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Abstract. In psychological research, class imbalance in binary outcome
variables is a common occurrence, particularly in clinical variables (e.g.,
suicide outcomes). Class imbalance can present a number of difficulties
for inference and prediction, prompting the development of a number
of strategies that perform data augmentation through random sampling
from just the positive cases, or from both the positive and negative cases.
Through evaluation in benchmark datasets from computer science, these
methods have shown marked improvements in predictive performance
when the outcome is imbalanced. However, questions remain regarding
generalizability to psychological data. To study this, we implemented
a simulation study that tests a number of popular sampling strategies
implemented in easy-to-use software, as well as in an empirical example
focusing on the prediction of suicidal thoughts. In general, we found that
while one sampling strategy demonstrated far worse performance even in
comparison to no sampling, the other sampling methods performed simi-
larly, evidencing slight improvements over no sampling. Further, we eval-
uated the sampling strategies across different forms of cross-validation,
model fit metrics, and machine learning algorithms.
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1 Introduction

In psychological research, class imbalance in binary outcome variables (also re-
ferred to as skew or rare events), most often occurs due to the underlying pop-
ulation of interest having small proportions of individuals with positive cases
(minority), such as in the case of study designs that are assessing the prevalence
of suicidal attempts in the general population. While class imbalance can be
dealt with through changes in study design, such as sampling among individu-
als with a history of mental illness to increase the probability of observations
having a history of suicide attempts, this can fundamentally alter the alignment



60 R. Jacobucci, X. Li

between the population of interest and the sample of which the data is collected
from.

In the presence of class imbalance, failure to utilize appropriate strategies
has a number of consequences. For instance, even when explanation is the pri-
mary aim, using logistic regression with skewed outcomes can result in under-
estimated probabilities for the positive class (King & Zeng, 2001). Additionally,
one of the general strategies is to perform data augmentation through random
sampling from just the positive cases, or from both the positive and negative
cases. Kovács (2019) found that in general, any form of sampling improves upon
the performance modeling the original dataset.

However, even in areas of psychological research where imbalanced outcomes
are extremely common, such as suicide, the use of sampling strategies is still ex-
tremely rare (e.g., a recent tutorial on evaluating classification in suicide research
does not mention sampling strategies; Mitchell, Cero, Littlefield, & Brown, 2021).
While part of this lack of translation across disciplines may be due to relatively
siloed research, it also may partially be attributed to a lack of generalizability
in the findings. While a large number of studies have evaluated the relative per-
formance of methods designed to overcome class imbalance, the vast majority of
research focuses on evaluation in benchmark datasets with characteristics unique
to that field of study (primarily computer science), which limits the generaliz-
ability of these findings to areas with different types of data including psychology.
This is similar to the hype and promise of machine learning being somewhat di-
luted by limitations to the data commonly found in psychological research (see
Jacobucci & Grimm, 2020).

Thus, the goal of this study is to answer the question: Do minority case sam-
pling approaches improve prediction with imbalanced outcomes in datasets with
psychological variables? To accomplish this, we evaluated a number of sampling
strategies commonly used for imbalanced outcomes in simulated data that is
more in line with characteristics commonly found in psychological research. We
followed this by applying those strategies to the prediction of suicidal ideation in
a large public dataset. Additionally, we specifically focus on strategies for over-
coming class imbalance that are already implemented in easy-to-use software.
Our focus is on strategies that operate at the data level, as opposed to the model
estimation phase. While we test two different algorithms, logistic regression and
random forests, we put our focus on methods that do not involve the use of mis-
classification costs for a number of reasons. The first is that sampling methods
are easy to implement in easy-to-use software that pairs with many ML algo-
rithms, meaning researchers won’t face limitations with which algorithms can
be compared. Further, sampling based methods have been studied more (e.g.,
Garćıa, Sánchez, Marqués, Florencia, & Rivera, 2020) thus often show up more
in recommendations. And finally, assigning costs does not overcome potential
issues of few to no positive cases being represented when the sample size is small
and k-fold cross-validation (CV) is used.
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1.1 Sampling Methods

