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Abstract. Bayesian statistics have been widely used given the develop-
ment of Markov chain Monte Carlo sampling techniques and the growth
of computational power. A major challenge of Bayesian methods that
has not yet been fully addressed is how we can appropriately evaluate
the convergence of the random samples to the target posterior distribu-
tions. In this paper, we focus on Gelman and Rubin’s diagnostic (PSRF),
Brooks and Gleman’s diagnostic (MPSRF), and Geweke’s diagnostics,
and compare the Type I error rate and Type II error rate of seven con-
vergence criteria: MPSRF > 1.1, any upper bound of PSRF is larger
than 1.1, more than 5% of the upper bounds of PSRFs are larger than
1.1, any PSRF is larger than 1.1, more than 5% of PSRFs are larger
than 1.1, any Geweke test statistic is larger than 1.96 or smaller than
-1.96, and more than 5% of Geweke test statistics are larger than 1.96
or smaller than -1.96. Based on the simulation results, we recommend
the upper bound of PSRF if we only can choose one diagnostic. When
the number of estimated parameters is large, between the diagnostic per
parameter (i.e., PSRF) or the multivariate diagnostic (i.e., MPSRF), we
recommend the upper bound of PSRF over MPSRF. Additionally, we
do not suggest claiming convergence at the analysis level while allow-
ing a small proportion of the parameters to have significant convergence
diagnosis results.

Keywords: Convergence diagnostics · Bayesian analysis · Gelman-Rubin
diagnostic · Geweke diagnostic

In recent decades, Bayesian statistics have been widely used given the de-
velopment of Markov chain Monte Carlo (MCMC) sampling techniques and the
growth of computational power (e.g., Van de Schoot et al., 2017). They have been
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used in cognitive psychology (e.g., Lee, 2008), developmental psychology (e.g.,
Van de Schoot et al., 2014; Walker et al., 2007), social psychology (e.g., Mars-
man et al., 2017), and many other areas. In the Bayesian framework, parameters
are treated as random variables. Thus, we need to specify prior distributions
for unknown parameters and obtain their posterior distributions. A major chal-
lenge of Bayesian methods that has not yet been fully addressed is how we can
appropriately evaluate the convergence of the random samples to the target pos-
terior distributions and the convergence of posterior means to the target mean.
With nonconverged results, researchers may obtain severely biased parameter es-
timates and misleading statistical inferences. Therefore, there is a critical need
to develop keen diagnostic methods for appropriately assessing convergence.

In the Bayesian framework, an MCMC algorithm converges when it samples
thoroughly and stably from a density. More specifically, a converged Markov
chain should have two properties: stationarity and mixing. To claim convergence,
Markov chains need to move around in the posterior density in an appropriate
manner and to mix well throughout the support of the density. In other words,
when there are multiple Markov chains supporting the same estimation, they
should trace out a common distribution (Gelman et al., 2014).

Practically, the convergence of MCMC algorithms can be assessed by visual
inspection (i.e., trace plots) as well as quantitative evaluation. Various quanti-
tative methods have been proposed for assessing convergence. To name a few,
there are Garren and Smith (2000), Gelman and Rubin (1992), Geweke (1992),
Heidelberger and Welch (1983), Johnson (1996), Liu, Liu, and Rubin (1992), and
Raftery and Lewis (1992). Among them, the Gelman and Rubin’s method and
Geweke ’s method currently are the most commonly used diagnostics and are
implemented in popular software and R packages. For example, Mplus (Muthén
and Muthén, 2017), CODA (Plummer et al., 2015), and BUGS (Spiegelhalter
et al., 1996) can implement the Gelman and Rubin’s diagnostic, and CODA can
implement the Geweke ’s diagnostic. The Gelman and Rubin’s diagnostic re-
quires multiple MCMC chains with different starting values, and potential scale
reduction factor (PSRF) is used for assessing the convergence of chains for indi-
vidual parameters. Brooks and Gelman (1998) further generalized the univariate
PSRF to a multivariate scale reduction factor (MPSRF), which tests all the pa-
rameters’ convergences as a group. The Geweke’s diagnostic only requires one
MCMC chain, therefore it is generally less time-consuming in calculation.

Several papers (Brooks and Roberts, 1998; Cowles and Carlin, 1996; El Ad-
louni et al., 2006) reviewed and/or compared different convergence diagnostics
with hypothetical examples. The common conclusion from these papers is that
no method can perform well in all cases, therefore they recommended a joint use
of all diagnostics. The recommendation is constructive in ensuring convergence,
but it may be overly conservative and infeasible in practice. First, there are more
than 10 convergence diagnostics, not to mention that those diagnostics require
the analyses in multiple software. Researchers rarely perform all diagnostics in
one real data analysis. Second, the statistical performance (i.e., Type I error rate
which is the probability of rejecting a true null hypothesis that assumes conver-
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gence, and Type II error rate which is the probability of not rejecting a false
null hypothesis that assumes convergence) of the Gelman and Rubin’s and the
Geweke’s methods has not yet been evaluated in simulation studies. Addition-
ally, the performances of Gelman and Rubin’s and Geweke’s diagnostics were
examined in relatively complex models, such as bimodal mixture of trivariate
normals (Cowles and Carlin, 1996) and shifting level model (El Adlouni et al.,
2006), in which the analytical forms were unknown or hard to access. As a conse-
quence, the performance of these diagnostics when convergence is ensured (e.g.,
Type I error rates) is still unknown.

Besides the challenge of having too many convergence diagnostics, another
challenge is that there are usually multiple parameters in one analysis. If we
assess the convergence of Markov chains of each parameter, we face a multiple
testing problem for the entire analysis. If no correction is applied and we claim
that the convergence for the entire analysis is achieved when the convergence
assessment for every parameter is passed, the Type I error rate at analysis level
(i.e., analysis-wise Type I error rate) can be substantially inflated. For example,
suppose that there are 20 independent parameters and we use the Geweke’s di-
agnostic where the Type I error rate per parameter is supposed to be 5%. The
analysis-wise Type I error rate is then 1 − 0.9520 = 0.642, which is far above
the intended level (i.e., 0.05) and implies that it is too easy to obtain a non-
convergence conclusion using the Geweke’s diagnostic. Applying conventional
multiple testing corrections such as the Bonferroni correction might help reduce
the inflated Type I error rates. However, parameters usually are not indepen-
dent, and as illustrated later, the cutoff value for the Geweke’s diagnostic is
approximated, therefore the actual performance of multiple testing corrections
remains an open question. In terms of the Gelman and Rubin’s diagnostic, its
cutoff comes from researchers’ recommendation. The Type I error rate of the
Gelman and Rubin’s method at the parameter level or the analysis level in the
literature remains largely unknown.

