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Abstract. In this tutorial, you will learn how to fit structural equation
models (SEM) using Stata software. SEMs can be fit in Stata using the
sem command for standard linear SEMs, the gsem command for general-
ized linear SEMs, or by drawing their path diagrams in the SEM Builder.
After a brief introduction to Stata, the sem command will be demon-
strated through a confirmatory factor analysis model, mediation model,
group analysis, and a growth curve model, and the gsem command will
be demonstrated through a random-slope model and a logistic ordinal
regression. Materials and datasets are provided online, allowing anyone
with Stata to follow along.

Keywords: Structural Equation Modeling · Growth Curve Modeling ·
Mediation · Software.

1 Introduction

Structural equation modeling (SEM) is a multivariate statistical analysis frame-
work that allows simultaneous estimation of a system of equations. SEM can
be used to fit a wide range of models, including those involving measurement
error and latent constructs. This tutorial will demonstrate how to fit a variety
of SEMs using Stata statistical software (StataCorp, 2021). Specifically, we will
fit models in Stata with both measurement and structural components, as well
as those with random effects and generalized responses. We will assess model fit,
compute modification indices, estimate mediation effects, conduct group analy-
sis, and more. First, however, we will begin with an introduction to Stata itself.
Familiarity with SEM theory and concepts is assumed.

Stata is a complete, integrated software package that provides tools for data
manipulation, visualization, statistics, and automated reporting. The Data Ed-
itor, Variables window, and Properties window can be used to view and edit
your dataset and to manage variables, including their names, labels, value la-
bels, notes, formats, and storage types. Commands can be typed into the Com-
mand window, or generated through the point-and-click interface. Log files keep
a record of every command issued in a session, while do-files save selected com-
mands to allow users to replicate their work. To learn more about a command,
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you can type help followed by the command name in the Command window and
the Viewer window will open with the help file and provide links to further doc-
umentation. Stata’s documentation consists of over 17,000 pages detailing each
feature in Stata including the methods and formulas and fully worked examples.

Figure 1. SEM Builder

There are three ways to fit SEMs in Stata: the sem command, the gsem com-
mand, and through the SEM Builder. The sem command is for fitting standard
linear SEMs. It is quicker and has more features for testing and interpreting
results than gsem. The gsem command is for fitting models with generalized
responses, such as binary, count, or categorical responses, models with random
effects, and mixture models. Both sem and gsem models can be fit via path dia-
grams using the SEM Builder. You can open the SEM Builder window by typing
sembuilder into the Command window. See the interface in Figure 1; click the
tools you need on the left, or type their shortcuts shown in the parentheses. To fit
gsem models, the GSEM button must first be selected. Estimation and diagram
settings can be changed using the menus at the top. The Estimate button fits the
model. Path diagrams can be saved as .stsem files to be modified later, or can be
exported to a variety of image formats (for example see Figure 2). Although this
tutorial will focus on the sem and gsem commands, the Builder shares the same
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functionality. You can watch a demonstration with the SEM Builder on the Stat-
aCorp YouTube Channel: https://www.youtube.com/watch?v=HeQcha3C8Fk

To download the datasets, do-file, and path diagrams, you can type the fol-
lowing into Stata’s Command window:

. net from http://www.stata.com/users/mcain/JBDS_SEM

Clicking on the SEMtutorial link will download the materials to your current
working directory. To open the do-file with the commands we’ll be using, you
can type

. doedit SEMtutorial

Commands can either be executed from the do-file or typed into the Com-
mand window. We’ll start by loading and exploring our first dataset. These
data contain observations on four indicators for socioeconomic status of high
school students as well as their math scores, school types (private or public),
and the student-teacher ratio of their school. Alternatively, we could have used
a summary statistics dataset containing means, variances, and correlations of
the variables rather than observations.

