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Abstract. Data science has maintained its popularity for about 20
years. This study adopts a bottom-up approach to understand what
data science is by analyzing the descriptions of courses offered by the
data science programs in the United States. Through topic modeling, 14
topics are identified from the current curricula of 56 data science pro-
grams. These topics reiterate that data science is at the intersection of
statistics, computer science, and substantive fields.

Keywords: Data Science · Topic Modeling · Data Science Curriculum.

1 Introduction

Data science has been a buzzword in the past two decades. However, the exact
meaning of data science has never been clear. In a statement by American Statis-
tical Association (ASA), it states “there is not yet a consensus on what precisely
constitutes data science” (Van Dyk et al., 2015). Hayashi (1998) is probably the
first formal attempt to define data science although the history of data science
practice is considerably longer (Donoho, 2017; Tukey, 1962).1 He argued that
“the aim of data science is to reveal the features or the hidden structure of
complicated natural, human and social phenomena with data” and data science
consists of “design for data, collection of data, and analysis on data.” To many,
this sounds like the characteristics of applied statistics (e.g., Broman, 2013; Sil-
ver, 2013). Not surprisingly, some have also argued that data science is actually
different from statistics. For example, Dhar (2013) pointed out that data sci-
ence is different from statistics in terms of data types and skills required. The

1 Tukey has used the term “data analysis” in his writing that is conceptually similar to
what data science does. Naur (1966) coined the term “datalogy” to call “the science
of the nature and use of data” and Naur (1974) provided a more detailed treatment
of data largely from a computer science perspective.
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current view of data science aligns more closely with what Cleveland (2001) has
described – data science consists of 25% Multidisciplinary Investigations, 20%
Models and Methods for Data, 15% Computing with Data, 15% Pedagogy, 5%
Tool Evaluation, and 20% Theory. Regardless of how it is perceived, data science
is now widely accepted as its own paradigm (Hey, Tansley, & Tolle, 2009).

Many data science degree programs emerged in the past few years. The Insti-
tute for Advanced Analytics (IAA) at North Carolina State University tracks the
master’s degrees in Data Science at universities based in the United States. By
its count, there are 78 data science programs in 2020.2 From a practical point of
view, it is probably more informative to understand what data science offers and
what it is constituted than its exact definition that might not be possible at all.
In the same ASA statement, Van Dyk et al. (2015) identified three foundations
to data science:

(i) Database Management enables transformation, conglomeration, and
organization of data resources.
(ii) Statistics and Machine Learning convert data into knowledge.
(iii) Distributed and Parallel Systems provide the computational infras-
tructure to carry out data analysis.

In a review of the history of data science, Donoho (2017) coined the “Greater
Data Science” field with six divisions: data exploration and preparation, data
representation and transformation, computing with data, data modeling, data
visualization and presentation, and science about data science. Some empiri-
cal studies also tried to understand what skills and knowledge are needed in
jobs (e.g., Cegielski & Jones-Farmer, 2016) and taught in degree programs (e.g.,
Gorman & Klimberg, 2014; Song & Zhu, 2016).

More recently, Fayyad and Hamutcu (2020) proposed a “Data Science Knowl-
edge Framework” aiming to support industry standardization and building mea-
surement and assessment methodologies for data science professionals. The frame-
work identified two domains in analytics and data science: Science and Math,
and Programming and Technology. Within the Science and Math domain, they
identified the following seven fields: Scientific Method, Mathematics, Computer
Science, Statistics, Operations Research & Optimization, Data Preparation and
Exploration, and Machine Learning. The Programming and Technology domain
has four fields: General Purpose Computing, Scientific Computing, Database &
Business Intelligence, and Big Data. Fayyad and Hamutcu (2020) also provided
a list of subjects for each field with example topics.

However, Fayyad and Hamutcu (2020) did not provide much empirical sup-
port to their knowledge framework. The existing empirical studies (e.g., Gorman
& Klimberg, 2014; Song & Zhu, 2016) on data science curricula were conducted
several years ago without considering the newly emerged programs. The goal of
this study is to empirically examine the current data science programs to hope-
fully better understand and define what data science is. The rest of this paper

2 We consider the data analytics and business analytics programs as different from
data science programs.
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is structured as follows. In Section 2, we present our data collection method
and data analysis procedure. In Section 3, we report the results from our data
analysis. In Section 4, we discuss our findings.

2 Methods

2.1 Data Collection

IAA keeps an up-to-date track of graduate degree programs in analytics, busi-
ness analytics, and data science offered in the US.3 From it, we identified 74
programs from 74 universities, one program from each university, with the term
“data science” in their names.4 The actual names of the programs have 17 dif-
ferent varieties such as M.S. in Data Science, M.S.E. in Data Science, M.S. in
Computational Data Science, and M.S. in Data Science and Business Analytics.
Many data science programs offer different concentrations. For example, Depaul
University started its M.S. in Data Science program in 2010 and now has four
concentrations: Computational Methods, Health Care, Hospitality, and Market-
ing.

For each program, we looked through its website and downloaded the infor-
mation on the courses offered and the description of each course in one of the
following two ways. For the majority of the programs, we used Python to down-
load the course information automatically. For the rest, we saved the information
manually.

2.2 Data Preprocessing

The 74 programs offered a total of 2,022 courses after removing the same courses
listed in different concentrations by the same programs. Different programs can
offer the courses with the same names. For example, Machine learning, Data
visualization, and Data mining are offered by 28, 19, and 18 programs, respec-
tively, with the exact same names. However, the contents taught in these courses
can be different. Only 58 of the 74 programs provided descriptions of the courses
they offered at the time of our data collection. In total, 1,383 courses were found
to have description information. For some courses, the descriptions were very
brief. For example, for one course Scripting Languages, its description was “Sur-
vey of current business analytics scripting languages.” In this study, we removed
such courses with short or uninformative descriptions, which eventually resulted
in 1,276 courses from 56 programs.

Typical text data preprocessing steps (e.g., Hickman, Thapa, Tay, Cao, &
Srinivasan, 2020; Vijayarani, Ilamathi, Nithya, et al., 2015) were taken to pre-
pare the course descriptions for further analysis. First, all words were converted
to lower cases and all numbers were removed. Second, we replaced abbreviations

3 https://analytics.ncsu.edu/?page id=4184
4 After our data analysis, IAA added four more programs from Old Dominion Univer-

sity, University of Colorado Boulder, University of Miami, and Utah State University.

https://analytics.ncsu.edu/?page_id=4184
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such as “GIS” with “geographic information systems”, and “ML” with “maxi-
mum likelihood” so that the same forms of terms were used in all descriptions.
Third, we combined some terms with the same or similar meaning such as both
“C” and “C++” to “cprogram” and “SQL”, “MySQL” and “NoSQL” to “sql”.
However, we did not conduct word-stemming except for changing all the words
in the plural forms to their singular forms because different forms of the words
might have different meanings. Fourth, we removed common stopwords such as
“a”, “the”, “about”, and “very”. Some frequently used words such as “students”,
“semester”, and “assignment” in course descriptions were not conventionally
considered as stopwords. However, they did not provide useful information and,
therefore, were removed before analysis.

2.3 Data Analysis

With the preprocessed data, we conducted both term frequency analysis and
topic modeling.

2.3.1 Term Frequency Analysis. We first tokenized the course descriptions
into individual words and analyzed the frequency of each word. A large frequency
shows that a word is more frequently used in the course descriptions and indi-
cates the importance of a topic that the word is associated with. After that,
we investigated the frequency of short phrases including two-word phrases such
as “data mining” and “machine learning”, three-word phrases such as “natural
language processing” and “support vector machine”, and four-word phrases such
as “Markov chain Monte Carlo” and “relational database management system”.

2.3.2 Topic Modeling. Topic modeling or topic models can be used to in-
vestigate the topics and associated words through mining text information. We
used topic modeling to identify the common topics in courses offered in data
science programs. Latent Dirichlet allocation (LDA; Blei, Ng, & Jordan, 2003)
is probably the most widely used method in topic modeling that allows the ob-
served text, in our case the course descriptions, to be explained by latent topics.
In LDA, each course description can be assumed as a mixture of a small number
of topics, and each word’s presence in the description is associated with one of
the topics.

One may argue that the name of a course would summarize the main topic
of the course. However, it is not necessarily the case based on our quick analysis
of the course descriptions. For example, a course was named “Advanced Data
Analysis.” First, the name itself was not informative. Second, its description
included topics on “data visualization techniques”, “dimension reduction tech-
niques”, and the use of “computer packages.” As we will show, these can be
viewed as three different topics. Through LDA, we explored how many common
topics the courses from many different data science programs cover.

Suppose there are a total of K topics in all courses. For a given course, it can
consist of one or all of the K topics with different probabilities. Let zkm be the
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kth (k = 1, . . . ,K) topic in the mth (m = 1, . . . ,M) course. zkm takes a value
between 1 and K. The topic from which a word n associated with is assumed to
be generated from categorical distribution

zmn ∼ Cat(θm)

with the topic probability θm = (θm1, θm2, . . . , θmK)′ for the course m. Note

that
∑K

k=1 θmk = 1. For example, if there are two topics, K = 2. Let wmn, n =
1, . . . , Nm,m = 1, . . . ,M , be the nth word and Nm be the total number of words
in the mth course description. wmn would take a value between 1 and V with V
being the total number of unique words used in all the course description. LDA
specifies that

wmn|zmn = k ∼ Cat(βk)

where βk = (βk1, βk2, . . . , βkV )′ is the probability that a word is used given the
topic k is discussed in a course.

The parameters θ and β in LDA models are typically not known and need to
be estimated. Both frequentist and Bayesian methods are available to estimate
the parameters. For example, Blei et al. (2003) proposed both efficient approx-
imate inference techniques based on variational methods and an EM algorithm
for empirical Bayes parameter estimation. In this study, we used the Bayesian
method based on Gibbs sampling for our data analysis.

In topic modeling, the number of topics is often unknown and needs to be
determined. In this study, c-fold cross-validation (CV) was used. The basic idea
of CV is to divide the data into c folds, or c subsets. Each time, one uses c−1 folds
of data to fit a topic model and then uses the left out fold of data to calculate the
statistic–perplexity–to evaluate the model fit (Grün & Hornik, 2011). This can
be done for different numbers of topics and the model with the close-to-smallest
perplexity can be chosen as the one with the optimal number of topics.

Although the LDA was initially conducted on individual words, research has
shown that including phrases of a sequence of words can lead to improved topic
quality (e.g., Lau, Baldwin, & Newman, 2013; Nokel & Loukachevitch, 2015).
Therefore, in our study, we included individual words, two-word phrases, and
three-word phrases in our topic model.

3 Results

3.1 Term Frequency

The word cloud in Figure 1 displays the 167 words that were used at least 50
times in the descriptions of the 1,276 courses after removing stopwords. Not
surprisingly, the most widely used word was “data”, for a total of 2,322 times.
The words “analysis”, “model”, “method”, “learning”, and “system” were each
used more than 500 times. Other commonly used words include “algorithm”,
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Figure 1: Frequency of individual words used in all course descriptions

“regression”, “modeling”, “programming”, and “visualization”. From the fre-
quency analysis, we can see the basic focuses of the data science courses in this
study were data analysis, modeling, and data visualization.

Figure 2 shows the top 30 most frequently used two-word phrases and three-
word phrases in all course descriptions. Each two-word phrase was used at least
29 times and each three-word phrase was used at least 7 times. These phrases are
generally names of analytical models and methods such as “machine learning”,
“data mining”, “linear regression”, “natural language processing”, and “princi-
pal component analysis”. We also looked into four-word phrases but only found
several to be informative including “markov chain monte carlo” (8 times), “rela-
tional database management system” (8 times), “unsupervised machine learning
algorithm” (3 times), and “multivariate time series analysis ” (3 times).

3.2 Topic Modeling

To determine the number of topics, we first conducted a 5-fold cross-validation.
We varied the number of topics from 2 to 25 and calculated the perplexity of
the model with a given number of topics. The R package topicmodels (Grün &
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Figure 2: Most frequently used phrases

Hornik, 2011) we used for LDA estimation was sensitive to the seed used for the
Gibbs sampling algorithm. Therefore, we tried 100 different seeds to get 100 sets
of results and then evaluated each set of result to get the best number of topics.
Figure 3 shows the perplexities of a topic model with different numbers of topics
based on one seed. From it, the model with 14 topics had the smallest perplexity
and the perplexity seemed to flatten out after 14 topics. For this particular seed,
we would conclude that the best model was the one with 14 topics. Using the
perplexity plot, we identified the number of topics for all 100 sets of analyses.
Among the 100 sets of analyses, the models with 11, 12, 13, 14, 15, 16, 17, and
18 topics were best models for 1, 7, 35, 27, 20, 4, 5, and 1 times, respectively,
based on the perplexity. Therefore, it suggested a model between 13 to 15 topics
was probably the best for the course descriptions. We then fitted the models
with 13, 14, and 15 topics and investigated the terms and courses associated
with each topic. All considered, we found that the model with 14 topics gave a
clear representation of different topics and therefore based our discussion on the
model with 14 topics.

To understand what each of the 14 topics represented, we first studied the
top 30 words and phrases associated with that topic. The topic words were
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selected based on the term-scores proposed by Blei and Lafferty (2009). Then,
we assigned each course to the highest likely topic and looked through the names
of the courses. Based on the analysis, we named the 14 topics, each of which can
be viewed as a course to be taught in a data science program. We also identified
the commonly taught subjects in each topic/course. We now discuss each of
the topics in terms of the most frequently used words and phrases. We will
also provide four example classes on each topic from the data science programs
analyzed in our study.

Topic 1. Ethics, Privacy, and Security. The first topic is related to research
ethics, privacy issues, and data security.5 The top relevant words and phrases
associated with the topic include information, management, security, system,
technology, collection, risk, information system, policy, privacy, spatial, ethical,
law, ethic, data collection, geographic information system, data management,
change, impact, individual, market, access, cost, technical, environment, manag-
ing, operation, quantitative, internet, and document. A course in this topic can
discuss subjects such as ethics and policy in data analysis, information policy
and ethics, data privacy and security, particularly in security and governance of
big data, and cyber data security and policy. Example classes include Behind the

5 Note that the order of the named topics might not be the same as the output of the
topic modeling in R and does not reflect the relative importance of the topics.
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Data: Humans and Values, Ethics of Big Data, Cyber Security Law & Policy,
and Ethics, Privacy, Security and Governance of Big Data.

Topic 2. Database Structure and Database Management. The second
topic is on database/data structure and database/data management. The top
relevant words and phrases associated with the topic include database, sys-
tem, relational, sql, distributed, parallel, query, architecture, hadoop, relational
database, processing, structured, database system, management, mapreduce,
memory, transaction, unstructured, storage, query language, database design,
management system, database management, file, warehousing, database man-
agement system, physical, unstructured data, managing, and selected. A course
in this topic can discuss subjects such as different types of database systems,
different types of data, database processing and information retrieval, database
management systems, big data, and data warehousing. Example classes include
Big Data and NoSQL Program, Large-Scale Database Systems, Principles of
Database Management Systems, and Databases and Data Management.

Topic 3. Data Visualization. The third topic is mainly about visualization,
graphical display of data, and exploratory data analysis. The top relevant words
and phrases associated with the topic include visualization, tool, principle, com-
munication, data visualization, effective, explore, visual, exploratory, graphic,
interactive, insight, exploratory data, exploratory data analysis, critical, per-
ception, technical, apply, aspect, dataset, biology, goal, complex, driven, find-
ing, human, trend, quantitative, environment, and graphical. A course in this
topic can discuss subjects such as data visualization techniques and tools, data
preparation and preprocessing methods, and types of statistical graphs. Example
classes include Data Visualization, Information Visualization and Infographics,
Visualization of Complex Data, and Data Presentation and Visualization with
R.

Topic 4. Algebra. The fourth topic mainly concerns algebra and optimiza-
tion methods. The top relevant words and phrases associated with the topic
include linear, system, function, space, component, matrix, transformation, vec-
tor, form, algebra, decomposition, map, reduction, properties, element, linear
algebra, spectral, principal, rprogram, dimensional, standard, clustering, cross,
dimension, computation, finding, theoretical, equation, primary, principal com-
ponent analysis. A course in this topic can discuss subjects such as linear and ma-
trix algebra, and numerical methods. Example classes include Numerical Linear
Algebra, Computational Algebra, Linear Programming, and Matrix Algorithms
for Data Science.

Topic 5. Mathematical Foundations and Modeling. This topic is on foun-
dation of mathematics and mathematical modeling. The top relevant words and
phrases associated with the topic include theory, mathematical, optimization,
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processes, simulation, financial, discrete, stochastic, finance, economic, engineer-
ing, modeling, equation, numerical, differential, integration, procedure, differen-
tial equation, classical, operation, calculus, transform, continuous, generation,
complexity, dynamic, function, complex, control, and matlab. A class on this
topic would focus on basic knowledge and foundations of mathematics, opti-
mization methods, and mathematical modeling. Example courses include Fun-
damentals of Computational Mathematics, Mathematical Modeling, Mathematics
for Data Scientists, and Simulation & Optimization.

Topic 6. Probability Theory and Statistical Inference. This topic is about
basic probability theory and statistical inference. The top relevant words and
phrases associated with the topic include statistical, statistic, distribution, esti-
mation, probability, inference, testing, random, bayesian, hypothesis, sampling,
variance, sample, hypothesis testing, variable, likelihood, interval, maximum,
conditional, parameter, nonparametric, bayes, maximum likelihood, measure,
statistical method, limit, prior, statistical inference, confidence, and statistical
analysis. A course in this topic would focus on traditional probability and in-
ference topics such as different types of distributions, random variables, sam-
pling distributions, hypothesis testing, and maximum likelihood method. Exam-
ple classes include Mathematical Statistics, Probability and Statistics for Data
Science, Bayesian Statistics, and Statistical Inference for Data Science.

Topic 7. Statistical Models. This topic focuses on different types of statistical
models for data analysis. The top relevant words and phrases associated with the
topic include model, regression, time series, multiple, linear regression, selection,
linear, variable, simple, statistical, logistic, forecasting, logistic regression, linear
model, parametric, response, regression model, factor, generalized, experimen-
tal, interpretation, time series analysis, hierarchical, modeling, multiple linear
regression, comparison, sequence, nonlinear, statistical method, and classical.
A course in this topic would discuss different types of statistical models such
as linear and generalized linear models. Example classes include Linear Models
for Data Science, Multivariate Data Analysis, Applied Regression Analysis, and
Experimental Design.

Topic 8. Statistical Software and Programming. This topic is related to
statistical software and basic programming for data analysis. The top relevant
words and phrases associated with the topic include programming, algorithm,
structure, graph, python, programming language, data structure, tree, match-
ing, flow, efficient, dynamic, complexity, sequence, sorting, object oriented pro-
gramming, matlab, framework, algorithmic, driven, advanced, code, operation,
dataset, package, internet, ethical, measurement, program, and single. A course
in this topic could teach how to use software such as R, MATLAB, and Python
for data analysis, software programming, and data computing. Example classes
include Statistical Programming in R, Systems and Technologies: Python, Python
for Data Analysis, and SAS Programming.
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Topic 9. Machine Learning and Deep Learning This topic is about ma-
chine learning and deep learning methods and techniques. The top relevant words
and phrases associated with the topic include learning, machine, machine learn-
ing, deep, neural network, neural, deep learning, supervised, unsupervised, clas-
sification, clustering, tree, artificial, support vector, unsupervised learning, sup-
port vector machine, learning algorithm, reinforcement learning, feature, graphi-
cal, reinforcement, learning method, decision tree, supervised learning, training,
support, mean, dimensionality, machine learning algorithm, and recognition. A
course on this topic would introduce different machine learning and deep learn-
ing methods and techniques. Example classes include Neural Networks and Deep
Learning, (Applied) Machine Learning, Machine Learning and Big Data, and
Deep Learning.

Topic 10. Business Analytics and Data Mining. This topic is about data
mining and business intelligence techniques and methods. The top relevant words
and phrases associated with the topic include business, decision, mining, data
mining, modeling, intelligence, pattern, predictive, classification, marketing, sup-
port, prediction, discovery, identify, association, customer, domain, bioinformat-
ics, tool, healthcare, clustering, organizational, implementing, organization, en-
terprise, life, topic, descriptive, implement, and exploration. Such a course would
be different from a course on machine learning and deep learning in terms of the
subjects taught. Example classes include Data Mining, Financial Data Mining,
Business Analytics and Data Mining, and Business Analytics Fundamentals.

Topic 11. Network Analysis and Text Mining. This topic is about net-
work analysis and text mining/natural language processing. The top relevant
words and phrases associated with the topic include network, language, social,
web, text, natural, processing, human, search, media, retrieval, natural language,
interaction, relationship, social network, natural language processing, language
processing, information retrieval, topic, social media, document, probabilistic,
indexing, extraction, graph, measure, standard, business, algorithm, and gener-
ation. A course on this topic can teach different types of network models, text
mining, and graph theory. Example classes include NLP: Computational Mod-
els of Social Meaning, Natural Language Processing, Text Mining, and Social
Network Analysis.

Topic 12. Cloud Computing and Big Data Analysis. This topic is on com-
puting in the cloud and analysis of big data. The top relevant words and phrases
associated with the topic include real, computing, world, program, cloud, rpro-
gram, practical, industry, technologies, apply, scale, platform, cloud computing,
real world data, dataset, life, aspect, framework, infrastructure, manipulation,
cluster, language, cleaning, storage, computation, experimental, survey, internet,
statistical method, and quantitative. A class on this topic would focus on how to
conduct cloud computing and how to mining data in the cloud. Example courses
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include Cloud Computing, Big Data Technologies, Big Data Analysis, and Cloud
Computing for Data Analytics.