Given the above-mentioned unanswered questions, we focus on Gelman and
Rubin’s diagnostic, Brooks and Gleman’s multivariate diagnostic, and Geweke’s
diagnostic, and aim to answer the following three questions in this paper:

(1) If we only choose one diagnostic, which one should we adopt? Even if
no method performs well in all conditions, we would like to select the relatively
better one. Type I error rate and Type II error rate are the two frequently used
criteria for evaluating the performance of an analytic method. We therefore
investigate this question based on these two criteria.

(2) In high dimension cases (i.e., the number of parameters is large), should
we rely on the diagnostic at the parameter level (i.e., PSRF) or at the analysis
level (i.e., MPSRF)? Complex models with large numbers of parameters are
not uncommon in real psychological studies. For example, structural equation
modeling and latent space modeling can easily estimate 20, 50, or even more
than 100 parameters.
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(3) If we rely on the diagnostic at the parameter level, should we allow a
small proportion of the parameters (e.g., 5%) to have significant convergence
test results but still claim convergence at the analysis level?

The outline of this paper is as follows. In the “Convergence Diagnostics” sec-
tion, an overview of Gelman and Rubin’s diagnostic, Brooks and Gleman’s mul-
tivariate diagnostic, and Geweke’s diagnostic is given. In the “Simulation Study”
section, we evaluate and compare the performance of seven convergence crite-
ria from the three diagnostics in conditions with converged and nonconverged
MCMC chains. In this way, the Type I error rates (when converged Markov
chains are used) and the Type II error rates (when nonconverged Markov chains
are used) of the seven criteria are evaluated. We end the paper with some con-
cluding remarks in the “Conclusion” section.

1 Convergence Diagnostics

1.1 Gelman and Rubin’s Diagnostic

Gelman and Rubin (1992) proposed a general approach that utilizes multi-
ple Markov chains with different starting values to monitor the convergence
of MCMC samples. This method compares variance within and across chains,
which is similar to Analysis of Variance (ANOVA). Let θij denote the ith itera-
tion of parameter θ from the jth chain. First, we estimate the averaged within
chain variance by

W =
1

m (n− 1)

[

j= 1]m
∑ [

i= 1]n
∑(

θij − θ̄j
)2

,

where n is the number of iterations within each chain, m is the number of

chains, and θ̄j = 1
n

[

i= 1]n
∑

θij is the within chain mean. Second, we estimate
the between chain variance as

B =
n

m− 1

[

j= 1]m
∑(

θ̄j − θ̄
)2

.

where θ̄ = 1
m

[

j= 1]m
∑

θ̄j is the grand mean over all iterations and all chains.

Then, we compute the pooled variance estimate (V̂ ), which is constructed as a
weighted average of the between (B) and within chain variance estimates (W ),

V̂ =
(n− 1)

n
W +

(
1 +

1

m

)
B

n
. (1)

The ratio of the pooled and within-chain estimators is

R̂ =
V̂

W
.
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If the m chains mix well and stay stationary, the pooled variance estimate and
within-chain variance estimate should be close to each other, and R̂ should be
close to 1.

Since there exists a sampling error in the variance estimate V̂ , one can adjust
R̂ by multiplying R̂ with a correction term. Brooks and Gelman (1998) calculated
the correction term as d/ (d− 2), where d is the estimated degrees of freedom
for a student t distribution approximation to the sample distribution of V̂ /V .
The corrected ratio is

R̂c =
d

d− 2

V̂

W
.

Gelman and Rubin (1992) named the corrected ratio as potential scale reduction
factor (PSRF). When the PSRF is large, Gelman and Rubin (1992) suggested
that one can reduce the V̂ or increase W by running longer Markov chains
to better fully explore the target distribution. From the algorithm, it is clear
that Gelman and Rubin’s diagnostic focuses on testing mixing rather than not
stationary.

We need a criterion to define how close PSRF to 1 is acceptable. Gelman
and Rubin (1992) and Cowles and Carlin (1996) looked at the 97.5% quantiles
(i.e., upper bound) of PSRF. In practice, researchers usually treat the upper
bound of PSRF less than 1.1 as an indicator of convergence. Gelman and Rubin
(1992) found that R̂ is overestimated, therefore either PSRF or the upper bound
of PSRF should be conservative. To the best of our knowledge, there is no
mathematical investigation about whether PSRF or the upper bound of PSRF
should be used and whether the cutoff should be 1.1. Using the upper bound
of PSRF and a cutoff of 1.1 are practical guidelines established by researchers’
experience. Some software provides the upper bound of PSRF and PSRF (e.g.,
Mplus, Muthén and Muthén, 2017; CODA, (Plummer et al., 2015); and BUGS,
Spiegelhalter et al., 1996) and some software only provide PSRF (e.g., Stan,
Carpenter et al., 2017).

There are three major criticisms of the Gelman and Rubin’s diagnostic. First,
the test relies on over-dispersed starting values. If the starting values are too
close to each other in the target distribution, the multiple chains may perform
similarly and mix well even when the model is impossible to converge (i.e.,
the model is not identified). Second, the Gelman and Rubin’s diagnostic only
considers the first two moments, mean and variance. When the posterior distri-
bution is non-normal, the higher order moments (e.g., skewness and kurtosis)
also provide information in summarizing the distribution, but these moments
are ignored in the Gelman and Rubin’s diagnostic. Third, Gelman and Rubin
(1992) and Brooks and Gelman (1998) emphasized that they do not suggest only
monitoring the parameters of interest, but suggested simultaneously monitoring
the convergence of all the parameters in a model. When the number of param-
eters is large, it is more challenging for all parameters to pass the PSRF cutoff
simultaneously. It is also difficult to interpret the results when some parameters
converge but some do not.
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1.2 Brooks and Gleman’s Multivariate Diagnostic

Brooks and Gelman (1998) generalized the Gelman and Rubin’s diagnostic to
consider multiple parameters simultaneously. We denote θij as a vector of pa-
rameters in the ith iteration of from the jth chain. The within chain and between
chain variances of all parameters are quantified by a variance-covariance matrix.
More specifically, the within chain variance-covariance matrix is

W =
1

m (n− 1)

[

j= 1]m
∑ [

i= 1]n
∑(

θij − θ̄j
) (

θij − θ̄j
)′
, (2)

where θ̄j is the mean of vectors within the jth chain. The between chain variance-
covariance matrix is calculated as

B =
n

m− 1

[

j= 1]m
∑(

θ̄j − θ̄
) (

θ̄j − θ̄
)′
.

where θ̄ is the grand mean vector. Similar to the univariate case, the pooled
variance-covariance matrix V̂ is

V̂ =
(n− 1)

n
W +

(
1 +

1

m

)
B

n
.

