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Abstract. Bayesian approach is becoming increasingly important as
it provides many advantages in dealing with complex data. However,
there is no well-defined model selection criterion or index in a Bayesian
context. To address the challenges, new indices are needed. The goal of
this study is to propose new model selection indices and to investigate
their performances in the framework of latent growth mixture models
with missing data and outliers in a Bayesian context. We consider
latent growth models because they are very flexible in modeling complex
data and becoming increasingly popular in statistical, psychological,
behavioral, and educational areas. Specifically, this study conducted five
simulation studies to cover different cases, including latent growth curve
models with missing data, latent growth curve models with missing data
and outliers, growth mixture models with missing data and outliers,
extended growth mixture models with missing data and outliers, and
latent growth models with different classes. Simulation results show that
almost all proposed indices can effectively identify the true model. This
study also illustrated the application of these model selection indices in
real data analysis.
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1 Introduction

Bayesian approach is becoming increasingly important in estimating models as
it provides many advantages in dealing with complex data (e.g., Dunson, 2000).
However, there is no well-defined model selection criterion or index in a Bayesian
context (e.g., Celeux, Forbes, Robert, & Titterington, 2006). It is due to at least
three problems. First, in a Bayesian context there are two versions of deviance
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because the Bayesian procedure generates Monte Carlo Markov chains for each
parameter. One version is the posterior estimate, which can be estimated by
a function of an estimate of a parameter. Another version is the Monte Carlo
estimate of the expected deviance based on Bayesian iterations, which can be
estimated as the posterior mean of a converged Markov chain. In short, the
former is the deviance of the averaged estimates, and the latter is the average
of all deviance iterations. The second problem is related to the complexity
of the raw data. The data often come from heterogeneous populations which
almost unavoidable contain outliers and missing values. The estimates from
mis-specified models may result in severely misleading conclusions. The third
problem relates to the likelihood function. When latent variables are considered
in statistical models, the likelihood function can be an observed-data likelihood
function, a complete-data likelihood function, or a conditional likelihood function
(Celeux et al., 2006). Furthermore, if data come from heterogeneous populations,
the class membership indicator may have different versions, for example, a
posterior mode or a posterior mean. Also, with missing data, the likelihood
functions have different ways to construct.

1.1 Model Selection Criteria/Indices

Traditional model selection criteria or indices are available for researchers who
try to select the best-fit model from a large set of candidate models. Akaike
(1974) proposed the Akaike’s information criterion (AIC), which offers a relative
measure of the information lost. For Bayesian models the Bayes factor, which is
the ratio of posterior odds to prior odds, can work for both hypothesis testing
and model comparison. But the Bayes factor is often difficult or impossible
to calculate, especially for models that involve random effects, large numbers
of unknowns or improper priors. To approximate the Bayes factor, Schwarz
(1978) developed the Bayesian information criterion (BIC, sometimes called the
Schwarz criterion). To obtain more precise indices, Bozdogan (1987) proposed
the consistent Akaike information criterion (CAlC), and Sclove (1987) proposed
the sample-size adjusted Bayesian information criterion (ssBIC). The deviance
information criterion (DIC; Spiegelhalter, Best, Carlin, & Linde, 2002) is a
recently developed criterion designed for hierarchical models. It is based on
the posterior distribution of the log-likelihood and is useful in Bayesian model
selection problems where the posterior distributions have been obtained by
Markov chain Monte Carlo (MCMC) simulation. DIC is usually regarded as
a generalization of AIC and BIC. It is defined analogously to AIC or BIC
with a penalty term of the number equal to effective model parameters in
Bayesian models. In practice, rough DIC (RDIC or DICV in some literature,
e.g., Oldmeadow & Keith, 2011) is an approximation of DIC. The mathematical
forms of AIC, BIC, CAIC, ssBIC, and DIC are closely related to each other.
They all try to find a balance between the accuracy and the complexity of the
fitting model. For all indices above, the model with a smaller criterion/index
value is better supported by data.
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Lu, Zhang, and Cohen (2013) proposed a series of Bayesian model selection
indices based on the traditional ones. However, in Lu et al. (2013) the
performances of these indices were investigated when data were non-mixture,
normally distributed, and with simple non-ignorable missingness. And only
latent growth models were used.

1.2 Goals and Structure

To address the challenges in model selection criterion/index in a Bayesian
context, this paper proposes ten model selection indices. This paper also
examines the performance of these indices under various conditions by
conducting five simulation studies to cover different latent growth models,
such as the robust growth models for non-normally distributed data, robust
growth mixture models, and the extended robust growth mixture models with
missing values. We consider latent growth models because they are very flexible
in modeling complex data and becoming increasingly popular in statistical,
psychological, behavioral, and educational areas.

The rest of the article consists of five sections. Section 2 presents and
formulates three types of models we used in this paper: latent growth models
(including growth curve models, growth mixture models, and extended growth
mixture models), robust growth models (including three types of robust
models), and models that account for missingness (we focus on non-ignorable
missingness). Section 3 proposes ten model selection indices in the framework of
Bayesian growth models with missing data. Section 4 conducts five simulation
studies to evaluate the performance of the Bayesian indices. Model selection
results are analyzed, summarized, and compared. Section 5 illustrates the
application of these model selection indices in real data analysis. Section 6
discusses the implications and future directions of this study.

2 Latent Growth Models, Robust Growth Models, and
Missing Values

Our investigation of the performance of the Bayesian selection indices involves
fitting growth models to complex data. In this section, different types of growth
models are briefly introduced. Given the fact that the data used in growth models
are almost inevitably contain attrition (e.g., Little & Rubin, 2002; Lu, Zhang, &
Lubke, 2011; Yuan & Lu, 2008) and outliers (e.g., Maronna, Martin, & Yohai,
2006), different types of growth models are developed, which include traditional
latent growth curve models with missing data (Lu et al., 2013), robust growth
curve models (Zhang, Lai, Lu, & Tong, 2013) with missing data (Lu & Zhang,
2021), growth mixture models (e.g., Bartholomew & Knott, 1999) with missing
data (Lu & Zhang, 2014), extended growth mixture models (EGMMs, Muthén
& Shedden, 1999) with missing data (Lu & Zhang, 2014), and robust growth
mixture models with missing data (Lu & Zhang, 2014).
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In the following, we discuss three types of models: latent growth models
(including growth curve models, growth mixture models, and extended growth
mixture models), robust growth models (including three types of robust
models), and models that account for missingness (we focus on non-ignorable
missingness). By combining different elements of these models, it becomes
possible to consider a series of growth models with a variety of missing data
mechanisms and contaminated data.

