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Abstract. Data fusion approaches have been adopted to facilitate more
complex analyses and produce more accurate results. Bayesian Synthe-
sis is a relatively new approach to data fusion where results from the
analysis of one dataset are used as prior information for the analysis
of the next dataset. Datasets of interest are sequentially analyzed until
a final posterior distribution is created, incorporating information from
all candidate datasets, rather than simply combining the datasets into
one large dataset and analyzing them simultaneously. One concern with
this approach lies in the sequence of datasets being fused. This study
examines whether the order of datasets matters when the datasets being
fused each have substantially different sample sizes. The performance of
Bayesian Synthesis with varied sample sizes is evaluated by examining
results from simulated data with known population values under a va-
riety of conditions. Results suggest that the order in which the dataset
are fused can have a significant impact on the obtained estimates.
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1 Introduction

Researchers in psychology and in the social and behavioral sciences more broadly,
have recently expressed concerns about a “replication crisis” (Maxwell, Lau, &
Howard, 2015]). These concerns have driven researchers to explore and develop
new strategies for analyzing data across multiple studies and summarizing re-
sults. In an effort to combat the replication crisis, open-source data repositories
have grown substantially (Bhattacharya & Sahal, 2015), and this greater access

* Early versions of this simulation study were presented at the International Meeting
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dissertation submitted in partial fulfillment of the doctoral degree at Arizona State
University, Tempe.
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to data both enables and requires the development of new strategies for explor-
ing and analyzing this large amount of publicly available data. Data fusion is
one method that has been shown to enable more complex and more appropriate
models to be fit to fused (i.e., combined) datasets than just a single dataset
(Curran & Hussong, [2009; [Marcoulides| 2018]). Bayesian Synthesis is a recently
proposed Bayesian approach to data fusion whereby results from the analysis of
one dataset are used as prior information in the subsequent analysis of the next
dataset (Du et al., 2020; Marcoulides| [2017b)), and those results are in turn used
as prior information for the analysis of yet another dataset. Datasets of interest
are sequentially analyzed in this manner until a final posterior distribution is
created, which incorporates information from all datasets of interest.

Conducting data fusion using the Bayesian Synthesis approach thus relies on
the sequential updating of estimates as new information from each additional
dataset becomes available (for complete technical details on the approach and
various recent empirical applications see for example, [Fujimoto, Gordon, Peng,
& Hoferl 2018} [Johnson & Guttmannoval,[2019; Marcoulides, [2017a), 2017bl, 2018}
Preston et al., 2018} [Saris & Satorral |2018). This synthesis notion is expressed
using Bayes theorem as

P(Data|Unknowns)P(Unknowns)
P(Data)
x P(Data|Unknowns)P(Unknowns),

P(Unknowns|Data) =

where P(Unknowns) is the prior probability distribution for the unknown pa-
rameters, P(Data|Unknowns) is the conditional probability of the data given
the unknown parameters, and P(Unknowns|Data) is the posterior probabil-
ity distribution for the unknown parameters given our data. Thus when two
datasets are fused, the prior information about the unknown parameters can
be considered equivalent to a data set that, when merged with the current
data, supports the following Bayesian inference P ( Unknowns| Data,, Datas) o
P (Datas| Unknowns) P (Unknowns| Data, ). Here, P(Unknowns|Datay) is the
posterior distribution that resulted from the first analysis where information
from Data; was incorporated with P(Unknowns) and then serves as the prior
distribution for the present analysis that incorporates the data in Datas. When
k datasets are to be fused, the process can be denoted in a general form as
P (Unknowns| Datas, . .., Datagt1) < P(Dataj41| Unknowns) P (Unknowns| Datay,
..., Datay,) with the priors and posterior distribution similarly updated.

A major benefit of the Bayesian Synthesis approach over traditional frequen-
tist approaches to data fusion is the ability to incorporate datasets for which
raw data is not available. In this manner, the Bayesian Synthesis approach pro-
vides an alternative to the necessity to analyze the raw data and instead uses
the estimates and summary statistics from the examined studies to incorpo-
rate into the prior information. The approach therefore utilizes point summary
estimates of the posterior distributions instead of the actual full posterior dis-
tributions as required by a fully Bayesian execution of this Bayesian Synthesis
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approach. Bayesian Synthesis thereby enables summary information from pub-
lished (or unpublished) research to be incorporated as prior information (i.e.,
an informative prior) for the analysis of another dataset. The sequential use of
informative priors that are based on the information in past data provides an
extra source of information to estimate model parameters and this additional
information can effectively aid in the accuracy of parameters estimation and in
the interpretation of results. However, one concern with the Bayesian Synthe-
sis approach is that it heavily relies on updating the information as new data
summary statistics become available, therefore the order in which the data are
sequentially analyzed may have an impact on the results (Marcoulides| 2017b]).
Theoretically, in the Bayesian Synthesis approach this should not be a concern
due to the conventional Bayesian exchangeability assumption (de Finetti, 1972}
1974)), however, Bayesian Synthesis utilizes point summary estimates of the pos-
terior distributions instead of the full posterior distribution as required for a
fully Bayesian execution of this approach. While this has the potential to intro-
duce some bias, using point summary estimates of the posterior distributions
greatly increases the ease of execution and enables researchers to straightfor-
wardly implement the Bayesian Synthesis approach in standard programs like
Mplus (Muthen & Muthen, |2017). The cost of potentially introducing bias may
outweigh the difficulties of incorporating the full distributions in the sequential
analysis (Marcoulides, |2017b)).

To address the concern about the order of the datasets being analyzed, |Mar-
coulides| (2017b) examined the exchangeability assumption and found that the
order of analysis did not meaningfully impact the final data fusion results. Similar
conclusions regarding exchangeability were also recently suggested by |[Miocevic,
Levy, and Savord| (2020). One limitation with these conclusions is that they were
based on analyzed datasets that were from similarly-sized large samples. There-
fore, it is still unknown whether the order of datasets matters when the datasets
being fused each have substantially different sample sizes (as is quite common
with empirical data). For example, it may be that beginning the Bayesian Syn-
thesis approach with the analysis of a large dataset produces a substantially
biased final posterior distribution when the other sequentially analyzed datasets
are much smaller, or vice versa.

In this study, we focus on this unexamined scenario in which there are multi-
ple datasets of both small and large sample sizes. Our main question is whether
the order in which datasets are incorporated in the Bayesian Synthesis process
will impact the results when one dataset is substantially larger than the rest. To
evaluate the performance of Bayesian Synthesis with varied sample sizes, results
from simulated data with known population values will be examined under a
variety of design study conditions. We conclude with a discussion of the results,
implications of the findings, and suggestions for further research.
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2 Methods

2.1 Monte Carlo Data Simulation

In order to systematically evaluate the exchangeability of datasets with varying
sample sizes in the Bayesian Synthesis approach, simulated data using Monte
Carlo techniques were analyzed under a variety of longitudinal data design con-
ditions. All simulated data were generated using R (R Development Core Team)|
2010), and analyzed in Mplus (Muthen & Muthen, [2017)) through R using the
MplusAutomation package (Hallquist & Wileyl |2014). The analyses were spec-
ified to use the Gibbs (PX1) algorithm with a minimum of 50,000 iterations,
using the Potential Scale Reduction (PSR) convergence criteria of 1.05 (Gelman
et al., |2014)), a median summarized posterior, 250 replications, and two chains
without thinning.

The simulated data were modeled after the [Marcoulides and Grimm) (2017)
study, which analyzed six longitudinal studies measuring students’ mathematics
ability. These studied six datasets varied in their sample size, timing, and num-
ber of measurement occasions. As Marcoulides and Grimm| (2017)) showed that
mathematics ability increased as children got older, we used the linear growth
model to generate the simulated data. In this model, individuals (n) are mea-
sured on their math abilities (y) across multiple measurement occasions (t),
using the data generation model

t—Fk

Yin = Non + ( A > Nin + €tn, (1)
2

where 79, is an individual’s latent intercept when time ¢ equals zero, 71y, is
an individual’s latent slope when time ¢ equals zero, k1 and ko are functional
variables to center the intercept and scale the slope, and ey, is the residual at
time ¢ for individual n. In this model, we assume the two latent variables follow
a multivariate normal distribution, [non, mn] ~ N(B, ¥); and the residuals
are assumed to follow a normal distribution, e, ~ N(0, ¢2), with mean 0 and
constant variance.