The distance between V̂ and W is quantified as

R̂p =
(n− 1)

n
+

(
1 +

1

m

)
λ1,

where λ1 is the largest eigenvalue of W−1B/n. Brooks and Gelman (1998)
called R̂p the multivariate PSRF (or MPSRF). MPSRF should approach 1 when
convergence is achieved. Brooks and Gelman (1998) proved that MPSRF was an
upper bound of the largest PSRF of all parameters.

The primary advantage of Brooks and Gleman’s multivariate diagnostic is
that MPSRF summarizes the PSRF sequences as a single value therefore it
is easier to interpret than PSRF. Additionally, it is more computationally effi-
cient than the computing all the PSRF sequences. However, Brooks and Gelman
(1998) suggested reporting both MPSRF and PSRFs for all parameters, which
largely diminishes the advantages of the multivariate diagnostic. Additionally,
unlike PSRF, consensus has not yet been reached on the appropriate cut-offs
for MPSRF. It is also unclear how the upper bound of MPSRF can be analyti-
cally calculated. To the best of our knowledge, no statistical software currently
provides the estimates of the upper bound. As a consequence, in practice, it is
difficult for researchers to conclude convergence using the multivariate approach,
given that there is no clear guideline.

1.3 Geweke’s Diagnostic

MCMC processes are special cases of stationary time series. Hence, based on
the spectral density for time series, Geweke (1992) proposed a spectral density
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convergence diagnostic. The idea of Geweke’s diagnostic is that in a convergent
chain, the measures of two subsequences should be the equal. Assume there are
two subsequences for one parameter, {θA} and {θB}. The Geweke’s statistic is a
Z-score: the difference between the two sample means from the two subsequences
divided by its estimated standard error. Geweke (1992) proposed that when
the chain is stationary, the means of two subsequences are equal and Geweke’s
statistic has an asymptotically standard normal distribution,

Z =
θ̄A − θ̄B√

1
nA

ŜA + 1
nB

ŜB

d→ N(0, 1)

where θ̄A and θ̄B are the means of the two subsequences, ŜA and ŜB are the
variances of the two subsequences, and nA and nB are the numbers of iterations
of the two subsequences. The null hypothesis of equal location which indicates
convergence is rejected when Z is large (i.e., |Z| > 1.96). From the algorithm,
we can see that the Geweke’s diagnostic focuses on testing stationary rather
than mixing. One assumption underlying Geweke’s diagnostic is that the two
subsequences are asymptotically independent. Hence, Geweke (1992) suggested
taking the first 10% and the last 50%. Brooks and Gelman (1998) stated that
the choice of two subsequences was arbitrary, and no general guidelines were
available. Same as PSRF, the Geweke’s diagnostic is for each parameter, and
there is no multivariate version of Geweke’s diagnostic. Hence, with Geweke’s
diagnostic, it is challenging to ensure all parameters converge and it is difficult
to interpret the results when only part of the parameters converge.

2 Simulation Study

To answer the three questions raised in the introduction section, we conducted
five simulation studies to explore the performances of Gelman and Rubin’s di-
agnostic (PSRF), Brooks and Gleman’s Multivariate diagnostic (MPSRF), and
Geweke’s diagnostic when (1) convergence should not be an issue (the null hy-
pothesis is true) and (2) the chains should not converge (the null hypothesis
is false). In the first condition, to ensure that the null hypothesis was true,
we drew parameters from their analytically derived marginal posterior distribu-
tions to ensure convergence. In this way, convergence could be guaranteed. More
specifically, a regression model and a multivariate normal model were considered
and the Type I error rates of the studied diagnostic methods were evaluated. In
the second condition, to ensure that the null hypothesis was false and the gen-
erated Markov chains would not converge, we used unidentified models, given
that unidentified models were not estimable and estimation algorithms to these
models generally would not converge. We considered a factor analysis model
and investigated Type II error rates in this condition. The simulation code is
available at https://github.com/hduquant/Convergence-Diagnostics.git.

We considered seven criteria in checking convergence based on the three
diagnostics: (1) whether MPSRF was larger than 1.1 (MPSRF > 1.1), (2)

https://github.com/hduquant/Convergence-Diagnostics.git
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whether any upper bound of PSRF was larger than 1.1 (PSRFupper > 1.1),
(3) whether more than 5% of all parameters’ the upper bounds of PSRFs were
larger than 1.1 (PSRFupper,5% > 1.1), (4) whether any PSRF was larger than
1.1 (PSRF > 1.1), (5) whether more than 5% of all parameters’ PSRFs were
larger than 1.1 (PSRF5% > 1.1), (6) whether any Geweke test statistic was
larger than 1.96 or smaller than -1.96 (|Geweke| > 1.96), (7) whether more
than 5% of Geweke test statistics were larger than 1.96 or smaller than -1.96
(|Geweke|5% > 1.96). If the answer was yes, we concluded that the MCMC
chains failed to converge. We used 1.1 as the cutoff for MPSRF because there
was no specific guideline in the literature. To mimic the cutoff for the upper
bound of PSRF, we adopted 1.1.

We considered PSRFupper,5% > 1.1, PSRF5% > 1.1, and |Geweke|5% > 1.96
because when there are a large amount of parameters to be estimated, we
may increase our tolerance for “significant” results per analysis. Specifically,
we claimed nonconvergence at the analysis level if more than 5% of the con-
vergence assessments based on the PSRFs, the upper bounds of PSRFs, or the
Geweke’s diagnostic were found to yield “significant” results (i.e., PSRF5% >
1.1, PSRFupper,5% > 1.1, and |Geweke|5% > 1.96). For PSRFupper > 1.1,
PSRF > 1.1, and |Geweke| > 1.96, we concluded non-convergence as any upper
bound of PSRF, any PSRF, or any Geweke’s value was above its corresponding
cutoff.