. use math

. codebook, compact

Variable Obs Unique Mean Min Max Label

schtype 519 2 .61079 0 1 School type
ratio 519 14 16.75723 10 28 Student-Teacher ratio
math 519 42 51.72254 30 71 Math score
ses1 519 5 1.982659 0 4 SES item 1
ses2 519 5 2.003854 0 4 SES item 2
ses3 519 5 2.003854 0 4 SES item 3
ses4 519 5 2.003854 0 4 SES item 4

2 Fitting models with the sem command

2.1 Path Analysis

Let’s start our analysis by fitting the one-factor confirmatory factor analysis
(CFA) model shown in Figure 2. Using the sem command, paths are specified in
parentheses and the direction of the relationships are specified using arrows, i.e.
(x->y). Arrows can point in either direction, (x->y) or (y<-x). Paths can be
specified individually, or multiple paths can be specified within a single set of
parentheses, (x1 x2 x3 -> y). By default, Stata assumes that all lower-case
variables are observed and uppercase variables are latent. You can change these
settings using the nocapslatent and the latent() options. In Stata, options
are always added after a comma. We’ll see plenty of examples of this later.

https://www.youtube.com/watch?v=HeQcha3C8Fk
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Figure 2. One-factor CFA measuring socioeconomic status (SES)

. sem (SES -> ses1-ses4)

Endogenous variables
Measurement: ses1 ses2 ses3 ses4

Exogenous variables
Latent: SES

Fitting target model:
Iteration 0: log likelihood = -3621.9572
Iteration 1: log likelihood = -3621.5801
Iteration 2: log likelihood = -3621.5573
Iteration 3: log likelihood = -3621.557

Structural equation model Number of obs = 519
Estimation method: ml

Log likelihood = -3621.557

( 1) [ses1]SES = 1

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
ses1

SES 1 (constrained)
_cons 1.982659 .0620424 31.96 0.000 1.861058 2.10426

ses2
SES .8481035 .1962358 4.32 0.000 .4634884 1.232719

_cons 2.003854 .0620169 32.31 0.000 1.882303 2.125404

ses3
SES .416385 .1331306 3.13 0.002 .1554539 .6773161

_cons 2.003854 .062017 32.31 0.000 1.882302 2.125405

ses4
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SES .5315065 .1517342 3.50 0.000 .234113 .8289001
_cons 2.003854 .062017 32.31 0.000 1.882302 2.125405

var(e.ses1) 1.317579 .1855509 .9997798 1.736397
var(e.ses2) 1.506881 .1493285 1.240872 1.829916
var(e.ses3) 1.878203 .1257611 1.647204 2.141595
var(e.ses4) 1.803979 .1287389 1.568507 2.074801

var(SES) .6801844 .1908617 .3924434 1.178898

LR test of model vs. saturated: chi2(2) = 11.03 Prob > chi2 = 0.0040

Viewing the results, we see that by default Stata constrained the first factor
loading to be 1 and estimated the variance of the latent variable. If, instead,
we would like to constrain the variance and estimate all four factor loadings, we
could use the var() option. Constraints in any part of the model can be specified
using the @ symbol. To save room, syntax and results for this and the remaining
models will be shown on their path diagrams; see Figure 3.
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. sem (SES -> ses1-ses4), var(SES@1)

Figure 3. One-factor CFA with constrained variance.

Specifying structural paths is no different from specifying measurement paths.
We can add math score to our model and hypothesize that socioeconomic status
influences expected math performance. This model is shown in Figure 4; we’ve
added the standardized option to get standardized coefficients. With every in-
crease of one standard deviation in SES, math score is expected to increase by
0.45 standard deviations.
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Figure 4. SES influences math scores.

To get fit indices for our model, we can use the postestimation command
estat gof after any sem model. Add the stats(all) option to see all fit indices.

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio
chi2_ms(5) 17.689 model vs. saturated
p > chi2 0.003

chi2_bs(10) 150.126 baseline vs. saturated
p > chi2 0.000

Population error
RMSEA 0.070 Root mean squared error of approximation

90% CI, lower bound 0.037
upper bound 0.107

pclose 0.147 Probability RMSEA <= 0.05

Information criteria
AIC 11157.441 Akaike´s information criterion
BIC 11221.219 Bayesian information criterion

Baseline comparison
CFI 0.909 Comparative fit index
TLI 0.819 Tucker-Lewis index

Size of residuals
SRMR 0.040 Standardized root mean squared residual
CD 0.532 Coefficient of determination

Satorra-Bentler adjusted model fit indices can be obtained by adding the
vce(sbentler) option to our model statement and recalculating the model fit



162 M. Cain

indices. This option still uses maximum likelihood estimation, the default, but
adjusts the standard errors and the fit indices. Alternatively, estimation can be
changed to asymptotic distribution-free or full-information maximum likelihood
for missing values using the method(adf) or method(mlmv) options, respectively.
For this example, we’ll use the Satorra-Bentler adjustment (Satorra & Bentler,
1994). First, we’ll store the current model to use again later.