While a number of strategies have been proposed for supervised learning with
imbalance data, possibly the two simplest are random over-sampling (OVER)
and random under-sampling (UNDER). While OVER random samples from the
minority case to produce an equal distribution of positive and negative cases,
UNDER randomly removes majority cases to produce an equal distribution.
As an example, of an original dataset with 10 positive cases and 100 negative
cases, OVER would produce a new dataset with 100 positive and negative cases
each, while UNDER would create a dataset with 10 positive and negative cases
each. Both methods have well understood drawbacks: while UNDER discards
potentially useful data, OVER increases the probability of overfitting (McCarthy,
Zabar, & Weiss, 2005).

1.2 Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) is an oversampling tech-
nique that creates artificial minority class cases by using the k-nearest neighbors
for a given minority case instead of oversampling randomly as in OVER. More
specifically, for a specific minority case i, instead of just creating duplicates of
that case, the SMOTE algorithm finds k similar minority cases to case i, and
generates synthetic cases that take on a value for the predictor variables that
represent a blend of the k-nearest neighbors. Thus, the newly created synthetic
minority cases contain similar, not identical, predictor values to the k-nearest
neighbors. Finally, the number of synthetic cases created for each minority case
is a tuning parameter typically referred to as Npercent.

1.3 Random Over-Sampling Examples (ROSE)

While SMOTE only generates synthetic samples from the positive cases, ROSE
(Menardi & Torelli, 2012) uses the smoothed bootstrap to generate both negative
and positive samples to create a new dataset that is more balanced. In the ROSE
procedure, an observation is first drawn with a 50% chance of belonging to each
class. Given this observation, a new sample is then generated in its neighborhood
(according to the predictor values), with the neighborhood chosen according to
a kernel density estimate (for further detail, see Menardi & Torelli, 2012). The
user of ROSE is given discretion as to how much under-sample the negative
cases, and to what degree over-sample the positive cases.

Demonstration To demonstrate how SMOTE and ROSE randomly over sam-
ple minority cases, we simulated 50 cases according to a linear logistic model
with two predictors (regression coefficients of 0.2 and 0.4) and an intercept of -3,
which resulted in 47 negative cases and 3 positive cases. This was followed by
applying each method with the DMwR package (Torgo, 2010) and ROSE package
(Lunardon, Menardi, & Torelli, 2014). The resulting datasets are displayed in
Figure 1.
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Figure 1: The top plot is the original dataset, the middle figure is after applying
SMOTE, while the bottom figure is after applying ROSE.
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We can see in Figure 1 that both methods oversample the positive cases,
generating new data points based on the original positive cases. Additionally,
the two methods handle the negative cases in different ways: SMOTE uses a hy-
perparameter (we selected 500%) to select the percentage of negative cases that
are selected relative to the number of positive cases generated; ROSE requires
setting a hyperparameter to determine the percentage of positive cases that end
up in the new dataset (defaults to 0.5), with the negative cases making up the
remainder to have the sample size equal to the original sample.

1.4 Comparison of Sampling Procedures

SMOTE has been widely applied across an assortment of research domains.
Evaluating its performance in applied data is complicated by a number of factors,
but one primary concern is on the differences in which classification performance
metrics are reported. For instance, Nnamoko and Korkontzelos (2020) used data
with diabetes diagnosis as the outcome, but mainly focused on improvements
due to SMOTE in accuracy. However, the calculation of accuracy is based on
the class distribution, which is discrepant across the various ways that Nnamoko
and Korkontzelos evaluated the use of SMOTE. Most studies have primarily
focused on evaluating the area under the receiver operator characteristic (ROC)
curve (AUC; Hanley & McNeil, 1982), or the area under the precision-recall
curve (AUPRC; He & Garcia, 2009). There exist multiple additional methods
that incorporate similar types of information (e.g., see Saito & Rehmsmeier,
2015), however, these two have received the most coverage. Whereas the AUC
encompasses the contrast between sensitivity and specificity, thus information
regarding both classes, the AUPRC contrasts recall with precision, thus only
encodes information regarding positive cases. While the AUC is more commonly
used in practice, there are concerns regarding the AUC being misleading in the
presence of imbalance (Lobo, Jiménez-Valverde, & Real, 2008), with findings
that the AUPRC is more informative when classes are imbalanced (Saito &
Rehmsmeier, 2015). Therefore, we will focus on both the AUC and AUPRC, but
give preference to the AUPRC.