An ideal diagnostic method was expected to yield a rejection rate of 5%
across replications when the null hypothesis was true. When the null hypothe-
sis was false, the ideal diagnostic method was expected to correctly reject the
null hypothesis as frequently as possible. That is, the Type II error rates were
expected to be as small as possible. We used two MCMC chains with different
starting values to calculate PSRF and MPSRF. Based on one of the chains, we
calculated Geweke’s diagnostic values.

2.1 Type I Error Rates: Regression

We considered a multiple regression model with N individuals and p predictors,

y = Xβ + e,

where e ∼ N
(
0, Iσ2

)
and X ∼ N (0, I). In the simulation, σ2 = 0.25. The

population intercept and slopes (β) were all 1. We used the Jeffreys priors for
the residual variance and each regression coefficient,

f(β) ∝ 1,

f(σ2) ∝
(
σ2
)−1

.

Denote β̂ = (X ′X)
−1

X ′y and σ̂2 = 1
N−p−1

(
y −Xβ̂

)′ (
y −Xβ̂

)
. The marginal

posterior distribution of σ2 is an inverse-Gamma distribution,

f(σ2|X,y) = IG

(
N − p− 1

2
,
(N − p− 1) σ̂2

2

)
.
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The marginal posterior distribution of β is a multivariate student-t distribution,

f(β|X,y) = tN−p−1

(
β̂, σ̂2 (X ′X)

−1
)
.

The number of parameters to be estimated was p+2 (p slopes, 1 intercept, and
1 residual variance). We varied the sample size N (N = 100, 200, 500, and 1000)
and the number of predictors p (p = 5, 10, 50, 80, 90, and 100). The conditions
of N were nested within p because N should be larger than p to ensure model
identification. We calculated the seven criteria when the number of iterations (n)
was 100, 500, 103, 3×103, 5×103, 104, 5×104, and 105. We report the proportions
of rejecting the convergence (false rejection rates or empirical Type I Error rates)
across 1000 replications of PSRFupper > 1.1 and PSRFupper,5% > 1.1 in Table
1, the rejection rates of PSRF > 1.1 , PSRF5% > 1.1, and MPSRF > 1.1 in
Table 2, and the rejection rates of |Geweke|5% > 1.96 and |Geweke| > 1.96 in
Table 3. We omit the columns of the number of iterations where all rejection
rates are 0.

We summarized our findings as below and in Table 4. First, more iterations
(i.e., larger n) helped reach convergence conclusions for all seven indices (see
Tables 1-3). The rejection rates (empirical Type I error rates) generally decreased
as the number of iterations increased. When the number of iterations was 100
and the number of predictors was 100, MPSRF even could not be calculated
because W in Equation (2) was not positive definite. The rejection rates from
the five indices based on PSRF and MPSRF went down to 0% instead of 5%
as the number of iterations became larger. It is consistent with the conclusion
from Gelman and Rubin (1992) that using the upper bound of PSRF or PSRF
should be too conservative.

Second, whether allowing the upper bound of PSRF, PSRF, or Geweke’s di-
agnostic to reject convergence by 5% of the parameters (PSRFupper,5% > 1.1,
PSRF5% > 1.1, and |Geweke|5% > 1.96) in each analysis depended on the num-
ber of parameters. When the number of parameters (p) was smaller than 20, it
was impossible to reject 5% of the parameters’ convergences since 20× 5% = 1
and we could not reject < 1 number of parameters. Hence, when p ≤ 20, there
is no need to distinguish PSRFupper,5% > 1.1 vs. PSRFupper > 1.1, PSRF5% >
1.1 vs. PSRF > 1.1, |Geweke|5% > 1.96 vs. |Geweke| > 1.96. In other words,
PSRFupper,5% > 1.1 is equivalent to PSRFupper > 1.1, PSRF5% > 1.1 is equiv-
alent to PSRF > 1.1, |Geweke|5% > 1.96 is equivalent to |Geweke| > 1.96
(see Tables 1-3). When p ≥ 50, as expected, allowing 5% significant results
per dataset had lower rejection rates than not allowing any significant results
per dataset. But this difference only appeared when the number of iterations
was small. When the number of iterations was 1000, both the rejection rates
from PSRFupper,5% > 1.1 and PSRFupper > 1.1 were below 5% (see Table
1), and when the number of iterations was 500, both the rejection rates from
PSRF5% > 1.1 and PSRF > 1.1 were all below 5% (see Table 2). Additionally,
with PSRFupper > 1.1, PSRF > 1.1, MPSRF > 1.1, and |Geweke| > 1.96,
it was more difficult to reach the convergence conclusion with more parame-
ters since we held a strict criteria by not allowing any significant results. But
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Table 1: Empirical Type I Error Rates for PSRFupper,5% > 1.1 and
PSRFupper > 1.1 in the Regression Study

N p PSRFupper,5% > 1.1 PSRFupper > 1.1

100 500 103 100 500 103 3× 103 5× 103

100 5 0.885 0.061 0 0.885 0.061 0 0 0
200 5 0.875 0.076 0.002 0.875 0.076 0.002 0 0
500 5 0.862 0.061 0.003 0.862 0.061 0.003 0 0
1000 5 0.867 0.066 0.002 0.867 0.066 0.002 0 0
100 10 0.966 0.104 0.003 0.966 0.104 0.003 0 0
200 10 0.965 0.099 0.005 0.965 0.099 0.005 0 0
500 10 0.973 0.116 0.006 0.973 0.116 0.006 0 0
1000 10 0.978 0.119 0.006 0.978 0.119 0.006 0 0
100 50 1 0.027 0 1.000 0.357 0.010 0 0
200 50 1 0.017 0 1.000 0.396 0.022 0 0
500 50 1 0.013 0 1.000 0.361 0.012 0 0
1000 50 1 0.011 0 1.000 0.368 0.009 0 0
100 80 0.999 0.024 0 1.000 0.453 0.023 0 0
200 80 1 0.004 0 1.000 0.540 0.023 0 0
500 80 1 0.003 0 1.000 0.526 0.023 0 0
1000 80 1 0 0 1.000 0.531 0.014 0 0
100 90 0.998 0.045 0.001 1.000 0.442 0.040 0.005 0.003
200 90 1 0.005 0 1.000 0.578 0.022 0 0
500 90 1 0.003 0 1.000 0.574 0.014 0 0
1000 90 1 0.005 0 1.000 0.581 0.026 0 0
200 100 - 0.006 0 - 0.595 0.030 0 0
500 100 - 0 0 - 0.610 0.021 0 0
1000 100 - 0.001 0 - 0.613 0.028 0 0

Note. “-” indicates that only few replications had results in that condition, therefore
the Type I error rates were not reliable and thus not reported.

for PSRFupper,5% > 1.1 and PSRF5% > 1.1, it could be easier to reach the
convergence conclusion with more parameters.