Topic 13. Software Design and Software Engineering. This topic is about
software design and software engineering. The top relevant words and phrases
associated with the topic include design, software, advanced, implementation,
object, user, oriented, control, interface, implement, engineering, common, level,
survey, art, software development, package, effect, quality, cycle, code, libraries,
experiment, strategies, environment, access, model, exploration, relationship,
and real. A course on this topic can teach how to design and develop soft-
ware, software environment and fundamentals of programming. Example courses
include Programming for Data Science, Software Engineering, Introduction to
Software Development, and Computer Systems Programming.

Topic 14. Applications. This topic is related to the application of data sci-
ence in different disciplines particularly heath. A notable area is computer vision
and image processing. The top relevant words and phrases associated with the
topic include computer, computational, image, health, field, foundation, vision,
digital, processing, computer science, detection, public, level, goal, medical, the-
oretical, biological, domain, object, recognition, limited, measurement, extrac-
tion, quantitative, interpretation, discipline, feature, organization, filtering, and
interpret. A course on this topic may focus on a particular area of applications.
Example courses include Computer Vision, Health Data Science, Introduction to
Biomedical Informatics, and Genomics Analytics.

4 Discussion

Through the analysis of the descriptions of more than 1,200 courses from 56 data
science programs offered in the United States, we identified 14 topics or themes
that are common in data science training. They are Ethics, Privacy, and Security,
Database Structure and Database Management, Data Visualization, Algebra,
Mathematical Foundations and Modeling, Probability Theory and Statistical
Inference, Statistical Models, Statistical Software and Programming, Machine
Learning and Deep Learning, Business Analytics and Data Mining, Network
Analysis and Text Mining, Cloud Computing and Big Data Analysis, Software
Design and Software Engineering, and Applications. All 14 topics contributed
about equally to the contents of all the courses analyzed in the study, with
Probability Theory and Statistical Inference contributing the most, 7.39% and
Algebra the least, 6.94%.

Data science training or even a single course is often an integrated unit.
Therefore, the 14 topics are more or less related and can share the same contents,
as reflected in terms associated with the topics. For example, when teaching
the discipline-specific applications, it cannot be avoided to discuss data mining
and machine learning techniques, data visualization, and data management to
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demonstrate their utilization. The 14-topic model in our study includes the fol-
lowing two topics – “Business Analytics and Data Mining” and “Machine Learn-
ing and Deep Learning”. Although the two topics shared some same subjects,
Business Analytics and Data Mining seemed to focus more on traditional big
data techniques often developed in the statistics discipline such as classification
and regression tree, mixture model, and discriminant analysis as well as business
intelligence. Machine Learning and Deep Learning, on the other hand, covered
more topics developed in the computer science discipline such as different types
of learning methods, neural network, pattern recognition, and support vector
machine techniques. Similarly, we identified a topic on Statistical Software and
Programming as well as a topic on Software Design and Software Engineering.
The former focused more on the use of software such as R, Python, and MAT-
LAB for practical data analysis and the latter concerned more about software
development.

Although fourteen topics provided the best result for our topic model based
on cross-validation, the fourteen topics did not necessarily cover all the topics
offered in all data science programs analyzed in the study. For example, in the
process of understanding the meaning of each topic, we found that Computer
Vision stood out as an important topic taught in the data science programs. In
addition, some of the topics might be split into multiple topics. For example,
the topic of Business Analytics and Data Mining can be split into two. Network
Analysis and Text Mining can also be viewed as two separated but closely related
topics.

Among the fourteen topics, Algebra, Mathematical Foundations and Model-
ing, Probability Theory and Statistical Inference, Statistical Models, and Statis-
tical Software and Programming are arguably the traditionally strong areas of
the discipline of statistics. Database Structure and Database Management, Ma-
chine Learning and Deep Learning, Network Analysis and Text Mining, Cloud
Computing and Big Data Analysis, and Software Design and Software Engi-
neering can be viewed as emerging and important areas in the discipline of
computer science. Data Visualization and Data Mining have been the focuses of
both statistics and computer science disciplines. Ethics, Privacy, and Security is
becoming an important topic in both disciplines. The fourteen topics together
speak unequivocally that data science is an interdisciplinary area that integrates
statistics, computer science, and substantive fields (Applications).

We have chosen to focus on fourteen topics in the analysis. If only thirteen
topics were kept, the topic “Software Design and Software Engineering” would
drop out. On the other hand, if fifteen topics were used, then “Network Analysis”
and “Text Mining” can be broken into two topics.

Although we arrived at the identified topics through empirical analysis of
course descriptions, these topics aligned well with the existing literature. Par-
ticularly, they were consistent with the Data Science Knowledge Framework
by Fayyad and Hamutcu (2020). Our results also reflected the finding by Gor-
man and Klimberg (2014). In their study, they analyzed the curriculum of 17
business analytics programs and interviewed 11 programs. The 14 subjects that
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they identified, such as Introduction to Statistics, Regression, Multivariate, and
Time Series Analysis, seemed to mostly fall within the scope of applied statistics.
However, they also pointed out three trending developments including Big Data:
Internet of Things, Unstructured Data and Semantic Analysis, and Network An-
alytics. In another study, Song and Zhu (2016) investigated both undergraduate
(7 in total) and graduate (15 in total) curricula in data sciences and proposed
several approaches for data science educations. The topics identified in our study
can be combined with their approaches. Overall, our study provides additional
empirical support to the existing literature for understanding what is data sci-
ence.

4.1 Limitations

Our study has several limitations. First, the analysis used data only from the
programs with “Data science” in their titles. There are many data analytics and
business analytics programs tracked by IAA. In practice, the differences in “Data
science” and “Business analytics” might not be large. It can be interesting to see
whether the course information from the programs can be combined for more
comprehensive data analysis. Second, the findings in this study were based on
the analysis of course descriptions from data science programs in academic insti-
tutes. However, the results may or may not align with industry/applied/business
applications of data science. In the future, the results can be compared to the
analysis of other information, such as job postings for data science positions, to
identify potential similarities and differences between academic training in data
science and data science as practiced in industry. Third, we only considered the
data science programs in the US. The findings may not be generalized to other
countries.

4.2 Conclusion

The goal of this study is to understand what data science is through the mining
of the courses offered by data science programs in the US to hopefully provide a
better definition of data science. We adopted a bottom-up approach to mining
the description information of individual courses taught in current data sciences
programs. Although we identified fourteen topics among all the courses, it is still
difficult to provide a concise and conclusive definition of data science. However,
we believe our results can provide useful information on how to operate data
science programs. The results of our study further reiterate the notion that data
science is at the intersection of statistics, computer science, and applications.
A major contribution of our study is to provide empirical support to a better
understanding of data science.
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Abstract. In the present article, we derive an explicit expression for
the truncated mean and variance for the multivariate normal distribu-
tion with arbitrary rectangular double truncation. We use the moment
generating approach of Tallis (1961) and extend it to general µ, Σ and
all combinations of truncation. As part of the solution, we also give
a formula for the bivariate marginal density of truncated multinormal
variates. We also prove an invariance property of some elements of the
inverse covariance after truncation. Computer algorithms for computing
the truncated mean, variance and the bivariate marginal probabilities
for doubly truncated multivariate normal variates have been written in
R and are presented along with three examples.

Keywords: Multivariate normal · Double truncation · Moment generat-
ing function · Bivariate marginal density function · Graphical models ·
Conditional independence

1 Introduction

The multivariate normal distribution arises frequently and has a wide range
of applications in fields such as multivariate regression, Bayesian statistics and
the analysis of Brownian motion. One motivation to deal with moments of the
truncated multivariate normal distribution comes from the analysis of special fi-
nancial derivatives (“auto-callables” or “Expresszertifikate”) in Germany. These
products can expire early depending on some restrictions of the underlying tra-
jectory, if the underlying value is above or below certain call levels. In the frame-
work of Brownian motion the finite-dimensional distributions for log returns at
any d points in time are multivariate normal. When some of the multinormal
variates X = (x1, . . . , xd)

′ ∼ N(µ,Σ) are subject to inequality constraints (e.g.
ai ≤ xi ≤ bi), this results in truncated multivariate normal distributions.

Several types of truncations and their moment calculation have been de-
scribed so far, for example the one-sided rectangular truncation x ≥ a (Tallis,
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1961), the rather unusual elliptical and radial truncations a ≤ x′Rx ≤ b (Tallis,
1963) and the plane truncation Cx ≥ p (Tallis, 1965). Linear constraints like
a ≤ Cx ≤ b can often be reduced to rectangular truncation by transformation
of the variables (in case of a full rank matrix C : a∗ = C−1a ≤ x ≤ C−1b = b∗),
which makes the double rectangular truncation a ≤ x ≤ b especially important.

The existing works on moment calculations differ in the number of variables
they consider (univariate, bivariate, multivariate) and the types of rectangular
truncation they allow (single vs. double truncation). Single or one-sided trunca-
tion can be either from above (x ≤ a) or below (x ≥ a), but only on one side
for all variables, whereas double truncation a ≤ x ≤ b can have both lower and
upper truncation points. Other distinguishing features of previous works are fur-
ther limitations or restrictions they impose on the type of distribution (e.g. zero
mean) and the methods they use to derive the results (e.g. direct integration or
moment-generating function).

Rosenbaum (1961) gave an explicit formula for the moments of the bivariate
case with single truncation from below in both variables by direct integration.
His results for the bivariate normal distribution have been extended by Shah
and Parikh (1964), Regier and Hamdan (1971) and Muthén (1990) to double
truncation.

For the multivariate case, Tallis (1961) derived an explicit expression for the
first two moments in case of a singly truncated multivariate normal density with
zero mean vector and the correlation matrix R using the moment generating
function. Amemiya (1974) and Lee (1979) extended the Tallis (1961) derivation
to a general covariance matrix Σ and also evaluated the relationship between
the first two moments. Gupta and Tracy (1976) and Lee (1983) gave very simple
recursive relationships between moments of any order for the doubly truncated
case. However, except for the mean, there are fewer equations than parameters.
Therefore, these recurrent conditions do not uniquely identify moments of order
≥ 2 and are not sufficient for the computation of the variance and other higher
order moments.

Table 1 summarizes our survey of existing publications dealing with the com-
putation of truncated moments and their limitations. Even though the rectangu-
lar truncation a ≤ x ≤ b can be found in many situations, no explicit moment
formulas for the truncated mean and variance in the general multivariate case
of double truncation from below and/or above have been presented so far in the
literature and are readily apparent. The contribution of this paper is to derive
these formulas for the first two truncated moments and to extend and generalize
existing results on moment calculations from especially Tallis (1961), Lee (1983),
Leppard and Tallis (1989), and Muthén (1990). Besides, we also refer Kan and
Robotti (2017) and Arismendi (2013) for the moment computation of folded and
truncated multivariate normal distribution. However, for moments computation
for skewed and extended skew normal distribution, we refer Kan and Robotti
(2017) and Arellano-Valle and Genton (2005). In the sequel, we also make a note
on the existing R package ”MomTrunc” (see Galarza C.E. & V.H., 2021) for nu-
merical computation of moments of folded and truncated multivariate normal
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Table 1. Survey of previous works on the moments for the truncated multivariate
normal distribution

Author #Variates Truncation Focus

Rosenbaum
(1961)

bivariate single moments for bivariate normal vari-
ates with single truncation, b1 <
y1 <∞, b2 < y2 <∞

Tallis (1961) multivariate single moments for multivariate normal
variates with single truncation from
below

Shah and Parikh
(1964)

bivariate double recurrence relations between mo-
ments

Regier and
Hamdan (1971)

bivariate double an explicit formula only for the case
of truncation from below at the
same point in both variables

Amemiya (1974) multivariate single relationship between first and sec-
ond moments

Gupta and Tracy
(1976)

multivariate double recurrence relations between mo-
ments

Lee (1979) multivariate single recurrence relations between mo-
ments

Lee (1983) multivariate double recurrence relations between mo-
ments

Leppard and
Tallis (1989)

multivariate single moments for multivariate normal
distribution with single truncation

Muthén (1990) bivariate double moments for bivariate normal dis-
tribution with double truncation,
b1 < y1 < a1, b2 < y2 < a2

Manjunath and
Wilhelm

multivariate double moments for multivariate normal
distribution with double truncation
in all variables a ≤ x ≤ b

and Student’s t-distribution. However, the aforementioned package also suggests
the ”tmvtnorm” package (e.g., Wilhelm & Manjunath, 2012), which is solely
based on the results presented in this note. Finally, we also refer Genz (1992)
for the numerical computation for the multivariate normal probabilities.

The rest of this paper is organized as follows. Section 2 presents the moment
generating function (m.g.f) for the doubly truncated multivariate normal case.
In Section 3, we derive the first and second moments by differentiating the m.g.f.
These results are completed in Section 4 by giving a formula for computing the
bivariate marginal density. In Section 5, we present two numerical examples and
compare our results with simulation results. Section 6 links our results to the
theory of graphical models and derives some properties of the inverse covariance
matrix. Finally, Section 7 summarizes our results and gives an outlook for further
research.
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2 Moment Generating Function

The d–dimensional normal density with location parameter vector µ ∈ Rd and
non-singular covariance matrix Σ is given by

ϕµ,Σ(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)

′
Σ−1 (x− µ)

}
, x ∈ Rd. (1)

The pertaining distribution function is denoted by Φµ,Σ(x). Correspondingly,
the multivariate truncated normal density, truncated at a and b, in Rd, is defined
as

ϕαµ,Σ(x) =

{
ϕµ,Σ(x)

P{a≤X≤b} , for a ≤ x ≤ b,
0, otherwise.

(2)

Denote α = P {a ≤ X ≤ b} as the fraction after truncation.
The moment generating function of a d–dimensional truncated random vari-

able X, truncated at a and b, in Rd, having the density f(x) is defined as the
d–fold integral of the form

m(t) = E
(
et
′X
)

=

∫ b
a
et
′xf(x)dx.

Therefore, the m.g.f for the density in (2) is

m(t) =
1

α(2π)d/2|Σ|1/2

∫ b
a

exp

{
−1

2

[
(x− µ)

′
Σ−1 (x− µ)− 2t′x

]}
dx. (3)

In the following, the moments are first derived for the special case µ = 0. Later,
the results will be generalized to all µ by applying a location transformation.

Now, consider only the exponent term in 3 for the case µ = 0. Then we have

−1

2

[
x′Σ−1x− 2t′x

]
which can also be written as

1

2
t′Σt− 1

2

[
(x− ξ)

′
Σ−1 (x− ξ)

]
,

where ξ = Σt.

Consequently, the m.g.f of the rectangularly doubly truncated multivariate
normal is

m(t) =
eT

α(2π)d/2|Σ|1/2

∫ b
a

exp

{
−1

2

[
(x− ξ)

′
Σ−1 (x− ξ)

]}
dx, (4)

where T = 1
2t
′Σt.
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The above equation can be further reduced to

m(t) =
eT

α(2π)d/2|Σ|1/2

∫ b−ξ
a−ξ

exp

{
−1

2
x′Σ−1x

}
dx. (5)

For notational convenience, we write equation 5 as

m(t) = eTΦαΣ (6)

where

ΦαΣ =
1

α(2π)d/2|Σ|1/2

∫ b−ξ
a−ξ

exp

{
−1

2
x′Σ−1x

}
dx.

3 First and Second Moment Calculation

In this section, we derive the first and second moments of the rectangularly
doubly truncated multivariate normal density by differentiating the m.g.f..

Consequently, by taking the partial derivative of (6) with respect to ti we
have

∂m(t)

∂ti
= eT

∂ΦαΣ

∂ti
+ ΦαΣ

∂eT

∂ti
. (7)

In the above equation the only essential terms that will be simplified are

∂eT

∂ti
= eT

d∑
k=1

σi,ktk

and

∂ΦαΣ

∂ti
=

∂

∂ti

∫ b∗1

a∗1

...

∫ b∗d

a∗d

ϕαΣ(x)dxd...dx1, (8)

where a∗i = ai −
∑d
k=1 σi,ktk and b∗i = bi −

∑d
k=1 σi,ktk. Subsequently, (8) is

∂ΦαΣ

∂ti
=

d∑
k=1

σi,k (Fk(a∗k)− Fk(b∗k)) , (9)

where

Fi(x) =∫ b∗1

a∗1

...

∫ b∗i−1

a∗i−1

∫ b∗i+1

a∗i+1

...

∫ b∗d

a∗d

ϕαΣ(x1, .., xi−1, x, xi+1, ..xd)dxd...dxi+1dxi−1...dx1.

(10)
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Note that at tk = 0, for all k = 1, 2, ..., d, we have a∗i = ai and b∗i = bi.
Therefore, Fi(x) will be the i–th marginal density. An especially convenient way
of computing these one-dimensional marginals is given in Cartinhour (1990).

From (7) – (9) for k = 1, 2, ..., d all tk = 0. Hence, the first moment is

E(Xi) =
∂m(t)

∂ti
|t=0 =

d∑
k=1

σi,k (Fk(ak)− Fk(bk)) . (11)

Now, by taking the partial derivative of (7) with respect to tj , we have

∂2m(t)

∂tj∂ti
= eT

∂2ΦαΣ

∂tj∂ti
+
∂ΦαΣ

∂ti

∂eT

∂tj
+ ΦαΣ

∂2eT

∂tj∂ti
+
∂eT

∂ti

∂ΦαΣ

∂tj
. (12)

The essential terms for simplification are

∂2eT

∂tj∂ti
= σi,j

and clearly, the partial derivative of 9 with respect to tj gives

∂2ΦαΣ

∂tj∂ti
=

d∑
k=1

(
σi,k

∂Fk(a∗k)

∂tj

)
−

d∑
k=1

(
σi,k

∂Fk(b∗k)

∂tj

)
. (13)

In the above equation, merely consider the partial derivative of the marginal
density Fk(a∗k) with respect to tj . With further simplification, it reduces to

∂Fk(a∗k)

∂tj
=

∂

∂tj

∫ b∗1

a∗1

...

∫ b∗k−1

a∗k−1

∫ b∗k+1

a∗k+1

...

∫ b∗d

a∗d

ϕαΣ(x1, .., xk−1, a
∗
k, xk+1, ..xd)dx−k

=
σj,ka

∗
kFk(a∗k)

σk,k

+
∑
q 6=k

(
σj,q −

σk,qσj,k
σk,k

)(
Fk,q(a

∗
k, a
∗
q)− Fk,q(a∗k, b∗q)

)
, (14)

where

Fk,q(x, y) =∫ b∗1

a∗1

...

∫ b∗k−1

a∗k−1

∫ b∗k+1

a∗k+1

...

∫ b∗q−1

a∗q−1

∫ b∗q+1

a∗q+1

...

∫ b∗d

a∗d

ϕαΣ(x, y,x−k,−q)dx−k,−q, (15)

and the short form x−k denotes the vector (x1, .., xk−1, xk+1, ..xd)
′ in (d − 1)–

dimensions and x−k,−q denotes the (d− 2)–dimensional vector (x1, ..., xk−1,
xk+1, ..., xq−1, xq+1, ..., xd)

′ for k 6= q. The above equation (14) is deduced from
Lee (1979, pp. 167). Note that for all tk = 0 the term Fk,q(x, y) will be the
bivariate marginal density for which we will give a formula in the next section.
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Subsequently,
∂Fk(b

∗
k)

∂tj
can be obtained by substituting a∗k by b∗k. From 12 –

(15) at all tk = 0, k = 1, 2, ..., d, the second moment is

E(XiXj) =
∂2m(t)

∂tj∂ti
|t=0

= σi,j +

d∑
k=1

σi,k
σj,k (akFk(ak)− bkFk(bk))

σk,k

+

d∑
k=1

σi,k
∑
q 6=k

(
σj,q −

σk,qσj,k
σk,k

)
[(Fk,q(ak, aq)− Fk,q(ak, bq))

− (Fk,q(bk, aq)− Fk,q(bk, bq))] . (16)

Having derived expressions for the first and second moments for double trun-
cation in case of µ = 0, we will now generalize to all µ. If Y ∼ N(µ,Σ) with
a∗ ≤ y ≤ b∗, then X = Y − µ ∼ N(0,Σ) with a = a∗ − µ ≤ x ≤ b∗ − µ = b
and E(Y ) = E(X) + µ and Cov(Y ) = Cov(X). Equations 11 and 16 can then
be used to compute E(X) and Cov(X). Hence, for general µ, the first moment
is

E(Yi) =

d∑
k=1

σi,k (Fk(ak)− Fk(bk)) + µi. (17)

The covariance matrix

Cov(Yi, Yj) = Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) (18)

is invariant to the shift in location.
The equations 17 and 18 in combination with 11 and 16 form our derived

result allow the calculation of the truncated mean and truncated variance for
general double truncation. A formula for the term Fk,q(xk, xq), the bivariate
marginal density, will be given in the next section.

We have implemented the moment calculation for mean vector mean, co-
variance matrix sigma and truncation vectors lower and upper as a function
mtmvnorm(mean, sigma, lower, upper) in the R package tmvtnorm (Wilhelm
& Manjunath, 2010, 2012), where the code is open source. In Section 5, we will
show an example of this function.

4 Bivariate Marginal Density Computation

In order to compute the bivariate marginal density in this section, we follow
Tallis (1961, p. 223) and Leppard and Tallis (1989) that implicitly used the
bivariate marginal density as part of the moments calculation for single trunca-
tion, evaluated at the integration bounds. However, we extend it to the doubly
truncated case and state the function for all points within the support region.
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Without loss of generality we use a z-transformation for all variates x =
(x1, . . . , xd)

′ as well as for all lower and upper truncation points a = (a1, . . . , ad)
′

and b = (b1, . . . , bd)
′, resulting in a N(0,R) distribution with correlation matrix

R for the standardized untruncated variates. In this section we treat all variables
as if they are z-transformed, leaving the notation unchanged.