In all simulation conditions, the latent intercept and slope means were fixed
at Brntercept= -2 and Bgiope = 0.4, and the residual variance og was fixed at 0.10
to reflect small amounts of residuals. |Asparouhov and Muthén| (2010) and |Mc-
Neish| (2016)) indicated that, compared to other parameters of the linear growth
model, the choice of prior distributions for the variance-covariance matrix (W)
in this model is extremely important. Therefore, we additionally varied the
¥ matrix to reflect small, medium, and large magnitudes of their variances,
and zero and small magnitudes of their covariances, resulting in the following

. . . 0.20 0.0 0.70 0.05

three variance—covariance matrices: ¥, = { 0.0 0.01], v, = [0'05 0.10} , and
0.40 0.20
0.20 0.40
Table [1] below. Figure [I] provides an illustrative display of data score plots for

Uy = . A summary of these population parameters is presented in
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one simulated sample of N = 50 observations based on these three variance-
covariance matrices for a simulated data design condition comprised of observa-
tions obtained across 3 assessment occasions taken every 5 years starting at age
5.

Table 1: Population matrices and covariance parameters.

kd Bintercept Bstope Te
:06.200 0().601: -2.00 040 0.10
:8:;2 8:(1)3: -2.00 0.40 0.10
:8:;18 8:28: -2.00 0.40 0.10

For each variance-covariance matrix condition considered, six datasets were
simulated. Because the impact of sample size on exchangeability may also depend
on how well the particular sample matches the population of interest, the six
datasets were varied with respect to the number of assessments, years between
assessments, the age of participants’ first assessment, and the sample size. The
data patterns for these six datasets are presented in Table 2] and are meant to
reflect the full growth trajectory (i.e., across the full age range of interest) with
early and late age ranges, as well as large and small numbers of observations
across different numbers of assessment occasions. As indicated, the sample sizes
for these six datasets were also varied across each ¥ matrix condition, such
that each of these datasets were simulated to have a sample size of 1000 and
incorporated into the Bayesian synthesis approach as the first dataset, randomly
varying the order of the remaining 5 datasets each with sample size of 50, and
then again as the last dataset, randomly varying the order of the preceding 5
datasets. These different sample sizes of 50 and 1,000 were selected to reflect
small and large sample studies that are commonly encountered in longitudinal
data analyses (McNeish| 2016; [Paxton, Curran, Bollen, Kirby, & Chenl 2001)).

The different specifications for the simulated data presented in detail in Ta-
ble [2| resulted in a total of 36 different simulated data conditions (3 ¥ matrices,
6 data patterns, and 2 fusing sequences). For example, for the first ¥; matrix
condition, if dataset 1 (measured 3 times with five years between assessments,
starting at age 5) was simulated to have 1000 individuals, the other 5 datasets
were then simulated to have a sample size of 50 observations. Thus, the Bayesian
Synthesis approach begins with the analysis of dataset 1 with 1,000 observations
and produces a posterior point estimate that is then used as the informative
prior for the analysis of say dataset 2 with 50 individuals. This process contin-
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Figure 1: Illustrative data score plots for N = 50 for the first data design.
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Table 2: List of the patterns of measurement occasions to be used in the simulated
data
Dataset Number of Assessments Years between Assessments StaringAge

1 3 5 5
2 10 1 5
3 10 0.5 2.5
4 10 0.5 10
5 3 0.5 4
6 3 1 11

ues accordingly for each of the remaining datasets until a final posterior point
estimate is produced that incorporates information from all 6 datasets. As noted
above, this same process is also conducted again but instead with the 1000 ob-
servations utilized as the last dataset while randomly varying the order of the
preceding 5 datasets each with 50 observations (see additional details below).

2.2 The Bayesian Synthesis Approach

After simulating the datasets according to the conditions described above, we
conducted data fusion using the Bayesian Synthesis approach. We began this
sequential data integration process with non-informative priors for the analysis
of the first dataset because, according to |Asparouhov and Muthén| (2010)), these
initial non-informative priors should not introduce bias, even in small sample
sizes. The rationale for using non-informative priors also follows recommenda-
tions provided by |Gelman et al.| (2014)) to “...let the data speak for themselves,
so that inferences are unaffected by information external to the current data (pg.
51)”. This is because “the information about model parameters contained in the
data will far outweigh any reasonable prior probability specification” (Gelman
et al., |2014). Similar recommendations concerning the use of non-informative
priors for estimation in growth curve analyses were also provided by |Liu, Zhang,
and Grimm| (2016)). So, unless dependable prior information about the range
of possible values that model parameters might take is available, beginning the
sequential data integration process with non-informative priors appears to be
preferable to simply taking a guess at the values for the priors and using infor-
mative inaccurate priors, which are known to yield less accurate estimates than
non-informative priors (e.g., Shi & Tong} [2017] 2018)).

Thus, the Bayesian Synthesis approach begins by using non-informative pri-
ors as parameters for the first data set. This implies that for the intercept and
slope means a Normal prior of the form N(mean, variance) is used with N(0,
10'%), which is the default for a non-informative Normal prior in Mplus (Muthen
& Muthen| 2002). Then, for the parameters in the ¥ matrix the Inverse Wishart
prior IW(0,-3) is used, which is also the default non-informative prior in Mplus
(Muthen & Muthen) 2002). This prior is of the general form IW(S, d), where
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d(o?ntercept) d(O’[S)

d(UIS) d(o—%lope) ’
with the estimated intercept (O—?ntercept) and slope (aglope) variances and their co-
variance (org). Finally, the Inverse Gamma IG(-1, 0) for the residual variance,
which is also the default non-informative prior in Mplus (Muthen & Muthen,
2017). The Inverse Gamma is of the general form IG(a, §), in which o = v5/2
and 3 = 103 /2, and where of can be interpreted as the best estimate of the
variance and vy can be interpreted as a pseudo-sample size. Upon analyzing the
first data set based on the non-informative priors, posterior point summary es-
timates for the 3, ¥, and o2 parameters are then sequentially substituted into
the respective priors for the next data analysis and the pseudo-sample size of
the current data set is then changed by the sample size of the previous data set.
This process then makes the priors in the subsequent analyses informative priors
and continues sequentially until the sixth and final data set is analyzed and the
final posterior distribution and point estimates produced. The simulation results
for these analyses are presented in Tables [3a] through

To further investigate the extent to which the use of non-informative versus

informative priors at the outset of Bayesian Synthesis might also induce some sort
of bias into the obtained results, we also performed all sequential data integration
processes using informative priors for the analysis of the first dataset. Given that
in practice it may be unlikely for a researcher to have exactly accurate prior
information regarding the parameter values, we followed the recommendations
of|Depaoli| (2014) and |Finch and Miller| (2019)) to use “informative” priors as those
in which the specified priors correspond to the estimated maximum likelihood
growth parameters for each model. Using these estimated values as informative
priors, the analyses were then repeated using the 36 different specified simulation
data conditions (3 ¥ matrices, 6 data patterns, and 2 fusing sequences) and are
presented in Table [3D] to Table [8]

d is the pseudo-sample size and S is the scale matrix

2.3 Parameter Evaluation

The final posterior point summary estimates obtained for each of the 36 different
simulated data conditions were evaluated in terms of their raw bias (B (4)), rel-
ative bias (RB (%)), accuracy (RMSE (§)), and efficiency (Efficiency(y). These
criteria were selected based on past research on dependable parameter evaluation
benchmarks (Bandalos & Gagnel |2012; Bandalos & Leite, |2013)). These criteria
were computed based on the following formulas:
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RMSE (§) = W (4)

S (G —9)?

Efficiency (§) = 71

(5)
where R represents the total number of simulation replications, which is 250 in
our study; g is the estimated parameter; y is the known population value for our
simulation; and 7 is the average parameter estimate.