Third, not surprisingly, using PSRF to assess convergence was more con-
servative than using the upper bound of PSRF. With the same number of it-
erations, the rejection rates from PSRFs were lower than those from the up-
per bounds of PSRFs (see Tables 1 and 2). Fourth, MPSRF was sensitive to
the number of estimated parameters. When p ≥ 80, the rejection rates from
MPSRF > 1.1 were high (e.g., 0.706) and 3000 iterations were needed to re-
duce the rejection rates below 5% (see Table 2). Fifth, the Geweke’s convergence
diagnostic, |Geweke|5% > 1.96 and |Geweke| > 1.96, tended to overestimate
non-convergence. Even 105 iterations failed to reduce the rejection rates below
5%.
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Table 2: Empirical Type I Error Rates for PSRF5% > 1.1, PSRF > 1.1, and
MPSRF > 1.1 in the Regression Study
N p PSRF5% > 1.1 PSRF > 1.1 MPSRF > 1.1

100 100 500 103 3× 103 5× 103 100 500 103

100 5 0.167 0.167 0 0 0 0 0.262 0 0
200 5 0.143 0.143 0 0 0 0 0.218 0 0
500 5 0.148 0.148 0 0 0 0 0.243 0 0
1000 5 0.130 0.13 0 0 0 0 0.222 0 0
100 10 0.261 0.261 0 0 0 0 0.674 0 0
200 10 0.237 0.237 0 0 0 0 0.699 0 0
500 10 0.232 0.232 0 0 0 0 0.64 0 0
1000 10 0.217 0.217 0 0 0 0 0.655 0 0
100 50 0.124 0.604 0 0 0 0 1 0.638 0
200 50 0.111 0.649 0 0 0 0 1 0.654 0
500 50 0.123 0.664 0 0 0 0 1 0.647 0
1000 50 0.120 0.659 0 0 0 0 1 0.674 0
100 80 0.103 0.701 0 0 0 0 1 0.999 0.144
200 80 0.041 0.802 0 0 0 0 1 1 0.158
500 80 0.041 0.824 0 0 0 0 1 0.998 0.152
1000 80 0.037 0.844 0 0 0 0 1 1.000 0.133
100 90 0.187 0.781 0.038 0.009 0.003 0.003 1 1.000 0.372
200 90 0.070 0.845 0 0 0 0 1 1.000 0.413
500 90 0.058 0.852 0 0 0 0 1 1.000 0.375
1000 90 0.056 0.861 0 0 0 0 1 1.000 0.408
200 100 - - 0 0 0 0 - 1.000 0.692
500 100 - - 0 0 0 0 - 1.000 0.661
1000 100 - - 0 0 0 0 - 1.000 0.706
Note. Same as Table 1.
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2.2 Type I Error Rates: Multivariate Normal

We considered a multivariate normal model with N individuals and p variables
(x ∼ N (µ,Σ)). The population mean (µ) was a vector of 0 and the population
covariance matrix (Σ) had variances of 1 and covariances of 0.3. We used the
Jeffreys priors for the mean and covariance matrix,

f (µ,Σ) ∝ |Σ|−(p+1)/2.

The marginal posterior distribution of Σ was an inverse-Wishart distribution,

f (Σ|x) ∼ IW (n− 1,S) ,

where S =
∑n

i=1 (xi − x̄) (xi − x̄)
′
and x̄ was the sample mean. The marginal

posterior distribution of µ is a multivariate student-t distribution,

f (µ|x) ∼ tn−p (x̄,S/ (n (n− p))) .

The number of parameters to be estimated was p (p+ 1) /2 + p (i.e., p mean
structure components and p (p+ 1) /2 variance-covariance structure components).
We varied the sample size N (N = 100, 200, 500, and 1000) and the number of
variables p (p = 5, 10, 12, and 20). Similar to the multiple regression case, the
conditions of N were nested within p because N should be larger than p to en-
sure convergence. We calculated the seven criteria when the number of iterations
(n) ranged from 100 to 105.

We report the proportions of rejecting the convergence (empirical Type I
error rates ) across 1000 replications of seven criteria in Table 5 and omit the
columns of n where all rejection rates are 0. All findings were consistent with the
findings in the regression case. We summarized the findings in Table 4. Since the
number of parameters was relatively high in the multivariate normal case (e.g.,
when p = 5, the number of parameters was 20), the difference of the rejection
rates between indices allowing 5% significant results in an analysis and indices
not allowing any significant results was larger than the regression case. But again
this difference only appeared when the number of iterations was small.

2.3 Type II Error Rates: Factor Analysis

We considered a confirmatory factor analysis model with one factor (also called
latent variable) and five manifest variables. x was simulated from a confirmatory
factor analysis (CFA) model

x = µ+Λξ + ε, (3)

where µ was a vector of 0, Λ was a 5 × 1 vector of factor loadings, ξ was a
scalar of factor scores, and ε was a 5 × 1 vector of independent measurement
errors for 5 manifest variables. Let Φ = cov (ξ) and Ψ = cov (ε), then the
corresponding population covariance matrix of x was Σ = ΛΦΛ′ + Ψ. In the
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Table 5: Empirical Type I Error Rates for PSRFupper,5% > 1.1, PSRFupper >
1.1, PSRF5% > 1.1, PSRF > 1.1, MPSRF > 1.1, |Geweke|5% > 1.96, and
|Geweke| > 1.96 in the Multivariate Normal Study
N p PSRFupper,5% PSRFupper > 1.1 PSRF5% PSRF MPSRF > 1.1