2.1 Latent Growth Models

The mathematical form of a latent growth curve model is{
yi = Ληi + ei
ηi = β + ξi

, (1)

where yi is a T × 1 vector of outcomes for participant i (i = 1, ..., N), ηi is a
q× 1 vector of latent effects, Λ is a T × q matrix of factor loadings for ηi, ei is a
T ×1 vector of residual or measurement errors, β is a q×1 vector of fixed-effects,
and ξi captures the variation of ηi. We have to note that ei and ξi are usually
assumed normally distributed but not necessary. When data have outliers and
are heavy-tailed, this assumption might cause estimate biases. To reduce the
effects of outliers, we consider robust models in this study.

A growth mixture model can be expressed as

f(yi) =

K∑
k=1

πk fk(yi), (2)

where πk is the invariant class probability (or weight) for class k satisfying

0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1 (e.g., McLachlan & Peel, 2000), and f
k
(yi)(k =

1, . . . ,K) is the density of a latent growth model for class k.
For extended growth mixture models (EGMMs, Muthén & Shedden, 1999),

πk is not invariant across individuals. It is allowed to vary individually depending
on covariates, so it is expressed as πik(xi). If a probit link function is used, thenπi1(xi) = Φ(X ′

i φ1)
πik(xi) = Φ(X ′

i φk)− Φ(X ′
i φk−1), (k = 2, 3, ...,K − 1),

πiK(xi) = 1− Φ(X ′
i φK−1)

(3)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution, and Xi = (1,x′

i)
′ with an r × 1 vector of observed covariates xi.

Note that Φ(X ′
i φk) =

∑k
j=1 πij(xi) and Φ(X ′

i φK) ≡ 1.
A dummy variable zi = (zi1, zi2, ..., ziK)′ is used to indicate the class

membership. If individual i comes from group k, zik = 1 and zij = 0 (∀j ̸= k).
zi is multinomially distributed (McLachlan & Peel, 2000, p.7), that is, zi ∼
MultiNomial(πi1, πi2, ..., πiK).
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2.2 Robust Growth Models

When data have outliers and are heavy-tailed, robust methods are used to
reduce the effects of outliers. As t-distributions are more robust than normal
distributions, the following are robust growth models (Lu & Zhang, 2021; Zhang
et al., 2013).

(1) t-Normal (TN) model in which the measurement errors are t-distributed
and the latent random effects are normally distributed,{

ei ∼ MtT (0,Θ, ν)
ξi ∼ MNq(0,Ψ)

, (4)

where MtT (0,Θ, ν) is a T -dimensional multivariate t-distribution with a scale
matrix Θ and degrees of freedom ν, and MNq(0,Ψ) is a q-dimensional
multivariate Normal distribution with a covariance matrix Ψ .

(2) Normal-t (NT) model in which the measurement errors are normally
distributed but the latent random effects are t-distributed,{

ei ∼ MNT (0,Θ)
ξi ∼ Mtq(0,Ψ , u)

. (5)

(3) t-t (TT) model in which both the measurement errors and the latent
random effects are t-distributed,{

ei ∼ MtT (0,Θ, ν)
ξi ∼ Mtq(0,Ψ , u)

. (6)

2.3 Missing Values

We focus on the non-ignorable missingness in this paper. To build models with
non-ignorable missingness, selection models (Glynn, Laird, & Rubin, 1986; Little,
1993, 1995) are used. For individual i, let mi = (mi1,mi2, ...,miT )

′ be a missing
data indicator for yi, with mit = 1 when yit is missing and 0 when observed. Let
τit = p(mit = 1) be the probability that yit is missing. Thenmit ∼ Bernoulli(τit),
so its density function is f(mit) = τmit

it (1 − τit)
(1−mit). The missingness

probability τit can have different forms. Lu and Zhang (2014) proposed the
following non-ignorable missingness mechanisms for mixture models.

(1) Latent-Class-Intercept-Dependent (LCID) missingness in which τit is
a function of latent class, covariates, and latent individual initial levels. For
example, students are more likely to miss a test if their starting levels of that
course are low. We model it as follows:

τit = Φ(z′iγzt + IiγIt + x′
iγxt), (7)

where Ii is the latent initial levels for individual i, γIt is the coefficient for
Ii, γzt is the coefficient for class membership, and γxt are coefficients for
covariates. For non-mixture homogenous growth models, LCID can be simplified
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to Latent-Intercept-Dependent (LID) without the class membership indicator zi
and expressed as τit = Φ(γ0t + IiγIt + x′

iγxt), where γ0t is the intercept.
(2) Latent-Class-Slope-Dependent (LCSD) missingness in which τit is a

function of latent class, covariates, and latent individual slopes of growth. For
example, students are more likely to miss a test if they have slow growth of the
course. In this case, τit can be modelled as

τit = Φ(z′iγzt + SiγSt + x′
iγxt), (8)

where Si is the latent slope for individual i, and γSt is the coefficient for Si.
Similarly, for non-mixture homogenous growth models, LCSD is simplified to
Latent-Slope-Dependent (LSD) case as τit = Φ(γ0t + SiγSt + x′

iγxt).
(3) Latent-Class-Outcome-Dependent (LCOD) missingness in which τit is a

function of latent class, covariates, and potential outcomes that may be missing.
For example, a student who feels he is not doing well on the test may be more
likely to give up taking the rest of the test. We express τit as

τit = Φ(z′iγzt + yitγyt + x′
iγxt), (9)

where yit is the potential outcomes for individual i at time t, and γyt is the
coefficient for yit. And LCOD can be simplified to Latent-Outcome-Dependent
(LOD) for non-mixture homogenous growth models with a probability of
missingness τit = Φ(γ0t + yitγyt + x′

iγxt).
In a more general framework, LCID and LCSD can be further encompassed

into Latent-Class-Random Effect-Dependent missingness as intercept and
slope are different random effects according to different situations under
consideration. And for non-mixture structure, LID and LSD are encompassed
into Latent-Random Effect-Dependent missingness.