. estimates store m1

. sem (SES -> ses1-ses4 math), vce(sbentler)

Endogenous variables
Measurement: ses1 ses2 ses3 ses4 math

Exogenous variables
Latent: SES

Fitting target model:
Iteration 0: log pseudolikelihood = -5564.2324
Iteration 1: log pseudolikelihood = -5563.7459
Iteration 2: log pseudolikelihood = -5563.7204
Iteration 3: log pseudolikelihood = -5563.7204

Structural equation model Number of obs = 519
Estimation method: ml

Log pseudolikelihood = -5563.7204

( 1) [ses1]SES = 1

Satorra-Bentler
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
ses1

SES 1 (constrained)
_cons 1.982659 .0621024 31.93 0.000 1.860941 2.104377

ses2
SES .9278593 .169484 5.47 0.000 .5956767 1.260042

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

ses3
SES .620192 .1438296 4.31 0.000 .3382912 .9020928

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

ses4
SES .7954927 .1580751 5.03 0.000 .4856712 1.105314

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

math
SES 6.858402 1.335695 5.13 0.000 4.240488 9.476315

_cons 51.72254 .4700825 110.03 0.000 50.8012 52.64389

var(e.ses1) 1.506551 .1203549 1.2882 1.761913
var(e.ses2) 1.573228 .1228219 1.350014 1.833348
var(e.ses3) 1.807189 .0933725 1.633143 1.999783
var(e.ses4) 1.685282 .1047979 1.491906 1.903724
var(e.math) 91.36045 6.594622 79.3079 105.2447

var(SES) .4912213 .1193158 .3051572 .7907347

LR test of model vs. saturated: chi2(5) = 17.69 Prob > chi2 = 0.0034
Satorra-Bentler scaled test: chi2(5) = 17.80 Prob > chi2 = 0.0032
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. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio
chi2_ms(5) 17.689 model vs. saturated
p > chi2 0.003

chi2_bs(10) 150.126 baseline vs. saturated
p > chi2 0.000

Satorra-Bentler
chi2sb_ms(5) 17.804

p > chi2 0.003
chi2sb_bs(10) 153.258

p > chi2 0.000

Population error
RMSEA 0.070 Root mean squared error of approximation

90% CI, lower bound 0.037
upper bound 0.107

pclose 0.147 Probability RMSEA <= 0.05

Satorra-Bentler
RMSEA_SB 0.070 Root mean squared error of approximation

Information criteria
AIC 11157.441 Akaike´s information criterion
BIC 11221.219 Bayesian information criterion

Baseline comparison
CFI 0.909 Comparative fit index
TLI 0.819 Tucker-Lewis index

Satorra-Bentler
CFI_SB 0.911 Comparative fit index
TLI_SB 0.821 Tucker-Lewis index

Size of residuals
SRMR 0.040 Standardized root mean squared residual
CD 0.532 Coefficient of determination

The SB-adjusted CFI is still rather low, 0.91, indicating poor fit. We can use
estat mindices to compute modification indices that can be used to check for
paths and covariances that could be added to the model to improve fit. First,
we’ll need to restore our original model.

. estimates restore m1
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. estat mindices

Modification indices

Standard
MI df P>MI EPC EPC

cov(e.ses1,e.ses2) 16.565 1 0.00 .4818524 .312987
cov(e.ses2,e.ses3) 5.404 1 0.02 -.2203899 -.1307056
cov(e.ses3,e.ses4) 4.956 1 0.03 .2033998 .11655

EPC is expected parameter change.

The MI, df, and P>MI are the estimated chi-squared test statistic, degrees
of freedom, and p value of the score test testing the statistical significance of
the constrained parameter. By default, only parameters that would significantly
(p < 0.05) improve the model are reported. The EPC is the amount that the
parameter is expected to change if the constraint is relaxed. According to these
results, we see that there is a stronger relationship between the first and second
indicator for SES than would be expected given our model, MI = 16.57, p < 0.001.
We could consider adding a residual covariance between these two indicators to
our model using the cov() option. We use the e. prefix to refer to a residual
variance of an endogenous variable; see Figure 5.
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. sem (SES -> ses1-ses4 math), cov(e.ses1*e.ses2)

Figure 5. CFA with residual covariance.