For computing the bivariate marginal density Fq,r(xq, xr) with aq ≤ xq ≤
bq, ar ≤ xr ≤ br, q 6= r, we use the fact that for truncated normal densities the
conditional densities are also truncated normal. The following relationship holds
for xs, zs ∈ Rd−2 conditionally on xq = cq and xr = cr (s 6= q 6= r):

α−1ϕd(xs, xq = cq, xr = cr; R) = α−1ϕ(cq, cr; ρqr)ϕd−2(zs; Rqr), (19)

where

zs = (xs − βsq.rcq − βsr.qcr)/
√

(1− ρ2sq)(1− ρ2sr.q) (20)

and Rqr is the matrix of the second-order partial correlation coefficients for
s 6= q 6= r. βsq.r and βsr.q are the partial regression coefficients of xs on xq and
xr , respectively, and ρsr.q is the partial correlation coefficient between xs and
xr for fixed xq.

Integrating out (d − 2) variables xs leads to Fq,r(xq, xr) as a product of a
bivariate normal density ϕ(xq, xr) and a (d−2)-dimension normal integral Φd−2:

Fq,r(xq = cq, xr = cr) =

∫ b1

a1

...

∫ bq−1

aq−1

∫ bq+1

aq+1

...

∫ br−1

ar−1∫ br+1

ar+1

...

∫ bd

ad

ϕαR(xs, cq, cr)dxs

= α−1ϕ(cq, cr; ρqr)Φd−2(Aqrs;B
q
rs; Rqr) (21)

where Aqrs and Bqrs denote the lower and upper integration bounds of Φd−2 given
xq = cq and xr = cr:

Aqrs = (as − βsq.rcq − βsr.qcr)/
√

(1− ρ2sq)(1− ρ2sr.q) (22)

Bqrs = (bs − βsq.rcq − βsr.qcr)/
√

(1− ρ2sq)(1− ρ2sr.q). (23)

The computation of Fq,r(xq, xr) just needs the evaluation of the normal integral
Φd−2 in d− 2 dimensions, which is readily available in most statistics software
packages, for example, as the function pmvnorm() in the R package mvtnorm

(Genz et al., 2012). The bivariate marginal density function dtmvnorm(x, mean,

sigma, lower, upper, margin=c(q,r)) is also part of the R package tmvtnorm
(Wilhelm & Manjunath, 2010, 2012), where readers can find the source code as
well as help files and additional examples.
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5 Numerical Examples

Example 1

We will use the following bivariate example with µ = (0.5, 0.5)′ and covariance
matrix Σ

Σ =

(
1 1.2

1.2 2

)
as well as lower and upper truncation points a = (−1,−∞)′, b = (0.5, 1)′, i.e. x1
is doubly, while x2 is singly truncated. The bivariate marginal density Fq,r(x, y)
is the density function itself and is shown in figure 1, and the one-dimensional
densities Fk(x) (k = 1, 2) are shown in in figure 2.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●
● ●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

● ●

●

●

●

●
●

●

●

●
● ●

●
●●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●●●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●●

●
●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●● ●

●

●●

●
●

●

●
●

●

●
●

●

●

● ●●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●●

●

●

●

●
●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●
●

●
●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●●
● ●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●●

●●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
● ● ●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

● ●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

bivariate marginal density (x1,x2)

x1

x 2

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

● ●●

●

●
●

●●

●

●

●

●●●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

● ●
● ●●

●
●

●

●

●
●

●
● ●

●

●● ●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

● ●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●
● ●

●●● ●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●●●

●
●

●

● ●

●
●

●

●

●
●●

●
●

●

● ●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●●
●

●●

●

●
●

●

●
●

●

●●

●

●●
●

●

● ●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●●
●

●
● ●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●● ●
●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●● ●●
●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●
●
●
●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

● ●

●

●●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●
●

●

●●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●
●

●

●
●●

● ●●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●●
●●

● ●●

●

● ●●
●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●
●

●

●

●●●

●●

●
●

●
●

●

●
●

●
●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●● ●

●●
●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●
●

●●
●

●
●

●
●

●●
●

●

●

●

●

●
●●

●●
●

●● ●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

● ●●

●

●

●

● ●

● ●

●

●

●

 0.05 

 0.05 

 0.1 
 0.15  0

.1
5 

 0.25 

 0.3 

 0.4 

 0
.4

5 

Figure 1. Contour plot for the bivariate truncated density function

The moment calculation for our example can be performed in R as

> library(tmvtnorm)

> mu <- c(0.5, 0.5)

> sigma <- matrix(c(1, 1.2, 1.2, 2), 2, 2)

> a <- c(-1, -Inf)

> b <- c(0.5, 1)

> moments <- mtmvnorm(mean=mu, sigma=sigma,

> lower=a, upper=b)
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Figure 2. Marginal densities Fk(x) (k = 1, 2) for x1 and x2 obtained from Kernel
density estimation of random samples and from direct evaluation of Fk(x)

which leads to the results µ∗ = (−0.152,−0.388)′ and covariance matrix

Σ∗ =

(
0.163 0.161
0.161 0.606

)
.

The trace plots in figures 3 and 4 show the evolution of a Monte Carlo esti-
mate for the elements of the mean vector and the covariance matrix respectively
for growing sample sizes. Furthermore, the 95% confidence interval obtained
from Monte Carlo using the full sample of 10000 items is shown. All confidence
intervals contain the true theoretical value, but Monte Carlo estimates still show
substantial variation even with a sample size of 10000. Simulation from a trun-
cated multivariate distribution and calculating the sample mean or the sample
covariance also leads to consistent estimates of µ∗ and Σ∗. Since the rate of
convergence of the MC estimator is O(

√
n), one has to ensure sufficient Monte

Carlo iterations in order to have a good approximation or to choose variance
reduction techniques.

Example 2

Let µ = (0, 0, 0)′,the covariance matrix

Σ =

1.1 1.2 0
1.2 2 −0.8

0 −0.8 3
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Figure 3. Trace plots of the Monte Carlo estimator for µ∗

and the lower and upper truncation points a = (−1,−∞,−∞)′ and b = (0.5,∞,∞)′.
Then the only truncated variable is x1, which is uncorrelated with x3. Our for-
mula results in µ∗ = c(−0.210,−0.229, 0)′ and

Σ∗ =

0.174 0.190 0.0
0.190 0.898 −0.8

0 −0.8 3.0



For the special case of only k < d truncated variables (x1, . . . , xk), the remaining
d − k variables (xk+1, . . . , xd) can be regressed on the truncated variables, and
a simple formula for the mean and covariance matrix can be given (see Johnson
& Kotz, 1971, p. 70).

Let the covariance matrix Σ of (x1, . . . , xd) be partitioned as

Σ =

(
V11 V12

V21 V22

)
(24)
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Figure 4. Trace plots of the Monte Carlo estimator for the 3 elements of Σ∗ (σ∗11,
σ∗12 = σ∗21 and σ∗22)

where V11 denotes the k×k covariance matrix of (x1, . . . , xk). The mean vector3

and the covariance matrix Σ∗ of all d variables can be computed as

(ξ′1, ξ
′
1V−111 V12) (25)

and

Σ∗ =

(
U11 U11V

−1
11 V12

V21V
−1
11 U11 V22 −V21(V−111 −V−111 U11V

−1
11 )V12

)
(26)

where ξ′1 and U11 are the mean and covariance of the (x1, . . . , xk) after trunca-
tion.

The mean and standard deviation for the univariate truncated normal x1 are

ξ1 = µ∗1 = σ11
ϕµ1,σ11

(a1)− ϕµ1,σ11
(b1)

Φµ1,σ11(b1)− Φµ1,σ11(a1)
,

σ∗11 = σ11 + σ11
a1ϕµ1,σ11

(a1)− b1ϕµ1,σ11
(b1)

Φµ1,σ11(b1)− Φµ1,σ11(a1)
.

3 The formula for the truncated mean given in Johnson and Kotz (1971, p. 70) is
only valid for a zero-mean vector or after demeaning all variables appropriately. For
non-zero means µ = (µ1,µ2)′ it will be (ξ′1,µ2 + (ξ′1 − µ1)V−1

11 V12).
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Letting U11 = σ∗11 and inserting ξ1 and U11 into equations 25 and 26, one
can verify our formula and the results for µ∗ and Σ∗. However, the crux in
using the Johnson/Kotz formula is the need to first compute the moments of the
truncated variables (x1, . . . , xk) for k ≥ 2. But this has been exactly the subject
of our paper.

6 Moment Calculation and Conditional Independence

In this section we establish a link between our moment calculation and the the-
ory of graphical models (Edwards, 1995; Lauritzen, 1996; Whittaker, 1990). We
present some properties of the inverse covariance matrix and show how the de-
pendence structure of variables is affected after selection.

Graphical modeling uses graphical representations of variables as nodes in a
graph and dependencies among them as edges. A key concept in graphical mod-
eling is the conditional independence property. Two variables x and y are condi-
tionally independent given a variable or a set of variables z (notation x ⊥⊥ y|z),
when x and y are independent after partialling out the effect of z. For condition-
ally independent x and y, the edge between them in the graph is omitted and
the joint density factorizes as f(x, y|z) = f(x|z)f(y|z).

Conditional independence is equivalent to having zero elements Ωxy in the
inverse covariance matrix Ω = Σ−1 as well as having a zero partial covari-
ance/correlation between x and y given the remaining variables:

x ⊥⊥ y|Rest ⇐⇒ Ωxy = 0 ⇐⇒ ρxy.Rest = 0.

Both marginal independence and conditional independence between variables
simplify the computations of the truncated covariance in equation 16. In the pres-
ence of conditional independence of i and j given q, the terms σij−σiqσ−1qq σqj = 0
vanish as they reflect the partial covariance of i and j given q.

As has been shown by Marchetti and Stanghellini (2008), the conditional
independence property is preserved after selection, i.e. the inverse covariance
matrices Ω and Ω∗ before and after truncation share the same zero-elements.
We prove that many elements of the precision matrix are invariant to truncation.
For the case of k < d truncated variables, we define the set of truncated variables
with T = {x1, . . . , xk}, and the remaining d−k variables as S = {xk+1, . . . , xd}.
We can show that the off-diagonal elements Ωi,j are invariant after truncation
for i ∈ T ∪ S and j ∈ S:

Proposition 1. The off-diagonal elements Ωi,j and the diagonal elements Ωj,j

are invariant after truncation for i ∈ T ∪ S and j ∈ S.

Proof. The proof is a direct application of the Johnson/Kotz formula in equation
26 in the previous section. As a result of the formula for partitioned inverse
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matrices (Greene, 2003, section A.5.3) , the corresponding inverse covariance
matrix Ω of the partitioned covariance matrix Σ is

Ω =

(
V−111 (I + V12F2V21V

−1
11 ) −V−111 V12F2

−F2V21V
−1
11 F2

)
(27)

with F2 = (V22 −V21V
−1
11 V12)−1.

Inverting the truncated covariance matrix Σ∗ in equation 26 using the for-
mula for the partitioned inverse leads to the truncated precision matrix

Ω∗ =

(
U−111 + V−111 V12F2V21V

−1
11 −V−111 V12F2

−F2V21V
−1
11 F2

)
(28)

where the Ω∗12 and Ω∗21 elements are the same as Ω12 and Ω21 respectively. The
same is true for the elements in Ω∗22, especially the diagonal elements in Ω∗22. �

Here, we prove this invariance property only for a subset of truncated vari-
ables. Based on our experiments we conjecture that the same is true also for the
case of full truncation (i.e. all off-diagonal elements in Ω∗11). However, we do not
give a rigorous proof here and leave it to future research.

Example 3

We illustrate the invariance of the elements of the inverse covariance matrix with
the famous mathematics marks example used in Whittaker (1990) and Edwards
(1995, p. 49). The independence graph of the five variables (W,V,X, Y, Z) in
this example takes the form of a butterfly as shown in below.

Here, we have the conditional independence (W,V ) ⊥⊥ (Y,Z)|X. A corre-
sponding precision matrix might look like (sample data; zero-elements marked
as ”.”):

Ω =


1 0.2 0.3 . .

0.2 1 −0.1 . .
0.3 −0.1 1 0.4 0.5
. . 0.4 1 0.2
. . 0.5 0.2 1

 (29)
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After truncation in some variables (for example (W,V,X) as −2 ≤ W ≤ 1,
−1 ≤ V ≤ 1, 0 ≤ X ≤ 1), we apply equation 16 to compute the truncated
second moment and the inverse covariance matrix as:

Ω∗ =


1.88 0.2 0.3 . .
0.2 3.45 −0.1 . .
0.3 −0.1 12.67 0.4 0.5
. . 0.4 1 0.2
. . 0.5 0.2 1

 (30)

The precision matrix Ω∗ after selection differs from Ω only in the diagonal
elements of (W,V,X). From Ω∗, we can read how partial correlations between
variables have changed due to the selection process.

Each diagonal element Ωyy of the precision matrix is the inverse of the par-
tial variance after regressing on all other variables (Whittaker, 1990, p. 143).
Since only those diagonal elements in the precision matrix for the k ≤ d of the
truncated variables will change after selection, this leads to the idea to just com-
pute these k elements after selection rather than the full k(k + 1)/2 symmetric
elements in the truncated covariance matrix and applying the Johnson/Kotz
formula for the remaining d− k variables. However, the inverse partial variance
of a scalar y given the remaining variables X = {x1, . . . , xd} \ y

Ω∗yy =
[
Σ∗y.X

]−1
=
[
Σ∗yy −Σ∗yXΣ∗−1XXΣ

∗
Xy

]−1
still requires the truncated covariance results derived in Section 3.

7 Summary

In this paper, we derived a formula for the first and second moments of the dou-
bly truncated multivariate normal distribution and for their bivariate marginal
density. An implementation for both formulas has been made available in the
R statistics software as part of the tmvtnorm package. We linked our results to
the theory of graphical models and proved an invariance property for elements
of the precision matrix. Further research can deal with other types of truncation
(e.g. elliptical). Another line of research can look at the moments of the dou-
bly truncated multivariate Student-t distribution, which contains the truncated
multivariate normal distribution as a special case.
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Abstract. Whether birds of a feather flock together or opposites attract
is a classical research question in social and personality psychology.
In most existing studies, correlation-based techniques are commonly
used to study the similarity/dissimilarity among social entities. Social
network data comprises two primary components: actors and the
possible social relations between them. It, therefore, has observations
on both the dyads with and without social relations. Because of the
availability of the baseline group (dyads without social relations), it
is possible to contrast the two groups of dyads using social network
analysis techniques. This study aims to illustrate how to use social
network analysis techniques to address psychological research questions.
Specifically, we will investigate how the similarity or dissimilarity of
actor’s characteristics relates to the likelihood for them to build social
relations. By analyzing a college friendship network, we found the
quadratic relations between personality similarity and friendship. Both
very similar and very dissimilar personalities boost friendship among
college students.

Keywords: Friendship network · Personality · Social network analysis ·
Quadratic relation · Factor analysis

1 Introduction

Social relations play a crucial role in an individual’s social and behavioral
development (Cacioppo & Cacioppo, 2014; House, Landis, & Umberson,
1988; McCamish-Svensson, Samuelsson, Hagberg, Svensson, & Dehlin, 1999;
Umberson, Crosnoe, & Reczek, 2010). Close and healthy social relations benefit
people’s subjective well-being in their life span (McCamish-Svensson et al., 1999;
Seeman, 2001; Waldinger, Cohen, Schulz, & Crowell, 2015). Social relations also
impact people’s health behavior such as alcohol use (Balsa, Homer, French, &
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Norton, 2011). Understanding and predicting the formation of social relations is
thus of enormous interests to researchers and has been traditionally studied in
social and personality psychology (e.g., Bahns, Crandall, Gillath, & Preacher,
2017; Cacioppo & Cacioppo, 2014)

In the existing literature, the principle of homophily is “believed” to be the
mainstream of the formation of social relations. In other words, individuals in
close social relations share many similar characteristics (McPherson, Smith-
Lovin, & Cook, 2001; Rushton & Bons, 2005). A large body of research has
investigated the presence of similar personality attributes in close relations such
as romantic relations and friendships (e.g., Asendorpf & Wilpers, 1998; Harris &
Vazire, 2016; Liu, Jin, & Zhang, 2018; Youyou, Stillwell, Schwartz, & Kosinski,
2017). Much of the research found no or weak personality similarity (Altmann,
Sierau, & Roth, 2013; Watson, Beer, & McDade-Montez, 2014; Watson,
Hubbard, & Wiese, 2000). Others found moderate similarities in some of the
Big Five personality factors (McCrae et al., 2008). Youyou et al. (2017) revealed
personality similarity among couples and friends. Another study found that
individuals tended to select those with similar personalities as friends (Bahns
et al., 2017). Hudson and Fraley (2014) found a quadratic relationship between
partners’ personality-trait-similarity and relationship satisfaction among people
with low avoidance and high anxiety. The existing conclusions seem to be
inconclusive.

There are at least two potential reasons that account for the inconsistency
in the literature. In most of these studies, only data on dyads are available due
to the data collection methods such as collecting data from friends whereas
data on dyads without social relations are not available. Therefore, few of
these studies actually contrasted the two types of dyads due to the lack of the
baseline group. Moreover, correlation analysis is the dominant approach used in
studying the similarities of two actors forming dyads, which only focuses on the
linear relationship between two variables and oversights the potential nonlinear
relationships.

Social network data, however, contain both dyads with social relations and
dyads without social ties. A social network comprises a group of actors and
the potential relationship between them (Wasserman & Faust, 1994). In a
network graph M, nodes represent “actors,” and they could be any entities
such as students in a friendship network, research institutions in a collaboration
network, and variables in a variable network (Epskamp, Rhemtulla, & Borsboom,
2017). The ties/edges in a network display the relations, interactions or
dependence among “actors.” It thus provides a premise to study the association
between actor attribute similarity and social relations as in previous studies.
It further allows researchers to compare two types of dyads using tools other
than correlation analysis. It potentially leads to more interpretable results.
In recent years, efforts have been made to address social and psychological
research questions from the network perspective. Sweet (2016) reviewed common
descriptive methods and network models for educational and psychological
research. Clifton and Webster (2017) discussed the use of social network data
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to address psychological research questions through several examples. Liu et al.
(2018) proposed a structural equation model to predict the existence of binary
social relations using the latent personality distance.

The goal of the present work is multifold. First, we introduce some measures
to quantify dyads’ properties, which are named “nodal/dyadic” covariates. These
measures are not necessarily about similarity but could be in any meaningful
format. Second, we demonstrate how to use the newly introduced measures to
predict social relations using the proposed model by Liu et al. (2018), which
provides a primer on predicting social bonds in a network. Third, we illustrate
how to conduct the model selection and choose the model that fits the data best.

The rest of this article is structured as follows. First, we describe the college
friendship network data collected by the Lab of Big Data at the University of
Notre Dame. Next, we explore the factor structures of personality data. We then
predict a valued friendship network using student’s characteristics and select the
model that fits the data best. In the end, we conclude the study with discussions
on the current development and future directions.

2 Friendship Network: An Empirical Example

Throughout this paper, we use the data collected by the Lab of Big Data at the
University of Notre Dame (Liu et al., 2018).

2.1 Participants

The participants are 162 students in a 4-year college in China. All the students
were studying at the school of art and letters while completing the survey.
Therefore, the boundary of the friendship network was known before data
collection. Among the 162 students, there were 90 female and 72 male students.
Their average age was 21.64 years (SD=0.86).

2.2 Procedures and Measures

Four types of information are available: (1) friendship networks, (2)
actor attributes including demographic information, (3) behaviors, and (4)
personalities.

2.2.1 Friendship networks To collect the network data, we gave each
student a roster of all the 162 students and asked them to report their
acquaintanceship with every other student. The friendship was measured on
a 5-point Likert scale ranging from “I have never heard about this student.”
to “The person is one of my best friends.” (See Table 1). In the current study,
we used the maximal relationship between a pair of students. If two students
have different evaluations on the friendship between them, we use the stronger
evaluation. Therefore, the relationship is symmetric and non-directional. With
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Table 1. 5-point Likert scale for the friendship

Level Meaning

0 I have never heard the name.
1 I heard about the person but had no personal interaction with her/him.
2 I have met the person a few times but he/she is not a friend of mine.
3 The person is a friend of mine.
4 The person is one of my best friends.

162 students, the network data are recorded in a 162 by 162 matrix M, which
is called a “sociomatrix” in the field of social network analysis. A row of M
contains the responses of the row actor on their friendship relations with the
column actors.

A plot of the friendship network with ordinal relations is included in Figure 1.
In the heatmap of the friendship network, a darker square represents a stronger
relationship between the students in the corresponding row and column. On the
diagonal from the bottom left to the upright, there are six blocks standing out
with dark color, each containing a group of students with closer relations. Those
blocks are clusters of the college student friendship network.

2.2.2 Personality We used the 20-item Mini-IPIP Scale for the Big Five
factors of personality (Donnellan, Oswald, Baird, & Lucas, 2006). The five factors
measured include Intellect/Imagination (or Openness), Conscientiousness,
Extraversion, Agreeableness, and Neuroticism. Each of the five factors is
measured by 4 items. Example items of the Mini-IPIP scale are: “In general,
I am the life of the party” and “I am not interested in abstract ideas.” The
20 items were rated on a 5-point Likert scale (i.e., 1 = strongly disagree, 2 =
somewhat disagree, 3 = neither agree nor disagree, 4 = somewhat agree, and
5 = strongly agree). For reverse coded items, the scores were reversed before
analysis.