3 Bayesian Model Selection Indices

In this section, we propose ten model selection criteria in the framework of
Bayesian growth models with missing data. The definitions of the selection
criteria are listed in Table 1. The model selection criteria in the table are
based on two versions of deviance in the Bayesian context, ED|y[D(θ)] and
D(Eθ|y[θ]). As we have discussed in the introduction section, Eθ|y[D] is the
expected value of all the deviances, and D(Eθ|y[θ]) is the deviance score based on
the expected parameters. For different models, the detailed mathematical forms
of these two deviances are different. In this paper, we focus on both homogeneous
and heterogenous latent growth models with non-ignorable missing data.

We first look at the homogeneous growth curve models with non-ignorable
missing data. One version of deviance, ED|y[D(θ)], is approximated by

ED|y[D(θ)] ≈ D(θ) = − 2

S

S∑
s=1

N∑
i=1

T∑
t=1

l
(s)
it (θ|y,m)

= − 2

S

S∑
s=1

N∑
i=1

T∑
t=1

[
(1−m

(s)
it )l

(s)
it (y) + l

(s)
it (m)

]
, (10)
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Table 1. Model Selection Indices

Index = Deviance + Penalty

Dbar.AIC1 D(θ)
4

2 p

Dbar.BIC2 D(θ) log(N) p

Dbar.CAIC D(θ) (log(N)+1) p

Dbar.ssBIC D(θ) log((N+2)/24) p

RDIC D(θ) var(Dbar)/2

Dhat.AIC D(θ̂)5 2 p

Dhat.BIC D(θ̂) log(N) p

Dhat.CAIC D(θ̂) (log(N)+1) p

Dhat.ssBIC D(θ̂) log((N+2)/24) p

DIC3 D(θ̂) 2 pD

Note.
1. p is the number of parameters.
2. N is the sample size.
3. pD = D(θ)−D(θ̂).
4. D(θ) is shown as in eqn.(10) for growth curve models and as in eqn.(13) for
growth mixture models.
5. D(θ̂) is shown as in eqn.(12) for growth curve models and as in eqn.(14) for
growth mixture models.

where S is the number of iterations for converged Markov chains, l
(s)
it (θ|y,m) =

log(L
(s)
it (θ|y,m)) is a conditional joint loglikelihood function (see, Celeux et al.,

2006) of y and m, mit is the missing data indicator for individual i at time t
with a likelihood function likt(m) = mitlog(τit) + (1 − mit)log(1 − τit), where
τit is the missing data rate for individual i at time t and is defined differently
for different missingness models as in the previous section. When yit is missing,
the corresponding likelihood is excluded. So combining y and m, the conditional
likelihood function of a selection model with non-ignorable missing data can be
expressed as

Lit(θ|y,m) = [f(yit|ηi)(1− τit)]
(1−mit) τmit

it , (11)

And the other version of deviance, D(Eθ|y[θ]), is approximated by

D(Eθ|y[θ]) ≈ D(θ̂) = −2

N∑
i=1

T∑
t=1

[
(1−mit)lit(y|θ̂) + lit(m|θ̂)

]
, (12)

where θ̂ is the posterior mean of parameter estimates across S iterations.
For growth mixture models with missing data, Eθ|y[D] is expressed as

ED|y[D(θ)] ≈ D(θ) = − 2

S

S∑
s=1

N∑
i=1

K∑
k=1

z
(s)
ik

T∑
t=1

[
(1−mit)l

(s)
ikt(y) + l

(s)
ikt(m)

]
,(13)
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where zi = (zi1, zi2, ..., ziK) is the class membership indicator which follows a

multinomial distribution, zi ∼ MultiNomial(πi1, πi2, ..., πiK), and z
(s)
ik is the

class membership estimated at iteration s. And

D(Eθ|y[θ]) ≈ D(θ̂) = −2

N∑
i=1

K∑
k=1

ẑik

T∑
t=1

[
(1−mit)likt(y|θ̂) + likt(m|θ̂)

]
, (14)

where ẑik is the posterior mode of class membership, θ̂ is the posterior mean of
parameter estimates across all S iterations. In both D(θ) and D(θ̂) definitions
of deviance, likt(y) and likt(m) are the conditional loglikelihood functions for yit
and mit, respectively, for individual i in class k at time t.

The difference between D(θ) and D(θ̂) can be quantified by a statistic called
pD (Spiegelhalter et al., 2002),

pD = D(θ)−D(θ̂). (15)

Based on the Jensen’s inequality (Casella & George, 1992), when D(θ) is convex,

then D(θ) ≥ D(θ̂) and as a result pD is positive. When D(θ) is concave, then

D(θ) ≤ D(θ̂) and pD is negative.

4 Simulation Studies

In this section, five simulation studies are conducted to evaluate the performance
of the Bayesian indices. For each study, four waves of complete data are
generated first and then missing data are created on each occasion according
to pre-designed missing data rates. After data are generated, full Bayesian
methods are used by adopting uninformative priors, obtaining conditional
posterior distributions through application of a data augmentation algorithm,
generating Markov chains through a Gibbs sampling procedure, conducting
convergence testing, and making statistical inference for model parameters. For
all simulations, the software OpenBUGS is used for the implementation of Gibbs
sampling, and R is used for data-generation, convergence testing, and parameter
estimation.

The five studies are designed such that the data complexity increases from
study 1 to study 5. Studies 1-2 focus on non-mixture growth data and thus,
latent growth curve models with missing data are used. Studies 3-5 focus on
mixture growth data and thus, growth mixture models with missing data are
used. Simulation factors include measurement error distributions, random-effects
distributions, missingness patterns, sample size, and class separation (Anderson
& Bahadur, 1962). Under each condition, 100 converged replications are used to
calculate the model selection proportion. Table 2 lists the design details.