One potential explanation of the effect that SES has on math score is that
students of higher SES attend schools with smaller student to teacher ratios.
We can test this hypothesis using the mediation model shown in Figure 6. Here,
we get estimates of the direct effects between each of our variables, but what
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we would really like to test is the indirect effect between SES and math through
ratio. We can get direct effects, indirect effects, and total effects of mediation
models with the postestimation command estat teffects.
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Figure 6. Student-teacher ratio mediates the effect of SES on math score.

. estat teffects

Direct effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES -1.367306 .5562429 -2.46 0.014 -2.457522 -.2770903

math
ratio -.2256084 .1026128 -2.20 0.028 -.4267257 -.024491
SES 6.908564 1.583778 4.36 0.000 3.804417 10.01271

Measurement
ses1

SES 1 (constrained)

ses2
SES .9450302 .1643867 5.75 0.000 .6228382 1.267222

ses3
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SES .6632608 .1725434 3.84 0.000 .3250819 1.00144

ses4
SES .8574695 .2012317 4.26 0.000 .4630625 1.251876

Indirect effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES 0 (no path)

math
ratio 0 (no path)
SES .3084758 .1451257 2.13 0.034 .0240346 .5929169

Measurement
ses1

SES 0 (no path)

ses2
SES 0 (no path)

ses3
SES 0 (no path)

ses4
SES 0 (no path)

Total effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES -1.367306 .5562429 -2.46 0.014 -2.457522 -.2770903

math
ratio -.2256084 .1026128 -2.20 0.028 -.4267257 -.024491
SES 7.217039 1.599953 4.51 0.000 4.081189 10.35289

Measurement
ses1

SES 1 (constrained)

ses2
SES .9450302 .1643867 5.75 0.000 .6228382 1.267222

ses3
SES .6632608 .1725434 3.84 0.000 .3250819 1.00144

ses4
SES .8574695 .2012317 4.26 0.000 .4630625 1.251876
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In the second group of the output, we see that the mediation effect is not
statistically significant, z = 1.48, p = 0.138. We may consider bootstrapping
this effect to get a more powerful test. We can do this with the bootstrap

command. First, we need to get labels for the effects we would like to test. We
can get these by replaying our model results with the coeflegend option. We
can use these labels to construct an expression for the mediation effect that
we’re calling indirect. We put this expression in parentheses after bootstrap

and put any bootstrapping options after a comma; then, we put the model and
its options after a colon. Multiple expressions can be included using multiple
parentheses sets.

. sem, coeflegend

Structural equation model Number of obs = 519
Estimation method: ml

Log likelihood = -7117.1959

( 1) [ses1]SES = 1

Coefficient Legend

Structural
ratio

SES -1.367306 _b[ratio:SES]
_cons 16.75723 _b[ratio:_cons]

math
ratio -.2256084 _b[math:ratio]
SES 6.908564 _b[math:SES]

_cons 55.50311 _b[math:_cons]

Measurement
ses1

SES 1 _b[ses1:SES]
_cons 1.982659 _b[ses1:_cons]

ses2
SES .9450302 _b[ses2:SES]

_cons 2.003854 _b[ses2:_cons]

ses3
SES .6632608 _b[ses3:SES]

_cons 2.003854 _b[ses3:_cons]

ses4
SES .8574695 _b[ses4:SES]

_cons 2.003854 _b[ses4:_cons]

var(e.ses1) 1.541523 _b[/var(e.ses1)]
var(e.ses2) 1.588663 _b[/var(e.ses2)]
var(e.ses3) 1.795421 _b[/var(e.ses3)]
var(e.ses4) 1.660672 _b[/var(e.ses4)]
var(e.ratio) 23.41179 _b[/var(e.ratio)]
var(e.math) 89.51067 _b[/var(e.math)]

var(SES) .4562495 _b[/var(SES)]

