Journal of Behavioral Data Science, 2020, 1 (2), 156-177. DOI: https://doi.org/10.35566/jbds/v1n2/p7

Structural Equation Modeling using Stata

Meghan K. Cain¹[0000-0003-4790-4843]</sup>

StataCorp LLC, College Station, TX 77845, USA mcain@stata.com

Abstract. In this tutorial, you will learn how to fit structural equation models (SEM) using Stata software. SEMs can be fit in Stata using the sem command for standard linear SEMs, the gsem command for generalized linear SEMs, or by drawing their path diagrams in the SEM Builder. After a brief introduction to Stata, the sem command will be demonstrated through a confirmatory factor analysis model, mediation model, group analysis, and a growth curve model, and the gsem command will be demonstrated through a random-slope model and a logistic ordinal regression. Materials and datasets are provided online, allowing anyone with Stata to follow along.

Keywords: Structural Equation Modeling \cdot Growth Curve Modeling \cdot Mediation \cdot Software.

1 Introduction

Structural equation modeling (SEM) is a multivariate statistical analysis framework that allows simultaneous estimation of a system of equations. SEM can be used to fit a wide range of models, including those involving measurement error and latent constructs. This tutorial will demonstrate how to fit a variety of SEMs using Stata statistical software (StataCorp, 2021). Specifically, we will fit models in Stata with both measurement and structural components, as well as those with random effects and generalized responses. We will assess model fit, compute modification indices, estimate mediation effects, conduct group analysis, and more. First, however, we will begin with an introduction to Stata itself. Familiarity with SEM theory and concepts is assumed.

Stata is a complete, integrated software package that provides tools for data manipulation, visualization, statistics, and automated reporting. The Data Editor, Variables window, and Properties window can be used to view and edit your dataset and to manage variables, including their names, labels, value labels, notes, formats, and storage types. Commands can be typed into the Command window, or generated through the point-and-click interface. Log files keep a record of every command issued in a session, while do-files save selected commands to allow users to replicate their work. To learn more about a command, you can type help followed by the command name in the Command window and the Viewer window will open with the help file and provide links to further documentation. Stata's documentation consists of over 17,000 pages detailing each feature in Stata including the methods and formulas and fully worked examples.

Figure 1. SEM Builder

There are three ways to fit SEMs in Stata: the sem command, the gsem command, and through the SEM Builder. The sem command is for fitting standard linear SEMs. It is quicker and has more features for testing and interpreting results than gsem. The gsem command is for fitting models with generalized responses, such as binary, count, or categorical responses, models with random effects, and mixture models. Both sem and gsem models can be fit via path diagrams using the SEM Builder. You can open the SEM Builder window by typing sembuilder into the Command window. See the interface in Figure 1; click the tools you need on the left, or type their shortcuts shown in the parentheses. To fit gsem models, the GSEM button must first be selected. Estimation and diagram settings can be changed using the menus at the top. The Estimate button fits the model. Path diagrams can be saved as .stsem files to be modified later, or can be exported to a variety of image formats (for example see Figure 2). Although this tutorial will focus on the sem and gsem commands, the Builder shares the same

functionality. You can watch a demonstration with the SEM Builder on the StataCorp YouTube Channel: https://www.youtube.com/watch?v=HeQcha3C8Fk

To download the datasets, do-file, and path diagrams, you can type the following into Stata's Command window:

. net from http://www.stata.com/users/mcain/JBDS_SEM

Clicking on the SEMtutorial link will download the materials to your current working directory. To open the do-file with the commands we'll be using, you can type

. doedit SEMtutorial

Commands can either be executed from the do-file or typed into the Command window. We'll start by loading and exploring our first dataset. These data contain observations on four indicators for socioeconomic status of high school students as well as their math scores, school types (private or public), and the student-teacher ratio of their school. Alternatively, we could have used a summary statistics dataset containing means, variances, and correlations of the variables rather than observations.