Raw bias, accuracy, and efficiency in essence evaluate the average deviation,
the square root of the average deviation, and the variability of the final poste-
rior distribution means, respectively. Nonzero positive or negative values of raw
bias indicates overestimation or underestimation respectively. Lower values of
accuracy correspond to more precise estimates of the parameters, or estimates
of parameters that exhibit a smaller range of error (Bandalos & Gagne| [2012)).
Values closer to zero correspond to more efficient estimates of the parameters.
In other words, smaller values correspond to a smaller range of variability, or
higher consistency of estimation. In contrast to these criteria, the magnitude of
relative bias is expressed on the percentage scale and indicates the percent devi-
ation of the estimate from the population parameter. This measure is ideal for
comparisons of the magnitude of bias across different design conditions (Muthen
& Muthen, 2002)). To evaluate relative bias, it has been suggested that values
less than 5% reflect ignorable bias, values between 5% to 10% indicate moder-
ate bias, and values larger than 10% are considered substantial bias (Muthen
& Muthen| 2002)). Because multiple simulation replications were conducted (in
this case 250 replications were analyzed for all linear growth models examined),
average values of relative bias for each evaluated parameter are reported across
all the replications. In general, the values of raw bias, accuracy, and efficiency
are typically much harder to unravel, whereas values of relative bias are much
easier to interpret; we therefore pay extra attention to disentangling obtained
relative bias values in reviewing the crucial findings in our study.

3 Results

The simulation results for examining the performance of the exchangeability
principle applied within the Bayesian Synthesis approach are presented in Ta-
bles [3a] through Within each table, the results are organized based on the
magnitude of the variance-covariance ¥ matrix (in order of small, medium, and
large magnitudes) and the order of data fusion (i.e., with the large dataset fused
first versus last). The computed parameter estimates reported include the latent
variable means Bintercept and Bsiope, their variances and covariances in terms of
U%memept, U?glope, o015, and the residual variance o2. Each table presents findings
based on the designated evaluation criteria (raw bias, relative bias, accuracy,
and efficiency) for each of the parameter estimates across the examined data
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design conditions with both non-informative and informative priors. Except for
estimates of Brntercept; POsitive values of the criteria indicate positive bias or
overestimation and negative values indicate negative bias or underestimation.
Because Brptercept Was fixed in the simulation conditions at a negative value,
obtaining a negative bias actually corresponds to overestimation and a positive
bias corresponds to underestimation.

The results for the first data design condition with specified covariance matri-
0.20 0.0 0, — 0.70 0.05 qv. — 0.40 0.20 ted
0.0 0.01]" 2~ [0.050.10 " *¢ ¥ T | 0.20 0.40 | *FC Presente
in Table The first data design condition comprised observations obtained
across 3 assessment occasions taken every 5 years starting at age 5. This dataset
reflected the feature of large breadth with small numbers of assessments while
covering different age ranges. The reported results correspond to those obtained
when (i) a sample size of 1000 observations is incorporated as the first dataset
into the Bayesian synthesis approach while randomly varying the order of the
remaining 5 datasets each with a sample size of 50, and (ii) a sample size of 1000
observations is incorporated into the Bayesian synthesis approach as the last
dataset while randomly varying the order of the preceding 5 datasets each with
a sample of size 50. To make this distinction clear, the results are labelled in
this and all subsequent tables as FIRST and LAST for each reported evaluation
criterion.

In general, the obtained values for the raw bias, accuracy, and efficiency
criteria are larger when the larger dataset is fused last instead of first in the
Bayesian synthesis approach. However, these values are all still very close to zero,
indicating precise and efficient estimates of the parameters. These obtained bias
values also appear to be similar regardless of which specified variance-covariance
matrix is examined. Looking for example at the estimated intercept variance
(07 ntercept) for the first dataset condition in Table some patterns of results
can be detected. For instance, the obtained values for the raw bias (.0011, .0048,
and .0029), accuracy (.0133, .0331, and .0212), and efficiency (.0133, .0327, .0210)
when the large dataset was fused first are negligible. However, when the large
dataset is fused last, the estimated intercept variance values increase (though are
still rather close to zero) for the raw bias (.1244, .1300, and .1286), the accuracy
(.2664, .2828, and .2776), and efficiency (.2355, .2511, .2459). Similar patterns of
results are observed when informative priors are used to analyze the large data
set first (see Table . As indicated previously, because the values of raw bias,
accuracy, and efficiency are typically more challenging to unravel, we instead
pay extra attention to disentangling the obtained relative bias values as these
are generally easier to interpret.

When examining the relative bias criterion under the three variance-covariance
matrixes, some interesting patterns of results are again revealed. Specifically,
with initial non-informative priors it can be seen that the relative bias for the
estimated intercept variance (J%Ltemem) increases from ignorable sizes (0.546%,
0.692%, and 0.740%, respectively) when the large dataset was fused first into
substantially biased values (62.208%, 18.572%, and 32.161%, respectively) when
the large dataset was fused last. The estimates of the slope variance (6%,,,) also

ces¥, =
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showed somewhat similar patterns of results, but different magnitudes when fus-
ing the larger sample dataset last. The variances changed from ignorable biased
(0.720%, 0.880%, and 0.802%, respectively) when the large dataset was fused
first, to substantially biased values (58.12%) for the small magnitude covariance
matrix (¥;) and moderately biased (8.31%, 6.336%) for medium and large mag-
nitude covariance matrixes (W5 and ¥3) when the larger dataset was fused last.
Another sizable amount of relative bias was also observed when examining the
magnitude of the intercept slope covariance value (o7g) for the ¥y variance-
covariance matrix, shifting from ignorable bias (0.384%) when the large dataset
was fused first to substantially biased (-12.984%) when the larger dataset was
fused last.

In contrast, when initial informative priors are used, the relative bias for the
residual variance when the large sample is incorporated into the Bayesian syn-
thesis approach as the last dataset were found to be moderate across the three
covariance matrix conditions (7.248 %, 5.244%, and 5.108%). Additionally, the
relative bias for the estimated intercept (07,;0ccp¢) a0d slope (0%,,,) variances
increased from ignorable sizes when the large dataset was fused first into sub-
stantially biased for the first covariance matrix condition (12.01% and 16.52%
respectively) when the large dataset was fused last.

The observed relative bias for the variance of the intercept, the slope, and
to a lesser degree the intercept-slope covariance in this first data design condi-
tion highlight the importance that the order of fusing the datasets can play in
the estimation of parameters when implementing Bayesian Synthesis strategies.
Interestingly, this finding is not in line with past research that has suggested
that the order of data fusion does not meaningfully impact the final posterior
distribution results (Marcoulides| 2017b; [Miocevic et al., 2020). When the data
sets being fused are of differing sizes (50 vs. 1,000), ending with the fusion
and analysis of a large dataset can in fact produce a substantially biased final
posterior distribution when the other sequentially analyzed datasets are much
smaller. However, these results are only discernable when using the measure of
relative bias, they do not appear sizeable when examining the values of raw bias,
accuracy, or efficiency.

The results for the second simulated data design condition for the variance-
covariance matrices W1, ¥y, and W3 are presented in Table @ The second
data design condition comprised of observations across 10 assessment occasions,
measured every year, starting from age 5. This simulated condition reflected the
feature of large breadth of measurement years covering different age ranges. As
described previously, the reported results correspond to those obtained when a
sample size of 1000 observations is incorporated as the first dataset and again as
the last dataset while randomly varying the order of the other 5 datasets each
with 50 observations. The results are similarly labelled as FIRST and LAST for
each evaluation criterion examined.