2.2.3 Actor Attribute Data Participants also reported data on their
behaviors. Participants rated themselves on these items using a true or false
format. To collect data on the alcohol use, each student reported whether they
had drunk alcohol in the past 30 days or not. Among the 162 students, 68
students reported they have drunk alcohol in the past thirty days. Besides,
information on academic performance was also available, with scores ranging
from 18 to 87. The average academic performance score was 54.99, with a
standard deviation of 10.94.

2.3 Overview of Data Analysis

The purpose of the analysis is to exemplify the potentials of social network
analysis in psychological research. Specifically, we will investigate how
personality predicts friendship. In the literature, there are arguments on both
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Figure 1. Heatmap of the friendship network. Darker color indicates a higher level
friendship

“Birds of a feather flock together,” and “Opposites attract.” If birds of a feather
flock together, then we can expect that students with similar personality traits
should be more likely to be friends. If opposites attract, then we can expect
those with dissimilar personalities should boost the likelihood for them to be
friends. If both statements are plausible, then we should expect a nonlinear
relation between personality similarity and friendship. In the following, we will
first explore the factor structures of personalities.
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3 Factor Extraction

We conducted a confirmatory factor analysis (CFA, Cattell, 1952) to evaluate
the structure of the latent personality traits. The reliability (α) of the five scales
are 0.57 for “intelligence/imagination”, 0.48 for “conscientiousness”, 0.62 for
“extraversion”, 0.48 for “agreeableness”, and 0.40 for “neuroticism.” We decided
to use two factors−imagination and extraversion−in the CFA because they have
relatively high α values. Let η be the vector of latent personality factors and w
be their indicators. The CFA model has the following general form,

wi = Ληi + εi

ηi ∼ MVN(0,Φ)

εi ∼ MVN(0,Ψ),

(1)

where wi is the indicator data on actor i, εi is a J×1 vector of unique factors and
it follows a multivariate normal distribution with mean 0 and covariance matrix
Ψ. The factor loading matrix Λ is a J × D matrix. Φ is the factor covariance
matrix to be estimated. In this model, the unknowns include individuals’ factor
scores {ηi}Ni=1 and model parameters {Λ,Φ,Ψ}. We fix one factor loading of
each factor to be 1 for the purpose of model identification.

We conducted model modification after fitting the model without cross-
loadings and correlations among items to explore the factor structure. We ended
up with the final model with RMSEA 0.047 and CFI 0.963. The path diagram
of the final model is presented in Figure 2.

Recall that the purpose of the current study was to investigate the association
between personality similarity and friendships. We, therefore, recorded estimates
for both the factor covariance matrix Φ and individuals’ factor scores ηi,
which will be used to compute the personality similarity (i.e., distance) of
any two students. The estimated factor covariance matrix is provided in Table
2.The variance estimates of extraversion and imagination are 0.838 and 0.252,
respectively, and their covariance is 0.172.

Table 2. Estimated variance and covariance of latent factors

cov(,) Extraversion Imagination

Extraversion 0.838 0.172
Imagination 0.172 0.252

Despite many factor score estimators, the Thurstone-Thomson “regression”
factor scores (Thurstone, 1935) were extracted and used in the subsequent
analysis following the recommendations by both Devlieger, Mayer, and Rosseel
(2016) and Liu et al. (2018). The scatterplot and the histograms of the predicted
factor scores are provided in Figure 3. Each dot in Figure 3 represents the
location of a student in the personality space formed by the scores of extraversion
and imagination. Two students sharing similar personality traits in extraversion
and imagination would stay close to each other in the personality space.
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Figure 2. Path diagram of the CFA model of Imagination and Extraversion

4 Probit Model for Ordinal Networks

The model we will introduce is built on the prior work on structural
equation modeling of social networks by Liu et al. (2018). In this modeling
framework, individuals are assumed to hold a position in a latent space
formed by personality traits (i.e., personality space). The distance/(dis)similarity
between two individuals in the personality space predicts how likely they
connect in the manifest social world. This modeling framework is developed
to predict social relations using individuals’ characteristics. This model can
particularly investigate whether similar personalities or dissimilar personalities
boost friendships among college students.

In the following, we will present the model in a form for analyzing networks
with ordinal relations and demonstrate its applications in examining the
relationship between personality similarity and friendships. We will compare the
following plausible hypotheses: (1) similar personality traits promote friendship;
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Figure 3. Predicted factor score

(2) dissimilar personality traits imply a higher chance to be friends; or (3) both
are plausible.

The data analysis will use a three-phase procedure. First, we will define
“nodal covariates” (i.e., dyads level covariates) based on the research hypotheses
of interests. Second, we will build a Probit model to investigate how the nodal
covariates predict friendship. Third, we will conduct likelihood ratio tests to
select the model with the best fit for the data.

4.1 Nodal Covariates

The study focuses on predicting the ordinal ties in the friendship network, which
is a dyadic level analysis of social networks. Therefore, we need to construct
dyadic covariates describing the characteristics of a pair of students. In addition
to personality traits, we also consider three manifest covariates-gender, academic
performance, and class membership.

Same-gender friendship has been of interest to researchers (Benenson, 1990;
Elkins & Peterson, 1993; Jones, 1991; Zarbatany, Conley, & Pepper, 2004). To
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test the effect of gender on friendship, we define the following nodal covariate,

hgender(i, j) =

{
1 if students i and jare of the same gender

0 otherwise.

Using the nodal covariate hgender, we can study the homogeneous gender effect
on the acquaintance levels.

Academic achievement is measured using a continuous scale. To quantify
the similarity in academic achievement, we define a nodal covariate of academic
achievement as the absolute difference of two students’ scores

hscore(i, j) = |scorei − scorej |.

The larger value on hscore(i, j), the more discrepancy of students i and j on their
academic achievement.

The 162 students participating in our study belonged to different “classes.”
Students from the same class take the same courses more often, and potentially
have more chances to build friendships. Therefore, we control the class
membership effect in our analysis. The nodal covariate of class membership takes
value one if two students are from the same class and 0 otherwise. That is

hclass(i, j) =

{
1 if students i and j are from the same class,

0 otherwise.

In addition to the three manifest nodal covariates hgender, hscore, and
hclass, we focus on the relationship between the personality similarity and
friendships. To quantify the personality similarity, we use the Mahalanobis
distance (Mahalanobis, 1936) of the personality factor scores of two students,

dij =hpersonality(i, j) =
√

(ηi − ηj)tΦ−1(ηi − ηj), (2)

where ηi and ηj are the vectors of personality factor scores of students i and j,
and Φ is the covariance matrix of personality latent factors. The Mahalanobis
distance is the standardized distance of two correlated vectors penalized by the
covariance between them.

We want to note that the concept of the “nodal” covariate is flexible to include
any statistics that summarize the information of dyads. Researchers can define
their nodal covariates based on their research hypothesis. Moreover, a nodal
covariate is not necessarily capturing the similarity of actors as exemplified.
Instead, it could be of any type. To provide an example, one can define overall
academic achievement as the sum of scores of two students and test whether
the overall score relates to the friendship or not. Instead of studying the effect
of similar personality, one could also study the overall extraversion level of two
students and investigate its impact on the friendship between the two students.
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4.2 Probit Regression Analysis of Ordinal Networks

To model the association between personality similarity and friendship, we
extended the work by Liu et al. (2018) to undirected valued networks with ordinal
relations. A probit model is adopted to predict the ordinal relations using nodal
covariates (Agresti, 2013). Let mij be the level of friendship between student i
and j. It could take one of the five ordinal values 0, 1, 2, 3, or 4 in the college
friendship introduced in the previous section. A greater value indicates a stronger

relationship between the two students. For a level k = 0, 1, 2, · · · , 4, let π
(k)
ij be

the probability for mij to be in the k’th category,

p(mij = k) =π
(k)
ij , for k = 0, 1, · · · , 4. (3)

The cumulative probability for a tie in a category k and below is

p(mij ≤ k) =π
(0)
ij + π

(1)
ij + · · ·+ π

(k)
ij , for k = 0, 1, 2, · · · , 4 (4)

and
∑4

k=0 π
(k)
ij = 1, since any friendship tie must fall in one of the five categories.

To predict the probability for a tie to fall in a category using nodal statistics on
dyads, we use an ordered probit model,

Probit
[
p(mij ≤ k)

]
= F−1

[
p(mij ≤ k)

]
for k = 0, 1, · · · , 3

= τk|k+1 − (β′hij + γdij)

π
(4)
ij = 1−

∑3
k=0 π

(k)
ij

(5)

where F (·) is the cumulative density function (CDF) of the standard normal
distribution (i.e., N(0, 1)), and d is the latent personality distance computed
as d =

√
(ηi − ηj)tΦ−1(ηi − ηj)) as in Equation (2). The parameters β and γ

are coefficients of manifest nodal covariates and latent factor distance (i.e., d).
Because F−1(·) is an increasing function, the intercept coefficients must follow
an ordered sequence,

τ0|1 ≤ τ1|2 ≤ · · · ≤ τ3|4.

To further understand the impact of the slope parameter γ on the propensities
of categories, four plots with different values for γ are provided in Figure 4.
We generate data from a model with four categories, and the three thresholds
are τ0|1 = −1, τ1|2 = 0, and τ2|3 = 1 and one manifest covariate (i.e., h1)
whose coefficient β = 0.6. Given h1 = 0, we computed the implied cumulative
probabilities with varying d. In Figure 4, the red, green, blue, and purple curves
are the probability for a tie in category 0, category 0 or 1, category 0, 1, or 2,
and category 0, 1, 2, or 3.

First, when γ < 0 (Plot (a) and (b) in Figure 4), the cumulative probabilities
are increasing as the latent distance d increases. Thus, the probability for a tie in
a higher-level category decreases. When γ > 0 (Plot (c) and (d)), the trajectories
of the cumulative probability are in the opposite direction. A positive value of γ
indicates that with a larger latent distance d, the probability for a relationship
to be in a higher-level category increases. The magnitude of γ (i.e., |γ|) tells the
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Figure 4. Plots of cumulative probabilities (CP) with different slope parameters in a
model with 4 ordinal levels given the level of other covariates. The red, green, blue,
and purple curves are the CP up to category 0, 1, 2, and 3.

extent to which the latent distance affects the cumulative probability. A larger
|γ| implies stronger impacts of latent distance d on the friendship.

To investigate the potential higher-order relationship between the personality
similarity and friendship, we fit the model with the quadratic term of personality
distance. To check whether the quadratic model is the conclusive model, we can
fit the model with the cubic term of the personality distance. Therefore, we fit
three competing models: a linear model with the first-order distance, i.e., dij as
a predictor, a quadratic model with d2ij as a predictor, and a cubic model with

d3ij as a predictor.

4.2.1 Linear Probit Model In the linear probit model, we include
three manifest nodal covariates hgender, hscore, and hclass as well as the latent
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personality distance d,

P (mij ≤ k) = π0
ij + π1

ij + · · ·+ π
(k)
ij , for k = 0, 1, · · · , 4.

Probit
[
P (mij ≤ k)

]
= F−1

[
P (mij ≤ k)

]
for k = 0, 1, · · · , 3

= τk|k+1 − (β1hgender(i, j) + β2hscore(i, j)

+β3hclass(i, j) + γdij)

π
(4)
ij = 1−

∑3
k=0 π

(k)
ij

(6)

In this model, the coefficient γ explains the extent to which the personality
distance dij predicts friendship. With a negative γ, the probability of having
a higher level of friendship is greater when dij is smaller, so the more similar
personalities associate with a higher chance to have a closer friendship. If γ is
positive, then dissimilar personalities boost friendship.

4.2.2 Quadratic Probit Model In the second model, we also include a
quadratic term of the latent personality distance, and the model becomes,

Probit
[
P (mij ≤ k)

]
= F−1[P (mij ≤ k)

]
for k = 0, 1, · · · , 3

= τk|k+1 − (β1hgender(i, j) + β2hscore(i, j) + β3hclass(i, j) (7)

+ γ1dij + γ2d
2
ij).

This model is useful for investigating the potential quadratic relationship
between the personality similarity and friendship, and it also helps identify the
transition points of the trend.

4.2.3 Cubic Probit Model The cubic model includes the third-order of the
distance, i.e., d3ij , in the analysis,

Probit
[
P (mij ≤ k)

]
= F−1[P (mij ≤ k)

]
for k = 0, 1, · · · , 3

= τk|k+1 − (β1hgender(i, j) + β2hscore(i, j) + β3hclass(i, j) (8)

+ γ1dij + γ2d
2
ij + γ3d

3
ij)

By fitting the cubic model, we can investigate if there is more than one transition
point for the relationship between personality similarity and friendship.

To estimate the model, we first evaluate the factor structure of the
extroversion and imagination, and obtain the model parameter estimates and
the Thurstone-Thomson “regression” factor scores η̂i and η̂j as discussed in the
previous section. We then compute the estimated personality distance

d̂ij =

√
(η̂i − η̂j)tΦ̂−1(η̂i − η̂j).

According to the suggestions by Liu et al. (2018), the use of Thurstone-Thomson
factor scores led to asymptotically unbiased estimates for the γ parameter.
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5 Result

In this section, we will present the results of the three models discussed in the
previous section

5.1 Model Selection

To evaluate the relative performance of the three models (i.e., linear, quadratic,
and cubic probit model), we conducted likelihood ratio tests using the saved
deviance in Table 3. For the linear model against the quadratic model, the
Chi-square statistic is 9.514 and with a p-value of .002. Hence, the quadratic
model is significantly better than the linear model. When the quadratic model is
compared against the cubic (third-order) model, the Chi-square statistic is 0.318
with a p-value of .573. Thus, the cubic model is not significantly better than the
quadratic model. The quadratic model is thus the best model.

Table 3. Likelihood ratio test of the three nested models

Model Deviance Test Df LR Stat Pr(Chi)

1 Linear 28560.55
2 Quadratic 28551.03 1 vs 2 1 9.514 .002
3 Cubic 28550.71 2 vs 3 1 0.318 .573

5.2 Model Parameter Estimates

Because the quadratic model fits the data best, we would interpret the
relationship between the personality similarity and friendship using the estimates
of the quadratic model, which are provided in Table 4.

Table 4. Parameter estimates of the quadratic model

Par Est Std.Error t.value p-value

βgender 0.549 0.02 26.839 < .001

βscore -0.111 0.013 -8.773 < .001
βclass 2.439 0.032 75.549 < .001
γ1 -0.098 0.044 -2.238 .025
γ2 0.038 0.012 3.088 .004
τ0 0.228 0.04 5.694 < .001
τ1 1.113 0.041 27.214 < .001
τ2 1.720 0.043 40.097 < .001
τ3 2.888 0.049 58.565 < .001

Residual deviance 228551.03
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By plugging the model parameter estimates into the quadratic model
(Equation 7), we obtained the predicted cumulative probability for a tie to be
in a category k (k=0,1,2 or 3) or below1. Equivalently, we can also get the
probability for a tie to be in a category above k( k = 0, 1, 2, or 3)2 and we will
use them for the interpretation in the following.

First, all parameters are statistically significant, based on the significance
level of 0.05. The coefficient of hgender is 0.549. Given the levels for other
covariates and latent personality distance being the same, two students of the
same gender tend to have a closer relationship than otherwise, and they are less
likely to have a lower-level friendship. Therefore, gender homogeneity boosts
a higher level of acquaintanceship. Second, the coefficient hscore has a point
estimate -0.111 (p-value< 0.001). Given the same levels of other covariates and
latent distance, students with more similar academic achievement (i.e., hscore
is small) have a higher level of friendship with a greater probability than two
students with some very different academic achievements. Third, the coefficient
estimate of hclass is 2.439. Thus, two students from the same class are more
likely to have a closer relationship. For instance, π(4) is larger for two students
from the same class.

The coefficient estimate of the first-order distance (i.e., γ1) is -0.098 (p-value
=0.025) and that of the second-order distance is 0.038 (p-value= .004). For
k = 0, 1, 2, or 3, the quantity π(k+1) + · · · + π(4) is the probability for a tie
to fall in a category above k. To better understand the relationship between
personality similarity and friendship, we plotted these probabilities against the
latent personality distance d, given two students are of the same gender (i.e.,
hgender = 1), have the same academic score (i.e., hscore = 0), and are from the
same class (i.e., hclass = 1). These plots are provided in Figure 5.

1 The predicted cumulative probability is computed as

p(m ∈ 0) = F (0.228− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 0, 1) = F (1.113− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 0, 1, 2) = F (1.720− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 0, 1, 2, 3) = F (2.888− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2).

2 The probability for a time to be in a category above k ( k = 0, 1, 2, or 3)

p(m ∈ 1, 2, 3, 4) = 1− F (0.228− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 2, 3, 4) = 1− F (1.113− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 3, 4) = 1− F (1.720− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2)

p(m ∈ 4) = 1− F (2.888− 0.549hgender + 0.111hscore − 2.439hclass + 0.098d− 0.038d2).

For a level k = 0, 1, 2, or 3, the probability for tie to have a level above k is
analogous to the probability of being “1” if we dichotomize the ordinal relations into
binary relations at the level k.
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All four probability curves are U-shapes. They decrease first and increase
afterward when the latent distance increases. They reach their minimum values
when the latent personality distance between the two students is 1.289. When
the latent distance approaches 0, the probability for a tie in a category above
k (for k = 0, 1, 2, or 3) becomes larger, which indicates that the propensity for
two students to have a higher level of acquaintanceship increases. Thus, similar
personalities in extraversion and imagination are beneficial to the friendship
between two students. When the latent personality distance is greater than 1.289,
the probability for a friendship to be in a category above k increases with a
larger latent personality distance. Thus, dissimilar personalities in extraversion
and imagination also contribute to friendship. The results from this empirical
study clearly support both “Birds of a feather flock together,” and “Opposites
attract.”
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Figure 5. The top plots are the cumulative probabilities of predicted categories varying
with respect to latent personality distances, and the four curves from bottom to top
are the probability for a tie to be in level 4, level 3 or 4, level 2, 3, or 4, and level 1, 2,
3, or 4. The bottom panel is the density plot of personality distances; the vertical red
line lies at d = 1.289.
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6 Discussion and Conclusion

Social network analysis has been increasingly popular in recent decades. Network
data are now easy to collect than ever due to the development of computer
techniques. A social network comprises two primary elements: actors and
potential social ties. There are observations on both dyads with social relations
and dyads without social relations in social network data. Therefore, it allows
researchers to understand what and how actors’ characteristics predict social
relations by contrasting these two groups of dyads. In the current study,
we illustrated how to predict social relations using actors’ characteristics by
analyzing a college friendship network.

To analyze the ordinal/valued friendship network, we extended the work by
Liu et al. (2018), which was built to analyze social networks with binary relations.
A probit regression model was used to predict the ordinal social ties using the
information of dyads. Specifically, we studied how gender homogeneity, similar
academic achievements, class membership, and similar personalities predicted
college student’s friendship. To investigate the potential quadratic relationship
between personality similarity and friendship, we fitted three competing models:
a linear model with only the linear term of latent distance (i.e., d), a quadratic
model with both a linear term and a quadratic term of the latent personality
distance (i.e., both d and d2), and a cubic model with also the third order of the
latent personality distance. The quadratic model was significantly better than
the linear model but not statistically different from the cubic model. Therefore,
the quadratic models won both the linear and cubic models.

Based on the results of the quadratic model, students of the same
gender or from the same class were more likely to have closer friendships.
Students with similar academic scores were more likely to have higher levels
of acquaintanceship. The association between personalities and friendship was
mixing. Two students tended to have closer friendship relations if they had very
similar personalities in extroversion and imagination. At the same time, if they
were very dissimilar in those two personality traits, their friendship was more
likely to fall in a higher level category. Hence, “Both birds of a feather flock
together” and “Opposites attract” are possible.

Although we fitted the model for undirected networks, the modeling
framework could be extended for networks with directed relations. Based on
the heatmap (Figure 1), there are several communities/clusters in the college
friendship network. In a cluster, students share some common characteristics.
In the future, we would also like to fit multilevel models for the potential
heterogeneity in the relationship between personality and friendship.
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Abstract. Semiparametric Bayesian methods have been proposed in
the literature for growth curve modeling to reduce the adverse effect
of having nonnormal data. The normality assumption of measurement
errors in traditional growth curve models was replaced by a random
distribution with Dirichlet process mixture priors. However, both
the random effects and measurement errors are equally likely to be
nonnormal. Therefore, in this study, three types of robust distributional
growth curve models are proposed from a semiparametric Bayesian
perspective, in which random coefficients or measurement errors follow
either normal distributions or unknown random distributions with
Dirichlet process mixture priors. Based on a Monte Carlo simulation
study, we evaluate the performance of the robust models and demonstrate
that selecting an appropriate model for practical data analyses is very
important, by comparing the three types of robust distributional models
as well as the traditional growth curve models with the normality
assumption. We also provide a straightforward strategy to select the
appropriate model.

Keywords: Semiparametric Bayesian methods · Growth curve modeling
· Robust analysis · Dirichlet process mixture

1 Introduction

Longitudinal studies help us understand changes. Unlike one-off cross-sectional
studies that give information about subjects at one point, like a snapshot
photo, longitudinal studies follow subjects across time, more like a photo
album. They tell a story of subjects not only at a moment in time, but also
over time, showing how subjects have changed and what factors have caused
between-subjects variations in change. Growth curve models are widely used in
longitudinal research (e.g., McArdle & Nesselroade, 2014) as many longitudinal
models in social and behavioral sciences, such as multilevel models and linear
hierarchical models, can be written as a form of growth curve models. In practice,
traditional growth curve model estimation is based on the assumption that both
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random effects and within-subject measurement errors are normally distributed.
However, data in social and behavioral sciences are rarely normal and may be
contaminated by outliers (Cain et al., 2017; Micceri, 1989). Because ignoring
the nonnormality of data may lead to imprecise or even inaccurate parameter
estimates and misleading statistical inferences (e.g., Maronna et al., 2006; Yuan
& Bentler, 2001), and routine methods, such as deleting the outliers, may lead to
problems such as resulting inferences failing to reflect uncertainty and reduced
efficiency (e.g., Lange et al., 1989; Yuan & Bentler, 2002), researchers have
developed robust methods to obtain reliable parameter estimation and statistical
inference.