. use math						
. codebook	, cor	npact				
Variable	Obs	Unique	Mean	Min	Max	Label
schtype	519	2	.61079	0	1	School type
ratio	519	14	16.75723	10	28	Student-Teacher ratio
math	519	42	51.72254	30	71	Math score
ses1	519	5	1.982659	0	4	SES item 1
ses2	519	5	2.003854	0	4	SES item 2
ses3	519	5	2.003854	0	4	SES item 3
ses4	519	5	2.003854	0	4	SES item 4

2 Fitting models with the sem command

2.1 Path Analysis

Let's start our analysis by fitting the one-factor confirmatory factor analysis (CFA) model shown in Figure 2. Using the sem command, paths are specified in parentheses and the direction of the relationships are specified using arrows, i.e. (x->y). Arrows can point in either direction, (x->y) or (y<-x). Paths can be specified individually, or multiple paths can be specified within a single set of parentheses, $(x1 \ x2 \ x3 \ -> \ y)$. By default, Stata assumes that all lower-case variables are observed and uppercase variables are latent. You can change these settings using the nocapslatent and the latent() options. In Stata, options are always added after a comma. We'll see plenty of examples of this later.

Number of obs = 519

Figure 2. One-factor CFA measuring socioeconomic status (SES)

```
. sem (SES \rightarrow ses1-ses4)
Endogenous variables
  Measurement: ses1 ses2 ses3 ses4
Exogenous variables
  Latent: SES
Fitting target model:
Iteration 0:
              log likelihood = -3621.9572
              log likelihood = -3621.5801
log likelihood = -3621.5573
Iteration 1:
Iteration 2:
               log likelihood = -3621.557
Iteration 3:
Structural equation model
Estimation method: ml
Log likelihood = -3621.557
```

(1) [ses1]SES = 1

		Coefficient	OIM std. err.	z	P> z	[95% conf.	interval]
Measure	ment						
ses1	JIII O II U						
	SES	1	(constraine	d)			
	_cons	1.982659	.0620424	31.96	0.000	1.861058	2.10426
ses2							
	SES	.8481035	.1962358	4.32	0.000	.4634884	1.232719
	_cons	2.003854	.0620169	32.31	0.000	1.882303	2.125404
ses3							
	SES	.416385	.1331306	3.13	0.002	.1554539	.6773161
	_cons	2.003854	.062017	32.31	0.000	1.882302	2.125405
ses4							

SES _cons	.5315065 2.003854	.1517342 .062017	3.50 32.31	0.000	.234113 1.882302	.8289001 2.125405
var(e.ses1)	1.317579	.1855509			.9997798	1.736397
<pre>var(e.ses2)</pre>	1.506881	.1493285			1.240872	1.829916
<pre>var(e.ses3)</pre>	1.878203	.1257611			1.647204	2.141595
<pre>var(e.ses4)</pre>	1.803979	.1287389			1.568507	2.074801
var(SES)	.6801844	.1908617			.3924434	1.178898
LR test of mod	lel vs. satura	ated: chi2(2	2) = 11.03	3	Prob > chi	2 = 0.0040

Viewing the results, we see that by default Stata constrained the first factor loading to be 1 and estimated the variance of the latent variable. If, instead, we would like to constrain the variance and estimate all four factor loadings, we could use the **var()** option. Constraints in any part of the model can be specified using the **@** symbol. To save room, syntax and results for this and the remaining models will be shown on their path diagrams; see Figure 3.

. sem (SES -> ses1-ses4), var(SES@1)

Figure 3. One-factor CFA with constrained variance.

Specifying structural paths is no different from specifying measurement paths. We can add math score to our model and hypothesize that socioeconomic status influences expected math performance. This model is shown in Figure 4; we've added the **standardized** option to get standardized coefficients. With every increase of one standard deviation in SES, math score is expected to increase by 0.45 standard deviations.

. sem (SES -> ses1-ses4 math), standardized

Figure 4. SES influences math scores.