Table 2: Simulation Study Design
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Data Distribution Missingness Sample Size Class
Study Model ei

2 ηi
3 Depends on Separation11

N4 t5 N t C6 X7 I8 S9 Y10 Different M S

Study 1 Normal LGCMs: use relative small sample sizes due to single-class data

NN-ignorable ✓ ✓ ✓
NN-XI ✓ ✓ ✓ ✓
NN-XS1 ✓ ✓ ✓ ✓
NN-XY ✓ ✓ ✓ ✓

Study 2 Robust LGCMs: use relative small sample sizes due to single-class data

TN-ignorable ✓ ✓ ✓
TN-XI ✓ ✓ ✓ ✓
TN-XS ✓ ✓ ✓ ✓
TN-XY ✓ ✓ ✓ ✓
TT-ignorable ✓ ✓ ✓
TT-XI ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓
TT-XY ✓ ✓ ✓ ✓
NT-ignorable ✓ ✓ ✓
NT-XI ✓ ✓ ✓ ✓
NT-XS ✓ ✓ ✓ ✓
NT-XY ✓ ✓ ✓ ✓
NN-ignorable ✓ ✓ ✓
NN-XI ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓
NN-XY ✓ ✓ ✓ ✓

Study 3 Robust GMMs (RGMMs): use relative large sample sizes due to multiple classes data, and
use small class separation due to fixed class probabilities

TN-ignorable ✓ ✓ ✓ ✓
TN-XI ✓ ✓ ✓ ✓ ✓
TN-XS ✓ ✓ ✓ ✓ ✓
TN-XY ✓ ✓ ✓ ✓ ✓
TT-ignorable ✓ ✓ ✓ ✓
TT-XI ✓ ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓ ✓
TT-XY ✓ ✓ ✓ ✓ ✓
NT-ignorable ✓ ✓ ✓ ✓
NT-XI ✓ ✓ ✓ ✓ ✓
NT-XS ✓ ✓ ✓ ✓ ✓
NT-XY ✓ ✓ ✓ ✓ ✓
NN-ignorable ✓ ✓ ✓ ✓
NN-XI ✓ ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓ ✓
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NN-XY ✓ ✓ ✓ ✓ ✓

Study 4 Robust Extended GMMs (REGMMs): select 5 competing models based on the performance
in Study 3 use relative large sample sizes due to multiple-class data and varied class
probabilities

TN-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓
TN-CX ✓ ✓ ✓ ✓ ✓ ✓
TT-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓
NN-CXS ✓ ✓ ✓ ✓ ✓ ✓ ✓
NN-CX ✓ ✓ ✓ ✓ ✓ ✓

Study 5 Single-Class LGCMs vs. Multiple-Class RGMMs

1 Class LGCMs
TN-XS ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓
2 Classes RGMMs
TN-XS ✓ ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓ ✓
3 Classes RGMMs
TN-XS ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓
4 Classes RGMMs
TN-XS ✓ ✓ ✓ ✓
TT-XS ✓ ✓ ✓ ✓
NN-XS ✓ ✓ ✓ ✓

Note. 1 The shaded model is the true model. 2 Measurement errors. 3 Random effects. 4 Normal
distribution. 5 t distribution. 6 Latent class dependant (Non-ignorable). 7 Observed
Covariates. 8 Latent intercept dependant (Non-ignorable). 9 Latent slope dependant
(Non-ignorable). 10 Potential outcome y dependant (Non-ignorable). 11 Class Separation
(Anderson & Bahadur, 1962) when generating data (S: small=1.7, M: medium=2.7).

Study 1 investigated the performance of the Bayesian indices when data were
non-mixture, homogenous, normally distributed with non-ignorable missingness.
The true model was NN-XS, which was the model with normally distributed
measurement errors (ei) at level 1 and random effects (ξi) at level 2, with
missingness depending on covariate x and latent slope S. Specifically, ei ∼
MN(0, I), ηi ∼ MNq(β,Ψ) where β = (Intercept, Slope) = (1, 3) and Ψ was a
2 by 2 symmetric matrix with V ar(I) = 1, Cov(I, S) = 0, and V ar(S) = 4. For
missingness, the bigger the latent slope was, the higher the missing data rate
would be. The missingness probit coefficients were set as γ0 = (−1,−1,−1,−1),
γx = (−1.5,−1.5,−1.5,−1.5), and γS = (0.5, 0.5, 0.5, 0.5). For example, if a
participant had a latent growth slope 3, with a covariate value 1, then his or
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her missing probability at each wave was τ ≈ 16%; if the slope was 5, with
the same covariate value, the missing probability increased to τ = 50%; but
if the slope was 1, then the missing probability decreased to τ = 2.3%. The
covariate x was also generated from a normal distribution, x ∼ N(1, sd = 0.2).
In study 1, in total there were 16 conditions with 4 missingness mechanisms (XS
non-ignorable, XY non-ignorable, XI non-ignorable, and ignorable) combined
with 4 levels of sample size (1000, 500, 300, and 200). Table 3 lists the model
selection proportions across 100 replications for each of these indices across all
conditions in study 1. The largest proportion across 4 missingness models is
indicated in the shaded cell for each index. When sample size is relatively large,
1000 or 500, all of the model selection indices, except for the rough DIC (RDIC),
correctly identify the true model with 100%. When sample size becomes smaller,
300 or 200, except for the RDIC, all of the model selection indices choose the
true model with certainty above 93%. Comparing the indices defined based on
Dbar with those defined based on Dhat, one can see that the former performs a
little bit better.

Study 2 investigated the performance of these indices when data were
non-mixture homogenous with outliers and non-ignorable missingness. The main
difference between study 2 and 1 was that the data for study 2 contain outliers
such that they are not normally distributed. So robust growth curve models
were used. The true model was TN-XS, which means measurement errors (ei)
at level 1 followed a t-distribution. Specifically, ei were generated from a t
distribution with 5 degrees of freedom and a scale matrix I, i.e., ei ∼ Mt(0, I, 5).
Other settings were kept the same as those in study 1. In this study, totally 32
conditions were considered with 4 data distributions (NN, TN, NT, and TT),
4 missingness patterns (XS non-ignorable, XY non-ignorable, XI non-ignorable,
and ignorable), and 2 levels of sample size (1000 and 500). Table 4 lists the model
selection proportions. The largest proportion across 16 missingness models is
indicated in the shaded cells for each index. Except for the RDIC, all of the
model selection indices correctly identify the true model. TT-XS is a competing
model, which also gains high selection probabilities. This is because the normal
distribution is almost identical to a t-distribution with large degrees of freedom.
The degrees of freedom of t is also estimated by the model. Also, the Dbar-based
indices performs a little bit better than the Dhat-based indices. Among them,
Dbar-based BIC and CAIC perform best.