> 1.1 > 1.1 > 1.1

100 500 100 500 103 100 100 100 500 103 3× 103

100 5 0.957 0.033 0.992 0.16 0 0.104 0.319 0.985 0 0 0
200 5 0.965 0.029 0.998 0.146 0.003 0.097 0.334 0.982 0.001 0 0
500 5 0.940 0.034 0.988 0.149 0.003 0.095 0.331 0.971 0 0 0
1000 5 0.948 0.027 0.991 0.150 0.007 0.084 0.338 0.976 0 0 0
100 10 0.998 0.036 1.000 0.411 0.008 0.134 0.682 1 0.954 0.007 0
200 10 1.000 0.018 1.000 0.374 0.015 0.108 0.683 1 0.961 0.011 0
500 10 0.998 0.028 1.000 0.396 0.015 0.102 0.676 1 0.955 0.012 0
1000 10 1.000 0.022 1.000 0.384 0.006 0.103 0.637 1 0.965 0.002 0
200 12 1.000 0.028 1.000 0.506 0.020 0.092 0.77 1 1 0.36 0
500 12 1.000 0.019 1.000 0.443 0.016 0.103 0.752 1 1 0.344 0
1000 12 1.000 0.026 1.000 0.461 0.013 0.095 0.764 1 1 0.32 0
500 20 - 0.012 - 0.745 0.044 - - - 1 1 0.009
1000 20 - 0.015 - 0.733 0.051 - - - 1 1 0.005

|Geweke|5% > 1.96

100 500 103 3× 103 5× 103 104 5× 104 105

100 5 0.514 0.359 0.314 0.269 0.279 0.291 0.245 0.246
200 5 0.560 0.376 0.327 0.291 0.275 0.242 0.250 0.230
500 5 0.543 0.346 0.334 0.280 0.280 0.273 0.264 0.255
1000 5 0.538 0.369 0.310 0.281 0.251 0.258 0.259 0.254
100 10 0.764 0.544 0.453 0.402 0.393 0.359 0.395 0.356
200 10 0.760 0.499 0.464 0.384 0.385 0.391 0.367 0.402
500 10 0.787 0.536 0.495 0.412 0.407 0.387 0.358 0.384
1000 10 0.777 0.555 0.476 0.391 0.390 0.348 0.370 0.363
200 12 0.820 0.567 0.499 0.424 0.466 0.405 0.408 0.384
500 12 0.819 0.613 0.527 0.440 0.394 0.411 0.417 0.411
1000 12 0.835 0.620 0.523 0.454 0.448 0.395 0.372 0.381
500 20 0.905 0.631 0.500 0.453 0.393 0.410 0.383 0.376
1000 20 0.911 0.642 0.528 0.460 0.420 0.410 0.381 0.352

|Geweke| > 1.96

100 500 103 3× 103 5× 103 104 5× 104 105

100 5 0.808 0.693 0.620 0.588 0.606 0.592 0.555 0.566
200 5 0.834 0.693 0.658 0.629 0.593 0.578 0.532 0.564
500 5 0.818 0.682 0.652 0.600 0.586 0.599 0.574 0.566
1000 5 0.814 0.691 0.635 0.592 0.577 0.579 0.561 0.554
100 10 0.991 0.963 0.936 0.913 0.898 0.892 0.903 0.893
200 10 0.991 0.959 0.937 0.895 0.893 0.908 0.893 0.885
500 10 0.988 0.956 0.944 0.904 0.913 0.896 0.899 0.902
1000 10 0.992 0.968 0.947 0.918 0.896 0.888 0.891 0.901
200 12 0.996 0.984 0.978 0.951 0.951 0.951 0.949 0.951
500 12 0.999 0.989 0.981 0.967 0.948 0.950 0.967 0.956
1000 12 0.997 0.989 0.984 0.965 0.953 0.966 0.938 0.950
500 20 1.000 0.998 0.999 0.999 0.998 0.999 0.999 1.000
1000 20 1.000 0.999 1.000 1.000 1.000 0.998 0.997 0.998
Note. Same as Table 1.
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simulation, Λ = (0.75, 0.75, 0.8, 0.85, 0.95)
′
and ξ ∼ N(0, 1). Ψ was calculated

to ensure that the diagonal elements of Σ were 1.
Because latent variables are unobserved, their measurement units must be

specified by researchers. There are two ways to fix the measurement units of
latent variables. The first way is that for each latent variable, one of the corre-
sponding manifest variables should have a factor loading of 1. The alternative
option is that the variances of all latent variables are fixed at 1. We aimed to
create a condition where the model is not identified and thus the MCMC chains
should not converge, and thus we did not put any constraints. We freely esti-
mated all of the 5 factor loadings and the factor variance. Hence, there were
11 parameters to be estimated (5 factor loadings, 5 residual variances, and 1
factor variance). Besides non-identification issue due to freely estimating all pa-
rameters, sign reflection invariance can also cause non-identification. Sign reflec-
tion invariance refers to a phenomenon where the signs of factor loadings and
their associated factors change simultaneously while the model fit remains the
same (Erosheva and Curtis, 2017). In the Bayesian framework, sign reflection
invariance may result in multimodality in posterior distributions and cause non-
convergence. A typical solution is to place positivity constraints on the priors of
loadings to ensure that a loading per factor is positive. We considered both the
positivity constraint case which could avoid sign reflection invariance and the
case without a positivity constraint where non-identification was due to both
freely estimating all parameters and sign reflection invariance.