To get fit indices for our model, we can use the postestimation command estat gof after any sem model. Add the stats(all) option to see all fit indices.

	estat	gof,	stats	(all)
--	-------	------	-------	-------

Fit statistic	Value	Description
Likelihood ratio		
chi2_ms(5)	17.689	model vs. saturated
p > chi2	0.003	
chi2_bs(10)	150.126	baseline vs. saturated
p > chi2	0.000	
Population error		
RMSEA	0.070	Root mean squared error of approximation
90% CI, lower bound	0.037	* **
upper bound	0.107	
pclose	0.147	Probability RMSEA <= 0.05
Information criteria		
AIC	11157.441	Akaike's information criterion
BIC	11221.219	Bayesian information criterion
Baseline comparison		
CFI	0.909	Comparative fit index
TLI	0.819	Tucker-Lewis index
Size of residuals		
SRMR	0.040	Standardized root mean squared residual
CD	0.532	Coefficient of determination
	1	

Satorra-Bentler adjusted model fit indices can be obtained by adding the vce(sbentler) option to our model statement and recalculating the model fit

indices. This option still uses maximum likelihood estimation, the default, but adjusts the standard errors and the fit indices. Alternatively, estimation can be changed to asymptotic distribution-free or full-information maximum likelihood for missing values using the method(adf) or method(mlmv) options, respectively. For this example, we'll use the Satorra-Bentler adjustment (Satorra & Bentler, 1994). First, we'll store the current model to use again later.

```
. estimates store m1
. sem (SES -> ses1-ses4 math), vce(sbentler)
Endogenous variables
Measurement: ses1 ses2 ses3 ses4 math
Exogenous variables
Latent: SES
Fitting target model:
Iteration 0: log pseudolikelihood = -5564.2324
Iteration 1: log pseudolikelihood = -5563.7459
Iteration 2: log pseudolikelihood = -5563.7204
Iteration 3: log pseudolikelihood = -5563.7204
Structural equation model
Estimation method: ml
```

Number of obs = 519

(1) [ses1]SES = 1

Log pseudolikelihood = -5563.7204

		Sa	torra-Bentl	er			
		Coefficient	std. err.	z	P> z	[95% conf.	interval]
Measur ses1	ement						
	SES	1	(constraine	d)			
	_cons	1.982659	.0621024	31.93	0.000	1.860941	2.104377
ses2							
	SES	.9278593	.169484	5.47	0.000	.5956767	1.260042
	_cons	2.003854	.0620769	32.28	0.000	1.882185	2.125522
ses3							
	SES	.620192	.1438296	4.31	0.000	.3382912	.9020928
	_cons	2.003854	.0620769	32.28	0.000	1.882185	2.125522
ses4							
	SES	.7954927	.1580751	5.03	0.000	.4856712	1.105314
	_cons	2.003854	.0620769	32.28	0.000	1.882185	2.125522
math							
	SES	6.858402	1.335695	5.13	0.000	4.240488	9.476315
	_cons	51.72254	.4700825	110.03	0.000	50.8012	52.64389
var(e.ses1)	1.506551	.1203549			1.2882	1.761913
var(e.ses2)	1.573228	.1228219			1.350014	1.833348
var(e.ses3)	1.807189	.0933725			1.633143	1.999783
var(e.ses4)	1.685282	.1047979			1.491906	1.903724
var(e.math)	91.36045	6.594622			79.3079	105.2447
v	ar(SES)	.4912213	.1193158			.3051572	.7907347
LR tes	t of mod	lel vs. satura	ted: chi2(5	= 17.69	9	Prob > chi	2 = 0.0034
Satorr	a-Bentle	er scaled test	.: chi2(5) = 17.80	0	Prob > chi	2 = 0.0032

```
. estat gof, stats(all)
```