In general, the obtained values for the raw bias, accuracy, and efficiency
criteria reflect similar results to those observed for the first simulated data design
condition. Looking for example at the estimated intercept variance (07,,;0pcepr)
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Table 3a: Data Condition 1 Using Initial Non-Informative Priors — Parameter
Evaluation Criteria Results

Parameter Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST FIRST LAST FIRST LAST
0.0005 -0.0009 0.4840% -0.9440 0.0033® 0.0055 0.0033% 0.0054
o2 0.0006P -0.0002 0.5600° -0.2200 0.0033° 0.0042 0.0033P 0.0042
0.0005° -0.0003 0.5000° -0.2880 0.0034° 0.0053 0.0033° 0.0053

0.0001 -0.0154 —— —— 0.0019 0.0323 0.0019 0.0284
ors 0.0002 0.0065 0.3840 -12.984 0.0083 0.0389 0.0083 0.0384
0.0000 0.0040 0.3520 0.1960 0.0140 0.0614 0.0140 0.0614

0.0007 0.0016 -0.0334 -0.0776 0.0163 0.0172 0.0163 0.0171
Bintercept  0.0011 0.0020 -0.0570 -0.0986 0.0267 0.0267 0.0267 0.0266
0.0007 0.0015 -0.0354 -0.0740 0.0212 0.0209 0.0212 0.0208

-0.0001 -0.0001 -0.0220 -0.0130 0.0034 0.0034 0.0034 0.0034
Bstope 0.0001 0.0002 0.0130 0.0450 0.0091 0.0092 0.0091 0.0092
0.0006 0.0008 0.1430 0.2000 0.0181 0.1790 0.0181 0.0179

0.0011 0.1244 0.5460 62.208 0.0133 0.2664 0.0133 0.2355
O3 ntercepr 0.0048 0.1300 0.6920 18.573 0.0331 0.2828 0.0327 0.2511
0.0029 0.1286 0.7370 32.161 0.0212 0.2776 0.0210 0.2459

0.0001 0.0058 0.7200 58.120 0.0006 0.0107 0.0006 0.0090
U%lopc 0.0009 0.0083 0.8800 8.312 0.0043 0.0189 0.0042 0.0169
0.0032 0.0253 0.8020 6.336 0.0168 0.0589 0.0165 0.0531

Note: # Denotes results for covariance matrix ¥y, b denotes results for co-
variance matrix ¥z, and © denotes results for covariance matrix ¥s. The
relative bias for estimates of the intercept-slope covariance for ¥; cannot
be computed, as the population value was zero. For Bintercept, Negative bias
corresponds to overestimation and positive bias corresponds to underesti-
mation. For all other parameters values negative bias corresponds to under-
estimation and positive bias corresponds to overestimation. Bolded values
indicate moderate or substantial bias.
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Table 3b: Data Condition 1 Using Initial Informative Priors — Parameter Eval-
uation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST _FIRST LAST FIRST LAST
0.0003* 0.0072 0.3280% 7.2480 0.0031* 0.0169 0.0031* 0.0152
ol 0.0004° 0.0052 0.3640° 5.2440 0.0032" 0.0220 0.0031" 0.0214
0.0003° 0.0051 0.3240° 5.1080 0.0031¢ 0.0172 0.0031° 0.0164

-0.0001 -0.0050  —— - 0.0020 0.0233 0.0020 0.0228
o1s -0.0003 -0.0025 -0.6880 -4.9920 0.0085 0.0380 0.0085 0.0379
-0.0006 -0.0098 -0.2820 -4.9060 0.0148 0.0615 0.0148 0.0607

0.0000 0.0004 -0.0016 -0.0206 0.0156 0.0166 0.0156 0.0166
Bntercept -0.0003 0.0009 0.0130 -0.0468 0.0254 0.0254 0.0254 0.0254
-0.0004 0.0011 0.0200 -0.0528 0.0202 0.0217 0.0202 0.0217

-0.0002 0.0000 -0.0420 0.0010 0.0033 0.0036 0.0033 0.0036
Bsiope  -0.0002 0.0003 -0.0490 0.0700 0.0093 0.0094 0.0093 0.0094
-0.0004 0.0008 -0.0940 0.1930 0.0185 0.0196 0.0185 0.0196

0.0007 0.0240 0.3260 12.0100 0.0136 0.1740 0.0136 0.1723
a?memept 0.0014 -0.0103 0.1994 -1.4657 0.0337 0.2292 0.0337 0.2290
0.0015 0.0128 0.3690 3.1940 0.0216 0.1890 0.0216 0.1886

0.0000 0.0017 -0.3200 16.520 0.0006 0.0066 0.0006 0.0064
g%lope 0.0002 0.0006 0.1920 0.6080 0.0042 0.0153 0.0042 0.0152
0.0004 0.0009 0.0960 0.2210 0.0159 0.0416 0.0159 0.0416

Note: Same as Table 3a.
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for the first dataset condition in Table [a] the same patterns of results can be
detected. For instance, the obtained values for the raw bias (.0064, .0219, and
.0127), accuracy (.0196, .0685, and .0396), and efficiency (.0186, .0649, .0375)
when the large dataset was fused first are negligible. However, when the large
dataset is fused last, the estimated intercept variance values increase (though
are still rather close to zero) for the raw bias (.0688, .0756, and .0721), accuracy
(.1444, .1521, and .1474), and efficiency (.1268, .1319, .1285).

Focusing on the measure of relative bias with initial non-informative priors,
the biased values are observed when comparing estimates to the true popula-
tion values when the larger dataset was fused last in the Bayesian synthesis
approach and regardless of the specified variance-covariance matrix examined.
Specifically, one can see that the relative bias for the estimated intercept vari-
ance (J%ntemept) increases from ignorable sizes (3.192%, 3.129%, and 3.185%,
respectively) when the large dataset was fused first into substantially biased
values (34.414%, 10.804%, and 18.013%, respectively) when the large dataset is
fused last. The estimates of the slope variance (qulope) also showed somewhat
similar patterns of results, but with somewhat different magnitudes when fus-
ing the larger sample dataset last. The variances changed from ignorable bias
(1.52%, 1.56%, and 1.89%, respectively) when the large dataset was fused first,
to substantially biased values (33.92%) for the small magnitude covariance ma-
trix (¥1) to moderately biased (5.86%) for medium magnitude covariance matrix
(&) to ignorable (4.53%) for the large magnitude covariance matrix (¥3) when
the larger dataset was fused last. A sizable amount of relative bias was again
observed when examining the magnitude of the intercept slope covariance value
(01s) for the ¥, variance-covariance matrix, shifting from ignorable bias (1.84%)
when the large dataset was fused first to substantially biased (-10.696%) when
the larger dataset was fused last. Table [4D] displays the results for when initial
informative priors are used in the data fusion process. Here, moderate bias is
only observed for the estimates of the intercept variance (U%ntemept) and slope
variance (J%loz)e) for the first covariance matrix condition (¥;) when the large
dataset is analyzed last (7.706% and 6.96% respectively).

The findings obtained under the second simulated data design condition once
again highlight the importance that the order of fusing the datasets plays in
the estimation of parameters when implementing Bayesian Synthesis strategies.
Fusing data in which a larger dataset is fused last can produce a substantially
biased final posterior distribution when the other sequentially analyzed datasets
are much smaller.

It is important to note that these same patterns of results were also observed
for the both the third (see Table and the fourth (see Table simulated
data design conditions using both non-informative and informative priors for
the initial dataset in the data fusion process (see Tables |5b| and . The third
data design condition encompassed a longitudinal study with 10 assessment oc-
casions, measured every 6 months, starting from age 2.5. This data design was
meant to reflect small breadth studies that start at an early age range but with
large numbers of observations. The fourth data design condition also covered



Table 4a: Data Condition 1 Using Initial Non-Informative Priors — Parameter
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Evaluation Criteria Results

Parameter Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST FIRST LAST FIRST LAST
0.0002* 0.0000 -0.208* 0.0080 0.0051* 0.0016 0.0051* 0.0016
o2 0.0002° 0.0001 -0.232> 0.1360 0.0051" 0.0016 0.0051" 0.0016
0.0002° 0.0001 -0.236° 0.1160 0.0051° 0.0016 0.0051° 0.0016
0.0001 -0.0093  — - 0.0029 0.0196 0.0029 0.0173
o1 0.0009 -0.0053 1.8400 -10.696 0.0172 0.0274 0.0171 0.0269
0.0045 -0.0012 2.274 -0.592 0.0297 0.0416 0.0293 0.0416
-0.0019 -0.0010 0.0940 0.0506 0.0151 0.0152 0.0150 0.0152
Brntercept  -0.0034 -0.0024 0.1694 0.1224  0.0260 0.0256 0.0257 0.0255
-0.0024 -0.0019 0.1194 0.0930 0.0206 0.0202 0.0204 0.0201
0.0001 0.0001 0.0250 0.0350 0.0031 0.0032 0.0031 0.0032
Bsiope 0.0000 0.0003 0.0006 0.0750 0.0089 0.0089 0.0089 0.0089
0.0004 0.0002 -0.1010 -0.0540 0.0177 0.0171 0.0177 0.0171
0.0064 0.0688 3.1920 34.414 0.0196 0.1444 0.0186 0.1268
Ofntercept 0.0219 0.0756 3.1286 10.804 0.0685 0.1521 0.0649 0.1319
0.0127 0.0721 3.1850 18.013 0.0396 0.1474 0.0375 0.1285
0.0002 0.0034 1.5200 33.920 0.0010 0.0060 0.0010 0.0050
0%iope  0.0016 0.0059 1.5600 5.860 0.0090 0.0123 0.0089 0.0108
0.0076 0.0174 1.8920 4.531  0.0363 0.0383 0.0355 0.0342