An additional complication in evaluating methods for handling imbalance is
the research domain of concern. Many studies that evaluate methods for handling
imbalance use benchmark datasets from that research area. For instance, a recent
study by Shin et al. (2021) examined the bloom of cyanobacteria in rivers in
South Korea. With this data, the researchers found differences in performance
among various classifiers (e.g., ensembles outperformed single models), but only
marginal performance gains in the application of SMOTE. Notably, they did not
evaluate the AUPRC. In a different area of application, Zhu, Baesens, and vanden
Broucke (2017) examined class imbalance strategies in the area of customer
churn prediction, evaluating performance in terms of the AUC, and comparing
ensemble methods paired with various sampling strategies and cost-sensitive
learning. Again, ensemble methods outperformed simpler algorithms, however,
there did not seem to be a benefit to more complex sampling strategies above and
beyond over or under-sampling. Finally, Demir and Şahin (2022) examined the
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impact of classification algorithms and oversampling methods for soil liquefaction
evaluation, finding that SMOTE outperformed both OVER and ROSE.

1.5 General Findings

Among relatively simple strategies for handling class imbalance, over-sampling
is typically preferred over under-sampling (e.g., Batista, Prati, & Monard, 2004;
Buda, Maki, & Mazurowski, 2018). In simulated and benchmark datasets, Garćıa
et al. (2020) compared under-sampling, over-sampling, and a hybrid of both to
just the use of the original dataset, confirming prior research that over-sampling
outperforms under-sampling.

A further complication in this is that originally proposed over-sampling meth-
ods can be subject to different interpretation, resulting in varying implementa-
tions. To address this, Bajer, Zonc, Dudjak, and Martinovic (2019) tested four
possible variants on the original SMOTE implementation, along with more re-
cently proposed generalizations of SMOTE. On a number of benchmark datasets,
they found that all of the variants outperformed random over-sampling and
no sampling, with the highest performance attributed to the recently proposed
Weighted-SMOTE (Prusty, Jayanthi, & Velusamy, 2017).

A recent study attempting to provide benchmark performance metrics for
a host of recently proposed advancements on a large number of benchmark
datasets, evaluated with multiple ML algorithms with repeated k-fold cross-
validation (Kovács, 2019). They found that the biggest improvements were at-
tributed to the use of any reliable over-sampling method over no sampling, with
much smaller improvements due to the use of the best performing methods over
standard SMOTE oversampling. However, importantly for our purposes, this
study did not test random over-sampling, and like most other studies, used a
large number of benchmark datasets.

One key piece in applying over-sampling is to ensure that augmented datasets
are not created prior to splitting the dataset up into training and tests sets, as
this can lead to overly-optimistic performance due to data leakage (e.g., Van-
dewiele et al., 2021). This can be attributed to copies, either exact or very similar,
of original cases being included in both the training and tests sets. In R package
caret (Kuhn, 2008), the resampling is conducted inside of cross-validation or
bootstrap sampling. As an example, in 5-fold CV, each partition that is created
with 4/5ths of the sample is then subject to over-sampling, the model is trained,
then tested on the 1/5th sample that was not subject to sampling. However, of
note, if one has a true test set that is only used for assessing the final model’s
performance, sampling should not be conducted in this sample, as it is used only
to test a previously trained model.

Finally, much less research has focused on the interaction between the use
of sampling and the actual sample size of the dataset. Studying this interaction
is further complicated by the form of resampling used to evaluate prediction
performance, as the most commonly used form, k-fold CV, has been shown to
produce highly biased results in small samples (Vabalas, Gowen, Poliakoff, &
Casson, 2019). However, the presence of a binary outcome further complicates



Imbalance and Sampling 65

defining what sample size is given that assessing the number of positive cases
is more informative than the overall number of cases (cf. Peduzzi, Concato,
Kemper, Holford, & Feinstein, 1996).