The basic ideas of robust methods often include two types. The first type
is to assign a weight to each subject in a dataset according to its distance
from the center of the majority of the data aiming to downweight potential
outlying observations (e.g., Pendergast & Broffitt, 1985; Silvapulle, 1992; Singer
& Sen, 1986; Yuan & Bentler, 1998; Zhong & Yuan, 2010). The second type
is to use certain nonnormal distributions that are mathematically tractable,
instead of normal distributions, to model data distributions. Both types of robust
methods have been directly applied to growth curve modeling. For example, on
the one hand, Pendergast & Broffitt (1985) and Singer & Sen (1986) proposed
robust estimators based on M-methods for growth curve models with elliptically
symmetric errors, and Silvapulle (1992) further extended the M-method to allow
asymmetric errors for growth curve analysis. Yuan & Zhang (2012) developed
a two-stage robust procedure for structural equation modeling with nonnormal
missing data and applied the procedure to growth curve modeling. On the other
hand, latent variables and/or measurement errors were assumed to follow a t or
skew-t distribution (Tong & Zhang, 2012; Zhang, 2016) or a mixture of certain
distributions (Lu & Zhang, 2014; Muthén & Shedden, 1999). While being useful,
these methods still have limitations under certain conditions. For example,
the downweighting method did not perform well when latent variables contain
extreme scores (e.g., see simulation results in Zhong & Yuan, 2011). Using a t
distribution or a mixture of normal distributions still imposed restrictions on
the shape of the data distribution.

Semiparametric Bayesian methods, also referred to as nonparametric
Bayesian methods, can solve these issues as they are more flexible to relax the
normality assumptions. Semiparametric Bayesian modeling relies on a building
block, Dirichlet process (DP), which is a distribution over probability measures
that can be used to estimate unknown distributions. Therefore, the nonnormality
issue can be addressed by directly estimating the unknown random distributions
of latent variables or measurement errors (i.e., obtaining the posteriors of the
distributions). The advantages of using Semiparametric Bayesian methods have
been discussed in the literature (e.g., Fahrmeir & Raach, 2007; Ghosal et al.,
1999; Hjort, 2003; Hjort et al., 2010; MacEachern, 1999; Müller & Mitra, 2004).
First, they do not constrain models to a specific parametric form that may limit
the scope and type of statistical inferences in many situations. Second, they
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can provide full probability models for the data-generating process and lead to
analytically tractable posterior distributions.

Because of their flexibility and adaptivity, semiparametric Bayesian methods
have been applied to various models. Bush & MacEachern (1996), Kleinman
& Ibrahim (1998), and Brown & Ibrahim (2003) used DP mixtures to handle
nonnormal random effects. Burr & Doss (2005) used a conditional DP to handle
heterogeneous effect sizes in meta-analysis. Ansari & Iyengar (2006) included
Dirichlet components to build a semiparametric recurrent choice model. Si &
Reiter (2013) used DP mixtures of multinomial distributions for categorical
data with missing values. Semiparametric Bayesian methods have also been
applied to structural equation modeling to relax the normality assumption
of the latent variables (e.g., Lee et al., 2008; Yang & Dunson, 2010). Tong
& Zhang (2019) directly used a DP mixture to model nonnormal data in
growth curve modeling. Although it has been shown in Tong & Zhang (2019)
that semiparametric Bayesian methods outperformed traditional growth curve
modeling as well as Student’s t-distribution-based robust method when data
were not normal, nonnormal data were generated with measurement errors
nonnormally distributed and only measurement errors were modeled using
semiparametric Bayesian methods. In practice, it is possible that random effects
also violate the normality assumption. To account for this issue, we need to also
model random effects semiparametrically.

Therefore, in this study, three different types of robust distributional growth
curve models are proposed from a semiparametric Bayesian perspective. The
features of these three types of models as well as traditional growth curve
model are also discussed. In the next two sections, after introducing the idea of
semiparametric Bayesian modeling, we introduce three types of semiparametric
Bayesian growth curve models. Then, we compare the three types of models and
the traditional model in modeling different types of data through simulation
studies. Recommendations are provided at the end of the article.

2 Semiparametric Bayesian Modeling with DP Priors

A typical motivation of using semiparametric Bayesian methods is that one is
unwilling to make unverified assumptions for latent variables or measurement
error distributions as in the parametric modeling. Under a semiparametric
perspective, we model the distribution of a random vector ξ using a random
distribution function G with a prior G. Namely, the traditional parametric
assumption of the random vector ξ (i.e., ξ ∼ N(µξ,Φξ)) is replaced by

ξ ∼ G,
G ∼ G,

where G is an unknown distribution function and G is its prior, a distribution
over the distribution G. The prior G can be chosen as the Dirichlet process
(DP; Ferguson, 1973,7), which is the first prior defined for spaces of distribution
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function and is the most widely used one. The Dirichlet process generates
a random distribution function G, such that for any measurable partitions
P1, . . . , Pk of the sample space X , (G(P1), . . . , G(Pk)) follows a Dirichlet
distribution Dirichlet(αG0(P1), . . . , αG0(Pk)), where α and G0 are parameters
for the DP. For example, if X is the real space and P = (−∞, x] where x is a
real number, then

G(x) ∼ Dirichlet(αG0(x), α(1−G0(x))).

Thus,

E(G(x)) = G0(x),

V ar(G(x)) =
G0(x)(1−G0(x))

α+ 1
.

The DP is characterized by the two parameters, α and G0. G0 is a base
distribution, which represents the central or “mean” distribution in the
distribution space, while the precision parameter α governs how close realizations
of G are to G0. For example, Figure 1 displays generated random distributions
from the Dirichlet process given G0 and different values of α. The red lines in the
four plots represent the cumulative density curve for the base distribution G0,
which is a standard normal distribution in this case. Black lines in each figure
represent Gs generated from the Dirichlet process in five replications given G0

and α. Clearly, as α increases, generated Gs are closer to G0.
Ferguson (1973) introduced the DP as a random probability measure that has

two desirable properties: (1) its support is sufficiently large, and (2) the posterior
distribution is analytically manageable. He explained that the Dirichlet process
is a conjugate prior and the posterior of G is DP (α̃, G̃0). The two parameters
α̃ = α+N and

G̃0 =
α

α+N
G0 +

N

α+N
GN ,

where GN is the empirical distribution function of the data. Thus, the posterior
point estimate of G, E(G|data) = G̃0, is a weighted average of two distributions:
G0 and GN . If α = 0, the posterior point estimate is GN , which is nonparametric.
When α approaches infinity, the posterior point estimate approaches to G0,
which is parametric. In practice, α ∼ Gamma(a1, a2), which is neither 0 nor
infinity. Thus, we consider the posterior point estimate of G as semiparametric.

2.1 Stick-breaking construction

Sethuraman (1994) developed a constructive way of forming G, known as “stick-
breaking”, and showed that draws from stick-breaking are indeed DP distributed
under very general conditions. Let q1, q2, . . . , qk, . . . ∼ Beta(1, α). Define

pk = qk

k−1∏
j=1

(1− qj).
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Figure 1. Random distributions generated from the Dirichlet process in five
replications given a standard normal base distribution and different values of α

Then,

G =

∞∑
k=1

pkδξ∗k ,

where δξ∗k is the Dirac probability measure and ξ∗k ∼ G0. It is important to note
that

∑∞
k=1 pk = 1 as it guarantees G to be a distribution.

The process of the stick-breaking construction is given below.

1. Draw ξ∗1 from G0;

2. Draw q1 from Beta(1, α), then p1 = q1;

3. Draw ξ∗2 from G0;

4. Draw q2 from Beta(1, α), then p2 = q2(1− q1);

...
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Therefore, the distribution G(·) is a discrete distribution as

G(·) =



ξ∗1 , p = p1

ξ∗2 , p = p2
...

...

ξ∗k, p = pk
...

...

.

To define a continuous distribution, the Dirichlet process can be used as the basis
of a mixture model, for example, a mixture of N(µk, σ

2
k) with mixing proportions

defined by pk. Theoretically, there are an infinite number of mixture components
as k = 1, . . . ,∞, given an arbitrarily flexible choice of distributional shapes.
Multimodal or heavy-tailed distributions can be naturally modeled in this way.
In practice, a finite number of mixture components would be good enough, and
this number is taken into account by the Dirichlet process. Smaller values of DP
precision parameter α result in a smaller number of mixture components.

3 Three Types of Semiparametric Bayesian Growth
Curve Models

Consider a longitudinal dataset with N subjects and T measurement occasions.
Let yi = (yi1, . . . , yiT )′ be a T × 1 random vector with yij being an observation
from subject i at time j (i = 1, . . . , N ; j = 1, . . . , T ). A typical growth curve
model can be written as

yi = Λbi + ei,

bi = β + ui,

where Λ is a T × q factor loading matrix that determines the growth curves, bi

is a q × 1 vector of random effects, and ei is a vector of measurement errors.
The vector of random effects bi varies around its mean β. The residual vector
ui represents the deviation of bi from β. When

Λ =


1 0
1 1
...

...
1 T − 1

 ,bi =

(
Li

Si

)
, and β =

(
βL
βS

)
,

the model is reduced to a linear growth curve model with random intercept Li

and random slope Si. The mean intercept and slope are denoted as βL and βS ,
respectively.

Traditionally, ei and ui are assumed to follow multivariate normal
distributions with mean vectors of zero and covariance matrices Φ and Ψ ,
respectively, so ei ∼ MNT (0,Φ) and ui ∼ MNq(0,Ψ), where MN denotes
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a multivariate normal distribution and its subscript indicates its dimension.
Although traditional growth curve models are widely used, they can be deficient
because practical data often violate the normality assumption. Tong & Zhang
(2019) proposed to model ei using semiparametric Bayesian methods to account
for the nonnormality of data. However, since the nonnormality of a growth curve
model may come from two resources – the measurement errors ei and the random
components ui (Pinheiro et al., 2001), we model either one or both of them
semiparametrically and propose three types of robust distributional growth curve
models. The first type of robust semiparametric Bayesian growth curve models is
the same as what Tong & Zhang (2019) proposed: we let ei ∼ Ge, Ge ∼ DP and
keep ui ∼ MNq(0,Ψ). The second type of robust growth curve models can be
derived by keeping ei ∼ MNT (0,Φ) and letting ui ∼ Gu, Gu ∼ DP . The third
type of robust growth curve model can be obtained by letting ei ∼ Ge, Ge ∼ DP
and ui ∼ Gu, Gu ∼ DP . We denote the three types of robust growth curve
models as the Semi-N distributional model, the N-Semi distributional model,
and the Semi-Semi distributional model, respectively. Similarly, we also denote
the traditional growth curve model as the N-N distributional model.

3.1 Implementation: truncated stick-breaking construction

3.1.1 Semi-N distributional model. In the Semi-N distributional model,
we assume that ei ∼ Ge where Ge is an unknown random distribution that
is determined by the data. Because the distribution of ei is continuous, a DP
mixture (DPM) can be used to model the measurement errors such that

Ge =



D(µ
(1)
e ,Φ(1)), with p = p1

D(µ
(2)
e ,Φ(2)), with p = p2

...
...

D(µ
(k)
e ,Φ(k)), with p = pk

...
...

,

where D represents a predetermined multivariate distribution (e.g., multivariate

normal, t, multinomial, etc.), and µ
(k)
e and Φ(k), k = 1, . . . ,∞ are means

and covariances of the multivariate distribution in the kth component with
probability pk. Tong & Zhang (2019) proposed that

ei|Φi ∼MNT (0,Φi),

Φi|G ∼ G,
G ∼ DP (α,G0).

That is, the unknown distribution Ge is approximated by a mixture of
multivariate normal distributions where the mixing measure has a Dirichlet
process prior, Ge ∼ DPM . The DP prior DP (α,G0) can be obtained using
the truncated stick-breaking construction (e.g., Lunn et al., 2013; Sethuraman,
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1994). Specifically, DP (·) =
∑C

j=1 pjδzj (·), 1 ≤ C < ∞, where C (1 ≤ C ≤
N,often set at a large number) is a possible maximum number of mixture
components, δzj (·) denotes a point mass at zj and zj ∼ G0 independently. The
random weights pj can be generated through the following procedure. With
q1, q2, . . . , qC ∼ Beta(1, α), define

p
′

j = qj

j−1∏
k=1

(1− qk), j = 1, . . . , C.

Then, pj is obtained by

pj =
p
′

j∑C
k=1 p

′
k

,

to satisfy that
∑C

j=1 pj = 1.
Thus, the distribution of ei through the truncated stick-breaking construction

is

Ge =


MN(µ

(1)
e ,Φ(1)), with p = p1

MN(µ
(2)
e ,Φ(2)), with p = p2

...
...

MN(µ
(C)
e ,Φ(C)), with p = pC

.

Given that the mean of ei is 0, we constrain
∑C

j=1 pjµ
(j)
e = 0. For simplicity,

we follow Tong & Zhang (2019) and constrain µ
(j)
e to be 0. We use inverse

Wishart priors p(Φ(j)) = IW (n0,W0) for the covariance matrices of the mixture
components, Φ(j), j = 1, . . . , C. Following Lunn et al. (2013, page 294), we fix the
shape parameter n0 at a specific number and assign an inverse Wishart prior to
the scale matrixW0. With such a specification, the measurement error for subject
i, ei, has a pj probability of coming from the mixing component MN(0,Φ(j)).
If ei, i = 1, . . . , N are from Ke different distributions among MN(0,Φ(j)), j =
1, . . . , C, Ke is called the number of clusters for ei. Clearly, Ke ≤ C, and within
each cluster, eis come from the same distribution.

Bayesian methods are applied to estimate the model. The key idea of
Bayesian methods is to compute the posterior distributions for model parameters
by combining the likelihood function and the priors. Recall that in traditional
N-N distributional growth curve model, β,Φ, and Ψ are the model parameters.
Here in the Semi-N model, β and Ψ are still model parameters and can be
estimated in the same way. However, instead of estimating Φ as in the N-N
model, we obtain ei and Ke. The estimate of Ke indicates the heterogeneity
of between-subject measurement errors ei. With a larger value of Ke, we are
more confident to conclude that different subjects’ measurement errors are
distributed differently. To obtain an estimate of Φ (the covariance matrix of ei),
we let ei(s), i = 1, . . . , N be the observations of ei simulated from the posterior
distribution in the sth Gibbs sampler iteration, and let Φ(s) be the corresponding
sample covariance matrix. An estimate of Φ can be taken as the mean of Φ(s),
averaging over all the Gibbs sampler iterations after the burn-in period.
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3.1.2 N-Semi distributional model In the N-Semi model, ui follow an
unknown distribution Gu with a Dirichlet process prior. We can obtain the
mixing proportion pk and construct the distribution Gu in a similar way as in
the Semi-N model.

Gu =


MN(µ

(1)
u ,Ψ (1)), p = p1

MN(µ
(2)
u ,Ψ (2)), p = p2

...
...

MN(µ
(C)
u ,Ψ (C)), p = pC

,

where µ
(k)
u and Ψ (k), k = 1, . . . , C are parameters of the multivariate normal

distribution in the kth component. Since ui represents the random component

of the random effects bi, it is also reasonable to set µ
(k)
u = 0. For the covariance

matrices of the mixture components, Ψ (k), inverse Wishart priors are used

p(Ψ (k)) = IW (m0, V0),

where m0 and V0 are hyperparameters.
Therefore, ui comes from MN(0,Ψ (k)) with the probability pk. The number

of clusters for ui is denoted by Ku. Within each cluster, uis come from the same
distribution.

In contrast to the N-N and Semi-N distributional growth curve models, in the
N-Semi model, we obtain ui and Ku in the Markov chain Monte Carlo (MCMC)
procedure instead of estimating Ψ , while the fixed effects β and the covariance
matrix of measurement errors Φ are still model parameters and estimated in
the same way. The estimate of Ku indicates the heterogeneity of random effects
for different subjects. If Ku is large, we are more confident to conclude that
different subjects have different growth trajectories. To obtain an estimate of Ψ
(the covariance matrix of ui), we let ui(s), i = 1, . . . , N be the observations of
ui simulated from the posterior distribution in the sth Gibbs sampler iteration,
and let Ψ(s) be the corresponding sample covariance matrix. An estimate of
Ψ is the mean of Ψ(s), averaging over all the Gibbs sampler iterations after

the burn-in period. For the linear growth curve model, the estimate Ψ̂ is a
2 × 2 matrix ((σ̂2

L, σ̂LS)′, (σ̂LS , σ̂
2
S)′). The significance of σ̂2

L and σ̂2
S imply the

existence of between-subject differences in the initial level and the rate of change,
respectively. A significant σ̂LS means that the initial level and the rate of change
are significantly correlated.

3.1.3 Semi-Semi distributional model In the Semi-Semi model, both
ei and ui follow unknown distributions Ge and Gu, separately. The two
distributions can be constructed in the same way as in the Semi-N and N-Semi
distributional models. Consequently, we cannot obtain both the estimates of
Φ and Ψ directly, but they can be calculated following the same procedure
as discussed in previous sections, and be interpreted likewise. Besides Φ and
Ψ , other model parameters include β, Ke, and Ku, which can be estimated
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explicitly in the MCMC procedure. The fixed effect β represents the average
initial level and rate of change for all subjects. The number of clusters for ei and
the number of clusters for ui are Ke and Ku, indicating the heteroscedasticities
of ei and ui, respectively.

3.2 Visual model comparisons

To illustrate the differences among the N-N, Semi-N, N-Semi, and Semi-Semi
distributional models, we generate and plot data from the four types of models
(Figure 2). For each type of model, data on 50 subjects are generated at four
occasions assuming a linear growth trend. Figure 2(a) displays the trajectories
of the data generated from the N-N distributional model. No outlier can be
observed. The overall trajectory looks clean and smooth. Figure 2(b) plots
the data generated from the Semi-N distributional model with nonnormal
measurement errors and normal random effects. Noticeably, some observations
stand out of the overall trajectory such as those labeled by 1 and 2. A close
look at the two observations reveals that the reason why they deviate from the
overall trajectory is that they are off their own growth trajectories. Figure 2(c)
portrays data from the N-Semi distributional model with normal measurement
errors but nonnormal random effects. Some observations also deviate from the
overall growth trajectory. However, it seems that those observations are still
on their own growth trajectories. The reason why they stand out is that the
rate of growth for the specific case is very different from the majority of cases.
Figure 2(d) draws the trajectories for the data from the Semi-Semi distributional
model with both nonnormal errors and random effects. Clearly, the outlying
observations are due to two sources - the trajectory of a case deviates from
the overall trajectory and the observation for this specific case is off its own
trajectory. For example, observation 1 stands out because it is off the trajectory
of the case and the case itself has a lower initial level and a lower rate of change.
In summary, Figure 2 suggests that the four types of distributional growth curve
models can imply very different patterns in growth trajectories. For instance, if
a subject’s growth trajectory is within the normal range of the overall trajectory
and an observation at certain times stands out, the data are more likely to come
from the Semi-N distributional model. If, within a subject, observations follow
a smooth pattern but the trajectory itself differs from the overall trajectory, the
data are more likely to come from the N-Semi distributional model. Therefore,
given an empirical data set, it is very important to specify the correct type of
growth curve models. In order to concretely demonstrate the possible adverse
effects of misspecification for finite samples, we conduct a simulation study in
the next section.

4 A Simulation Study

In this simulation study, we aim to evaluate the performance of the three robust
distributional models as well as the traditional N-N model. Moreover, the effects
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Figure 2. Trajectory plots of data generated from the 4 different types of distributional
growth curve models. Data on 50 subjects are generated for 4 measurement occasions.
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of the misspecification of the three types of robust distributional growth curve
models will be studied to compare the intrinsic characteristics of them. We
first generate data from the N-N, Semi-N, N-Semi, and Semi-Semi distributional
models and name the data as N-N data, Semi-N data, N-Semi data, and Semi-
Semi data, respectively. Then, for each type of data, we fit all four types of
models and compare their parameter estimates.

We focus on a linear growth curve model as discussed in the previous section

yi = Λbi + ei,

bi = β + ui.

In the model (see Figure 3), the fixed effects are given by β = (βL, βS)
′

=

(6.2, 0.3)
′
.

Figure 3. Path diagram of a linear growth curve model. The numbers in the path
diagram are population parameter values used in the simulation.



Semiparametric Bayesian in GCM 65

4.1 Study design

In this study, seven possible influential factors are studied (see Table 1): type of
model, type of data, potential number of clusters (C), sample size (N), number
of measurement occasions (T ), the covariance between the latent intercept and
slope (σLS), and variance of measurement errors (σ2

e).
First, four types of distributional growth curve models are considered,

including the N-N, Semi-N, N-Semi, and Semi-Semi distributional models.
Second, based on the four types of models, we generate four types of data, called
N-N data, Semi-N data, N-Semi data, and Semi-Semi data correspondingly. We
use each one of the four models to fit all four types of data under different
conditions of the other five influential factors as described below.