Study 3 was designed for mixture data with outliers and non-ignorable
missing data. As data were mixture, growth mixture models were used. In
this study, the true model was 2-class mixture TN-XS RGMM. Only intercepts
of these 2 classes were different, with 5 for class 1 and 1 for class 2. Other
settings for each class were the same as in study 2. Both classes have t5
distributed measurement errors. Based on Anderson and Bahadur (1962), the
class separation is around 2.7. In this study, we assumed they are traditional
mixture models, i.e., class probabilities were fixed at (50%, 50%) in this study.
The same as in study 2, there were 32 conditions considered with 4 data
distributions (NN, TN, NT, and TT), 4 missingness patterns (XS non-ignorable,
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Table 3. Model Selection Proportion in Study 1

N=1000 N=500

Non-ignorable Ignorable Non-ignorable Ignorable

Criteron1 NN-XS2 NN-XY3 NN-XI4 NN5 NN-XS NN-XY NN-XI NN

Dbar.AIC 16 0.000 0.000 0.000 1 0.000 0.000 0.000

Dbar.BIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dbar.CAIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dbar.ssBIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

RDIC 0.013 0.000 0.987 0.000 0.038 0.000 0.962 0.000

Dhat.AIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.BIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.CAIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

Dhat.ssBIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

DIC 1 0.000 0.000 0.000 1 0.000 0.000 0.000

N=300 N=200

Dbar.AIC 0.98125 0.01875 0.000 0.000 0.975 0.025 0.000 0.000

Dbar.BIC 0.98125 0.01875 0.000 0.000 0.975 0.025 0.000 0.000

Dbar.CAIC 0.98125 0.01875 0.000 0.000 0.975 0.025 0.000 0.000

Dbar.ssBIC 0.98125 0.01875 0.000 0.000 0.975 0.025 0.000 0.000

Rough DIC 0.1125 0.000 0.8875 0.000 0.2 0.03125 0.76875 0.000

Dhat.AIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.BIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.CAIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

Dhat.ssBIC 0.95 0.05 0.000 0.000 0.9375 0.06875 0.000 0.000

DIC 1 0.000 0.000 0.000 0.98125 0.0125 0.00625 0.000

Note.
1. The definition of each index is given in Table 1.
2. The shaded model is the true model. The model is normal-distribution-based
with
latent-slope-dependent missingness.
3. The model is normal-distribution-based with potential-outcome-dependent
missingness.
4. The model is normal-distribution-based with latent-intercept-dependent
missingness.
5. The model is normal-distribution-based with ignorable missingness.
6. The shaded cell has the largest proportion.
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Table 4. Model Selection Proportion in Study 2

N=1000 N=500

Non-ignorable Ignorable Non-ignorable Ignorable

Index XS5 XY XI XS XY XI

Dbar.AIC TN1 0.519 0.000 0.000 0.000 0.597 0.013 0.000 0.000
TT2 0.469 0.000 0.000 0.012 0.377 0.000 0.000 0.000
NT3 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN4 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Dbar.BIC TN 0.781 0.000 0.000 0.000 0.855 0.013 0.000 0.000
TT 0.200 0.000 0.000 0.019 0.113 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000

Dbar.CAIC TN 0.819 0.000 0.000 0.000 0.888 0.012 0.000 0.000
TT 0.162 0.000 0.000 0.019 0.075 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.000

Dbar.ssBIC TN 0.625 0.000 0.000 0.000 0.631 0.012 0.000 0.000
TT 0.362 0.000 0.000 0.012 0.338 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

RDIC TN 0.000 0.000 0.106 0.000 0.000 0.000 0.094 0.000
TT 0.000 0.000 0.100 0.000 0.000 0.000 0.113 0.000
NT 0.000 0.000 0.394 0.000 0.000 0.000 0.390 0.000
NN 0.000 0.000 0.400 0.000 0.000 0.000 0.403 0.000

Dhat.AIC TN 0.544 0.000 0.000 0.000 0.547 0.025 0.000 0.000
TT 0.506 0.006 0.000 0.000 0.447 0.019 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC TN 0.675 0.006 0.000 0.000 0.717 0.025 0.000 0.000
TT 0.319 0.000 0.000 0.000 0.245 0.013 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC TN 0.700 0.006 0.000 0.000 0.788 0.025 0.000 0.000
TT 0.294 0.006 0.000 0.000 0.169 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC TN 0.575 0.006 0.000 0.000 0.588 0.025 0.000 0.000
TT 0.419 0.006 0.000 0.000 0.369 0.012 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DIC TN 0.325 0.000 0.000 0.000 0.415 0.006 0.000 0.000
TT 0.462 0.000 0.000 0.194 0.409 0.000 0.000 0.000
NT 0.012 0.000 0.000 0.000 0.088 0.000 0.000 0.000
NN 0.006 0.000 0.000 0.000 0.082 0.000 0.000 0.000

Note. 1−4T-Normal, T-T, Normal-T, and Normal-Normal measurement errors and
random effects. 5Other abbreviations are as given in Table 3.
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XY non-ignorable, XI non-ignorable, and ignorable), and 2 levels of sample size
(1000 and 1500). As mixture data require more data to obtain estimates, we
increased the sample size. Table 5 shows the results for study 3. The shaded
cell indicates the largest proportion across 16 missingness models for each index.
Again, almost all of the model selection indices correctly identify the true model.
And the Dbar-based indices perform a little bit better than the Dhat-based
indices. Specifically, Dbar-based BIC and CAIC perform best among these
indices, and then Dbar-based ssBIC also perform well.