LR test of model vs. saturated: chi2(8) = 21.72 Prob > chi2 = 0.0055
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. bootstrap indirect=(_b[ratio:SES]*_b[math:ratio]), reps(1000) nodots: ///
> sem (SES -> ses1-ses4 ratio math) (ratio -> math)

Bootstrap results Number of obs = 519
Replications = 1,000

Command: sem (SES -> ses1-ses4 ratio math) (ratio -> math)
indirect: _b[ratio:SES]*_b[math:ratio]

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

indirect .3084758 .1932632 1.60 0.110 -.070313 .6872646

We’ve added the reps(1000) option to compute 1,000 bootstrap replications
and the nodots option to suppress displaying a dot for each replication. To get
95 percentile confidence intervals based on our bootstrap sampling distribution,
we can follow with the postestimation command estat bootstrap using the
percentile option. The resulting confidence interval contains zero so we cannot
reject the null hypothesis.

. estat bootstrap, percentile

Bootstrap results Number of obs = 519
Replications = 1000

Command: sem (SES -> ses1-ses4 ratio math) (ratio -> math)
indirect: _b[ratio:SES]*_b[math:ratio]

Observed Bootstrap
coefficient Bias std. err. [95% conf. interval]

indirect .30847577 -.0307326 .19326315 -.0707015 .6837121 (P)

Key: P: Percentile

2.2 Group Analysis

Finally, we may consider comparing our mediation across groups. Group analysis
can be done in Stata by adding the group() option. We would like to compare
students in public schools versus private schools so we will specify schtype as
our grouping variable. Then, we can use ginvariant() to specify the types of
parameters we would like to constrain across groups. All other variables will be
estimated separately for each group. The ginvariant() options are listed in
Table 1. If we don’t specify any ginvariant option, by default Stata will con-
strain measurement coefficients and measurement intercepts, ginvariant(mcoef
mcons). See the model in Figure 7. Now when we run estat teffects, we will
get a separate estimated mediation effect for each group.
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Figure 7. Group analysis.
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. estat teffects, nodirect nototal compact

Indirect effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
math

SES
Private .7043843 .4184641 1.68 0.092 -.1157902 1.524559
Public .2035724 .1710134 1.19 0.234 -.1316076 .5387525

ratio

ses1

ses2

Measurement
ses3

ses4

Table 1. ginvariant() suboptions

Option Description

mcoef measurement coefficients
mcons measurement intercepts
merrvar covariances of measurement errors
scoef structural coefficients
scons structural intercepts
serrvar covariances of structural errors
smerrcov covariances between structural and measurement errors
meanex means of exogenous variables
covex covariances of exogenous variables
all all the above
none none of the above

To test whether these mediation effects significantly differ, we can conduct a
Wald test with the test or testnl postestimation commands, again using the
labels from the coeflegend option. Because mediation effects are nonlinear, we
will use testnl. The mediation effects do not significantly differ between groups,
χ2(1) = 1.27, p = 0.260.

. testnl _b[ratio:0bn.schtype#c.SES]*_b[math:0bn.schtype#c.ratio]= ///
> _b[ratio:1.schtype#c.SES]*_b[math:1.schtype#c.ratio]

(1) _b[ratio:0bn.schtype#c.SES]*_b[math:0bn.schtype#c.ratio]
> _b[ratio:1.schtype#c.SES]*_b[math:1.schtype#c.ratio]

chi2(1) = 1.27
Prob > chi2 = 0.2599
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. estat ginvariant

Tests for group invariance of parameters

Wald test Score test
chi2 df P>chi2 chi2 df P>chi2

Structural
math

ratio 0.001 1 0.9709 . . .
SES 0.005 1 0.9441 . . .

_cons 1.314 1 0.2516 . . .

ratio
SES 1.825 1 0.1768 . . .

_cons 0.011 1 0.9147 . . .

Measurement
ses1

SES . . . 1.832 1 0.1759
_cons . . . 5.997 1 0.0143

ses2
SES . . . 0.072 1 0.7882

_cons . . . 0.341 1 0.5592

ses3
SES . . . 0.049 1 0.8253

_cons . . . 0.634 1 0.4259

ses4
SES . . . 1.945 1 0.1632

_cons . . . 1.149 1 0.2838

var(e.ses1) 0.189 1 0.6640 . . .
var(e.ses2) 0.063 1 0.8023 . . .
var(e.ses3) 1.011 1 0.3146 . . .
var(e.ses4) 0.090 1 0.7641 . . .
var(e.math) 0.065 1 0.7982 . . .
var(e.ratio) 36.627 1 0.0000 . . .

var(SES) 0.042 1 0.8383 . . .