(1) Three different sample sizes are considered: N =50, 200, and 500.
(2) The number of measurement occasions T is either 3 or 5. (3) For the
semiparametric models, we assume that data are potentially from 5 or 20
different clusters. (4) For the growth curve model parameters, the covariance
between the latent intercept and the slope σLS is either 0 or 0.3, reflecting
uncorrelated and correlated coefficients, respectively. When we generate ui from
the semiparametric perspective, we simply generate Ψ (k) ∼ IW (m0, (m0 −
2 − 1)Ψ) where Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′) and the hyperparameter m0 = 4

so that the mean of Ψ (k) is Ψ and thus the “mean” of Gu is a distribution
with its covariance matrix being Ψ . (5) In practice, it is typical to assume the
independence of measurement errors and the homogeneity of error variances
across time, so the within-subject measurement error structure is usually
simplified to Φ = σ2

eI. The variance of measurement errors σ2
e is manipulated

to be 0.5 or 0.7 to investigate the influence of measurement errors. When we
generate ei = (ei1, . . . , eiT )′ semiparametrically, we can set Φ(k) ∼ IW (n0, (n0−
T − 1)σ2

eI). However, in practice, it is easier to generate ei1, . . . , eiT separately

from a univariate distribution N(0, σ
2(k)
e ). We generate σ

2(k)
e from σ

2(k)
e ∼

IG(c0, d0), where c0 = 2 and d0 = σ2
e so that the mean of σ

2(k)
e is d0/(c0−1) = σ2

e .
Overall, 768 conditions of simulations are considered. For each condition, a

total of 200 data sets are generated and analyzed in OpenBUGS (Lunn et al.,
2013).

4.1.1 Pseudo-procedure to generate the Semi-Semi data
1. Set C equal to the number of clusters;
2. Generate p1k, k = 1, ..., C ;

3. Generate σ
2(k)
e ∼ IG(c0, d0);

4. Generate p2k, k = 1, ..., C;
5. Generate Ψ (k) ∼ IW (m0, (m0 − 2− 1)Ψ);
6. For i in 1 : N , do

(a) Randomly select a cluster based on p1k;
(b) If the k1th cluster is selected in (a), generate ei1, . . . , eiT ∼

N(0, σ
2(k1)
e ) and let ei = (ei1, . . . , eiT )′;

(c) Randomly select a cluster based on p2k;
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(d) If the k2th cluster is selected in (c), generate ui ∼MN(0,Ψ (k2));
(e) Generate yi = Λβ + Λui + ei.

4.2 Evaluation Criteria

We obtain the parameter estimate, bias, relative bias, empirical standard error,
mean square error (MSE), and coverage probability (CP) of the 95% highest
posterior density (HPD) credible intervals 1 for each parameter. Let θ denote a

parameter and also its population value, and let θ̂r, r = 1, . . . , 200 denote its
estimates from the rth simulation replication. Furthermore, let l̂r and ûr denote
the lower and upper limits of the 95% HPD credible interval for θ, respectively.
Then, the parameter estimate of θ, θ̂, is calculated as the average of parameter
estimates of 200 simulation replications

θ̂ =
1

200

200∑
r=1

θ̂r.

The bias of θ̂ is bias(θ̂) = θ̂ − θ. The relative bias of θ̂ is

RB(θ̂) =

100×

(
θ̂

θ
− 1

)
θ 6= 0,

100× θ̂ θ = 0.

Note that the relative bias is rescaled by multiplying 100. Smaller relative bias
indicates that the point estimate is less biased and thus more accurate. The
empirical standard error is defined by

SE(θ̂) =
1

199

200∑
r=1

(
θ̂r − θ̂

)2
.

The mean square error is calculated by MSE(θ̂) = bias(θ̂)2 + SE(θ̂)2. The CP
is calculated as

CP (θ̂) =
#(l̂r < θ < ûr)

200
,

where #(l̂r < θ < ûr) is the total number of replications with credible intervals
covering the true parameter value θ. Good 95% HPD credible intervals should
give coverage probabilities close to 0.95.

1 Posterior credible interval, also called credible interval or Bayesian confidence
interval, is analogical to the frequentist confidence interval. The 95% HPD credible
interval [l, u] satisfies: 1. Prob(l ≤ θ ≤ u|data) = 0.95; 2. for θ1 ∈ [l, u] and θ2 /∈ [l, u],
P rob(θ1|data) > Prob(θ2|data). In general, HPD intervals have the smallest volume
in the parameter space of θ, and numerical methods have to be used to find HPD
intervals.
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4.3 Results: Part I

In this part, we evaluate the performance of the semiparametric models through
comparing them with the traditional N-N model in parameter estimation.

First, when data are normally distributed, the four models perform equally
well, especially for large sample sizes. For example, Table 2 contains the absolute
bias and the standard errors for the six important model parameters (βL, βS ,
σ2
L, σ2

S , σLS , and σ2
e) of the four distributional models, when data are generated

from the N-N model with N = 500, T = 5, C = 20, σLS = 0.3, and σ2
e =

0.5. Apparently, there is no notable difference in the performance of the four
models. When sample size is small, the overall pattern does not change much
(see Table 3). For some parameter estimates, the semiparametric models may
slightly outperform the traditional N-N model.

Table 2. Parameter estimation for the four distributional models when data are
generated from the N-N model with N = 500, T = 5, C = 20, σLS = 0.3, and
σ2
e = 0.5

N-N model Semi-N model N-Semi model Semi-Semi model
AB SE AB SE AB SE AB SE

βL -0.004 0.049 -0.003 0.049 -0.003 0.050 -0.003 0.049
βS -0.002 0.017 -0.002 0.017 -0.002 0.017 -0.002 0.017
σ2
L 0.052 0.090 0.054 0.090 0.051 0.090 0.050 0.089
σ2
S 0.017 0.009 0.017 0.009 0.015 0.009 0.015 0.009

σLS -0.025 0.021 -0.024 0.021 -0.026 0.021 -0.026 0.021
σ2
e -0.019 0.015 -0.020 0.015 -0.020 0.015 -0.020 0.015

Note. AB: absolute bias; SE: empirical standard error.

Table 3. Parameter estimation for the four distributional models when data are
generated from the N-N model with N = 50, T = 3, C = 5, σLS = 0, and σ2

e = 0.1

N-N model Semi-N model N-Semi model Semi-Semi model
AB SE AB SE AB SE AB SE

βL -0.001 0.157 0.004 0.161 0.001 0.158 0.001 0.158
βS 0.007 0.053 0.005 0.054 0.006 0.053 0.006 0.054
σ2
L 0.025 0.226 0.029 0.230 -0.016 0.221 -0.021 0.221
σ2
S 0.039 0.028 0.037 0.027 0.019 0.028 0.018 0.028

σLS -0.015 0.057 -0.014 0.056 -0.017 0.055 -0.015 0.055
σ2
e 0.002 0.020 0.005 0.020 0.001 0.020 0.004 0.020

Note. AB: absolute bias; SE: empirical standard error.

Next, we evaluate the performance of the four models when data are not
normally distributed. Specifically, we compare the N-N model to the Semi-N,
N-Semi and Semi-Semi models in analyzing the Semi-N data, N-Semi data and



Semiparametric Bayesian in GCM 69

Semi-Semi data, respectively. We take a close look at the parameter estimates,
bias, relative bias, empirical standard errors, MSEs, and CPs.

Table 4 contains the estimation results of the N-N and Semi-N models when
N = 200, T = 3, C = 20, σLS = 0, and σ2

e = 0.5 in analyzing the Semi-N data.
When data are generated with the measurement errors coming from different
clusters, using the Semi-N model consistently leads to less biased estimates,
smaller standard errors and MSEs, and better CPs. For the fixed effects βL and
βS , estimates from the N-N model and the Semi-N model are about the same.
Standard errors are smaller for the Semi-N model. Also, CPs of the 95% HPD
credible intervals from the Semi-N model are relatively closer to the nominal level
95%. For parameters σ2

L, σ2
S , and σLS which are related to the random effects,

the bias and standard errors are uniformly smaller by fitting the Semi-N model
to the data. Furthermore, the CPs for σ2

S and σLS increase from 0.910 and 0.905
to 0.940 and 0.945, respectively, tending much closer to the nominal level 95%.
We notice that the estimates of σ2

e are around 0.475 for both the N-N and Semi-
N models, the standard errors are large, and the CPs are extremely different
from the 95%. These are because the measurement errors eit are generated from
N(0, σ2

e), and σ2
e are generated from IG(2, 0.5) to control the mean of σ2

e to be
0.5. However, data generated from IG(2, 0.5) are usually less than 0.5 because
this inverse Gamma distribution is skewed to the right. Therefore, in practice,
we hardly can control the variance of the measurement errors when generating
the Semi-N data, and thus, the bias, MSE, and CP for σ2

e cannot be trusted for
the Semi-N data as the population parameter values are unknown. Note that the
parameter estimates and their standard errors can still be trusted. For the Semi-
N model, the estimated number of clusters for ei is about 6 and the standard
error of it is 0.653. There are 6 different clusters among the 200 subjects in the
distribution of the measurement errors. Because we use informative priors for the
DP precision parameter α to reduce the computational complexity and time, the
estimate of α is very precise. The same pattern can be observed for all the other
conditions in the comparison between the N-N and Semi-N models. Detailed
tables under different conditions are available in Appendix A on our GitHub
site: https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM.

Table 5 presents the comparison between the N-N and N-Semi models when
N = 200, T = 5, C = 20, σLS = 0, and σ2

e = 0.1 in analyzing the N-Semi data.
The parameter estimates for the fixed effects βL and βS are about the same
for both the N-N and N-Semi models, whereas the standard error estimates for
βL and βS are smaller for the N-Semi model, usually resulting in smaller CPs
of the HPD intervals. Under this specific condition, the CPs for the N-Semi
model are closer to the nominal level 95%. For the variance estimate of the
measurement error σ2

e , fitting the two models leads to similar results as well.
This phenomenon is closely related to the estimate of Ku. In this analysis, the
estimate of Ku is 2.418, meaning that there are only 2 potential clusters for the
random effects. In this case, using the N-Semi model may not be very different
from using the traditional growth curve model. For parameter σ2

L, σ2
S , and σLS ,

their bias, MSEs, and CPs cannot be trusted. The reason is similar to the reason

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
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Table 4. Parameter estimation for the N-N and Semi-N distributional models when
data are generated from the Semi-N model with N = 200, T = 3, C = 20, σLS = 0,
and σ2

e = 0.5

N-N model Semi-N model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.201 0.001 0.009 0.082 0.007 0.960 6.201 0.001 0.008 0.081 0.007 0.955
βS 0.303 0.003 0.845 0.041 0.002 0.980 0.302 0.002 0.620 0.039 0.001 0.970
σ2
L 1.016 0.016 1.576 0.138 0.019 0.970 1.014 0.014 1.395 0.134 0.018 0.970
σ2
S 0.135 0.035 35.280 0.035 0.002 0.910 0.132 0.032 31.663 0.028 0.002 0.940

σLS -0.022 -0.022 -2.157 0.058 0.004 0.905 -0.019 -0.019 -1.899 0.053 0.003 0.945
σ2
e 0.475 -0.025 -5.076 0.365 0.134 0.240 0.476 -0.024 -4.835 0.364 0.133 0.215

Ke - - - - - - 5.800 - - 0.653 - -
α - - - - - - 0.999 -0.001 -0.069 0.006 0.000 1.000

Note. Est.: estimate; AB: absolute bias; RB: relative bias; SE: standard error; MSE:
mean square error; CP: coverage probability.

why bias, MSE, and CP cannot be trusted for parameter σ2
e in analyzing the

Semi-N data. Here when the N-Semi data are generated, ui is generated from the
multivariate normal distribution MN(0,Ψ), where Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′)

is generated from an inverse Wishart distribution IW (4, ((1, 0)′, (0, 0.1)′)) to
control the mean of Ψ to be ((1, 0)′, (0, 0.1)′). In practice, it is not possible
to generate multivariate data evenly distributed around the the mean, so the
population parameter values for Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′) are unknown, and

thus, we cannot calculate bias, MSE, and CPs for those parameters. In this
analysis, we still use informative priors for the precision parameter α to reduce
the computational time. The above pattern can be observed under the other
conditions as well when comparing the N-N and N-Semi models (see detailed
results in Appendix A on our GitHub site).

Table 5. Parameter estimation for the N-N and N-Semi distributional models when
data are generated from the N-Semi model with N = 200, T = 5, C = 20, σLS = 0,
and σ2

e = 0.1

N-N model N-Semi model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.200 0.000 0.005 0.054 0.003 0.985 6.199 -0.001 -0.020 0.051 0.003 0.975
βS 0.299 -0.001 -0.457 0.021 0.000 0.970 0.298 -0.002 -0.699 0.019 0.000 0.965
σ2
L 0.836 -0.164 -16.353 1.304 1.726 0.120 0.829 -0.171 -17.113 1.299 1.715 0.050
σ2
S 0.094 -0.006 -6.150 0.098 0.010 0.195 0.089 -0.011 -10.798 0.098 0.010 0.055

σLS -0.009 -0.009 -0.919 0.244 0.060 0.345 -0.010 -0.010 -1.015 0.243 0.059 0.135
σ2
e 0.099 -0.001 -0.529 0.005 0.000 0.955 0.099 -0.001 -0.737 0.005 0.000 0.950

Ku - - - - - - 2.418 - - 0.789 - -
α - - - - - - 0.967 -0.033 -3.309 0.008 0.001 1.000
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The comparison results between the Semi-Semi and N-N models are presented
in Table 6 for the Semi-Semi data when N = 50, T = 3, C = 20, σLS = 0.3,
and σ2

e = 0.5. For this comparison, we can only compare the bias, standard
error estimates, MSEs and CPs for the fixed effects parameters. Clearly, the
absolute bias for the two models is close to each other, whereas the standard
errors are consistently smaller for the Semi-Semi model than those for the
traditional N-N model, indicating the efficiency of the estimates can be increased
by using the robust Semi-Semi model. When generating the Semi-Semi data, we
cannot manipulate the covariance matrix of ui and the variance of ei exactly.
Therefore, the population parameter values of σ2

L, σ2
S , σLS , and σ2

e are unknown,
so that the bias, MSEs, and CPs for these parameters cannot be evaluated. In
Table 6, we also observe that the estimate of Ke is 4.501 and the estimate
of Ku is 2.416, implying that there are about 5 clusters for ei and 2 clusters
for ui, respectively, among the 50 subjects. Different subjects’ measurement
errors are distributed differently, whereas their growth trajectories are not as
much different. By using the informative priors for α1 and α2, the estimates of
them are very precise. More comparison results between the Semi-Semi model
and the N-N model under different conditions are available in Appendix A on
https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM.

Table 6. Parameter estimation for the N-N and Semi-Semi distributional models when
data are generated from the Semi-Semi model with N = 50, T = 3, C = 20, σLS = 0.3,
and σ2

e = 0.5

N-N model Semi-Semi model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.195 -0.005 -0.087 0.166 0.028 0.980 6.196 -0.004 -0.060 0.147 0.021 0.970
βS 0.300 0.000 0.161 0.079 0.006 0.980 0.298 -0.002 -0.526 0.073 0.005 0.980
σ2
L 1.098 0.098 9.841 1.258 1.592 0.425 1.051 0.051 5.126 1.220 1.491 0.295
σ2
S 0.247 0.147 147.283 0.300 0.112 0.710 0.217 0.117 116.946 0.151 0.037 0.635

σLS 0.157 -0.143 -47.786 0.440 0.214 0.275 0.163 -0.137 -45.702 0.351 0.142 0.165
σ2
e 0.550 0.050 10.086 0.907 0.826 0.285 0.543 0.043 8.606 0.959 0.922 0.230

Ke - - - - - - 4.501 - - 0.420 - -
Ku - - - - - - 2.416 - - 0.584 - -
α1 - - - - - - 1.000 0.000 0.016 0.004 0.000 1.000
α2 - - - - - - 0.980 -0.020 -2.007 0.006 0.000 1.000

In sum, the performance of the four models is about the same for normally
distributed data, especially when the sample size is large. When the sample
size is small, even for normal data, some semiparametric models may perform
slightly better than the traditional N-N model in the precision of parameter
estimation. When data are not normally distributed, the traditional N-N model
performs relatively worse than the semiparametric models. They may not exhibit
quite different parameter estimates for fixed effects βL and βS , but the standard
errors for all parameters are smaller for the semiparametric models than those

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
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for the N-N model, potentially resulting in higher statistical power. In addition,
the differences between the N-N model and the semiparametric models are
closely related to the numbers of clusters Ke and Ku, which represents the
heteroscedasticities of ei and ui, respectively. If Ke or Ku is much larger
than 1, data are more likely to be nonnormal, and the differences between the
results from the N-N model and the semiparametric models should be bigger.
Theoretically, if the estimates of Ke and Ku are 1, the parameter estimation
from the Semi-Semi model should be the same as those from the traditional N-N
model.

4.4 Results: Part II

We have shown that the semiparametric models perform at least equally
well as the traditional N-N growth curve model when data are normal,
and perform better when data are nonnormal. We recommend utilizing the
semiparametric models in practical data analyses. Because there are three
different semiparametric models, another purpose of this simulation study is
to evaluate the effects of the misspecification of the three types of distributional
growth curve models. Two commonly used statistics, which examine more than
one performance criterion (Collins et al., 2001), are calculated for each model
parameter to compare the three types of semiparametric growth curve models.
The first statistic is the MSE based on 200 sets of parameter estimates and
standard errors, and the second one is the CP of the 95% HPD credible intervals.
The MSEs and CPs are then averaged over certain model parameters for each
simulation condition. For the Semi-N data, MSEs and CPs are averaged over
βL, βS , σ2

L, σ2
S , and σLS , because the MSE and CP for σ2

e cannot be trusted,
as explained previously. For the N-Semi data, MSEs and CPs are averaged over
βL, βS , and σ2

e since the population parameter values for σ2
L, σ2

S , and σLS are
unknown. For the Semi-Semi data, MSEs and CPs are only averaged over βL
and βS .

Table 7 summarizes the results for the analysis of each type of data by
different types of distributional models with different sample sizes when T = 5,
C = 5, σLS = 0, and σ2

e = 0.1. In the table, on the rows are the different types
of generated data and on the columns are the three types of semiparametric
distributional models used to analyze the generated data. In almost all situations,
the model used to generate the data provides the best estimation results with
smaller MSE and better credible interval coverage among the three types of
robust growth curve models. For example, for the Semi-N data with N = 200,
the Semi-N distributional model gives the best coverage probability and a
comparable MSE to the other models. Similarly, for the N-Semi data with
N = 50, the MSE for the N-Semi model is one of the smallest and the CP
for the N-Semi model is the closest to the nominal level. Intuitively, we may
consider the Semi-Semi model as the most general model and apply it to all
the cases. However, it is not always a good idea. First, through our simulation
results, although the MSEs for the Semi-Semi model are the smallest under
different conditions, the CPs for the Semi-Semi model are not always the
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best. By using the Semi-Semi model, the parameter estimates are slightly less
accurate, while the standard errors are slightly smaller. Unexpectedly, the slight
changes in the estimates and standard errors may result in a substantially lower
coverage probability. Thus, the Semi-Semi distributional growth curve model
is not optimal all the time. Second, theoretically, although the semiparametric
approach is the same as the traditional growth curve analysis when the numbers
of clusters take the value of 1, the estimated numbers of clusters are almost not
possible to be 1 when we fit a semiparametric model to normal data. Because
in each iteration of the MCMC sampling procedure, we count the number of
clusters, which are at least 1. If in one iteration, the number of clusters happens
to be bigger than 1 due to sampling errors, the estimated number of clusters
cannot be exact 1. Therefore, semiparametric approach is not the same as
the traditional growth curve analysis when analyzing normal data. One will
lose statistical accuracy and increase type I errors by fitting the Semi-Semi
distributional model to the N-N, Semi-N, or N-Semi data. Third, practically,
estimating a Semi-Semi distributional model is more time-consuming than other
types of models. It is often worth putting effort into determining the distributions
of random effects and measurement errors to select the correct type of model.

The above results hold for different sample sizes, the number of measurement
occasions, the potential number of clusters, the covariance between the latent
intercept and slope, and the variance of the measurement errors. Take a closer
look at the influence of these factors, we notice that the MSEs decrease as the
sample size increases. By comparing Tables 7 and 8, Tables 7 and 9, Tables
7 and 10, and Tables 7 and 11, we observe separately that the number of
measurement occasions, the potential number of clusters, the covariance between
the latent intercept and slope, and the variance of the measurement errors do not
affect the performance of the semiparametric models. More tables under different
conditions are given in Appendix B on our GitHub site: https://github.com/
CynthiaXinTong/SemiparametricBayeisnGCM.

In summary, the accuracy and efficiency of the estimation for a specific type
of data closely depend on the correct specification of a model. Consequently, in
practical data analyses, it is important to choose the correct type of model.

4.5 Model selection

Tong & Zhang (2012) proposed three model diagnostic methods and the
“distribution checking based on individual growth curve analysis” method can
be easily adopted for the semiparametric approach. In this method, an individual
growth curve (yi = Λbi + ei) is first fitted to data from each individual. Using
the least square estimation method, the individual coefficients (random effects)
bi = (biL, biS)T and the measurement errors ei = (ei1, . . . , eiT )T are estimated

and retained. Let b = (b̂1, · · · , b̂N )T and e = (ê1, · · · , êN )T where b is a
N × 2 matrix of individual coefficients estimates and e is a N × T matrix of
estimated errors. Then, we test the normality of e and b. If all 2 columns of b
follow normal distributions, we consider the individual coefficients to be normally
distributed. Otherwise, we consider them nonnormally distributed. Similarly, if

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
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all T columns of e are normally distributed, the errors are viewed as from normal
distributions. If e and b are not normally distributed, semiparametric approach
is recommended. Based on the combination of the distributions for e and b, the
decision can be made according to Table 12.