Study 4 extended study 3 such that the class probabilities were not
fixed. Instead, they depended on values of covariates. Also, the non-ignorable
missingness in this study was allowed to depend on the corresponding
observations’ latent class membership. The true model in this study was 2-class
mixture TN-CXS robust extended growth mixture models (REGMM). The
differences between this study and study 3 were (1) the class proportions in this
study were predicted by the value of covariate x; (2) the missing data rates were
predicted by the latent class membership; and (3) both medium size, 2.7, and
small size, 1.7, class separations were used. Specifically, for small class separation,
the intercept for class 1 was 3.5 and the intercept for class 2 was 1. To simplify
the simulation, based on the findings in study 3, 5 competing mixture models
(TN-CXS, TT-CXS, TN-CX, NN-CXS, and NN-CX) were chosen to fit the data.
Totally, we considered 20 conditions with 5 mixture models, 2 levels of sample
size (1500 and 1000), and 2 levels of class separation (2.7 and 1.7). Table 6
shows the model selection proportions in study 4. Again, almost all of the model
selection indices correctly identify the true model. Specifically, Dbar-based BIC
and CAIC perform best among these indices.

Study 5 focused on the number of classes. In this study, different growth curve
models with different numbers of classes were fitted and compared. In total, 9
conditions were considered, including 3 models (TN-XS, TT-XS, NN-XS) and
3 numbers of classes (1, 2, and 3). The true model was the 2-class mixture
TN-XS model. The simulation results for study 5 were presented in Table
7. Among these indices, Dhat-based indices perform better than Dhbar-based
indices. Specifically, Dhat-based BIC and CAIC perform best, and ssBIC and
AIC also provide high certainty.
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Table 5. Model Selection Proportion in Study 3

N=1500 N=1000

Non-ignorable Ignorable Non-ignorable Ignorable

Index XS XY XI XS XY XI

Dbar.AIC TN 0.621 0.000 0.000 0.000 0.593 0.000 0.000 0.000
TT 0.357 0.000 0.000 0.000 0.314 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.021 0.000 0.000 0.000
NN 0.021 0.000 0.000 0.000 0.071 0.000 0.000 0.000

Dbar.BIC TN 0.864 0.000 0.000 0.000 0.843 0.000 0.000 0.000
TT 0.114 0.000 0.000 0.000 0.064 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

Dbar.CAIC TN 0.893 0.000 0.000 0.000 0.857 0.000 0.000 0.000
TT 0.079 0.000 0.000 0.000 0.043 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.086 0.000 0.000 0.000

Dbar.ssBIC TN 0.729 0.000 0.000 0.000 0.750 0.000 0.000 0.000
TT 0.250 0.000 0.000 0.000 0.157 0.000 0.000 0.000
NT 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.079 0.000 0.000 0.000

RDIC TN 0.071 0.000 0.000 0.000 0.143 0.000 0.000 0.000
TT 0.086 0.000 0.000 0.000 0.071 0.000 0.000 0.000
NT 0.450 0.000 0.000 0.000 0.393 0.007 0.000 0.000
NN 0.393 0.000 0.000 0.000 0.379 0.007 0.000 0.000

Dhat.AIC TN 0.586 0.000 0.000 0.000 0.621 0.000 0.000 0.000
TT 0.379 0.000 0.000 0.000 0.329 0.000 0.000 0.000
NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000
NN 0.014 0.007 0.000 0.000 0.057 0.000 0.000 0.000

Dhat.BIC TN 0.757 0.000 0.000 0.000 0.793 0.000 0.000 0.000
TT 0.207 0.000 0.000 0.000 0.121 0.000 0.000 0.000
NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.CAIC TN 0.757 0.000 0.000 0.000 0.814 0.000 0.000 0.000
TT 0.207 0.000 0.000 0.000 0.100 0.000 0.000 0.000
NT 0.007 0.000 0.000 0.000 0.007 0.007 0.000 0.000
NN 0.021 0.007 0.000 0.000 0.071 0.000 0.000 0.000

Dhat.ssBIC TN 0.586 0.000 0.000 0.000 0.664 0.000 0.000 0.000
TT 0.379 0.000 0.000 0.000 0.250 0.000 0.000 0.000
NT 0.014 0.000 0.000 0.000 0.014 0.007 0.000 0.000
NN 0.014 0.007 0.000 0.000 0.064 0.000 0.000 0.000

DIC TN 0.507 0.000 0.000 0.000 0.364 0.007 0.000 0.000
TT 0.371 0.000 0.000 0.000 0.286 0.000 0.000 0.000
NT 0.043 0.036 0.000 0.000 0.129 0.029 0.007 0.000
NN 0.043 0.000 0.000 0.000 0.150 0.029 0.000 0.000

Note. Same as Table 3.
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Table 6. Model Selection Proportion in Study 4