Fit statistic	Value	Description
Likelihood ratio		
$chi2_ms(5)$	17.689	model vs. saturated
p > chi2	0.003	
chi2_bs(10)	150.126	baseline vs. saturated
p > chi2	0.000	
Satorra-Bentler		
chi2sb_ms(5)	17.804	
p > chi2	0.003	
chi2sb_bs(10)	153.258	
p > chi2	0.000	
Population error		
RMSEA	0.070	Root mean squared error of approximation
90% CI, lower bound	0.037	
upper bound	0.107	
pclose	0.147	Probability RMSEA <= 0.05
Satorra-Bentler		
RMSEA_SB	0.070	Root mean squared error of approximation
Information criteria		
AIC	11157.441	Akaike's information criterion
BIC	11221.219	Bayesian information criterion
Baseline comparison		
CFI	0.909	Comparative fit index
TLI	0.819	Tucker-Lewis index
Satorra-Bentler		
CFI_SB	0.911	Comparative fit index
TLI_SB	0.821	Tucker-Lewis index
Size of residuals		
SRMR	0.040	Standardized root mean squared residual
CD	0.532	Coefficient of determination

The SB-adjusted CFI is still rather low, 0.91, indicating poor fit. We can use estat mindices to compute modification indices that can be used to check for paths and covariances that could be added to the model to improve fit. First, we'll need to restore our original model.

. estimates restore m1

·	estat	mindi	ices
Mo	difica	ation	indices

	MI	df	P>MI	EPC	Standard EPC
cov(e.ses1,e.ses2) cov(e.ses2,e.ses3) cov(e.ses3,e.ses4)	16.565 5.404 4.956	1 1 1	0.00	.4818524 2203899	.312987 1307056 .11655

EPC is expected parameter change.

The MI, df, and P>MI are the estimated chi-squared test statistic, degrees of freedom, and p value of the score test testing the statistical significance of the constrained parameter. By default, only parameters that would significantly (p < 0.05) improve the model are reported. The EPC is the amount that the parameter is expected to change if the constraint is relaxed. According to these results, we see that there is a stronger relationship between the first and second indicator for SES than would be expected given our model, MI = 16.57, p < 0.001. We could consider adding a residual covariance between these two indicators to our model using the cov() option. We use the e. prefix to refer to a residual variance of an endogenous variable; see Figure 5.

. sem (SES -> ses1-ses4 math), cov(e.ses1*e.ses2)

Figure 5. CFA with residual covariance.

One potential explanation of the effect that SES has on math score is that students of higher SES attend schools with smaller student to teacher ratios. We can test this hypothesis using the mediation model shown in Figure 6. Here, we get estimates of the direct effects between each of our variables, but what we would really like to test is the indirect effect between SES and math through ratio. We can get direct effects, indirect effects, and total effects of mediation models with the postestimation command estat teffects.

. sem (SES \rightarrow ses1-ses4 ratio math) (ratio \rightarrow math)

Figure 6. Student-teacher ratio mediates the effect of SES on math score.

. estat teffects

Direct effects

		Coefficient	OIM std. err.	Z	P> z	[95% conf	. interval]
Structural ratio							
S	ES	-1.367306	.5562429	-2.46	0.014	-2.457522	2770903
math							
rat	io	2256084	.1026128	-2.20	0.028	4267257	024491
S	ES	6.908564	1.583778	4.36	0.000	3.804417	10.01271
Measuremen ses1	t						
S	ES	1	(constraine	d)			
ses2							
S	ES	.9450302	.1643867	5.75	0.000	.6228382	1.267222
ses3							

	SES	.6632608	.1725434	3.84	0.000	.3250819	1.00144
ses4							
	SES	.8574695	.2012317	4.26	0.000	.4630625	1.251876