Note: Same as Table 3a.
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Parameter

Raw Bias

Relative Bias

Accuracy

Efficiency

g1s

Blnte'rcept

ﬂslope

2
UInte'r‘cept

2
OSlope

FIRST LAST

FIRST LAST

FIRST LAST

FIRST LAST

0.0000% 0.0010
0.0000° 0.0004
0.0001° 0.0003

0.0000 -0.0016
0.0009 0.0021
0.0040 0.0030

-0.0001 0.0000
-0.0005 -0.0003
-0.0004 0.0001

-0.0002 0.0000
-0.0007 -0.0003
-0.0010 -0.0007

0.0063
0.0225
0.0133

0.0154
0.0129
0.0173

0.0001
0.0015
0.0067

0.0007
0.0001
0.0032

-0.0240® 1.0080
0.0440° 0.3760
0.0600° 0.3200

1.7600
2.0120

4.1680
1.5140

0.0036
0.0252
0.0224

-0.0006
0.0144
-0.0034

-0.0580
-0.1690
-0.2580

-0.0120
-0.0710
-0.1760

3.1580
3.2171
3.3130

7.7060
1.8446
4.3160

1.1200
1.4920
1.6710

6.9600
0.0640
0.7950

0.0048% 0.0036
0.0049° 0.0025
0.0048° 0.0020

0.0031
0.0183
0.0307

0.0138
0.0278
0.0378

0.0147
0.0255
0.0198

0.0157
0.0263
0.0219

0.0036
0.0100
0.0194

0.0035
0.0097
0.0196

0.0192
0.0672
0.0385

0.0889
0.1236
0.1001

0.0010
0.0089
0.0376

0.0043
0.0114
0.0340

0.0048% 0.0035
0.0049° 0.0025
0.0048° 0.0020

0.0031
0.0182
0.0304

0.0137
0.0277
0.0376

0.0147
0.0255
0.0198

0.0157
0.0263
0.0219

0.0036
0.0100
0.0194

0.0035
0.0097
0.0196

0.0181
0.0633
0.0361

0.0876
0.1229
0.0985

0.0010
0.0088
0.0370

0.0043
0.0114
0.0339

Note: Same as Table 3a.
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10 assessment occasions, measured every six months, but starting instead from
age 10. This data design represented the feature of small breadth with a large
number of observations that covered a late age range. Given the similarity of
these observed bias findings, we focus next on examining the results for just the
fifth and sixth simulated data design conditions.

Table 5a: Data Condition 3 Using Initial Non-Informative Priors — Parameter
Evaluation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST FIRST LAST FIRST LAST
0.0003% -0.0001 0.324* -0.0064 0.0054® 0.0016 0.0054* 0.0016
ol 0.0003" 0.0002 0.284° 0.1520 0.0055° 0.0016 0.0055° 0.0016
0.0002° 0.0001 0.244° 0.1280 0.0055° 0.0016 0.0055¢ 0.0016

-0.0003 -0.0078 - - 0.0031 0.0159 0.0031 0.0138
ors 0.0002 -0.0050 0.408 -10.008 0.0177 0.0229 0.0177 0.0223
0.0037 -0.0018 1.846 -0.8820 0.0300 0.0331 0.0297 0.0331

-0.0017 -0.0008 0.0862 0.0406 0.0143 0.0143 0.0142 0.0143
Bintercept -0.0031 -0.0025 0.1526 0.1226 0.0253 0.0253 0.0252 0.0252
-0.0022 -0.0020 0.1080 0.0992 0.0198 0.0198 0.0197 0.0197

0.0001 0.0001 0.0200 0.0270 0.0034 0.0036 0.0034 0.0036
Bsiope  -0.0001 0.0003 -0.0170 0.0780 0.0091 0.0090 0.0091 0.0090
-0.0006 -0.0001 -0.1530 -0.0270 0.0178 0.0173 0.0178 0.0173

0.0071 0.0530 3.5620 26.518 0.0195 0.1078 0.0182 0.0938
02 tercepe 0.0212 0.0600 3.0354 8.5703 0.0673 0.1161 0.0639 0.0993
0.0130 0.0563 3.2560 14.078 0.0390 0.1117 0.0367 0.0964

0.0003 0.0029 2.8400 28.680 0.0011 0.0050 0.0001 0.0041
U?glope 0.0029 0.0050 2.8960 5.048 0.0095 0.0102 0.0090 0.0088
0.0108 0.0145 1.2700 3.628 0.0371 0.0317 0.0355 0.0282

Note: Same as Table 3a.

The results for the fifth simulated data design condition for the variance-
covariance matrices ¥y, ¥, and W3 are presented in Table @ This simulated
data design condition comprised of observations taken across 3 assessment occa-
sions, measured every six months, starting from age 4. This simulated condition
reflected the feature of early age range of development in a small breadth of
measurement years. The results presented in Table [7a] again correspond to those
obtained when a sample size of 1000 observations is incorporated as the first
dataset and then as the last dataset while randomly varying the order of the
other 5 datasets each with 50 observations.
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Table 5b: Data Condition 3 Using Initial Informative Priors — Parameter Eval-
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uation Criteria Results

Parameter

Raw Bias

Relative Bias

Accuracy

Efficiency

a1s

/Blntcrccpt

/BSlopc

2
Ulnte7'cept

2
USlope

FIRST LAST

FIRST LAST

FIRST LAST

FIRST LAST

0.0004% 0.0009
0.0004P 0.0003
0.0005° 0.0002

0.0000 -0.0006
0.0016 0.0043
0.0063 0.0066

0.0002 0.0002
-0.0002 -0.0006
0.0001 -0.0006

-0.0002 0.0000
-0.0003 -0.0004
-0.0006 -0.0013

0.0088
0.0298
0.0177

0.0126
0.0169
0.0166

0.0002
0.0030
0.0129

0.0006
0.0014
0.0091

0.4360% 0.9120
0.4080° 0.2720
0.4680° 0.2120

3.2080 8.6160
3.1480 3.3060

-0.0088
0.0078
-0.0040

-0.0106
0.0294
0.0276

-0.0450
-0.0830
-0.1570

-0.0090
-0.1000
-0.3240

4.3800
4.2560
4.4180

6.3160
2.4177
4.1420

1.7600
3.0040
3.2320

6.0800
1.3720
2.2650

0.0050% 0.0032
0.0051° 0.0021
0.0049° 0.0018

0.0032
0.0186
0.0310

0.0119
0.0244
0.0325

0.0140
0.0253
0.0194

0.0146
0.0255
0.0205

0.0037
0.0103
0.0197

0.0039
0.0097
0.0192

0.0208
0.0726
0.0419

0.0703
0.1027
0.0815

0.0011
0.0096
0.0382

0.0038
0.0098
0.0306

0.0050% 0.0031
0.0050° 0.0021
0.0049° 0.0018

0.0032
0.0185
0.0304

0.0119
0.0240
0.0318

0.0140
0.0253
0.0194

0.0146
0.0255
0.0205

0.0037
0.0103
0.0197

0.0039
0.0097
0.0192

0.0189
0.0662
0.0380

0.0692
0.1013
0.0798

0.0011
0.0091
0.0360

0.0037
0.0097
0.0293

Note: Same as Table 3a.
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Table 6a: Data Condition 4 Using Initial Non-Informative Priors — Parameter
Evaluation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST _FIRST LAST FIRST LAST
0.0004* -0.0002 0.380* -0.2040 0.0052* 0.0017 0.0052® 0.0017
oZ  0.0003" 0.0000 0.304° 0.0080 0.0053 0.0016 0.0053" 0.0016
0.0003° -0.0001 0.304° -0.1320 0.0053° 0.0017 0.0053° 0.0017