We considered several widely used noninformative priors:Φ ∼ IG (0.001, 0.001),
each diagonal element in Ψ followed IG (0.001, 0.001), and each element in Λ
followed N

(
0, 106

)
without a positivity constraint or followed Uniform

(
0, 106

)
with a positivity constraint. There were no analytical forms for the posterior
distribution. Hence, we used the Gibbs sampling algorithm to estimate the vari-
ables one at a time in a sequence (Gelfand and Smith, 1990) and the Metropolis-
Hastings algorithm (Gilks et al., 1996; Hastings, 1970) to empirically construct
the posterior distributions. In Gibbs sampling and Metropolis-Hastings algo-
rithm, a number of early iterations before convergence should be discarded (i.e.,
burn-in period) since they are not representative samples of the target distri-
bution (Gelman et al., 2014; Lynch, 2007). Although in our case the MCMC
chains should not converge regardless of the length of burn-in period, we still
discarded the first 1000 iterations and used the first half of the left chain as a
second burn-in period. The sample size N varied as 100, 200, 500, or 1000. With
11 parameters, it was impossible to reject the null that assumed convergence
for 5% of the parameters, because 11 ∗ 5% < 1. Therefore, we did not consider
PSRFupper,5% > 1.1, PSRF5% > 1.1, and |Geweke|5% > 1.96 in this condi-
tion. When any upper bound of PSRF was larger than 1.1 (PSRFupper > 1.1),
any PSRF was larger than 1.1 (PSRF > 1.1), or any absolute value of the
Geweke’s diagnostic was larger than 1.96 (|Geweke| > 1.96), we concluded
non-convergence. We calculated the Type II error rates of PSRFupper > 1.1,
PSRF > 1.1, MPSRF > 1.1, and |Geweke| > 1.96 when the number of iter-
ations after the two burn-in periods was from 250 to 5 × 104. Note that even
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un-identified model can still generate converged results by coincidence. Hence,
the Type II error rates indeed are generally underestimated.

Positivity Constraint We first focus on the case with positivity constraints
on factor loadings. We report the false acceptance rates (the empirical Type II
error rates) across 1000 replications of the four indices in Table 6. As shown
in Table 6, as the sample size (N) decreased, the Type II error rates increased
in all four indices. This is because as the sample size decreased, the amount of
information in the data became smaller compared to that in the prior. Conse-
quently, Bayesian methods increasingly relied on the prior, which was stationary
per se. The stationary prior would make the resulting Markov chains appear to
be stationary when prior was heavily weighted.

Table 6: Empirical Type II Error Rates for PSRFupper > 1.1 , PSRF > 1.1,
MPSRF > 1.1, and |Geweke| > 1.96 in the Factor Analysis Study with a
Positivity Constraint

PSRFupper > 1.1

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.001 0.003 0.011 0.023 0.037 0.129 0.223
100 0.003 0.002 0.003 0.006 0.011 0.037 0.082
200 0 0.001 0.002 0.003 0.002 0.018 0.019
500 0 0 0.002 0.001 0.001 0.001 0.003
1000 0 0 0.001 0.001 0 0 0

PSRF > 1.1

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.010 0.015 0.048 0.074 0.091 0.258 0.374
100 0.008 0.014 0.023 0.020 0.039 0.099 0.192
200 0.001 0.003 0.009 0.011 0.014 0.038 0.043
500 0.002 0.002 0.005 0.005 0.004 0.011 0.014
1000 0 0 0.003 0.001 0.001 0.002 0.001

MPSRF > 1.1
N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.011 0.021 0.075 0.143 0.210 0.583 0.730
100 0.005 0.013 0.043 0.039 0.077 0.269 0.498
200 0.001 0.006 0.012 0.015 0.024 0.077 0.131
500 0 0.003 0.006 0.008 0.01 0.017 0.029
1000 0 0.001 0.005 0.003 0.001 0.003 0.002

|Geweke| > 1.96

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.059 0.116 0.095 0.096 0.188 0.260 0.343
100 0.068 0.105 0.071 0.136 0.112 0.190 0.174
200 0.066 0.091 0.119 0.082 0.046 0.063 0.096
500 0.117 0.094 0.134 0.128 0.136 0.098 0.053
1000 0.107 0.142 0.167 0.152 0.156 0.117 0.094
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Besides quantitative diagnostic methods, the trace plot method could pro-
vide another piece of information. Figure 1 presents the trace plots of the 11
parameters when N = 50 with 105 iterations after the initial burn-in period. In
this replication, different indices gave inconsistent conclusion: the upper bound of
RSPF of the factor variance was 1.32, but the MRSPF was 1.07 and the absolute
values of Geweke of all parameters were within 1.15. The trace plots for the fac-
tor variance and the 5th residual variance in Figure 1 showed several high peaks
and were somewhat truncated at 0. This pattern is suspicious, which may be the
signal of non-convergence, although MRSPF and Geweke’s diagnostic indicated
convergence in this case. Thus, we suggest using both quantitative diagnostics
and visual inspection in practice. When the sample size N became large, the
prior information could not bound the posterior distributions. As shown in Fig-
ure 2, when N = 1000, the posterior samples of factor loadings kept going up
and the two chains did not mix, and the posterior samples of factor variances
were almost fixed at 0. In this case, the PSRFs (and their upper bounds) for
factor loadings and factor variance and MPSRF were above 1.1, and the several
absolute values of the Geweke’s diagnostic (especially for the factor loadings and
factor variance) were larger than 1.96.

We summarize other conclusions as below. First, for PSRFupper > 1.1,
PSRF > 1.1, and MPSRF > 1.1, more iterations made reaching conver-
gence conclusions easier and thus increased the Type II error rates. More itera-
tions increased the Type II error rates for |Geweke| > 1.96 when N was small.
Second, because using PSRF is less conservative than using the upper bound,
PSRF > 1.1 had larger Type II error rates compared to PSRFupper > 1.1.
MPSRF > 1.1 also had larger Type II error rates than PSRFupper > 1.1.
Third, with the positivity constraint, |Geweke| > 1.96 had similar Type II error
rates as PSRF > 1.1.

No Positivity Constraint Now we move to the case without a positivity
constraint on factor loadings where sign reflection invariance could cause non-
convergence. We report the Type II error rates without a positivity constraint
across 1000 replications of the four indices in Table 7. To better illustrate the
posterior samples, Figure 3 presents the trace plots of the 11 parameters when
N = 1000 without a positivity constraint. The two chains of factor loadings did
not mix well. PSRF and MPSRF can test whether multiple chains mix well,
whereas Geweke’s test cannot test this feature of the posterior samples. As a
consequence, the Type II error rates of |Geweke| > 1.96 were much larger than
PSRFupper > 1.1 , PSRF > 1.1, and MPSRF > 1.1, which was different from
the positivity constraint case. Similar to the positivity constraint case, PSRF >
1.1 and MPSRF > 1.1 had larger Type II error rates than PSRFupper > 1.1.