2 Study 1

2.1 Methods

We specifically chose this study design as we believe that it mimics the structure
found in the majority of clinical data that primarily includes self-report data.
While we assess the influence of nonlinear relationships, we primarily simulate
the data according to a linear model, as this is most in line with the results that
utilize machine learning algorithms in clinical self-report data: if machine learn-
ing outperforms linear models, the improvement in performance is most often
negligible (Christodoulou et al., 2019; Jacobucci, Littlefield, Millner, Kleiman,
& Steinley, 2021). For the simulation setup, we started by simulating standard
normally distributed data with a sample size of 50,000. The cases not selected to
train and test the methods were kept in order to produce performance metrics
that serve as ground truth.

In predictive tasks with class outcomes, there are often two layers of assess-
ment. The first step in prediction-oriented tasks is often assessing the correspon-
dence between the predicted probabilities and actual class labels, while further
performance assessment can be taken in translating the predicted probabilities
to predicted class labels to classify individuals. Given that much of psychological
research is only focused with the first step, our aim is only assessing prediction
performance. We interpret performance with respect to the AUC and AUPRC.
While the AUPRC is more informative at higher degrees of imbalance, the AUC
is much less likely to evidence floor effects, thus improving our ability to charac-
terize its distribution. When making specific comparisons in performance across
methods, we used an ANOVA with Tukey’s HSD posthoc tests.

With this setup, we varied a number of conditions across 200 repeats: To
train and test the methods we tested sample sizes of 300, 1000, and 10,000.
With these sample sizes, we simulated data following a logit link, while varying
the intercept (b0) to control the level of class imbalance. We specifically tested
values of -4 (≈ 0.02 positive), -3 (≈ 0.05 positive), -2 (≈ 0.12 positive), -1 (≈ 0.27
positive), and 0 (≈ balanced case). We tested the inclusion of 30 and 70 pre-
dictors, with 10% of the predictors having standardized coefficients of 0.2, 10%
having 0.1, 10% having 0.05, and the rest 70% having coefficients of 0. Addition-
ally, we added two standard normal predictors with unit weighted cosine and
sine relationships with Y, and a tanh interaction between these variables with
coefficients of 0.1. Although the exact functional form of these nonlinear relation-
ships is unlikely to occur in psychological data, our focus is less on identifying
the true relationships and more on determining whether nonlinearity interacted
with imbalance to bias our model performance or algorithm selection. Following
the logistic model, we also tested residual variances of 0.82 and 0.3. Once this
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normally distributed version of Y was created, it was transformed into a prob-
ability according to a logit link to a probability, followed by using a binomial
distribution to generate values of 0 and 1. Finally, we included Bayesian logis-
tic regression (Bayesian as this resulted in fewer convergence issues when the
class imbalance was large and sample size small) and random forests (Breiman,
2001). Our goal in this comparison was to test the potential of underfitting and
overfitting, particularly given prior findings regarding overfitting with ROS. Our
specific point of comparison is in assessing the performance of random forests
with sampling to determine whether inflated AUC or AUPRC values are found.

Outside of the simulated intercept values, our main point of evaluation con-
cerned the resampling and sampling methods. For resampling, we tested the
validation set approach or 10-fold CV. The validation set approach applied the
sampling method on a training set that contained 70% of N, followed by testing
on a holdout set containing 30% of N that was not used to train the model.
The 10-fold CV approach used the sampling approach on each training set for
each 10 iterations. Note that for both approaches the sampling method was used
after splitting the sample and was not applied to the holdout set. Finally, our
goal in assessing sampling methods was to test methods that are easy to apply
in commonly used software. Given this, we focused on the methods available in
the caret package (Kuhn, 2008) in R. This included no sampling, UNDER,
OVER, SMOTE, and ROSE. SMOTE is implemented in the DMwR package
(Torgo, 2010), while ROSE is implemented in the ROSE package (Lunardon et
al., 2014). We used the software defaults for both SMOTE and ROSE.