-0.0001 -0.0079 - - 0.0035 0.0158 0.0035 0.0137
ors 0.0004 -0.0053 0.832 -10.544 0.0179 0.0224 0.0179 0.0218
0.0048 -0.0022 2.382 -1.1160 0.0291 0.0336 0.0287 0.0335

-0.0012 -0.0004 0.0596 0.0194 0.0195 0.0191 0.0194 0.0191
Brntercept -0.0026 -0.0020 0.1318 0.1020 0.0282 0.0285 0.0281 0.0284
-0.0016 -0.0015 0.0802 0.0728 0.0231 0.0241 0.0230 0.0240

0.0001 0.0001 0.0130 0.0190 0.0035 0.0034 0.0035 0.0034
Bsiope ~ 0.0000 -0.0003 -0.0050 0.0640 0.0090 0.0090 0.0090 0.0090
-0.0008 0.0000 -0.1980 0.0040 0.0176 0.0175 0.0175 0.0175

0.0077 0.0535 3.8260 26.726 0.0225 0.1107 0.0212 0.0969
02 ntercepe 0.0235 0.0605 3.3566 8.6389 0.0677 0.1160 0.0634 0.0989
0.0144 0.0577 3.6030 14.424 0.0406 0.1138 0.0379 0.0980

0.0003 0.0024 2.5200 23.760 0.0011 0.0042 0.0011 0.0034
O’%lope 0.0030 0.0044 2.9600 4.384  0.0094 0.0090 0.0089 0.0078
0.0110 0.0125 2.7420 3.115 0.0355 0.0279 0.0338 0.0250

Note: Same as Table 3a.
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uation Criteria Results

Parameter

Raw Bias

Relative Bias

Accuracy

Efficiency

a1s

/Blntcrccpt

/BSlopc

2
Ulnte7'cept

2
USlope

FIRST LAST

FIRST LAST

FIRST LAST

FIRST LAST

0.0003% 0.0002
0.0004P 0.0002
0.0004° 0.0001

0.0001 -0.0014
0.0019 0.0025
0.0069 0.0038

-0.0006 0.0001
-0.0010 -0.0006
-0.0006 -0.0006

-0.0001 0.0000
-0.0003 -0.0002
-0.0009 -0.0005

0.0084
0.0304
0.0178

0.0162
0.0178
0.0189

0.0007
0.0021
0.0099

0.0003
0.0042
0.0165

0.3000% 0.2440
0.3600° 0.2040
0.3520° 0.0720

3.7200 5.0320
3.4380 1.9080

0.0292
0.0518
0.0302

-0.0038
0.0320
0.0280

-0.0250
-0.0740
-0.2340

-0.0110
-0.0550
-0.1270

4.2240
4.3463
4.4480

8.1120
2.5463
4.7240

3.4000
4.1560
4.1200

6.6400
2.0960
2.4740

0.0051% 0.0019
0.0051° 0.0021
0.0053° 0.0018

0.0036
0.0181
0.0302

0.0113
0.0231
0.0317

0.0202
0.0291
0.0242

0.0213
0.0293
0.0264

0.0038
0.0102
0.0195

0.0041
0.0101
0.0197

0.0228
0.0706
0.0418

0.0695
0.0990
0.0784

0.0012
0.0104
0.0399

0.0032
0.0092
0.0292

0.0051% 0.0019
0.0051° 0.0021
0.0052° 0.0018

0.0036
0.0180
0.0295

0.0112
0.0230
0.0315

0.0202
0.0291
0.0242

0.0213
0.0293
0.0264

0.0038
0.0102
0.0195

0.0041
0.0101
0.0197

0.0675
0.0974
0.0761

0.0212
0.0637
0.0378

0.0011
0.0095
0.0363

0.0031
0.0089
0.0275

Note: Same as Table 3a.
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In general, the obtained values for the raw bias, accuracy, and efficiency cri-
teria reflect similar results to those observed in the other simulated data design
conditions. Biased values were observed when comparing the obtained estimate
to the true population values when applying the Bayesian Synthesis approach
and regardless of the specified variance-covariance matrix examined. Focusing
again on the estimated intercept variance (U?Htercem) for the first dataset condi-
tion in Table the obtained values for the raw bias (.0069, .0212, and .0125),
accuracy (.0190, .0643, and .0368), and efficiency (.0177, .0607, .0346) when the
large dataset was fused first are negligible. However, when the large dataset is
fused last, the estimated intercept variance values increase by a little for the raw
bias (.0475, .0546, and .0532), accuracy (.0929, .1059, and .1027), and efficiency
(.0798, .0907, .0878).

When examining the relative bias criterion under the three variance-covariance
matrixes, some visible biased patterns of results again emerge. In this data de-
sign, it can again be seen that the relative bias for the estimated intercept
variance (07, .,eeps) inCreases from ignorable sizes (3.472%, 3.033%, and 3.116%,
respectively) when the large dataset was fused first into moderately biased and
substantially biased values (23.726%, 7.793%, and 13.330%, respectively) when
the large dataset was fused last. Interestingly, the estimates of the slope variance
(aglope) showed rather different patterns of results, with sizable magnitudes of
relative bias both when fusing the larger sample dataset first and last. In par-
ticular, the slope variances displayed substantial bias (18.480%) for covariance
matrix (¥1) and ignorable bias (4.320% and 3.574%) for covariance matrixes
(@9 and ¥3) when the large dataset was fused first, compared to substantially
biased values (18.28%) for the small magnitude covariance matrix (¥;) to moder-
ately biased (6.35%) for medium magnitude covariance matrix (¥2) to ignorable
(4.42%) for the large magnitude covariance matrix (¥3) when the larger dataset
was fused last. A sizable amount of relative bias was also observed when ex-
amining the magnitude of the intercept slope covariance value (o7s ) for the
W, variance-covariance matrix, shifting from ignorable bias (-2.104%) when the
large dataset was fused first to substantially biased (-15.112%) when the larger
dataset was fused last. This similar pattern was also observed in Table [7b] when
initial informative priors were used. Specifically, moderate bias for the intercept
variance (07,,ocepe) for the first covariance matrix (¥;) condition was observed
both when the large sample dataset was fused first and last. In contrast, moder-
ate bias for the estimate of the slope variance (J%lope) was only observed when
the large dataset was fused last (6.3855%).

Table |8a] presents the results for the final sixth simulated data design condi-
tion for the variance-covariance matrices ¥, ¥, and ¥g. This simulated data
design condition comprised of observations collected across 3 assessment oc-
casions, measured every year, starting from age 11. This simulated condition
reflected the feature of a late age range of development in a small breadth of
measurement years. The obtained values for the raw bias, accuracy, and effi-
ciency criteria reflect similar results to those observed in other simulated data
design conditions. Focusing again on the estimated intercept variance (67,,,,cept)
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Table 7a: Data Condition 5 Using Initial Non-Informative Priors — Parameter
Evaluation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST _FIRST LAST FIRST LAST
0.0001* -0.0005 -0.112* -0.5160 0.0053* 0.0032 0.0053* 0.0032
oZ  0.0001° -0.0005 -0.052" -0.4640 0.0052° 0.0035 0.0052° 0.0035
0.0000° -0.0001 -0.036° -1.0200 0.0052° 0.0040 0.0052° 0.0039

-0.0023 -0.0073  —-— - 0.0049 0.0142 0.0035 0.0121
ors -0.0011 -0.0076 -2.104 -15.112 0.0156 0.0197 0.0156 0.0182
0.0008 -0.0079 0.382 -3.9400 0.0251 0.0262 0.0251 0.0250

-0.0008 -0.0006 0.0378 0.0312 0.0164 0.0152 0.0163 0.0152
Brntercept -0.0011 -0.0010 0.0538 0.4840 0.0263 0.0264 0.0263 0.0264
-0.0015 -0.0010 0.0764 0.0482 0.0208 0.0214 0.0208 0.0213

0.0009 0.0009 0.0232 0.2320 0.0062 0.0065 0.0062 0.0064
Bsiope  0.0015 -0.0020 0.3810 0.4960 0.0131 0.0132 0.0130 0.0131
0.0017 0.0028 0.4170 0.7050 0.0207 0.0211 0.0207 0.0209