To test group differences in each direct path, we can use the postestimation
command estat ginvariant. These results show us Wald tests evaluating con-
straining parameters that were allowed to vary across groups and score tests
evaluating relaxing constraints. Both are testing whether individual paths sig-
nificantly differ across groups.

2.3 Growth Curve Modeling

The last model we will fit using sem is a growth curve model. This will require
a new dataset.

. use crime
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. describe

Contains data from crime.dta
Observations: 359

Variables: 4 4 Oct 2012 16:22
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

lncrime0 float %9.0g ln(crime rate) in Jan & Feb
lncrime1 float %9.0g ln(crime rate) in Mar & Apr
lncrime2 float %9.0g ln(crime rate) in May & Jun
lncrime3 float %9.0g ln(crime rate) in Jul & Aug

Sorted by:

These data are from Bollen and Curran (2006); they contain crime rates
collected in two-month intervals for the first eight months of 1995 for 359 com-
munities in New York state. We would like to fit a linear growth curve to these
data to model how crime rate changed over time. In our model, we can set con-
straints using the @ symbol as we did before. To constrain all intercepts to 0, we
can add the nocons option. We will also need the means() option. By default,
Stata constrains the means of latent variables to 0. For this model, we would like
to estimate them so we need to specify the latent variable names inside means().
We may also consider constraining all the residual variances to equality by con-
straining each of them to the same arbitrary letter or word, in this case eps. See
the model in Figure 8.

The estimated mean log crime rate at the beginning of the study was 5.33
and it increased by an average of 0.14 every two months. We could have fit this
same model using gsem. One way we can do this is to simply replace sem with
gsem in the command in Figure 8. Alternatively, we can can think of this as a
multilevel model, and fit it using gsem’s notation for random effects. Let’s do
that next.



SEM using Stata 173

Intercept
.53

5.3

lncrime0
0

ε1 0.10

lncrime1
0

ε2 0.10

lncrime2
0

ε3 0.10

lncrime3
0

ε4 0.10

Slope
.02

.14

1

0

1

1

1

2

1

3

−0.03

. sem (Intercept@1 -> lncrime0-lncrime3) (Slope -> lncrime0@0 lncrime1@1

lncrime2@2 lncrime3@3), nocons means(Intercept Slope)

var(e.lncrime0-lncrime3@eps)

Figure 8. Growth curve model on crime rate.

3 Fitting models with the gsem command

3.1 Models with Random Effects

The gsem command implements generalizations to the standard linear structural
equation model implemented in sem, such as models with generalized-linear re-
sponse variables, random effects, and categorical latent variables (latent classes).
Its syntax is the same as sem, with some different options and postestimation
commands. We will start by fitting a random-slope model to the crimes dataset,
reproducing the results we obtained with the growth curve model using sem.
First, we need to create an observation identification variable and reshape the
data into long format.

. gen id = _n

. reshape long lncrime, i(id) j(time)
(j = 0 1 2 3)

Data Wide -> Long

Number of observations 359 -> 1,436
Number of variables 5 -> 3
j variable (4 values) -> time
xij variables:

lncrime0 lncrime1 ... lncrime3 -> lncrime
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. summarize

Variable Obs Mean Std. dev. Min Max

id 1,436 180 103.6701 1 359
time 1,436 1.5 1.118423 0 3

lncrime 1,436 5.551958 .7856259 2.415164 9.575166

We now have long-format data in which we have several rows of observations
for each individual; we’re ready to fit our random-slope model. We specify ran-
dom effects in gsem by adding brackets enclosing the clustering variable to the
latent variable, i.e. Intercept[id]. This tells Stata to include a latent variable
in the model called Intercept that has variability at the id level. As with other
latent variables, it will have a mean of 0 and an initial factor loading of 1, so
the only parameter this term introduces is a level-2 variance. Random coeffi-
cients can be added to any term by interacting a latent random effect with that
variable, i.e. c.time#Slope[id].