Table 12. Distribution checking based on individual growth curve analysis

Errors Individual Coefficients Model

normal normal N-N distributional model
nonnormal normal Semi-N distributional model

normal nonnormal N-Semi distributional model
nonnormal nonnormal Semi-Semi distributional model

5 Discussion

Restricting to a parametric probability family can delude investigators and
falsely make an illusion of posterior certainty (Müller & Mitra, 2004). In
this study, we proposed a semiparametric Bayesian approach for growth curve
analysis with nonnormal data. The normal distributions of the random effects
and/or measurement errors of traditional growth curve model were replaced
by random distributions with DPM priors. Thus, four types of distributional
growth curve models were discussed, including the traditional N-N model, the
robust Semi-N, N-Semi, and Semi-Semi models. Through a simulation study,
we systematically evaluated the performance of the semiparametric Bayesian
method and further assessed the effects of the misspecification of the four types
of distributional growth curve models to compare the intrinsic characteristics
of them. Seven potentially influential factors were considered including type of
data (N-N data, Semi-N data, N-Semi data, Semi-Semi data), type of model
(N-N model, Semi-N model, N-Semi model, Semi-Semi model), number of
measurement occasions (T = 3, 5), potential number of clusters (C = 5, 20),
the covariance between the latent intercept and slope (σLS = 0, 0.3), variance
of measurement errors (σ2

e = 0.1, 0.3), and sample size (N = 50, 100, 200).
Among the seven factors, the number of measurement occasions, the potential
number of clusters, the covariance between the latent intercept and slope, and the
variance of measurement errors were not influential to the comparison among the
performance of the four types of distributional models. The following conclusions
can be drawn for the other three factors.

First, the three types of semiparametric models perform as well as, or better
than, the traditional N-N model, especially when data are nonnormal. When
data are normally distributed, we may obtain slightly biased but more efficient
parameter estimates by using the semiparametric models. It is possible for the
semiparametric models to lead to worse CPs, but the MSEs are often smaller.
When data are nonnormal, we recommend using the robust models instead of
the traditional growth curve model as they provide much more accurate and
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precise parameter estimates. Second, the semiparametric approach can improve
the efficiency of the parameter estimation. For example, in Tables 4-6, the
standard errors in the right panel are uniformly larger than those in the left
panel, indicating the parameter estimation from the traditional growth curve
analysis is less efficient. However, we would like to note that although the
Semi-Semi model is the most general type of models, it is not always optimal.
Misusing the Semi-Semi model could result in lower CPs and more type I errors.
Moreover, fitting the Semi-Semi model to data is more time-consuming than
fitting simpler models. Therefore, it is important to specify the correct type of
model for practical data analyses. The “eyeball” method and the “distribution
checking based on individual growth curve analysis” method can be used for
model diagnostics (see Tong & Zhang, 2012). Third, the increase of the sample
size can often improve the performance of all the four types of models. As shown
in Tables 7-11, MSEs become smaller when sample size increases, but sample size
does not affect the comparison among the four types of models. In general, we
recommend using robust semiparametric models, especially when nonnormality
is suspected.

For the semiparametric Bayesian approach, the normal assumption is replace
by a random distribution with a DPM prior. In our study, the random
distribution is a mixture of multivariate normal distributions with the mixing
proportions generated following certain rules (e.g., truncated stick-breaking
construction). So, similar to the finite growth mixture modeling, the number
of clusters increases along with the increase of sample size. This is reasonable,
because the diversity increases as more subjects are enrolled in the study.
Naturally, there need to be more clusters. However, the semiparametric Bayesian
growth curve modeling is different from finite growth mixture modeling. For
finite growth mixture modeling, adding one additional cluster brings in several
more parameters to be estimated. Thus, it is not possible to have many clusters
when we conduct finite growth mixture analyses, whereas it is not a problem for
us to obtain a large number of clusters if we use the semiparametric Bayesian
method. The number of parameters for the semiparametric Bayesian model keeps
the same no matter how many clusters there are.

We would like to note that the DP precision parameter α governs the
expected number of clusters. Smaller values of α result in a smaller number
of clusters. In this study, the DP precision parameter α has an informative
priorGamma(100, 100) to reduce the computational complexity and convergence
issue. The αs generated from the MCMC procedure are very close to 1.
When α equals 1, about 90% prior weight on between 3 and 7 clusters (Lunn
et al., 2013). Tong & Ke (2021) evaluated the effect of precision parameter
prior on model estimation, model convergence, and computation time. They
recommended using informative priors for the precision parameter, even when
the information is inaccurate. Following their recommendation, the informative
prior Gamma(100, 100) was chosen in this study.
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Limitations and future directions

In this study, we proposed to use a random mixture distribution to replace the
normal assumption for robustness, but the distribution of mixture components
is still specified as normal. To be more general, the distribution of mixture
components can be nonnormal as well. For example, it is quite possible that
the t distribution is a better substitute, and the Gamma distribution probably
can better accommodate the skewness in the data. Thus, the influence of the
distribution form of the mixture components needs further evaluation.

Note that we only compared the parameter estimation for model comparison.
How well the models fit the data is not evaluated. Deviance Information Criterion
(DIC) is widely used to evaluate the model fit in Bayesian analysis. Despite
the popularity of DIC, it has received much criticism since it was proposed
(Spiegelhalter et al., 2002). Celeux et al. (2006) argued that the DIC introduced
by Spiegelhalter et al. for model assessment and model comparison was directly
inspired by linear and generalized linear models, but it was open to different
possible variations in the setting of models involving random effects, as in
our robust growth curve models. A number of ways of computing DICs are
proposed in Celeux et al. (2006), and their advantages and disadvantages are
discussed. However, the calculation of DIC in semiparametric Bayesian analysis
has not been studied. Thus, a more sophisticated way to calculate DIC should
be considered deeply in the future, since DIC is an important index to evaluate
the model performance.

This study focuses on robust simple linear growth curve models for
demonstration. However, the same methods should work for nonlinear growth
curve models as well. The performance of the more complicated semiparametric
growth curve models (e.g. logistic and Gompertz models) can be studied in the
future.
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Abstract. The nature of associations between variables is important for
constructing theory about psychological phenomena. In the last decade,
this topic has received renewed interest with the introduction of psycho-
metric network models. In psychology, network models are often con-
trasted with latent variable (e.g., factor) models. Recent research has
shown that differences between the two tend to be more substantive
than statistical. One recently developed algorithm called the Loadings
Comparison Test (LCT) was developed to predict whether data were
generated from a factor or small-world network model. A significant limi-
tation of the current LCT implementation is that it’s based on heuristics
that were derived from descriptive statistics. In the present study, we
used artificial neural networks to replace these heuristics and develop a
more robust and generalizable algorithm. We performed a Monte Carlo
simulation study that compared neural networks to the original LCT
algorithm as well as logistic regression models that were trained on the
same data. We found that the neural networks performed as well as or
better than both methods for predicting whether data were generated
from a factor, small-world network, or random network model. Although
the neural networks were trained on small-world networks, we show that
they can reliably predict the data-generating model of random networks,
demonstrating generalizability beyond the trained data. We echo the call
for more formal theories about the relations between variables and dis-
cuss the role of the LCT in this process.

Keywords: neural networks · machine learning · data generating mecha-
nisms

The nature of associations between observable variables is one of the most
critical considerations for constructing theory about psychological phenomena
(Borsboom, van der Maas, Dalege, Kievit, & Haig, 2020; Haslbeck, Ryan, Robin-
augh, Waldorp, & Borsboom, 2019). Whether variables are associated because
they all have a common cause or because they reciprocally cause and effect one
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another is (ideally) theorized by the researcher and (often) implied by their choice
of psychometric model (Borsboom, 2006; Haslbeck, Ryan, Robinaugh, Waldorp,
& Borsboom, 2019). Determining whether empirical data are generated by one
of these mechanisms is therefore an important question (van Bork et al., 2019).
Although other possibilities exist (Kruis & Maris, 2016; Marsman et al., 2018),
these two explanations are perhaps the most common perspectives in psychology
and correspond to latent variable and network models, respectively. The debate
over the plausibility of these mechanisms has sparked renewed interest in the on-
tology and epistemology of psychological phenomena (Borsboom, 2008; Guyon,
Falissard, & Kop, 2017).

Factor (latent variable) models are represented by arrows going from latent
(unobservable) variables to observable variables. From a causal theory perspec-
tive, this representation suggests that a factor causes the response to the observ-
able variables (Edwards & Bagozzi, 2000). Network models represent observable
variables as nodes (circles) and their relationships (e.g., partial correlations) as
edges (lines). From a causal theory perspective, this representation suggests that
observed variables directly and reciprocally cause one another (van der Maas et
al., 2006). For both models, researchers may not interpret the models causally
but instead as summaries of covariance. In the last few years, the apparent dif-
ferences between these models have been shown to be more substantive than
statistical (Guyon, Falissard, & Kop, 2017), with several studies demonstrating
that both models can produce similar covariance patterns and model parame-
ters (e.g., dimensions and loadings; Golino & Epskamp, 2017; Hallquist, Wright,
& Molenaar, 2019; Marsman et al., 2018; van Bork et al., 2019; Waldorp &
Marsman, 2020).

Recent simulation studies, for example, have demonstrated that clusters of
nodes in networks identified by community detection algorithms (Fortunato,
2010) are consistent with latent factors in factor models (Christensen, Garrido,
& Golino, 2021; Golino & Epskamp, 2017; Golino et al., 2020). Other simula-
tions have demonstrated that node strength or the absolute sum of a node’s
connections in a network is consistent with confirmatory (Hallquist, Wright, &
Molenaar, 2019) and exploratory factor loadings (Christensen & Golino, 2021).
Despite producing similar model parameters, the substantive interpretations and
representations of these models imply different data generating mechanisms. The
implications of these different data generating mechanisms are important: Should
a researcher use factor or network analysis to model their data? More signifi-
cantly, should clinicians treat an underlying psychopathological disorder (factor
model) or the symptoms that constitute the disorder (network model; Borsboom,
2017)?

To answer these questions, the present research aimed to develop an algo-
rithm that could determine whether data were generated from a factor or network
model. Such a tool allows researchers to determine whether their data are struc-
tured more like their hypothesized data generating mechanism. Although data
generated from either model can fit and be represented by the other (van Bork et
al., 2019; van der Maas et al., 2006), researchers should attempt to design, use,
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and model measures that align with their theoretical perspective (Christensen,
Golino, & Silvia, 2020). Recent developments have demonstrated that factor and
network models can potentially be distinguished by correlation patterns of the
data (Christensen & Golino, 2021; van Bork et al., 2019). One of these methods,
called the Loadings Comparison Test (LCT), compares loadings from factor and
network models to predict the data-generating model (Christensen & Golino,
2021). In its current form, however, the LCT relies on descriptive heuristics,
which are unlikely to generalize across many data conditions. To make the al-
gorithm more robust, we used artificial neural networks from machine learning.
We then performed a simulation to evaluate whether the neural networks per-
form better than the original heuristic-based algorithm and a set of regularized
logistic regression models.

1 Loadings Comparison Test

The LCT was inspired by van Bork et al. (2019) who demonstrated that uni-
dimensional factor models and sparse network models have subtle statistical
differences that can be used to determine whether the empirical data are more
likely generated from one model or the other. In their paper, they identified two
key differences: (1) the proportion of partial correlations that have a different
sign than the corresponding zero-order correlations and (2) the proportion of
partial correlations that are stronger than the corresponding zero-order corre-
lations. The empirical value of these proportions is then compared against the
distributions of data generated from factor and network models applied to simu-
lated covariance matrices. The model with the greater probability is determined
to be the most likely model. They referred to this test as the Partial Correlation
Likelihood Test.

The Partial Correlation Likelihood Test provides a test for determining
whether data are more likely generated from a factor or network model in uni-
dimensional data structures. Although unidimensional structures are critical to
psychology, the Partial Correlation Likelihood Test may not generalize to more
complex models (e.g., multidimensional models; van Bork et al., 2019). The
LCT was motivated by the need for such a test in multidimensional data. The
development of the LCT was based on the descriptive differences between factor
and network loadings when data were factor or network model (Christensen &
Golino, 2021). Network loadings are the standardized sum of each node’s con-
nections to nodes in each community in a network. Below, we provide notation
for how network loadings are computed.

Let W represent a symmetric n×n partial correlation network matrix where
n is the number of nodes. Node strength is defined as:

Si =

n∑
j=1

|Wij |



88 A. P. Christensen & H. Golino

where |Wij | is the absolute edge weight between node i and j and Si is node
strength for node i. Using this definition, node strength can be split by commu-
nities estimated in the network:

`ic =

C∑
j∈c
|Wij |,

where `ic is the sum of the edge weights in community c that are connected to
node i and C is the number of communities in the network. `ic can be standard-
ized using:

ℵic =
`ic√∑
`c
,

where
√∑

`c is the square root of the sum of all edge weights for nodes in com-
munity c and ℵic is the standardized network loading for node i in community
c. Signs are added after the loadings have been computed following the same
procedure as factor loadings (Comrey & Lee, 2013).

Across three simulations, Christensen and Golino (2021) demonstrated that
factor and network loadings are roughly equivalent when data are generated by
a factor model. To determine whether this equivalency held across other data
generating mechanisms, they generated data from random correlation matrices
with small correlations (between ±.15) and small-world networks. They found
that factor and network loadings were no longer consistent with one another
when data were generated from either data generating method. This observation
led them to develop a heuristic-based algorithm (LCT) that could potentially
be used to determine the data generating mechanism.

1.1 Original Algorithm

The algorithm starts by generating data from a multivariate normal distribu-
tion based on the empirical covariance matrix and estimating the number of
communities (or dimensions) using exploratory graph analysis (EGA; Golino &
Epskamp, 2017; Golino et al., 2020). EGA estimates a network and then applies
the Walktrap community detection algorithm (Pons & Latapy, 2006) to iden-
tify the number of communities in the network (see Appendix A.1 for statistical
details). Using the number of dimensions estimated by EGA, factor loadings
are computed using EFA with oblimin rotation. Similarly, network loadings are
computed with the EGA results. This process is repeated 100 times and loadings
are computed for each generated dataset.

Next, the proportions of loadings that are greater than or equal to small,
moderate, and large effect sizes are computed. For factor models, these effect sizes
are 0.40, 0.55, and 0.70, respectively (Comrey & Lee, 2013). For network models,
these effect sizes are 0.15, 0.25, and 0.35, respectively (Christensen & Golino,
2021). Dominant and cross-loadings that are greater than or equal to small effect
sizes are also computed. The proportion of loading effect sizes are computed to
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summarize the covariance matrix into the same dimensions no matter how many
variables are in a dataset. More specifically, any n × n covariance matrix can
be summarized by these five loadings proportions for both factor and network
loadings, resulting in a comparable structure (ten loading proportions in total)
for all datasets.

We summarize Christensen and Golino’s (2021) rationale for why there might
be differences between factor and network models. Factor loadings are derived by
extracting the common covariance between variables. This computation of factor
loadings means that the magnitude of factor loadings depend on the shared vari-
ance across sets of variables. In contrast, network loadings are computed using
the standardized sum of each node’s connection to nodes in a certain dimension.
This computation means that their magnitudes only depend on the covariance
of each node with other nodes in a dimension. When data are generated from a
factor model, then there is usually common covariance to extract in each dimen-
sion. This common covariance leads factor and network loadings to be consistent
with one another as Christensen and Golino (2021) demonstrate.

Data generated from network models, however, do not imply common covari-
ance in each dimension but rather each node usually represents its own dimen-
sion (Cramer et al., 2012). Many real-world networks tend to have a small-world
structure (e.g., psychopathological disorders; Borsboom, Cramer, Schmittmann,
Epskamp, & Waldorp, 2011), which are characterized by nodes having many
neighboring connections but also some cross-network connections with even fewer
nodes that act as hubs or nodes with an above average number of connections
(Watts & Strogatz, 1998). This structure suggests that there might be common
covariance between variables, but they are not necessarily structured in a sys-
tematic way—that is, common covariance is not necessarily structured in well-
defined dimensions like factor models. Such a structure suggests that common
covariance may be identified across some variables but will be relatively diffuse
in general (i.e., across factors; Christensen & Golino, 2021). In contrast, network
loadings partition the covariance based on the dimension structure (rather than
common covariance), leading to a greater prevalence of loadings that are likely
to be at least small or larger. Finally, network loadings would also be expected
to have greater proportions of cross-loadings due to the partitioning, rather than
extraction, of common covariance. These differences between the two loadings
may thus be informative for determining whether data were generated from a
factor or network model.

The heuristics of the LCT algorithm were developed in part based on this em-
pirical rationale as well as simulated data. The first heuristic is the ratio of small
effect size (or larger) network loadings divided by small effect size (or larger) fac-
tor loadings. When this ratio is greater than 1.5, then the algorithm suggests the
data are generated from a network model; if not, a second heuristic is applied.
The second heuristic is the logarithm of the ratio of dominant factor loadings
that are a small effect size (or larger) divided by cross-factor loadings that are
a small effect size (or larger). When this logarithm ratio is greater than 5, then
the algorithm suggests the data are generated from a factor model; otherwise,
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a network model. This latter heuristic was derived post-hoc for simulated data
with large correlations between factors (0.70). Although simple, these heuristics
performed remarkably well in simulated samples: 77.9% to 100% accuracy for
factor models and 87.8% to 95.8% accuracy for network models (Christensen &
Golino, 2021).

Despite high accuracy for all models, there were a couple limitations in their
validation. First, sample sizes were all generated with 1000 cases, which is large
relative to many samples used in psychology. Second, the simulated models used
novel data but with the same data structures that the heuristics were derived
from. The number of variables, for example, was held constant at fifteen for all
models, and factor models were always generated with three factors and five
variables per factor. These limitations are likely to result in overfitting and a
lack of generalizability to other samples and data structures. These limitations
motivated the current study where we sought to improve the LCT algorithm
by replacing these simple heuristics with a more sophisticated computational
approach: artificial neural networks.

2 Artificial Neural Networks

Artificial neural networks are a commonly used technique in machine learning
research (Dreiseitl & Ohno-Machado, 2002). They come in many forms but per-
haps the most basic are feed-forward networks where data are input as nodes and
are “fed through” the network to output nodes (i.e., the prediction). In machine
learning terms, neural networks are a supervised learning model, which means
that the researcher supplies both the input variables and the output variables
that the neural network must then “learn” a mapping between them. In our
study, the input corresponded to the factor and network loading proportions.
The output corresponded to the data-generating model (either factor or net-
work). The mapping between the input and output occurs through the hidden
layers of the neural network where the model learns the appropriate weighting
scheme that optimizes the prediction of the output from the input.

A neural network with no hidden layers can represent linear functions only
and is equivalent to a standard regression model (e.g., an output node with a
sigmoid activation function is a logistic regression model). With a single hidden
layer, a neural network can approximate “any function that has a continuous
mapping from one finite space to another” (Heaton, 2008). Two hidden layers
can represent any arbitrary boundary (e.g., non-linear functions), approximating
any mapping between the input and output (Hornik, 1991; Sontag, 1991). Key
to training neural networks is deciding on the number of hidden layers and
the number of neurons (or nodes) in each of the hidden layers. More complex
mappings require more complex neural networks (i.e., more nodes and layers).

An important concept for neural network learning is backpropogation. Back-
propogation refers to the adjustment of weights and biases in the network (start-
ing from the output back to the input; Watt, Borhani, & Katsaggelos, 2016). In
training, batches or a certain number of samples of the data are fed through the
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network’s weights and predictions are made about the output. With each batch,
the network updates its weights and biases by trying to minimize the loss of
information between the predicted output and the actual output. The end goal
is to minimize the loss of information between the predicted and actual output
to maximize the accuracy of the neural network’s predictions.

One of the advantages of neural networks is that they can learn mappings
between the input and output that are otherwise difficult to abstract (e.g., non-
linear relationships). In our case, going beyond simple descriptive heuristics to
map loading proportions to the data-generating model. This advantage of neural
networks is also a disadvantage. The mapping is often a “black box” that does
not offer clear interpretations of the underlying function—that is, what exactly
the neural network is using to distinguish a factor model from a network model.

2.1 Training the Neural Networks

In this section, we briefly describe the training procedure we used to arrive at
our final neural networks (a full description of the training process can be found
in Appendix A.2). Based on the original LCT algorithm, we expected certain
conditions to be more difficult to predict the data-generating model. Specifically,
we expected the size of the correlation between factors to have a substantial effect
on prediction accuracy. To this end, we started by training two neural network
models: one with low correlations between factors (0.00 and 0.30) and another
with high correlations between factors (0.50 and 0.70). Such a strategy is often
referred to as an ensemble of networks (Zhou, Wu, & Tang, 2002) where each
network is fine-tuned to a specific part of the problem to improve the overall
prediction of a more complex problem. The rationale for building several neural
networks to predict different factor models from network models is that different
information is likely to be more relevant for one set of factor models than another
(primarily along the lines of the magnitude of correlations between factors).

During the training of neural networks, part of the data is “held out” from
the network’s learning. Consistent with the literature, we used an 80/20 split of
our data where 80% of the data is used to train the network and 20% of the data
is used to validate the training. The purpose of this procedure is to evaluate the
neural network on data that was not used in its training. During this procedure,
we found that the high correlations between factors neural network was not very
accurate. We discovered that there were specific conditions where the neural
network was unable to predict the data-generating model. These conditions were
where the number of variables per factor was greater than the number of factors.
Based on this finding, we used two neural networks for factor models with high
correlations between factors (0.50 and 0.70): one with the number of variables
per factor greater than the number of factors and another with the number
of variables per factor less than the number of factors. The training validation
accuracy of both neural networks was sufficient.