Index TN-CXS TT-CXS NN-CXS TN-CX NN-CX TN-CXS TT-CXS NN-CXS TN-CX NN-CX

Class Separation=2.7, N=1500 Class Separation=2.7, N=1000

Dbar.AIC 0.567 0.425 0.000 0.008 0.000 0.558 0.375 0.000 0.067 0.000

Dbar.BIC 0.808 0.158 0.000 0.033 0.000 0.750 0.125 0.000 0.125 0.000

Dbar.CAIC 0.850 0.108 0.000 0.0042 0.000 0.767 0.100 0.008 0.125 0.000

Dbar.ssBIC 0.667 0.300 0.000 0.033 0.000 0.633 0.292 0.000 0.075 0.000

RDIC 0.042 0.042 0.908 0.000 0.008 0.092 0.075 0.808 0.000 0.025

Dhat.AIC 0.475 0.392 0.000 0.133 0.000 0.350 0.358 0.000 0.292 0.000

Dhat.BIC 0.550 0.233 0.000 0.217 0.000 0.450 0.175 0.000 0.375 0.000

Dhat.CAIC 0.525 0.233 0.000 0.242 0.000 0.442 0.150 0.000 0.4 0.008

Dhat.ssBIC 0.467 0.367 0.000 0.167 0.000 0.392 0.300 0.000 0.308 0.000

DIC 0.467 0.500 0.033 0.000 0.000 0.417 0.450 0.108 0.008 0.017

Class Separation=1.7, N=1500 Class Separation=1.7, N=1000

Dbar.AIC 0.512 0.444 0.044 0.000 0.00 0.550 0.400 0.050 0.000 0.000

Dbar.BIC 0.744 0.212 0.044 0.000 0.00 0.719 0.194 0.081 0.006 0.000

Dbar.CAIC 0.781 0.175 0.044 0.000 0.00 0.750 0.162 0.081 0.006 0.000

Dbar.ssBIC 0.612 0.344 0.044 0.000 0.00 0.638 0.300 0.062 0.000 0.000

RDIC 0.306 0.238 0.350 0.006 0.10 0.244 0.256 0.362 0.000 0.138

Dhat.AIC 0.475 0.475 0.031 0.019 0.00 0.694 0.231 0.012 0.062 0.000

Dhat.BIC 0.712 0.238 0.031 0.019 0.00 0.644 0.294 0.012 0.050 0.000

Dhat.CAIC 0.712 0.238 0.031 0.019 0.00 0.694 0.231 0.012 0.062 0.000

Dhat.ssBIC 0.475 0.475 0.031 0.019 0.00 0.575 0.388 0.012 0.025 0.000

DIC 0.381 0.450 0.169 0.000 0.00 0.344 0.331 0.319 0.000 0.006

Note. Same as Table 3.
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Table 7. Model Selection Proportion in Study 5

2 CLASSES 1 CLASS 3 CLASSES

Index TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS TN-XS TT-XS NN-XS

Dbar.AIC 0.000 0.000 0.057 0.393 0.129 0.000 0.021 0.007 0.393

Dbar.BIC 0.000 0.000 0.036 0.821 0.064 0.000 0.000 0.000 0.079

Dbar.CAIC 0.000 0.000 0.036 0.864 0.043 0.000 0.000 0.000 0.057

Dbar.ssBIC 0.000 0.000 0.057 0.593 0.100 0.000 0.000 0.000 0.25

RDIC 0.036 0.014 0.2 0.014 0.014 0.679 0.014 0.014 0.014

Dhat.AIC 0.621 0.343 0.064 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.BIC 0.793 0.136 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.CAIC 0.814 0.114 0.071 0.000 0.000 0.000 0.000 0.000 0.000

Dhat.ssBIC 0.664 0.264 0.071 0.000 0.000 0.000 0.000 0.000 0.000

DIC 0.000 0.000 0.000 0.164 0.193 0.121 0.000 0.000 0.521

Note. Same as Table 3.

5 Application

In this section, a real data set on mathematical growth is analyzed to
demonstrate the application of the indices. The same sample that has been
analyzed in Lu et al. (2011) is used here. It is a mathematical ability
growth sample from the NLSY97 survey (Bureau of Labor Statistics, U.S.
Department of Labor, 1997), which were collected from N = 1510 adolescents
yearly from 1997 to 2001 when each adolescent was administered the Peabody
Individual Achievement Test (PIAT) Mathematics Assessment to measure their
mathematical ability. There are some outliers at all five grades. Lu et al. (2011)
conducted a power transformation to normalize the sample and assumed the
data are normally distributed without outliers. In this study, however, we use
the original non-transformed data with outliers, but robust methods are used.
Also, different non-ignorable missingness mechanisms are considered. Overall,
the means of mathematical ability increased over time with a roughly linear
trend. The missing data rates range from 4.57% to 9.47%, and the raw data
show the missing pattern is intermittent. About half of the sample is female.

The analysis is conducted following the steps in Table 8. In step 1, a tentative
model (the TT-ignorable model) is fitted to the data. Gender is a covariate.
The estimates of degrees of freedom of t for both classes are 2.342 and 3.263
for measurement errors and 75.65 and 50.96 for random effects, which indicates
that measurement errors can be better fitted using a t distribution while random
effects are approximately normally distributed (i.e., a TN model). And then
in step 2, to compare models with different non-ignorable missingness and
numbers of classes, 10 models are fitted to the data. During estimation we
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Table 8. Steps and Fitting Models in Real Data Analysis

Step 1: Fit a tentative 2 classes model, and check
the estimated df of t

ei ηi missingness
Model N T N T C X I S Y

TT-ignorable ✓ ✓

Step 2: Try models with different missingness and
number of classes

2 Classes RGMMs

TN-X ✓ ✓ ✓
TN-XI ✓ ✓ ✓ ✓
TN-XS ✓ ✓ ✓ ✓
TN-XY ✓ ✓ ✓ ✓

2 Classes REGMMs

TN-CX ✓ ✓ ✓ ✓
TN-CXI ✓ ✓ ✓ ✓ ✓
TN-CXS ✓ ✓ ✓ ✓ ✓
TN-CXY ✓ ✓ ✓ ✓ ✓

3 Classes GMMs

NN-X ✓ ✓ ✓

4 Classes GMMs

NN-X ✓ ✓ ✓

Step 3: Compare selection indices

Step 4: Interpret results obtained from the selected
model

Note. Abbreviations are as given in Table 2.
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Table 10. Estimates of TN-CXY REGMM in Real Data Analysis

Parameter Mean S.D. MC.e./S.D.1 Lower2 Upper3 Geweke z4
G
ro
w
th

C
u
rv
e
P
a
ra
m
et
er
s

C
la
ss

1
Intercept 8.647 0.037 0.026 8.572 8.717 0.007
Slope 0.229 0.009 0.023 0.211 0.247 0.014
Var(I) 0.234 0.028 0.024 0.183 0.293 -0.009
Var(S) 0.014 0.002 0.018 0.011 0.017 0.004
Cov(I, S) -0.036 0.006 0.022 -0.049 -0.026 -0.005
Var(e) 0.044 0.004 0.031 0.037 0.053 0.024
dfy

5 2.386 0.205 0.043 2.118 2.900 0.050

C
la
ss

2

Intercept 6.196 0.047 0.020 6.103 6.287 0.054
Slope 0.315 0.011 0.022 0.295 0.336 0.036
Var(I) 1.326 0.084 0.017 1.167 1.497 0.020
Var(S) 0.034 0.004 0.022 0.027 0.042 0.010
Cov(I, S) 0.010 0.014 0.021 -0.018 0.037 -0.023
Var(e) 0.372 0.020 0.033 0.336 0.412 -0.061
dfy 3.200 0.195 0.040 2.850 3.600 -0.042