Indirect effects

		Coefficient	OIM std. err.	z	P> z	[95% conf.	interval]
Stru ra	ictural atio						
	SES	0	(no path)				
ma	ath ratio SES	0 .3084758	(no path) .1451257	2.13	0.034	.0240346	.5929169
Meas se	surement es1						
	SES	0	(no path)				
se	es2 SES	0	(no path)				
se	es3 SES	0	(no path)				
se	es4 SES	0	(no path)				
Tota	al effects						
		Coefficient	OIM std. err.	z	P> z	[95% conf.	interval]
Stru ra	ictural atio						
	SES	-1.367306	.5562429	-2.46	0.014	-2.457522	2770903
ma	ath ratio SES	2256084 7.217039	.1026128 1.599953	-2.20 4.51	0.028	4267257 4.081189	024491 10.35289
Meas se	surement es1						
	SES	1	(constraine	ed)			
se	es2 SES	.9450302	.1643867	5.75	0.000	.6228382	1.267222
se	es3 SES	.6632608	.1725434	3.84	0.000	.3250819	1.00144
se	es4 SES	.8574695	.2012317	4.26	0.000	.4630625	1.251876

In the second group of the output, we see that the mediation effect is not statistically significant, z = 1.48, p = 0.138. We may consider bootstrapping this effect to get a more powerful test. We can do this with the **bootstrap** command. First, we need to get labels for the effects we would like to test. We can get these by replaying our model results with the **coeflegend** option. We can use these labels to construct an expression for the mediation effect that we're calling **indirect**. We put this expression in parentheses after **bootstrap** and put any bootstrapping options after a comma; then, we put the model and its options after a colon. Multiple expressions can be included using multiple parentheses sets.

```
. sem, coeflegend
Structural equation model
Estimation method: ml
Log likelihood = -7117.1959
( 1) [ses1]SES = 1
```

Number of obs = 519

	•	
	Coefficient	Legend
Structural		
Iatio GEG	-1 367306	b[ratio:SES]
SES	16 75723	_D[ratio:SES]
	10.10120	
math		
ratio	2256084	_b[math:ratio]
SES	6.908564	_b[math:SES]
_cons	55.50311	_b[math:_cons]
Maagumamant		
SE21	1	b[cos1.SFS]
SES	1 082650	b[ses1.sho]
	1.302033	
ses2		
SES	.9450302	b[ses2:SES]
_cons	2.003854	_b[ses2:_cons]
ses3		
SES	.6632608	_b[ses3:SES]
_cons	2.003854	_b[ses3:_cons]
SeS4	9574605	b[coc4.CEC]
SES	.05/4095	
_cons	2.003854	_b[ses4:_cons]
var(e.ses1)	1.541523	_b[/var(e.ses1)]
var(e.ses2)	1.588663	_b[/var(e.ses2)]
var(e.ses3)	1.795421	_b[/var(e.ses3)]
var(e.ses4)	1.660672	_b[/var(e.ses4)]
var(e.ratio)	23.41179	_b[/var(e.ratio)]
var(e.math)	89.51067	_b[/var(e.math)]
var(SES)	.4562495	_b[/var(SES)]
		-

LR test of model vs. saturated: chi2(8) = 21.72

Prob > chi2 = 0.0055

. bootstrap in > sem (SES ->	ndirect=(_b[ra ses1-ses4 rat	tio:SES]*_b[io math) (ra	math:rat tio -> n	tio]), re math)	ps(1000) nodo	ts: ///
Bootstrap res	ılts				Number of o Replication	bs = 519 s = 1,000
Command indirect	: sem (SES -> : _b[ratio:SES	ses1-ses4 ra]*_b[math:ra	tio mat] tio]	h) (ratio	-> math)	
	Observed coefficient	Bootstrap std. err.	z	P> z	Normal [95% conf.	-based interval]
indirect	.3084758	.1932632	1.60	0.110	070313	.6872646

We've added the reps(1000) option to compute 1,000 bootstrap replications and the nodots option to suppress displaying a dot for each replication. To get 95 percentile confidence intervals based on our bootstrap sampling distribution, we can follow with the postestimation command estat bootstrap using the percentile option. The resulting confidence interval contains zero so we cannot reject the null hypothesis.

