (0.269, 2.209)
External Prob Behavior 0.761 (0.451, 1.283) 1.565 (0.561, 4.367)
Internal Prob Behavior 0.787 (0.405, 1.532) 1.170 (0.488, 2.808)
Attentional Focus 1.601 (1.253, 2.045)∗ 1.095 (0.671, 1.787)∗

Inhibitory Control 1.439 (1.116, 1.855)∗ 1.324 (0.720, 2.434)∗

Note. ∗ indicates 95% confidence interval excluded 1.
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Figure 2. Three Latent Classes: Model Implied Trajectories and Smooth Lines of Ob-
served Mathematics IRT Scores

Figure 3 visualizes the correlation matrix of all baseline characteristics, from
which we can see that two socioeconomic variables, family income and par-
ents’ highest education, were highly correlated (ρ = 0.66). Additionally, teacher-
rated baseline abilities were highly correlated; for example, the correlation of ap-
proach to learning with self-control, interpersonal ability, attentional focus, and
inhibitory control was 0.68, 0.72, 0.79 and 0.79, respectively. We then conducted
the exploratory factor analysis to address this collinearity issue for socioeconomic
variables and teacher-reported abilities.

The exploratory factor analysis was conducted using the R function factanal
in the stats package (R Core Team, 2020) with 2 specified factors as suggested
by the eigenvalues greater than 1 (EVG1) component retention criterion, scree
test (Cattell, 1966; Cattell & Jaspers, 1967), and parallel analysis (Horn, 1965;
Humphreys & Ilgen, 1969; Humphreys & Montanelli, 1975). We employed the
‘varimax’ option to get a type of orthogonal rotation (Kaiser, 1958). By using
Bartlett’s weighted least-squares methods, we obtained the factor scores. Table
10 summarizes the results from the EFA. The first factor differentiates between
teacher-rated abilities and teacher-reported problems; the second factor can be
interpreted as general socioeconomic status. We then re-ran the second step with
the two factors as well as demographic information and school information.

Table 11 summarizes the estimates obtained from the second step with fac-
tor scores, demographic information, and school information. From the table,
we observed that boys with higher values of the first factor scores, and higher
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Table 10. Exploratory Factor Analysis of Socioeconomic Variables and Teacher-
reported Abilities

Factor Loadings

Baseline Characteristics Factor 1 Factor 2

Parents’ Highest Education 0.10 0.76
Family Income 0.03 0.86
Approach to Learning 0.90 0.04
Self-control 0.77 0.08
Interpersonal Skills 0.76 0.05
External Prob Behavior −0.72 0.00
Internal Prob Behavior −0.24 −0.07
Attentional Focus 0.83 0.07
Inhibitory Control 0.89 0.01

Explained Variance

Factor 1 Factor 2

SS Loadings 4.04 1.34
Proportion Variance 0.45 0.15
Cumulative Variance 0.45 0.60

values of the second factor scores were more likely to be in Class 27 or Class 38.
It suggests that both socioeconomic variables and teacher-rated abilities were
positively associated with mathematics performance, while externalizing/inter-
nalizing problems were negative associated with mathematics achievement.

Table 11. Odds Ratio (OR) & 95% Confidence Interval (CI) of Factor Scores, Demo-
graphic Information and School Information of Latent Class in Mathematics Achieve-
ment (Reference group: Class 1)

Predictor Class 2 Class 3

OR 95% CI OR 95% CI
Sex(0−Boy; 1−Girl) 0.345 (0.183, 0.651)∗ 0.234 (0.111, 0.494)∗

Race(0−White; 1−Other) 1.221 (0.638, 2.339) 1.021 (0.486, 2.145)
School Type (0−Public;
1−Private)

0.439 (0.149, 1.291) 0.709 (0.244, 2.056)

School Location 1.333 (0.995, 1.786) 1.133 (0.806, 1.593)
Factor 1 1.454 (1.090, 1.939)∗ 2.006 (1.408, 2.858)∗

Factor 2 1.656 (1.226, 2.235)∗ 3.410 (2.258, 5.148)∗

Note. ∗ indicates 95% confidence interval excluded 1.

7 OR (95% CI) for sex, factor score 1 and factor score 2 was 0.345 (0.183, 0.651), 1.454
(1.090, 1.939) and 1.656 (1.226, 2.235), respectively.