Interactions in Stata are specified using #; interaction terms are assumed to
be factor variables unless prefixed by c. to indicate that they are continuous
variables. Contrarily, main-effect terms are assumed to be continuous unless
prefixed by i. to indicate that they are factor variables. We’ll see this in the
next example. This factor variable notation is not available using sem.

See the syntax and results of the random slope model in Figure 9; these results
replicate those by sem. In the SEM Builder, random effects are represented as
double-bordered ovals labeled with the clustering variable to indicate that they
represent variability at the cluster level.

lncrime
5.3

ε1
0.10time

id
.47

id
.015

0.14

1

1

. gsem (Intercept[id] time c.time#Slope[id] -> lncrime)

Figure 9. Random-slope model on crime rate.
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3.2 Models with Generalized Responses

The gsem command can also be used to fit generalized linear SEMs; that is, SEMs
in which an endogenous variable is distributed according to some distribution
family and is related to the linear prediction of the model through a link function.
See Table 2 for a list of available distribution families and links. Either the
family and link can be specified, i.e. family(bernoulli) link(logit), or some
combinations have shortcuts that you can specify instead, i.e. logit. For this
example, we will return to the first dataset.

Table 2. gsem distribution families and link functions

family() options link() options
identity log logit probit cloglog

gaussian X X
bernoulli logit probit cloglog

beta X X X
binomial X X X
ordinal ologit oprobit ocloglog

multinomial mlogit

Poisson poisson

negative binomial nbreg

exponential exponential

Weibull weibull

gamma gamma

loglogistic loglogistic

lognormal lognormal

Note: X indicates possible combinations. Where applicable, regression names that
imply that family/link combination are shown. If no family/link are provided,
family(gaussian) link(identity) is assumed.

. use math

. codebook, compact

Variable Obs Unique Mean Min Max Label

schtype 519 2 .61079 0 1 School type
ratio 519 14 16.75723 10 28 Student-Teacher ratio
math 519 42 51.72254 30 71 Math score
ses1 519 5 1.982659 0 4 SES item 1
ses2 519 5 2.003854 0 4 SES item 2
ses3 519 5 2.003854 0 4 SES item 3
ses4 519 5 2.003854 0 4 SES item 4

In our previous analysis, we had treated each socioeconomic status Likert
item as continuous. Now, we will treat them as ordinal using gsem. Adding the
ologit option will fit the measurement model using the ordinal family with
a logistic link. We will also use factor variable notation to include indicator
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variables for school type in our analysis. See figure Figure 10. By adding schtype

as a factor variable, a dummy variable for each level of schtype is included in the
model. The path coefficient for the base level, by default the lowest, is constrained
to zero. To get exponentiated coefficients, we can follow with the postestimation
command estat eform.

math
56

ε1 91

0b.schtype1.schtype

SES
1.8

ses1

ordinal

logit

ses2

ordinal

logit

ses3

ordinal

logit

ses4

ordinal

logit

0.00
−6.56

2.30

1.00 0.84
0.37

0.49

. sem (SES -> ses1-ses4, ologit) (SES i.schtype -> math)

Figure 10. Ordinal logistic regression model.

. estat eform ses1 ses2 ses3 ses4

exp(b) Std. err. z P>|z| [95% conf. interval]

ses1
SES 2.718282 (constrained)

ses2
SES 2.311549 .483485 4.01 0.000 1.534141 3.482899

ses3
SES 1.449492 .180061 2.99 0.003 1.136257 1.849077

ses4
SES 1.628133 .2474222 3.21 0.001 1.208748 2.193029
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4 Conclusion

In this tutorial, we’ve shown the basics of fitting SEMs in Stata using the sem

and gsem commands, and have provided example datasets and syntax online to
follow along. We demonstrated confirmatory factor analysis, mediation, group
analysis, growth curve modeling, and models with random effects and general-
ized responses. However, there are many possibilities and options not included in
this tutorial, such as latent class analysis models, nonrecursive models, reliabil-
ity models, mediation models with generalized responses, multivariate random-
effects models, and much more. Visit Stata’s documentation to see all the avail-
able options for these commands, their methods and formulas, and many more
examples online at https://www.stata.com/manuals/sem.pdf.
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