. estat bootst	trap, percenti	le						
Bootstrap res	ilts	Num	ber of obs	=	519			
		Rep	lications	=	1000			
Command: sem (SES -> ses1-ses4 ratio math) (ratio -> math) indirect: _b[ratio:SES]*_b[math:ratio]								
	Observed coefficient	Bias	Bootstrap std. err.	[95% conf.	interval]			
indirect	.30847577	0307326	.19326315	0707015	.6837121	(P)		

Key: P: Percentile

2.2 Group Analysis

Finally, we may consider comparing our mediation across groups. Group analysis can be done in Stata by adding the group() option. We would like to compare students in public schools versus private schools so we will specify schtype as our grouping variable. Then, we can use ginvariant() to specify the types of parameters we would like to constrain across groups. All other variables will be estimated separately for each group. The ginvariant() options are listed in Table 1. If we don't specify any ginvariant option, by default Stata will constrain measurement coefficients and measurement intercepts, ginvariant(mcoef mcons). See the model in Figure 7. Now when we run estat teffects, we will get a separate estimated mediation effect for each group.

Public

. sem (SES -> ses1-ses4 math) (ratio -> math), group(schtype)

Figure 7. Group analysis.

. estat teffects, nodirect nototal compact

```
Indirect effects
```

		ΟΤΜ				
	Coefficient	std. err.	z	P> z	[95% conf.	interval]
Structural math SES						
Private	.7043843	.4184641	1.68	0.092	1157902	1.524559
Public	.2035724	.1710134	1.19	0.234	1316076	.5387525
ratio						
ses1						
ses2						
Measurement ses3						
ses4						

Table 1. ginvariant() suboptions

Option	Description
mcoef	measurement coefficients
mcons	measurement intercepts
merrvar	covariances of measurement errors
scoef	structural coefficients
scons	structural intercepts
serrvar	covariances of structural errors
smerrcov	covariances between structural and measurement errors
meanex	means of exogenous variables
covex	covariances of exogenous variables
all	all the above
none	none of the above

To test whether these mediation effects significantly differ, we can conduct a Wald test with the test or testnl postestimation commands, again using the labels from the coeflegend option. Because mediation effects are nonlinear, we will use testnl. The mediation effects do not significantly differ between groups, $\chi^2(1) = 1.27, p = 0.260.$

. estat ginvariant

Tests for group invariance of parameters

		Wald test			Score test	
	chi2	df	P>chi2	chi2	df	P>chi2
Structural						
math						
ratio	0.001	1	0.9709			
SES	0.005	1	0.9441			
_cons	1.314	1	0.2516			
ratio						
SES	1.825	1	0.1768			
_cons	0.011	1	0.9147			
Measurement						
ses1						
SES				1.832	1	0.1759
_cons	•	•	•	5.997	1	0.0143
ses2						
SES		•		0.072	1	0.7882
_cons		•	•	0.341	1	0.5592
ses3						
SES				0.049	1	0.8253
_cons				0.634	1	0.4259
ses4						
SES				1.945	1	0.1632
_cons				1.149	1	0.2838
var(e.ses1)	0.189	1	0.6640			
var(e.ses2)	0.063	1	0.8023			
var(e.ses3)	1.011	1	0.3146			
var(e.ses4)	0.090	1	0.7641			
var(e.math)	0.065	1	0.7982			
var(e.ratio)	36.627	1	0.0000			
var(SES)	0.042	1	0.8383			
		-		-	-	-

To test group differences in each direct path, we can use the postestimation command estat ginvariant. These results show us Wald tests evaluating constraining parameters that were allowed to vary across groups and score tests evaluating relaxing constraints. Both are testing whether individual paths significantly differ across groups.

2.3 Growth Curve Modeling

The last model we will fit using **sem** is a growth curve model. This will require a new dataset.