8 OR (95% CI) for sex, factor score 1 and factor score 2 was 0.234 (0.111, 0.494), 2.006
(1.408, 2.858) and 3.410 (2.258, 5.148), respectively.
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6 Discussion

This article extends Bakk and Kuha (2017) study to conduct a stepwise anal-
ysis to investigate the heterogeneity in nonlinear trajectories. We fit a growth
mixture model with a bilinear spline functional form to describe the underlying
change pattern of nonlinear trajectories in the first step. In the second step, we
investigated the associations between the ‘soft’ clusters and baseline character-
istics. Although this stepwise method follows the recommended approach to fit
a FMM model (i.e., separate the estimation of the class-specific parameters and
that of the logistic coefficients), it is not our aim to show that this stepwise
approach is universally preferred. Based on our understanding, this approach is
more suitable for an exploratory study where empirical researchers only have
vague assumptions in terms of sample heterogeneity and its possible causes.

On the one hand, the two-step model can save computational budget as we
only need to refit the second-step model rather than the whole model when
adding or removing covariates. On the other hand, our simulation study showed
that the proposed model works well in terms of performance measures and accu-
racy, especially under preferable conditions, such as well-separated latent classes
and precise measurements. This stepwise approach can also be utilized to analyze
any other types of FMMs in the SEM framework to explore sample heterogeneity.

6.1 Methodological Consideration

Although this stepwise model can expedite the exploratory process, it is still
challenging to decide which covariates should be added in the mixture model to
inform the class formation. An additional challenge lies in that, in the psycho-
logical and behavioral research where the SEM framework is widely used, the
candidate pool of covariates is huge, or some variables are highly correlated (i.e.,
collinearity issue), as shown in the application.

In the statistical and machine learning (ML) literature, multiple approaches
have been proposed to reduce the number of covariates. These methods include
greedy search, regularization to select covariates based on their corresponding
coefficients, principal component analysis (PCA) to transform all features to
space with fewer dimensions, and tree-based models (such as regression and
classification trees, boosting, and bagging). In the SEM framework, the ma-
jority of counterparts of the above models have been proposed. For example,
Marcoulides and Drezner (2003); Marcoulides, Drezner, and Schumacker (1998)
proposed to conduct a heuristic specification search algorithm to identify an op-
timal set of models; Jacobucci, Grimm, and McArdle (2016); Scharf and Nestler
(2019); Sun, Chen, Liu, Ying, and Xin (2016), demonstrated how to regularize
parameters in the SEM framework to reduce the complexity of the model by se-
lecting or removing paths (i.e., variables). Additionally, by applying a tree-based
model Brandmaier, von Oertzen, McArdle, and Lindenberger (2013), Jacobucci,
Grimm, and McArdle (2017) captured the heterogeneity in trajectories with re-
spect to baseline covariates, where the FMM was compared with the tree-based
model in terms of membership components and result interpretation.
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This article proposes to employ the EFA to reduce the dimensions of covari-
ates and address the multicollinearity issue. In this application, we applied the
EFA in a process termed as ‘feature engineering’ in the ML literature, where re-
searchers employ the PCA technique to reduce the covariate space and address
the multicollinearity issue conventionally, as the interpretation of covariate co-
efficients is out of the primary interest in the ML literature. In this article, we
decided to use the EFA rather than the PCA for two reasons. First, empirical
researchers using the SEM framework are more familiar with the EFA as the idea
behind it is very similar to another model in the SEM framework, the confirma-
tory factor analysis (CFA). More importantly, the factors (i.e., latent variables)
obtained from the EFA are interpretable so that the estimated coefficients from
the second step are interpretable, and we then gain valuable insights from an
exploratory study. For example, in the application, we concluded that a student
with a higher value of the difference between teacher-rated abilities and teacher-
reported problems and/or from a family with higher socioeconomic status was
more likely to achieve higher mathematics scores (i.e., in Class 2 and Class 3).

Although it is not our aim to comprehensively investigate the EFA, we still
want to add two notes about factor retention criteria and factor rotation to
empirical researchers. Following Fabrigar, Wegener, MacCallum, and Strahan
(1999), we used multiple criteria in the application, including the EVG1 rule,
scree test, and parallel analysis to decide the number of factors; fortunately, all
these criteria gave the same decision. Patil, Singh, Mishra, and Todd Donavan
(2008) also suggested conducting a subsequent CFA to evaluate the measure-
ment properties of the factors identified by the EFA (if the number of factors is
different from multiple criteria).