3 Conclusion

Bayesian statistics has grown vastly and has been widely used in psychologi-
cal studies in recent decades given the surge in computational power. Conver-
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Figure 1: Trace Plots when N = 50 with a Positivity Constraint in Factor Anal-
ysis
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Figure 2: Trace Plots when N = 1000 with a Positivity Constraint in Factor
Analysis
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Figure 3: Trace Plots when N = 1000 without a Positivity Constraint in Factor
Analysis



68 H. Du et al.

Table 7: Empirical Type II Error rates for PSRFupper > 1.1 , PSRF > 1.1,
MPSRF > 1.1, and |Geweke| > 1.96 in the Factor Analysis Study without a
Positivity Constraint

PSRFupper > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0 0 0.002 0.044 0.043 0.165 0.207
100 0 0 0.008 0.019 0.03 0.07 0.243
200 0 0.002 0.004 0.013 0.073 0.163 0.243
500 0 0 0 0.001 0.006 0.022 0.051
1000 0 0 0 0.001 0.006 0.047 0.059

PSRF > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.004 0 0.005 0.142 0.12 0.241 0.302
100 0.006 0.002 0.038 0.05 0.11 0.182 0.371
200 0 0.006 0.025 0.031 0.187 0.342 0.436
500 0 0 0.003 0.004 0.015 0.056 0.104
1000 0 0 0.001 0.001 0.021 0.115 0.125

MPSRF > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.003 0.001 0.011 0.268 0.271 0.431 0.438
100 0.009 0.002 0.05 0.112 0.206 0.478 0.54
200 0.001 0.007 0.037 0.069 0.347 0.645 0.728
500 0 0 0.003 0.006 0.031 0.109 0.21
1000 0 0 0.001 0.003 0.028 0.261 0.276

|Geweke| > 1.96

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.28 0.022 0.159 0.176 0.14 0.76 0.698
100 0.128 0.011 0.374 0.623 0.379 0.592 0.454
200 0.037 0.193 0.018 0.281 0.303 0.402 0.836
500 0.207 0.464 0.195 0.371 0.044 0.555 0.873
1000 0.041 0.088 0.228 0.012 0.101 0.378 0.135
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gence assessment is critical to Markov chain Monte Carlo (MCMC) algorithms.
Without appropriate convergence assessment, we cannot make reliable statisti-
cal inferences from the MCMC samples. Various quantitative diagnostic methods
have been proposed for assessing convergence. The general recommendation is
to use all the possible diagnostics because no method outperforms the others
consistently. We endorse this recommendation if applying all diagnostic meth-
ods is feasible. However, there are situations where we cannot perform multiple
convergence diagnostics. For example, in simulation studies, researchers rarely
use multiple diagnostics to check convergence for all replications because it is
time-consuming. Additionally, some software only provides one convergence di-
agnostic (e.g., BUGS and Mplus) and has created barriers for applied researchers
to perform all convergence assessments. We do not object to the use of multiple
or all convergence diagnostics simultaneously, but we would like to provide a
guideline for applied researchers when resources are limited and it is not possi-
ble to perform multiple diagnostics. In the current paper, we focused on Gelman
and Rubin’s diagnostic (PSRF), Brooks and Gleman’s multivariate diagnostic
(MPSRF), and Geweke’s diagnostic.

Previous studies that reviewed and/or compared different convergence di-
agnostics using hypothetical examples did not study their statistical properties
such as Type I error rates and Type II error rates (Brooks and Roberts, 1998;
Cowles and Carlin, 1996; El Adlouni et al., 2006). In this study, we evaluated
these two statistical properties of the seven diagnostic criteria via simulation
studies. Based on the results of simulation studies, we obtained a better under-
standing of the answers to the three unsolved questions listed in the introduction
section. For the first question, if we only can choose one diagnostic, which one
should we used? We recommend the upper bound of PSRF for three reasons.
First, in terms of the Type I error rates, the upper bound of PSRF and PSRF
required fewer iterations to achieve an acceptable Type I error rate (≤ 5%),
compared to MPSRF the Geweke’s diagnostic (see Table 4). Second, in terms of
the Type II error rates, PSRF led to higher Type II error rates than the upper
bound of PSRF when the model was unidentified and the MCMC chains could
not converge. PSRFupper > 1.1 had the smallest Type II error rates among
PSRFupper > 1.1 , PSRF > 1.1 , MPSRF > 1.1, and |Geweke| > 1.96. Over-
all, balancing both the Type I error rate and Type II error rate, we recommend
using the upper bound of PSRF. Third, PSRF and its upper bound could de-
tect non-convergence due to bad mixing (e.g., the sign reflection invariance case)
whereas Geweke’s diagnostic could not. But we also need to note that PSRF is
criticized for relying on over-dispersed starting values.

For the second question, when the number of estimated parameters is large,
should we rely on the diagnostic per parameter (i.e., PSRF) or the multivariate
diagnostic (i.e., MPSRF)? MPSRF yielded higher Type I and Type II error
rates than PSRF and the upper bound of PSRF. Therefore, we still recommend
the upper bound of PSRF over MPSRF.

For the third question, should we allow a small proportion of the parameters
(e.g., 5%) to have significant convergence test results but still claim convergence
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as a whole? Comparing PSRFupper,5% > 1.1 and PSRFupper > 1.1, the minimal
number of iterations to control the analysis-wise Type I error rates below 5% did
not differ dramatically. As the number of iterations increased, their Type I error
rates were the same (0%). It is also difficult to define how small the proportion
of the parameters should be in a widely acceptable way. In this paper, we used
5%, but one may would like to use 1% or 10%. Hence, we do not suggest allowing
a small proportion of the parameters to have significant convergence diagnosis
results but still claim convergence at the analysis level.

We echo the recommendation from previous studies, which advocate the use
of all possible diagnostics when software and computational source are available.
But when one has to choose one diagnostic, we recommend the upper bound of
PSRF (PSRFupper > 1.1). Even with a large number of parameters, we think it
is better not to allow a 5% Type I error rate within each analysis. Additionally,
we suggest using both quantitative diagnostics and visual inspection (e.g., trace
plot) because trace plots provide extra information. For example, in simulation
studies, one can randomly select several replications to check the trace plots,
combined with the convergence rates from quantitative diagnostics.

Note

The simulation code is available at https://github.com/hduquant/Convergence-
Diagno
stics.git. Correspondence should be addressed to Han Du, Pritzker Hall, 502
Portola Plaza, Los Angeles, CA 90095. Email: hdu@psych.ucla.edu.
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