. use crime

Contains da	ta from crin	ne.dta					
Observatio	ns:	359					
Variables: 4				4 Oct 2012 16:22			
				(_dta has notes)			
Variable	Storage	Display	Value				
name	type	format	label	Variable label			
lncrime0	float	%9.0g		ln(crime rate) in Jan & Feb			
lncrime1	float	%9.0g		ln(crime rate) in Mar & Apr			
lncrime2	float	%9.0g		ln(crime rate) in May & Jun			
lncrime3	float	%9.0g		ln(crime rate) in Jul & Aug			

Sorted by:

These data are from Bollen and Curran (2006); they contain crime rates collected in two-month intervals for the first eight months of 1995 for 359 communities in New York state. We would like to fit a linear growth curve to these data to model how crime rate changed over time. In our model, we can set constraints using the @ symbol as we did before. To constrain all intercepts to 0, we can add the nocons option. We will also need the means() option. By default, Stata constrains the means of latent variables to 0. For this model, we would like to estimate them so we need to specify the latent variable names inside means(). We may also consider constraining all the residual variances to equality by constraining each of them to the same arbitrary letter or word, in this case eps. See the model in Figure 8.

The estimated mean log crime rate at the beginning of the study was 5.33 and it increased by an average of 0.14 every two months. We could have fit this same model using gsem. One way we can do this is to simply replace sem with gsem in the command in Figure 8. Alternatively, we can can think of this as a multilevel model, and fit it using gsem's notation for random effects. Let's do that next.

. sem (Intercept@1 -> lncrime0-lncrime3) (Slope -> lncrime0@0 lncrime1@1 lncrime2@2 lncrime3@3), nocons means(Intercept Slope) var(e.lncrime0-lncrime3@eps)

Figure 8. Growth curve model on crime rate.

3 Fitting models with the gsem command

3.1 Models with Random Effects

The gsem command implements generalizations to the standard linear structural equation model implemented in sem, such as models with generalized-linear response variables, random effects, and categorical latent variables (latent classes). Its syntax is the same as sem, with some different options and postestimation commands. We will start by fitting a random-slope model to the crimes dataset, reproducing the results we obtained with the growth curve model using sem. First, we need to create an observation identification variable and reshape the data into long format.

. gen id = _n			
. reshape long lncrime, i(id) $(j = 0 \ 1 \ 2 \ 3)$	j(time)		
Data	Wide	->	Long
Number of observations	359	->	1,436
Number of variables	5	->	3
j variable (4 values)		->	time
xij variables:			

ummarize					
Variable	Obs	Mean	Std. dev	. Min	Max
id	1,436	180	103.6701	1	359
time	1,436	1.5	1.118423	0	3
lncrime	1,436	5.551958	.7856259	2.415164	9.575166
	Immarize Variable id time lncrime	ImmarizeVariableObsid1,436time1,436lncrime1,436	Immarize Obs Mean id 1,436 180 time 1,436 1.5 lncrime 1,436 5.551958	Immarize Obs Mean Std. dev id 1,436 180 103.6701 time 1,436 1.5 1.118423 lncrime 1,436 5.551958 .7856259	Immarize Obs Mean Std. dev. Min id 1,436 180 103.6701 1 time 1,436 1.5 1.118423 0 lncrime 1,436 5.551958 .7856259 2.415164

We now have long-format data in which we have several rows of observations for each individual; we're ready to fit our random-slope model. We specify random effects in gsem by adding brackets enclosing the clustering variable to the latent variable, i.e. Intercept[id]. This tells Stata to include a latent variable in the model called Intercept that has variability at the id level. As with other latent variables, it will have a mean of 0 and an initial factor loading of 1, so the only parameter this term introduces is a level-2 variance. Random coefficients can be added to any term by interacting a latent random effect with that variable, i.e. c.time#Slope[id].

Interactions in Stata are specified using #; interaction terms are assumed to be factor variables unless prefixed by c. to indicate that they are continuous variables. Contrarily, main-effect terms are assumed to be continuous unless prefixed by i. to indicate that they are factor variables. We'll see this in the next example. This factor variable notation is not available using sem.