2.2 Results

Of the 200 replications across conditions, errors occurred in estimating models
in a subset of conditions, namely due to the condition with a sample size of 300
and intercept of -4 (11% errors). All other conditions had less than 2% errors.
Given the breadth of results, we chose only to present a select subset of findings
that highlight key points.

Intercept and variability Possibly the largest influence of class imbalance is
on the degree of variability to the AUC and AUPRC. This can be clearly seen in
Figure 2. With an intercept of -4, all of the sampling methods evidence a number
of outliers that are strongly positively biased. However, this represented a quite
small number of results, as the 95th percentile at an intercept of -4 was 0.13 for
OVER and SMOTE.

Additionally, we can see the median AUC and AUPRC values for the sam-
pling methods get closer to the True performance as the imbalance becomes
less. This is further influence by sample size and can be attributed to a lack of
information when there are fewer positive cases, leading to further degrees of
underfitting by default. As an example, when the intercept is -4, there is a dif-
ference in AUC means of 0.06 between OVER and the True performance (0.596
vs. 0.660), while for an intercept of 0 it is 0.04 (0.648 vs. 0.688).
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Figure 2: AUPRC and AUC values across sampling methods and simulated in-
tercept.
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Lastly, while the AUC is commonly labeled as biased in the presence of
imbalanced data, it demonstrated similar performance across values of b0 as the
AUPRC. Performance improves as the class distribution becomes more equal;
this is most likely attributable to the increasing numbers of positive cases. In
fact, when the intercept was -4, the AUC was on average 0.09 points higher when
the sample size was 10,000 as opposed to 300, while the discrepancy fell to 0.06
when the intercept was 0.

We see similar effects with sample size in Figure 3, as one would expect.
Larger sample size resulted in less variability, which further reduced the propen-
sity to over- or under-estimated performance. For the AUC 1, the standard
deviations were 0.10 for 300, 0.07 for 1,000, and 0.07 for 10,000. While a large
number of AUC values for each of the sampling methods were greater than the
True values in the smaller sample, the median values became closer to the True
median scores in the larger sample sizes. This highlights improvements in per-
formance and stability with greater N, and a worrisome level of biased outliers
at small sample sizes.
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Figure 3: Sample size and AUC values. Note that we don’t also depict the
AUPRC as the behavior is the same, but the variance is overly wide due to
averaging over the intercept values.

1 We don’t report the standard deviations for the AUPRC as there were floor effects.
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k-fold CV reduces variability Figure 4 displays the AUC values across both
k-fold CV and validation set strategies, as well as using random forests and
logistic regression. The first thing to note is the differences in variability across
resampling methods, with k-fold CV having lower variance, particularly at a
sample size of 300. This is in line with general recommendations to only use the
validation set strategy in the presence of large sample sizes (i.e., James, Witten,
Hastie, & Tibshirani, 2013). Secondly, there do not seem to be mean differences
across resampling methods, and only slight improvements due to random forests
(as expected). Finally, we can see a strange interaction between the use of ROSE
with k-fold CV, resulting in markedly worse performance.
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Figure 4: Sample size and AUC values. Note that the AUPRC is not depicited as
the behavior is the same, but the variance is overly wide due to averaging over
the intercept values.

Summary There was no form of sampling that resulted in universal best per-
formance, but some general trends emerged. In line with prior research, some
form of sampling generally outperformed no sampling. For both the linear and
nonlinear simulated data, OVER had higher AUC values by 0.01 across condi-
tions, which held even when imbalance was at its highest (b0 = −4) and a sample
size of 300. Further, OVER and SMOTE consistently performed the best, with
no statistical difference in their results averaged across conditions. For instance,
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when the intercept was -4, OVER had a median AUPRC of 0.057, SMOTE of
0.058, while no sampling was 0.052. It is important to note however that there
was more variability within each type of sampling than between methods. Of
note, there was not a notable distinction in the amount of performance variance
across sampling methods: unfortunately, all sampling methods evidenced a large
degree of variability when the sample size was small (Figure 3) or there was
high class imbalance (Figure 2). Finally, ROSE performed the worst among the
sampling methods, which was primarily due to problems in integrating ROSE
with logistic regression and k-fold CV as seen in Figure 4.