P
ro
b
it

P
a
ra
m
et
er
s

C
la
ss φ10

6 -0.214 0.119 0.051 -0.438 0.018 -0.039
φ11 -0.223 0.077 0.051 -0.372 -0.076 0.026

G
ra
d
e
7 γ

∗
01

7 -0.711 0.532 0.066 -1.843 0.204 -0.255
γ∗
11

8 -0.132 0.216 0.058 -0.527 0.310 0.231
γx1

9 -0.154 0.108 0.046 -0.368 0.058 0.008
γY 1

10 -0.087 0.059 0.065 -0.190 0.038 0.251

G
ra
d
e
8 γ

∗
02 -1.157 0.446 0.064 -2.097 -0.447 -0.373

γ∗
12 0.046 0.217 0.055 -0.345 0.489 0.347

γx2 0.113 0.114 0.046 -0.109 0.334 0.032
γY 2 -0.108 0.045 0.062 -0.188 -0.021 0.330

G
ra
d
e
9 γ

∗
03 -0.613 0.454 0.065 -1.519 0.163 -0.462

γ∗
13 -0.057 0.181 0.056 -0.403 0.292 0.381

γx3 -0.147 0.094 0.046 -0.332 0.038 0.045
γY 3 -0.074 0.045 0.064 -0.155 0.022 0.459

G
ra
d
e
1
0 γ∗

04 -0.032 0.512 0.066 -0.861 0.985 -0.426
γ∗
14 -0.324 0.204 0.059 -0.732 0.029 0.362

γx4 0.059 0.101 0.047 -0.142 0.251 0.128
γY 4 -0.166 0.050 0.065 -0.266 -0.084 0.378

G
ra
d
e
1
1 γ∗

05 -1.298 0.421 0.065 -2.130 -0.442 -0.192
γ∗
15 0.341 0.176 0.055 0.015 0.708 0.159

γx5 -0.087 0.091 0.045 -0.263 0.083 0.001
γY 5 -0.019 0.040 0.064 -0.092 0.062 0.189

1 Ratio of MC error to standard deviation. A value around or less than 0.05
indicates that the corresponding estimate is accurate (Spiegelhalter, Thomas,
Best, & Lunn, 2003).

2-3 The lower 2.5 percentile and upper 97.5 percentile.
4 Geweke test z value. An absolute value less than 1.96 indicates that the

corresponding chain has passed the convergence test.
5 The degrees of freedom of the multivariate-t.
6 The probit coefficient of the class probability for class 1, defined in Eqn.(3).
7 The probit coefficient of the class membership 1 at Grade 7, defined in Eqn.(9).
8 The probit coefficient of the class membership 2 at Grade 7, defined in Eqn.(9).
9 The probit coefficient of the covariate at Grade 7, defined in Eqn.(9).
10 The probit coefficient of the potential output Y at Grade 7, defined in Eqn.(9).
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use uninformative priors which carry little information for model parameters.
A burn-in period is run first to ensure estimates are based on the Markov chains
that have converged. For testing convergence, the history plot is examined and
the Geweke’s z statistic (Geweke, 1992) is checked for each parameter. The
Geweke’s z statistics for all the parameters are smaller than 1.96, which indicates
converged Markove chains. To make sure all the parameters are estimated
accurately, the next 50, 000 iterations are then saved for data analysis. The ratio
of Monte Carlo error (MCerror) to standard deviation (S.D.) for each parameter
is smaller than or close to 0.05, which indicates parameter estimates are accurate
(Spiegelhalter, Thomas, Best, & Lunn, 2003). In step 3, model selection indices
are used to compare the ten models. The indices are listed in Table 9. And in
step 4, the results obtained from the final selected model are interpreted.

As suggested by Dhat.CAIC, Dhat.ssBIC, Dhat.BIC, and Dhat.AIC, without
further substantive information, the TN-CXY model appears to be a good
candidate for the best-fitting model. Table 10 provides the results of the TN-CXY
REGMM model. It can be seen that (1) class 1 has a higher average initial level
but a smaller average slope; (2) class 2 has larger variations for initial levels and
slope; (3) the residual variance of class 2 is much larger than that of class 1; (4) in
class 1 the initial level and the slope are significantly negatively correlated at the
confidence level of 95%; (5) the missingness is not related to gender because none
of the coefficients of gender are significant at the α level of 0.05; (6) at grade 11,
adolescents in class 2 are more likely to miss tests than those in class 1 because
the probit coefficient of class membership for grade 11 is significantly positive;
and (7) at grades 8 and 10, students with higher potential scores are more likely
to miss tests than the students having lower scores because the probit coefficients
of the potential outcomes y at the two grades are significantly negative.

6 Conclusions, Discussion and Future Research

Based on the results from the five simulation studies, one can conclude that (1)
almost all of the model selection indices, except for the rough DIC (RDIC),
can correctly choose the true model with high certainty; (2) if the number
of classes is correctly identified, then the Dbar-based indices perform better
than the Dhat-based indices; if candidate models have different numbers of
classes, then the Dhat-based indices might be used to select the best fit model;
(3) across 5 studies, CAIC and BIC provide higher probabilities than those
ssBIC, AIC, or DIC does. The results will help inform the selection of growth
models by researchers seeking to provide people with accurate estimates of
growth across a variety of possible contexts. The real data analysis demonstrated
the application of the indices to typical longitudinal growth studies such as
educational, psychological, and social research.

This study can be extended in many ways. For example, different versions
of the likelihood function or more model selection indices can be studied and
compared by using more practical statistical models. (1) As we stated in
the section of Introduction, there are at least three challenges in proposing



22 Z. Lu and Z. Zhang

new selection indices. The third challenge is about the likelihood function
l(y|θ̂). When latent variables involved, the likelihood can be an observed-data
likelihood, a complete-data likelihood, or a conditional likelihood (Celeux et al.,
2006). In this study, we use a conditional joint loglikelihood, but in the future,
the other versions of likelihood functions can be investigated. (2) Another future
research of this study is to propose other model selection indices, such as Bayes
factors. (3) This study focuses on latent growth models only. In the future, the
performance of these selection indices can be studied by using other statistical
models, such as survival models.
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