See the syntax and results of the random slope model in Figure 9; these results replicate those by **sem**. In the SEM Builder, random effects are represented as double-bordered ovals labeled with the clustering variable to indicate that they represent variability at the cluster level.

. gsem (Intercept[id] time c.time#Slope[id] -> lncrime)

Figure 9. Random-slope model on crime rate.

3.2 Models with Generalized Responses

The gsem command can also be used to fit generalized linear SEMs; that is, SEMs in which an endogenous variable is distributed according to some distribution family and is related to the linear prediction of the model through a link function. See Table 2 for a list of available distribution families and links. Either the family and link can be specified, i.e. family(bernoulli) link(logit), or some combinations have shortcuts that you can specify instead, i.e. logit. For this example, we will return to the first dataset.

family() options	link() options					
	identity	log	logit	probit	cloglog	
gaussian	Х	Х				
bernoulli			logit	probit	cloglog	
beta			Х	Х	Х	
binomial			Х	Х	Х	
ordinal			ologit	oprobit	ocloglog	
multinomial			mlogit			
Poisson		poisson				
negative binomial		nbreg				
exponential		exponential				
Weibull		weibull				
gamma		gamma				
loglogistic		loglogistic				
lognormal		lognormal				

Table 2. gsem distribution families and link functions

Note: X indicates possible combinations. Where applicable, regression names that imply that family/link combination are shown. If no family/link are provided, family(gaussian) link(identity) is assumed.

. use math									
. codebook	, cor	npact							
Variable	Obs	Unique	Mean	Min	Max	Label			
schtype	519	2	.61079	0	1	School type			
ratio	519	14	16.75723	10	28	Student-Teacher ratio			
math	519	42	51.72254	30	71	Math score			
ses1	519	5	1.982659	0	4	SES item 1			
ses2	519	5	2.003854	0	4	SES item 2			
ses3	519	5	2.003854	0	4	SES item 3			
ses4	519	5	2.003854	0	4	SES item 4			

In our previous analysis, we had treated each socioeconomic status Likert item as continuous. Now, we will treat them as ordinal using gsem. Adding the ologit option will fit the measurement model using the ordinal family with a logistic link. We will also use factor variable notation to include indicator

variables for school type in our analysis. See figure Figure 10. By adding schtype as a factor variable, a dummy variable for each level of schtype is included in the model. The path coefficient for the base level, by default the lowest, is constrained to zero. To get exponentiated coefficients, we can follow with the postestimation command estat eform.

. sem (SES -> ses1-ses4, ologit) (SES i.schtype -> math)

Figure 10. Ordinal logistic regression model.

•	estat	eform	ses1	ses2	ses3	ses4

		exp(b)	Std. err.	z	P> z	[95% conf.	interval]
ses1							
	SES	2.718282	(constrained))			
ses2							
	SES	2.311549	.483485	4.01	0.000	1.534141	3.482899
ses3							
	SES	1.449492	.180061	2.99	0.003	1.136257	1.849077
ses4							
	SES	1.628133	.2474222	3.21	0.001	1.208748	2.193029

4 Conclusion

In this tutorial, we've shown the basics of fitting SEMs in Stata using the sem and gsem commands, and have provided example datasets and syntax online to follow along. We demonstrated confirmatory factor analysis, mediation, group analysis, growth curve modeling, and models with random effects and generalized responses. However, there are many possibilities and options not included in this tutorial, such as latent class analysis models, nonrecursive models, reliability models, mediation models with generalized responses, multivariate randomeffects models, and much more. Visit Stata's documentation to see all the available options for these commands, their methods and formulas, and many more examples online at https://www.stata.com/manuals/sem.pdf.

References

- Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective (Vol. 467). John Wiley & Sons.
- Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In *Latent variables analysis: Applications for developmental research.* (pp. 399–419). Sage Publications, Inc.
- StataCorp. (2021). Stata statistical software: Release 17. StataCorp LLC.