Additionally, several analytic rotation techniques have been developed for
the EFA, with the most fundamental distinction lying in orthogonal and oblique
rotation. Orthogonal rotations constrain factors to be uncorrelated, and the pro-
cedure, varimax, which we used in the application, is generally regarded as the
best one and the most widely used orthogonal rotation in psychological research.
One reason for this choice was its simplicity and conceptual clarity. More im-
portantly, we assumed that the constructs (i.e., the factor of the socioeconomic
variables and that of teacher-rated scores) identified from the covariates set are
independent. However, many theoretical and empirical researchers provided the
basis for expecting psychological constructs, such as personality traits, ability,
and attitudes, to be associated with each other. Consequently, oblique rotations
provide a more realistic and accurate picture of these factors.

One limitation of the proposed two-step model lies in that it only allows
(generalized) linear models in the second step. If the linear assumption is in-
valid, we need to resort to other methods, such as structural equation model
trees (SEM trees, Brandmaier et al. (2013)) or structural equation model forests
(Brandmaier, Prindle, McArdle, & Lindenberger, 2016) to identify the most im-
portant covariates by investigating the variables on which the tree splits first
(Brandmaier et al., 2013; Jacobucci et al., 2017) or the output named ‘variable
importance’ (Brandmaier et al., 2016), respectively. Note that Jacobucci et al.
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(2017) pointed out that the interpretations of the FMM and SEM trees are dif-
ferent, and the classes obtained from the SEM tree can be viewed as the clusters
of associations between the covariates and trajectories.

6.2 Future Research

One possible future direction of the current study is to build its confirmatory
counterpart. Conceptually, the confirmatory model consists of two measurement
models, and there exists a unidirectional relationship between the factors of
the EFA and the latent categorical variable. Additionally, driven by domain
knowledge, the EFA can be replaced with the CFA in the confirmatory model.
Additionally, the two-step model is proposed under the assumption that these
covariates only indirectly impact the sample heterogeneity. It is also possible to
develop a model that allows these baseline covariates to simultaneously explain
between-group differences and within-group differences by relaxing the assump-
tion.
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Appendix A. Formula Derivation

A.1. The Reparameterizing Procedure for a Fixed Knot

In the original setting of the bilinear spline model, we have three growth factors:
an intercept at t0 (η0) and one slope of each stage (η1 and η2, respectively). To
estimate knots, we may reparameterize the growth factors. For the ith individual,
according to Seber and Wild (Seber & Wild, 2003), we may re-expressed them
as the measurement at the knot (i.e., η0i + η1iγ

(k)), the mean of two slopes (i.e.,
η1i+η2i

2 ), and the half difference between two slopes (i.e., η2i−η1i
2 ).

Tishler and Zang (1981) and Seber and Wild (2003) showed that the re-
gression model with two linear stages can be written as either the minimum or
maximum response value of two trajectories. Liu et al. (2019) extended such
expressions to the latent growth curve modeling framework and showed two
forms of bilinear spline for the ith individual in Figure A.1. In the left panel
(η1i > η2i), the measurement yij is always the minimum value of two lines; that
is, yij = min (η0i + η1itij , η02i + η2itij). To unify the formula of measurements
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Figure A.1. Reparameterizing growth factors for Estimating a Fixed Knot

pre- and post-knot, we express yij as

yij = min (η0i + η1itij , η02i + η2itij)

=
1

2
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)
=
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)
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=
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)
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′
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′
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′

2i|tij − γ(k)|

= η
′

0i + η
′

1i

(
tij − γ(k)

)
+ η

′

2i

√
(tij − γ(k))2,

(A.1)

where η
′

0i, η
′

1i and η
′

2i are the measurement at the knot, the mean of two slopes,
and the half difference between two slopes. Similarly, the measurement yij of the
bilinear spline in the right panel, in which the measurement yij is always the
maximum value of two lines, has the identical final form in Equation A.1.