0.0069 0.0475 3.4720 23.726 0.0190 0.0929 0.0177 0.0798
02 ntercepr 0.0212 0.0546  3.0331 7.7931 0.0643 0.1059 0.0607 0.0907
0.0125 0.0532 3.1160 13.300 0.0368 0.1027 0.0346 0.0878

0.0018 0.0018 18.480 18.280 0.0029 0.0029 0.0023 0.0023
02pe  0.0043 0.0064 4.3200 6.353 0.0100 0.0114 0.0090 0.0095
0.0143 0.0177 3.5740 4.416 0.0367 0.0344 0.0338 0.0295

Note: Same as Table 3a.
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Table 7b: Data Condition 5 Using Initial Informative Priors — Parameter Eval-
uation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST FIRST LAST FIRST LAST
0.0008% 0.0003 0.8273* 0.3052 0.0059% 0.0037 0.0059% 0.0037
o2 0.0001" -0.0001 0.1360° -0.0920 0.0046" 0.0035 0.0046" 0.0035
0.0001°¢ 0.0002 0.0760° 0.2000 0.0046° 0.0043 0.0046° 0.0043

0.0003 -0.0016 —— - 0.0058 0.0110 0.0059 0.0109
o1s -0.0007 -0.0012 -1.4160 -2.3200 0.0161 0.0192 0.0161 0.0191
0.0020 -0.0009 1.0160 -0.4480 0.0257 0.0293 0.0256 0.0293

0.0016 0.0018 -0.0795 -0.0878 0.0165 0.0155 0.0165 0.0154
Bntercept  0.0025 0.0026 -0.1234 -0.1288 0.0267 0.0261 0.0266 0.0259
0.0020 0.0016 -0.1000 -0.0802 0.0211 0.0217 0.0210 0.0216

-0.0002 -0.0001 -0.0562 -0.0351 0.0068 0.0074 0.0068 0.0074
Bsiope ~ 0.0001 0.0001 0.0320 0.0310 0.0140 0.0137 0.0140 0.0137
0.0007 0.0002 0.1870 0.0600 0.0213 0.0220 0.0213 0.0220

0.0118 0.0127 5.8976 6.3394 0.0235 0.0613 0.0204 0.0601
U?memept 0.0267 0.0140 3.8080 2.0000 0.0632 0.0824 0.0573 0.0812
0.0161 0.0144 4.0240 3.5950 0.0368 0.0705 0.0331 0.0690

0.0000 0.0006 0.0402 6.3855 0.0028 0.0022 0.0029 0.0022
a%lope 0.0028 0.0029 2.8080 2.9080 0.0095 0.0099 0.0091 0.0095
0.0105 0.0091 2.6280 2.2650 0.0361 0.0318 0.0345 0.0305

Note: Same as Table 3a.
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in Table the same patterns of results are evident. For instance, the obtained
values for the raw bias (.0038, .0214, and .0251), accuracy (.0552, .0972, and
.0613), and efficiency (.0399, .0762, .0559) when the large dataset was fused first
are negligible. Similarly, when the large dataset is fused last, the estimated inter-
cept variance values again slightly increase (though are still rather close to zero)
for the raw bias (.0145, .0335, and .0206), accuracy (.0357, .0808, and .0529),
and efficiency (.0326, .0735, .0487).

When carefully examining the relative bias criterion under the three variance-
covariance matrixes, some novel biased results emerge. Specifically, it can be seen
in Table 8afthat the relative bias for the estimated intercept variance (meemept)
ranges from substantial to ignorable to moderately biased (19.020%, 3.054%,
and 6.286%), respectively) when the large dataset was fused first, and similarly
(7.226%, 4.785%, and 5.162%, respectively) when the large dataset was fused
last. The estimates of the slope variance (J%loz)e) also showed somewhat similar
patterns of results, with sizable magnitudes of relative bias both when fusing the
larger sample dataset first and last. The slope variances also displayed ranges
from substantial bias to ignorable bias (13.20%, 4.63%, and 4.04%, respectively)
when the large dataset was fused first, compared to (15.52%, 2.93%, and 1.66%,
respectively) when the larger dataset was fused last. A sizable amount of relative
bias was also observed when examining the magnitude of the intercept slope
covariance value (org ) for the ¥, variance-covariance matrix, shifting from
ignorable bias (-2.016%) when the large dataset was fused first to substantially
biased (-13.76%) when the larger dataset was fused last. Interestingly, this was
the only data design condition where moderate bias was observed when the large
dataset was analyzed first and informative priors were used to analyze the first
dataset. In table we see that there was moderate bias (7.1478% and 5.5466%
respectively) for the estimated intercept (07, ,0ecp) and slope (0%,,,.) variance
for the first variance-covariance matrix condition (¥1).

These results appear to collectively highlight not only the importance that
the order that fusing the datasets can play in the estimation of parameters but
also the potential impact that data design characteristics can exert when imple-
menting Bayesian synthesis strategies. It appears that in data design settings
with fewer occasions of measurement covering wide range of ages, there can be
sizable bias irrespective of whether a larger data set is fused first or last. Addi-
tionally, even in instances where there are sufficient assessment settings over a
wider age range, the order of the fusing of the data sets can again play a key
role. These results would collectively suggest that the order in which datasets
are incorporated in the Bayesian Synthesis process do in fact impact the results
when one dataset is substantially larger than the rest.
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Table 8a: Data Condition 6 Using Initial Non-Informative Priors — Parameter
Evaluation Criteria Results
Parameter =~ Raw Bias Relative Bias Accuracy Efficiency
FIRST LAST FIRST LAST _FIRST LAST FIRST LAST
0.0009* -0.0003 -0.888% -0.3040 0.0051* 0.0032 0.0050* 0.0032
oZ  0.0002° -0.0004 -0.024" -0.3920 0.0051° 0.0034 0.0051° 0.0034
0.0004° -0.0002 -0.408° -0.2440 0.0052° 0.0033 0.0052° 0.0033

-0.0058 -0.0047 —-— - 0.0083 0.0084 0.0060 0.0069
ors -0.0010 -0.0069 -2.016 -13.760 0.0170 0.0168 0.0169 0.0153
-0.0018 -0.0064 -0.876 -3.2200 0.0266 0.0241 0.0265 0.0232

-0.0004 -0.0007 -0.0212 0.0352 0.0308 0.0287 0.0308 0.0286
Brntercept -0.0006 -0.0010 0.0288 0.0490 0.0423 0.0425 0.0423 0.0425
-0.0014 -0.0050 0.0696 0.0246 0.0342 0.0369 0.0341 0.0369

0.0006 0.0003 0.1440 0.0670 0.0061 0.0045 0.0060 0.0045
Bsiope  0.0010 -0.0090 0.3520 0.2300 0.0110 0.0105 0.0109 0.0105
0.0014 0.0019 0.4170 0.4700 0.0189 0.0190 0.0189 0.0189

0.0038 0.0145 19.020 7.2260 0.0552 0.0357 0.0399 0.0326
02 vtercept 0.0214 0.0335 3.0543 4.7851  0.0792 0.0808 0.0762 0.0735
0.0251 0.0206 6.2860 5.1620 0.0613 0.0529 0.0559 0.0487

0.0013 0.0016 13.200 15.520 0.0019 0.0027 0.0013 0.0022
aflope 0.0046 0.0029 4.6320 2.936 0.0094 0.0060 0.0082 0.0052
0.0162 0.0066 4.0440 1.662  0.0346 0.0187 0.0305 0.0175

Note: Same as Table 3a.
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Table 8b: Data Condition 6 Using Initial Informative Priors — Parameter Eval-
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uation Criteria Results