A surprising finding was that there were very little differences in the variabil-
ity between the use of logistic regression and random forests. Random forests
performed better than logistic regression, as expected given the two nonlinear
effects, but importantly random forests did not have a greater propensity to
overfit than logistic across the conditions and sampling methods.

3 Study 2

Data for Study 2 comes from the National Survey on Drug Use and Health
from 2014 (NSDUH; Abuse & Administration., n.d.). This survey focused on
assessing the use of illicit drugs, alcohol, and tobacco among U.S. civilians 12
years or older. For the purpose of our analysis, we focused on questions that
assessed mental health issues. With a sample size of 55,271 and 3,148 variables,
the dataset was pared down from the original dataset to just include thirty-nine
predictors with the aim of predicting suicidal ideation (last 12 months; SUIC-
THINK). Predictors included symptoms of depression and other mental health
disorders, the impact of these symptoms on daily functioning, and four demo-
graphic variables (gender, ethnicity, relationship status, age; dummy coded). The
dataset can be freely downloaded from https://www.datafiles.samhsa.gov/study-
dataset/national-survey-drug-use-and-health-2014-nsduh-2014-ds0001-nid16876.

For the analysis, we used Bayesian logistic regression and random forests,
while testing all of the above forms of handling imbalance. Secondly, we detail
both the AUPRC and AUC given that the outcome variable had only 3.7%
positive cases. Additionally, we separate the results by whether the sampling
method for handling imbalance paired with the validation set approach or 10-fold
CV. Finally, we do not report the results using ROSE given its poor performance
in the simulation.

3.1 Results

As seen in Table 1, almost uniformly, the AUC and AUPRC values were higher
when using 10-fold CV as opposed to the validation set approach, highlighting
again that when comparing results across algorithms the same resampling strat-
egy should be used. In assessing the AUC, OVER sampling performed slightly
better than no sampling, while the opposite was true for the AUPRC. In fact,
no sampling had the highest AUPRC values. In digging deeper to the simulation
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results, at a sample size of 10,000, there were no statistical differences across
the sampling methods for the AUPRC, with a similar lack of distinction even
at smaller sample sizes. This empirical example further highlights that at large
sample sizes, the use of sampling methods matters less, particularly when using
the AUPRC.

Table 1: Results from the Empirical Analysis.
AUC AUPRC

None UNDER OVER SMOTE None UNDER OVER SMOTE
Logistic Regression

Validation 0.801 0.805 0.805 0.772 0.302 0.289 0.301 0.224
10-Fold 0.809 0.806 0.810 0.807 0.321 0.299 0.317 0.308

Random Forest
Validation 0.761 0.772 0.765 0.764 0.281 0.268 0.245 0.267
10-Fold 0.768 0.781 0.771 0.774 0.304 0.267 0.260 0.283

4 Conclusion

This paper addressed a number of decision points that psychological researchers
face when analyzing outcomes that exhibit imbalance. These decision points
are particularly relevant when applying machine learning, as the importance of
cross-validation and the accurate testing of hyperparameters become increasingly
important. With this, there were a number of key takeaways:

– k-fold CV should be preferred to the validation set approach when using
sampling methods to address class imbalance.

– The AUC did not demonstrate a bias in the presence of imbalance when
using as an overall metric of fit (as opposed to examining the ROC curve).

– While OVER, UNDER, and SMOTE sampling approaches demonstrated
improvements of no sampling, these improvements were extremely small.

– The use of sampling did not increase the propensity to overfit, even when
paired with random forests.

– The ROSE method should not be used.
– Simple models such as logistic regression may outperform complex machine

learning algorithms in predicting psychological phenomena (i.e., Jacobucci
& Grimm, 2020).