A.2. Class-specific Transformation and Inverse-transformation
between Two Parameter-spaces

Suppose f : R3 → R3 is a function, which takes a point ηi ∈ R3 as input and
produces the vector f(ηi) ∈ R3 (i.e., η

′

i ∈ R3) as output. By the multivariate
delta method (Lehmann & Casella, 1998, Chapter 1), for an individual in the
kth class

η
′

i = f(ηi) ∼ N
(
f(µη

[k]),∇f (µη
[k])Ψη

[k]∇T
f (µη

[k])

)
, (A.2)

where µη
[k] and Ψη

[k] are the mean vector and variance-covariance matrix of
original class-specific growth factors, respectively, and f is defined as

f(ηi) =
(
η0i + γ[k]η1i

η1i+η2i
2

η2i−η1i
2

)T
.
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Similarly, suppose h : R3 → R3 is a function, which takes a point η
′

i ∈ R3

as input and produces the vector h(η
′

i) ∈ R3 (i.e., ηi ∈ R3) as output. By the
multivariate delta method,

ηi = h(η
′[k]
i ) ∼ N

(
h(µ

′[k]
η ),∇h(µ

′[k]
η )Ψ

′[k]
η ∇T

h(µ
′[k]
η )

)
, (A.3)

where µ
′[k]
η and Ψ

′[k]
η are the mean vector and variance-covariance matrix of

class-specific reparameterized growth factors, respectively, and h is defined as

h(η
′

i) =
(
η

′

0i − γ[k]η
′

1i + γ[k]η
′

2i η
′

1i − η
′

2i η
′

1i + η
′

2i

)T
.

Based on Equations (A.2) and (A.3), we can make the transformation be-

tween the growth factor means of two parameter-spaces by µ
′[k]
η = f(µ

[k]
η )

and µ
[k]
η = h(µ

′[k]
η ), respectively. We can also define the transformation ma-

trix ∇f (µ
[k]
η ) and ∇h(µ

′[k]
η ) between the variance-covariance matrix of two

parameter-spaces as

Ψ
′[k]
η = ∇f (µ[k]

η )Ψ [k]
η ∇T

f (µ[k]
η )

=

1 γ[k] 0
0 0.5 0.5
0 −0.5 0.5

Ψ [k]
η

1 γ[k] 0
0 0.5 0.5
0 −0.5 0.5

T

and
Ψη

[k] = ∇h(µ
′[k]
η )Ψ

′[k]
η ∇T

h(µ
′[k]
η )

=

1 −γ[k] γ[k]
0 1 −1
0 1 1

Ψ ′[k]
η

1 −γ[k] γ[k]
0 1 −1
0 1 1

T

,

respectively.

B. More Results
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Table B.1. Median (Range) of the Relative Bias over 1, 000 Replications of Parameters
of Interest under the Conditions with Random Knots of the Standard Deviation of 0.3
and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 −0.003 (−0.009, 0.003) 0.002 (0.000, 0.007)
µη1 0.008 (−0.009, 0.029) −0.009 (−0.024, 0.007)
µη2 0.033 (0.007, 0.098) −0.019 (−0.060, 0.001)
µγ −0.005 (−0.016, 0.004) 0.003 (−0.005, 0.013)

Variance

ψ00 −0.001 (−0.069, 0.037) −0.016 (−0.055, 0.006)
ψ11 −0.076 (−0.126, −0.040) −0.030 (−0.083, −0.008)
ψ22 −0.015 (−0.061, 0.137) −0.057 (−0.089, 0.179)

Path Coef.

β0 — −0.055 (NA, NA)
β1 — −0.042 (−0.332, 0.013)
β2 — −0.038 (−0.332, 0.019)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist. NA: Note that for the
conditions with balanced allocation, the population value of β0 = 0 and its relative
bias goes infinity. The bias median (range) of β0 is −0.015 (−0.204, 0.118).

Table B.2. Median (Range) of the Empirical SE over 1, 000 Replications of Parameters
of Interest under the Conditions with Random Knots of the Standard Deviation of 0.3
and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 0.432 (0.243, 0.892) 0.350 (0.200, 0.707)
µη1 0.106 (0.053, 0.294) 0.074 (0.042, 0.174)
µη2 0.103 (0.052, 0.280) 0.079 (0.042, 0.164)
µγ 0.055 (0.024, 0.167) 0.062 (0.024, 0.198)

Variance

ψ00 2.652 (1.731, 4.817) 2.201 (1.400, 3.789)
ψ11 0.123 (0.069, 0.272) 0.092 (0.057, 0.170)
ψ22 0.128 (0.071, 0.333) 0.101 (0.062, 0.219)

Path Coef.

β0 — 0.182 (0.084, 0.592)
β1 — 0.120 (0.079, 0.186)
β2 — 0.124 (0.083, 0.199)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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