Parameter

Raw Bias

Relative Bias

Accuracy

Efficiency

or1s

ﬁ]nterccpt

ﬁSlopc

2
Ulntercept

2
USlope

FIRST LAST

FIRST LAST

FIRST LAST

FIRST LAST

0.0006% -0.0002
0.0003P -0.0005
0.0007° -0.0004

-0.0012 -0.0005
0.0007 -0.0017
0.0041 0.0010

0.0031
0.0034
0.0027

0.0022
0.0025
0.0001

-0.0002
0.0003
0.0008

0.0000
0.0002
0.0002

0.0143
0.0151
0.0069

0.0042
0.0188
0.0114

0.0006
0.0030
0.0112

0.0002
0.0012
0.0035

0.60322 -0.1960
0.2600 -0.4920
0.6960° 0.3800

1.3200
2.0560

-3.3200
0.5020

-0.1547 -0.1094
-0.1680 -0.1234
-0.1326 -0.0050

-0.0435
0.0700
0.2080

0.0070
0.0420
0.0610

7.1478 2.0960
2.1503 2.6880
1.7160 2.8560

5.5466 2.2000
3.0160 1.1520
2.8040 0.8810

0.0059% 0.0031
0.0053° 0.0031
0.0056° 0.0030

0.0078
0.0156
0.0238

0.0086
0.0181
0.0281

0.0306
0.0430
0.0384

0.0361
0.0471
0.0374

0.0047
0.0105
0.0194

0.0065
0.0111
0.0190

0.0375
0.0719
0.0498

0.0523
0.0846
0.0691

0.0020
0.0061
0.0192

0.0016
0.0091
0.0355

0.0059% 0.0031
0.0053° 0.0031
0.0055° 0.0030

0.0086
0.0181
0.0278

0.0078
0.0155
0.0238

0.0362
0.0470
0.0373

0.0305
0.0430
0.0384

0.0066
0.0111
0.0190

0.0047
0.0105
0.0194

0.0373
0.0694
0.0484

0.0506
0.0832
0.0688

0.0015
0.0086
0.0336

0.0020
0.0060
0.0189

Note: Same as Table 3a.
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4 Discussion

Bayesian estimation operates by using prior information about the characteris-
tics of parameters and the conditional likelihood of the data given the model
parameters to arrive at a posterior distribution. The Bayesian Synthesis ap-
proach is based on this Bayesian estimation framework in which information
obtained from one dataset serves to provide prior information for the analysis of
the next dataset and this process continues sequentially until a single posterior
distribution is created using all available datasets. While the benefits of using
fused datasets have been repeatedly demonstrated in the literature (e.g., |Curran
& Hussong, 2009; |[Du et al.| [2020; Hofer & Piccinin) 2009; [Marcoulides| |2017bj;
Marcoulides & Grimm), [2017)), and the estimates computed via a sequentially ob-
tained final posterior distribution like those in the Bayesian Synthesis approach
have also been shown to effectively aid in the accuracy of the estimation process
(Du et al., 20205 [Marcoulides, |2017b|), what had not be determined was whether
the order in which the data are sequentially analyzed has an impact on the
obtained results.

The commonly accepted view in Bayesian estimation is that the order in
which the data are analyzed should not be a concern due to the exchangeability
assumption (de Finetti, (1972, [1974). Nevertheless, because Bayesian Synthesis
utilizes point summary estimates of the posterior distributions instead of the
full posterior distribution as required in standard Bayesian estimation, it pos-
sible that using point summary estimates of the posterior distributions may
conceivably introduce some bias in the parameter estimates. Although past re-
search has confirmed that the order of analysis does not meaningfully impact the
final data fusion results obtained via Bayesian Synthesis (Marcoulides| [2017h)),
these conclusions were determined on the basis of analyzing datasets that were
from similarly-sized and large samples. What was unresolved in the literature
is whether exchangeability matters when the datasets being fused have sub-
stantially different sample sizes, as regularly occurs in empirical settings. Does
beginning or ending the Bayesian Synthesis approach with the analysis of a large
dataset produce a biased final posterior distribution when the other sequentially
analyzed datasets are much smaller? This study examined via simulation the im-
pact that the ordering of datasets might have on parameter estimates obtained
when making use of the Bayesian Synthesis process in such data fusion design
settings.

The results of the simulation study collectively highlighted the importance
that the ordering of datasets can have on the estimation of growth model pa-
rameters when using the Bayesian Synthesis process. When the datasets being
fused are of markedly different and much smaller sizes, ending the fusion and
Bayesian estimation based on a large dataset produces a substantially biased
(according to the measure of relative bias) final posterior distribution, partic-
ularly for the intercept and slope variance. Dissimilar longitudinal data design
characteristics were also sometimes found to produce substantially biased final
posterior distribution when implementing Bayesian Synthesis strategies. In lon-
gitudinal data design settings with fewer occasions of measurement and covering
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varying ranges of ages, sizeable biased estimates were observed irrespective of
whether a larger data set is fused first or last. Even in instances where there were
numerous assessment occasions over a wider age range, the order of the fusing
of the data sets still played a key role in the estimation, primarily with more siz-
able bias present when the large dataset was fused last. The results revealed that
the order datasets of differing size are incorporated into the Bayesian Synthesis
process along with the data design characteristics can impact the resulting pa-
rameter estimates and clearly calls into question the previously accepted notion
of exchangeability of Bayesian estimation within the Bayesian Synthesis process.

Researchers planning on using the Bayesian Synthesis approach to data fu-
sion should therefore be very careful how they elect to begin and end planned
data fusion activities, especially in instances that involve the analyses of sub-
stantially large datasets among other much smaller datasets. Because Bayesian
Synthesis uses point summary estimates from the analysis of one dataset as
priors for the analysis of the next dataset, it is likely that this can introduce
some bias in the Bayesian estimation. One explanation for this bias is that when
the small datasets are being incorporated first, the informative priors that re-
sult from these small datasets are less reliable (contain sizable bias) and that
this bias is then inevitably carried over to subsequent samples, resulting in a
more biased final posterior distribution. Although it is commonly accepted that
sample size can play an important role in the estimation of parameters, it is
unclear in this context how much smaller the datasets can be relative to the
other datasets. In this study, it was unmistakably determined that fusing a large
dataset with smaller ones biased many of the parameter estimates provided by
Bayesian Synthesis (particularly when measured by the relative bias criterion).
But it is unclear what the ideal sample size needs to be in order to be used in the
approach and ensure sufficiently stable parameter estimates. The current study
fixed some of the data design characteristics in order to keep the scope of the
work manageable. Given that a major benefit of Bayesian Synthesis is that data
from multiple sources can be analyzed to obtain estimates of overall effects, ex-
amining other data size conditions under which this approach does not operate
well is a natural extension to the current study. There is overall agreement among
researchers that larger samples provide more stable estimates, but must all the
fused datasets meet this requirement in order for Bayesian estimation exchange-
ability to hold? Although the current results indicated that exchangeability did
not always hold in the examined data design scenarios involving growth curve
models where there were differences in the size of the samples, the number of
measurement occasions, time of first assessment and between assessments, as
well as magnitude of the intercept and slope variances and covariances, it is of
course possible that when modeling other statistical paradigms that different
results may be observed. Empirical applications of the Bayesian Synthesis ap-
proach must make certain that the data fusion activities will provide researchers
with unbiased parameter estimates.

Without doubt prior specification may be the largest advantage, yet poten-
tially the greatest drawback, of implementing Bayesian methods in Bayesian
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Synthesis. Priors enable researchers to include information from different data
sources in a systematic manner. While it is recognized that imposing informative
priors improves parameter estimates, especially with small sample sizes (Depaoli|
2014 [Littlel |2006), given that the true prior distribution is unknown in practice,
researchers must be cautious about the impact that inaccurate priors have on
parameter estimation in Bayesian Synthesis (Marcoulides, [2018). We also exam-
ined the impact of the order of incorporation in the Bayesian Synthesis process
using initial informative data-dependent priors to analyze the first dataset in the
data fusion process. Across the various design conditions, moderate and substan-
tial bias was primarily found when the large dataset was analyzed last. These
results are consistent with those found when using initial non-informative or dif-
fuse priors to analyze the first dataset in the data fusion process. Future research
studies should therefore expand further on our findings and examine additional
data design conditions and settings.

The process of sequentially updating information to arrive at conclusions un-
deniably has a substantiated place in data analyses and Bayesian Synthesis can
play a key role in helping researchers address questions not always achievable
with a single study. Although additional research needs to be done regarding
when Bayesian Synthesis is most useful and when it might prove to be prob-
lematic, the foundations for the continued use of this data fusion process are
evident. We caution researchers to remain mindful of the limitations identified
in this study when integrating data from different sources.
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