Additionally, although the use of sampling can improve mean/median esti-
mates of performance in the presence of imbalance, there were not meaningful
reductions in variability to the performance estimates. This finding would not
have been identified by following the standard use of benchmark datasets, and
is only possible through the use of simulation.
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While this study was able to answer a number of questions, there are some
important limitations. The first is that the data was simulated in a relatively
simple way, following a logistic link with standard normal variables. Therefore,
there remains uncertainty as to how the methods perform with datasets that ex-
hibit levels of complexity falling in between our simulated data approach and the
benchmark datasets commonly used to test the sampling approaches. A second
limitation is that we only tested the sampling approaches that are easily ap-
plied using the caret package in R, while prior research has found performance
improvements in a number of more recently developed approaches, particularly
generalizations of SMOTE. While R users can write their own functions im-
plementing the additional varieties of SMOTE to be paired with caret, this is
unlikely to occur in the majority of psychological applications.
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Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). Auc: a misleading mea-
sure of the performance of predictive distribution models. Global ecology
and biogeography , 17 (2), 145–151. doi: https://doi.org/10.1111/j.1466-
8238.2007.00358.x

Lunardon, N., Menardi, G., & Torelli, N. (2014). Rose: a package
for binary imbalanced learning. The R journal , 6 (1), 79. doi:
https://doi.org/10.32614/RJ-2014-008

McCarthy, K., Zabar, B., & Weiss, G. (2005). Does cost-sensitive learn-
ing beat sampling for classifying rare classes? In Conference on knowl-
edge discovery in data: Proceedings of the 1st international workshop on
utility-based data mining; 21-21 aug. 2005 (pp. 69–77). ACM. doi:
https://doi.org/10.1145/1089827.1089836

Menardi, G., & Torelli, N. (2012). Training and assessing classification rules
with imbalanced data. Data mining and knowledge discovery , 28 (1), 92–
122. doi: https://doi.org/10.1007/s10618-012-0295-5

Mitchell, S. M., Cero, I., Littlefield, A. K., & Brown, S. L. (2021). Using
categorical data analyses in suicide research: Considering clinical utility

https://doi.org/10.1016/j.eswa.2019.113026
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1177/1745691620902467
https://doi.org/10.1177/2167702620954216
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.32614/RJ-2014-008
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1007/s10618-012-0295-5


74 R. Jacobucci, X. Li

and practicality. Suicide & life-threatening behavior , 51 (1), 76–87. doi:
https://doi.org/10.1111/sltb.12670

Nnamoko, N., & Korkontzelos, I. (2020). Efficient treatment of outliers and class
imbalance for diabetes prediction. Artificial intelligence in medicine, 104 ,
101815–101815. doi: https://doi.org/10.1016/j.artmed.2020.101815

Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996).
A simulation study of the number of events per variable in logistic regres-
sion analysis. Journal of clinical epidemiology , 49 (12), 1373–1379. doi:
https://doi.org/10.1016/s0895-4356(96)00236-3

Prusty, M. R., Jayanthi, T., & Velusamy, K. (2017). Weighted-smote: A
modification to smote for event classification in sodium cooled fast re-
actors. Progress in nuclear energy (New series), 100 , 355–364. doi:
https://doi.org/10.1016/j.pnucene.2017.07.015

Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on
imbalanced datasets. PloS one, 10 (3), e0118432–e0118432. doi:
https://doi.org/10.1371/journal.pone.0118432

Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021). Effects of
class imbalance on resampling and ensemble learning for improved pre-
diction of cyanobacteria blooms. Ecological informatics, 61 , 101202. doi:
https://doi.org/10.1016/j.ecoinf.2020.101202

Torgo, L. (2010). Data mining with r, learning with case studies. Chapman and
Hall/CRC. doi: https://doi.org/10.1201/9780429292859

Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learn-
ing algorithm validation with a limited sample size. PloS one, 14 (11),
e0224365–e0224365. doi: https://doi.org/10.1371/journal.pone.0224365
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