Our final neural network ensemble consisted of three neural networks: low
correlations between factors, high correlations between factors with the number
of variables per factor greater than the number of factors, and high correlations
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between factors with the number of variables per factor less than the number of
factors. Our ensemble worked by having each neural network make a prediction
for whether the data were generated from a factor or network model. If any of
the neural networks predicted a factor model, then the ensemble suggests a fac-
tor model. Conversely, if all neural networks predicted a network model, then the
ensemble suggests a network model. To determine whether a neural network ap-
proach was necessary, we compared their performance to corresponding logistic
regression models that were regularized using the least absolute shrinkage and
selection operator (LASSO; Tibshirani, 1996). Logistic regression is commonly
used as a comparison method and is useful for determining the expected baseline
performance of a neural network (Dreiseitl & Ohno-Machado, 2002).

3 Present Study

In our present study, we set out to validate the neural networks against Chris-
tensen and Golino’s (2021) original LCT heuristics and the logistic regression
models that were trained alongside the neural networks. Although the neural
networks were already validated on novel samples held out from their training
samples, we sought to further test their generalizability by generating data using
different conditions than the ones they were trained on—that is, manipulating
the parameters of the factor and network models such that they were novel. Fur-
ther, we generated data from random network models, which were not used to
train the neural network and logistic regression models or the development of the
original heuristic-based algorithm. Random network models are generated by a
random process, making dependencies between variables unsystematic. Because
the random network models are completely novel, they represent an ideal test
of generalizability.

The original algorithm relied on a bootstrap approach (e.g., generating 100
samples) to compute the loadings proportion heuristics used to predict the
model. In contrast, the neural network and logistic regression approaches can
make predictions based on the empirical data. One potential advantage of the
neural network and logistic regression approaches is that they can also be ap-
plied to each sample of the bootstrap data. Beyond the empirical predictions,
the means of the loadings proportions could be computed and used to make
a prediction. Another prediction could made based on the proportion of each
time a model was predicted from the data (e.g., more than 50% of the sam-
ples suggesting a model predicts that model). In our simulation, we tested each
type of prediction (hereafter referred to as empirical, bootstrap, and proportion,
respectively).

4 Methods

4.1 Data Generation

All data were generated as continuous variables and sample sizes for all models
were generated with 400 and 750 cases. For each model, a total of 7,200 samples
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were generated, resulting in 21,600 total samples. Conditions of each model con-
sisted of different parameter settings than what the neural network and logistic
regression models were trained on. The random network models were completely
novel to all LCT configurations.

4.1.1 Factor model We generated data from multivariate normal factor mod-
els following the same approach as Golino et al. (2020). First, the reproduced
population correlation matrix was computed:

RR = ΛΦΛ′,

where RR is the reproduced population correlation matrix, Λ is the k (variables)
× r (factors) factor loading matrix, and Φ is the r × r correlation matrix. The
population correlation matrix, RP, was then obtained by putting the unities
on the diagonal of RR. Next, Cholesky decomposition was performed on the
correlation matrix such that:

RP = U′U.

If the population correlation matrix was not positive definite (i.e., at least
one eigenvalue ≤ 0) or any single item’s communality was greater than 0.90, then
Λ was re-generated and the same procedure was followed until these criteria are
met. Finally, the sample data matrix of continuous variables was computed:

X = ZU,

where Z is a matrix of random multivariate normal data with rows equal to the
sample size and columns equal to the number of variables.

We manipulated number of variables per factor (4, 6, and 8), number of
factors (2, 4, and 6), and correlations between factors (.00, .30, .50, and .70).
As the magnitude of the correlations between factors increased, so too did the
variance of the distribution the cross-loadings were drawn from. Specifically,
cross-loadings were drawn from a random normal distribution with a mean of 0
and standard deviation of .050, .075, .100, and .125, respectively. This made it
possible to generate cross-loading magnitudes that were quite large (e.g., .40),
creating more difficult conditions to decipher factor from network models when
the correlations between factors were large (e.g., .70). Cross-loadings were al-
lowed to be both positive and negative. Factor loadings on the dominant factors
were randomly drawn from a uniform distribution with a minimum of .40 and
maximum of .70. In total, there were 72 conditions (sample size × number of fac-
tors × variables per factor × correlations between factors) that were generated
100 times.

4.1.2 Network model We generated data from two different network mod-
els: small-world and random. We generated small-world networks by adapting
the bdgraph.sim algorithm in the BDgraph package (Mohammadi & Wit, 2015)
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in R (R Core Team, 2020) to incorporate the sample smallworld function from
the igraph package (Csardi & Nepusz, 2006). The algorithm starts by gener-
ating a binary undirected small-world network that follows the Watts-Strogatz
model (Watts & Strogatz, 1998). Next, following Williams, Rhemtulla, Wysocki,
and Rast (2019), the weights are drawn from a G-Wishart distribution corre-
sponding to 90% of partial correlations within the range ±.40. As Williams,
Rhemtulla, Wysocki, and Rast (2019) note, large networks are more likely to
have smaller partial correlations due to more variance being partialled out; how-
ever, given that many psychological assessment instruments have redundancies
(Christensen, Golino, & Silvia, 2020), partial correlations as large as .40 may
not be uncommon even when there are a large number of variables (Wysocki &
Rhemtulla, 2019). Therefore, we allowed networks, regardless of the number of
variables, to have weights between ±.40. The distributions of the absolute values
of these weights were typically positively skewed.

For the small-world network models, number of variables (12, 24, 36, and 48),
rewiring probabilities (.075, .15, and .30), and densities (.30, .50, and .70) were
manipulated. The rewiring probabilities were chosen on the basis of typical small-
world network models where the standard Watts-Strogatz small-world model
is around .10 (±5) and typical psychological small-world networks are likely
somewhere between .01 and .50. Importantly, the number of variables tended to
be within the same range as the factor models (between 8–48) to allow for closer
comparisons of the two models, which had a similar number of variables. It is
worth noting that our density and partial correlation magnitudes were within
the general range of many psychological networks (for a review, see Wysocki &
Rhemtulla, 2019). In total, there were 72 conditions (sample size × number of
variables × rewiring probabilities × densities) that were generated 100 times.

We generated random networks using the bdgraph.sim algorithm in the
BDgraph package. The network and data generation approach was identical to
the small-world networks. The main difference is that random networks randomly
connect edges between all nodes, making them less structured relative to small-
world networks (Watts & Strogatz, 1998). Like the small-world networks, we
manipulated the number of variables (15, 25, 35, and 45) and density of the
random networks (.30, .50, and .70). We also manipulated the probability that
a pair of nodes would have edge (.25, .50, .75). In total, there were 72 conditions
(sample size × number of variables × rewiring probabilities × densities) that
were generated 100 times.

4.2 Statistical Analysis

4.2.1 Analysis of Variance We computed analysis of variances (ANOVAs)
across conditions. We used a fully factorial design to allow for all possible
interactions between conditions. Partial eta squared (η2p) was used for effect
size. We followed Cohen’s (1992) effect size guidelines: small (η2p = 0.01),
moderate(η2p = 0.06), and large (η2p = 0.14).
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4.2.2 Confusion Matrix Metrics We computed confusion matrix metrics
for the models using the empirical, bootstrap, and proportion predictions of the
algorithm. To provide an example of these metrics, we use the factor model as the
model under consideration. A true positive (TP) was when the predicted and true
generating model matched the model under consideration (e.g., factor). A true
negative (TN) was when the predicted and true generating model (e.g., network)
were not the model under consideration (e.g., factor). A false positive (FP) was
when the predicted generating model matched the model under consideration
(e.g., factor) but not the true generating model (e.g., network). A false negative
(FN) was when the predicted generating model (e.g., network) did not match
the model true generating model and model under consideration (e.g., factor).

Using this confusion matrix, we computed sensitivity ( TP
TP+FN ),

specificity ( TN
TN+FP ), false discovery rate (FDR; FP

FP+TP ), accu-

racy ( TP+TN
TP+FP+TN+FN ), and Matthews correlation coefficient (MCC;

(TP×TN)−(FP×FN)√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

). Sensitivity is the proportion of

positives that are correctly identified as TPs, while specificity is the proportion
of negatives that are correctly identified as TNs. The FDR is the proportion
of FPs that are found relative to the total positives that are predicted by the
algorithm. Accuracy is the proportion of correct predictions (TPs and TNs) of
the algorithm, representing an overall summary of sensitivity and specificity.
Finally, the MCC is considered the best overall metric for classification evalu-
ation because it is an unbiased measure that uses all aspects of the confusion
matrix, representing a special case of the phi coefficient between the predicted
and true model (Chicco & Jurman, 2020).

5 Results

Starting with general accuracy, the neural network predictions had the highest
percent correct: proportion (96.2%), bootstrap (95.1%), and empirical (86.7%).
These were followed by the original algorithm (85.9%) and the logistic regres-
sion predictions: bootstrap (70.5%), proportion (68.7%), and empirical (67.4%).
Because the logistic regression predictions were poor, we focus on the confusion
matrix metrics of the neural network and original algorithm predictions.

Across all metrics, the bootstrap and proportion predictions were superior
to the single-shot empirical predictions. It is important to note that accuracy
and MCC will be the same between models, specificity and sensitivity will be the
opposite between models, and FDR will be different between the two models. For
specificity and sensitivity, we focus on factor models (sensitivity and specificity
for network models, respectively). Overall, proportion predictions outperformed
all others: sensitivity = 0.995 and specificity = 0.946 for factor models. The
accuracy and MCC were also very high: 0.962 and 0.919, respectively. The FDR
was 0.099 for factor models and 0.003 for network models.

The bootstrap predictions performed similarly well: sensitivity = 0.987 and
specificity = 0.933 for factor models. The accuracy and MCC were high: 0.951



96 A. P. Christensen & H. Golino

and 0.896, respectively. The FDR was 0.120 for factor models and 0.007 for
network models. The empirical predictions were slightly better than the original
algorithm (in parentheses): sensitivity = 0.984 (0.931) and specificity = 0.809
(0.822) for factor models. The accuracy and MCC were fairly high: 0.867 (0.859)
and 0.751 (0.718), respectively. The FDR was 0.279 (0.273) for factor models
and 0.010 (0.041) for network models.

5.1 Factor Model Percent Correct

In general, predictions for the factor model were highly accurate (≥ 75%) across
all conditions for the neural network and logistic regression methods (Figure
1). Lower accuracy for all methods tended to occur when correlations between
factors were large (.70). The ANOVA found that there was only one effect that
reached at least a moderate effect size. This moderate effect was an interaction
between method and correlations between factors (η2p = 0.07). This interaction
was driven by the original algorithm and large correlations between factors (Fig-
ure 1).
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Figure 1. Percent correct for factor models in each condition. NFAC = number of
factors, CORF = correlations between factors, and N = sample size.

Across all conditions, the neural network and logistic regression methods were
comparable to or better than the original LCT algorithm. The neural network
method was comparable to logistic regression method on all three prediction
types: empirical (98.4% and 98.9%, respectively), bootstrap (98.7% and 99.6%,
respectively), and proportion (99.5% and 99.8%). The original algorithm was
lower but still had high accuracy (93.1%).
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5.2 Small-world Network Model Percent Correct

As a general trend, all methods tended to improve in percent correct as the small-
world network models became denser (Figure 2). The neural network method by
far outperformed the logistic regression and original algorithm methods when the
networks were sparse (0.30). Across all conditions, the neural networks performed
as well as or better than the logistic regression and original algorithm predictions,
with the proportion predictions achieving at least 75% correct or greater. There
was one large effect for method (η2p = 0.18). The overall percent correct made
this effect clear: neural network (90.9%), logistic regression (82.1%), and original
algorithm (56.5%).
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Figure 2. Percent correct for small-world network models in each condition. REWIRE
= rewiring probability, D = density, and N = sample size.

Relative to the neural network method, the logistic regression and original
algorithm methods did not perform as well. These results suggest that the logis-
tic regression and original algorithm were strongly biased toward factor models.
There were two clear patterns in their results. Logistic regression performed
worse as the density decreased and the number of variables increased. The orig-
inal algorithm was primarily affected by density with accuracy decreasing as
density decreased.

5.3 Random Network Model Percent Correct

The random network models were not used to train or develop the methods and
therefore represent the strongest test of generalizability. As a general trend, all
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methods tended to improve in percent correct as the random network models
became denser (Figure 3). Overall, the neural network (88.3%) outperformed
the original algorithm (82.3%) and logistic regression (50.8%) methods. When
broken down by prediction type, neural network proportion (93.4%) and boot-
strap (91.8%) predictions had the highest accuracy followed by the original al-
gorithm (82.3%) and neural network empirical (79.6%) prediction. All logistic
regression predictions were less than 60%. There was one large effect for method
(η2p = 0.20). This effect was largely driven by logistic regression (Figure 3).
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Figure 3. Percent correct for small-world network models in each condition. PROB =
edge probability, D = density, and N = sample size.

These results add further support to the finding that logistic regression was
strongly biased toward factor models. Similar to the small-world network results,
all methods tended to decrease in accuracy as the density decreased. Accuracy
tended to increase as variables increased for the neural network while accuracy
tended to decrease as variables increased for logistic regression.

6 Real-world Examples

The simulation provides evidence that the LCT algorithm paired with neural
networks can be a powerful predictive tool for identifying whether data are
generated from a specific model. It is important, however, to demonstrate that
the LCT works in practice. To illustrate this, we examined two different datasets
that are assumed to be generated from a factor and network model.
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6.1 International Personality Item Pool Big Five Inventory

The first example dataset consisted of 2800 observations on items from the In-
ternational Personality Item Pool’s (Goldberg, 1999) Big Five Inventory (BFI;
John, Donahue, & Kentle, 1991), which is available in the psych package (Rev-
elle, 2017) in R. The BFI traditionally has five factors, each with five items,
corresponding to the Big Five factor model: openness to experience, conscien-
tiousness, extraversion, agreeableness, and neuroticism. The robustness of this
factor structure has been demonstrated across a variety of samples (e.g., Donnel-
lan, Oswald, Baird, & Lucas, 2006). Although there is no way to determine that
the BFI is actually generated from a factor model, its robust factor structure
suggests that the data structure should follow a factor model.

We applied the LCT to the full dataset as well as sub-samples that were ran-
domly split into 400 cases each (seven sub-samples in total; see Appendix A3 for
code to replicate this analysis). For the full dataset, all predictions—empirical,
bootstrap, and proportion—were for a factor model. Across the sub-samples,
the results varied slightly by prediction: empirical (6 factor and 1 network),
bootstrap (7 factor), and proportion (7 factor).

6.2 Resting State Default Mode Network

The second example dataset consisted of mean blood oxygen level-dependent
(BOLD) activation levels of twenty regions of interest (ROIs) in the brain that
corresponded to the default mode network (DMN) during five-minute resting
state scans in 144 participants from Beaty et al. (2018). The DMN corresponds
to a set of cortical midline, medial temporal, and posterior inferior parietal re-
gions that often co-activate together. Recent research has demonstrated that the
DMN can be broken down into several distinct sub-networks (Andrews-Hanna,
Smallwood, & Spreng, 2014; Gordon et al., 2020). Brain networks are a well-
known real-world example of networks, which make them an appropriate test of
whether the LCT performs as expected.

We applied the LCT to the correlation matrices of the 20 ROIs based on the
DMN structure identified in the Shen brain atlas (Shen, Tokoglu, Papademetris,
& Constable, 2013; see Appendix A.4 for code to replicate this analysis). The
correlation matrices were derived from time series with the length of 150, which
was used as the sample size input for the LCT. For the bootstrap and proportion
predictions, all participants’ DMN networks were suggested to be generated from
a network model. The empirical prediction suggested that most 140 (97.2%) were
generated from network models.

6.3 Summary

Taken together, these examples demonstrate the validity of the LCT on real-
world datasets that were expected to be generated from factor and network
models. Given the robustness of the proportion prediction of the LCT in the
simulation and our examples here, we suggest that researchers should place the
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most weight on this prediction. A consensus across predictions is most likely to be
robust but when they conflict researchers should give priority to the proportion
prediction followed by the bootstrap and empirical predictions. One benefit of
the proportion prediction is that it provides some inference into the certainty
of the data-generating model by offering the proportion of samples that were
predicted to be from either a factor or network model.

7 Discussion

The present study sought to use artificial neural networks to improve the LCT
algorithm, which was designed to determine whether data are generated from a
factor or network model based on factor and network loading structures. Our
results demonstrate how artificial neural networks can be a powerful tool for de-
veloping highly predictive models. In the context of our study, we demonstrated
that neural networks (specifically with proportion predictions) outperform sim-
ple heuristics (i.e., the original LCT algorithm) and logistic regression models
for predicting the data-generating model.

The significance of this problem has grown increasingly relevant as recent
studies have demonstrated that similar covariance patterns and models parame-
ters (e.g., dimensions, loadings) can be derived from factor and network models
(Golino et al., 2020; Hallquist, Wright, & Molenaar, 2019; Marsman et al., 2018;
van Bork et al., 2019; Waldorp & Marsman, 2020). These findings have shifted
the focus of the differences between these models from statistical to theoreti-
cal (Guyon, Falissard, & Kop, 2017; Kruis & Maris, 2016). Indeed, when the
data generating mechanism is a factor model, then the model parameters of fac-
tor and network models can be shown to be consistent with one another (e.g.,
dimensions, loadings; Christensen & Golino, 2021; Golino et al., 2020). These
parameters, specifically loadings, start to differ when the data generating mech-
anism is not a factor model. This raises an important question: What is the
difference between the structure of factor and network models?

We pinned our rationale on the factor model’s focus on extracting common
covariance. When it comes to our neural networks, their interpretations are a
black box of linear and non-linear transformations of the input to the output
and therefore make our predictions accurate but not necessarily explanatory (but
see Buhrmester, Münch, & Arens, 2019; Yarkoni & Westfall, 2017). Although
some hints are provided by our feature importance analysis (see Appendix A.2),
the exact mapping of between the loading structures and predicted model is
likely multifaceted (as demonstrated by the better performance in training and
validation of the neural networks over logistic regression). In unidimensional
models, there appears to be some statistical differences that can be exploited
but this may not generalize to more complex models (van Bork et al., 2019).
We show that, at the very, least summaries of the data’s structure (proportions
of small, dominant, and cross-loadings) are important for differentiating data
generated from these models.
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When considering statistical assumptions and the feature importance anal-
ysis, our results point to the cross-loadings between dimensions: factor models
tend to minimize cross-loadings whereas network models typically have many
(Christensen & Golino, 2021). Indeed, cross-loadings of the factor models were
either the first or second most important input for the neural networks pre-
dicting whether the data were generated from a factor or network model (see
Appendix A.2). Another difference is the extent to which there is clustering due
to common covariance: factor models attempt to specifically extract common co-
variance whereas network models partition covariance. This is made evident by
the importance of the dominant factor loading across the models. This strongly
suggests that the lack of common covariance in dimensions of network models
is a substantial contributor for differentiating them from factor models. This
finding is consistent with variables in network models being characterized as
“causally autonomous” (Cramer et al., 2012).

Although our findings may not be able to provide an exact statistical answer
about the differences between these models (e.g., van Bork et al., 2019), they do
provide a predictive tool for whether data are structured as a factor or network
model. Specifically, the proportion predictions of the neural network following
the LCT algorithm had high accuracy for all models. Importantly, we do not
suggest that the LCT can inform the researcher about whether their data was
actually generated from a specific model. This is a critical distinction: The LCT
can accurately predict whether the data are structured as a specific model rather
than actually being generated by it. Indeed, our simulated data were generated
from specific models but this does not mean that data structured like a factor
model could not be generated from a network model (and vice versa; Fried, 2020;
van Bork et al., 2019; van der Maas et al., 2006).

This issue of equally plausible data-generating mechanisms has been dis-
cussed at length in the literature (Christensen & Golino, 2021; Marsman et al.,
2018; van Bork et al., 2019; Waldorp & Marsman, 2020), leading to recent calls
for researchers to develop formal (i.e., computational and mathematical) theo-
ries about their psychological phenomena of interest (Borsboom, van der Maas,
Dalege, Kievit, & Haig, 2020; Fried, 2020; Haslbeck, Ryan, Robinaugh, Waldorp,
& Borsboom, 2019). Theories and hypotheses about the relations between com-
ponents of the phenomena should be developed a priori to test their relations.
These should then inform whether a factor or network model is a more appropri-
ate statistical model for the representation of those relations. We view the LCT
as a test for whether components are structured like a factor or network model,
which can inform the researcher as to whether the relations between components
are interacting as expected. Said differently, we do not advise that the LCT sup-
plant theory about the relations between variables but suggest that it can serve
as a tool for reasoning about the hypothesized structure of psychological mea-
surements.

In this respect, scale developers can structure their scales to align more with
the structure of a factor or network model—that is, the data structure can be
manipulated to produce data that appear to be generated from one model or
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the other (see Appendix A.6 for an example). In fact, contemporary psycho-
metric practice has been doing exactly this for many years: variables that are
strongly interrelated are usually retained in scales and variables with substantial
cross-loadings are usually removed from scales (DeVellis, 2017). This approach
is often justified to ensure that the phenomena of interest are being cleanly
measured (i.e., unidimensional) yet most researchers rarely discuss whether the
theory about the relations between the variables actually dictate such distinc-
tions. Therefore, it again comes down to theory as to whether the data are
actually generated from said model.

For more practical terms, researchers must consider the data-generating
model when estimating scores from these psychometric models (network scores
can be computed as a weighted composite; e.g., Golino, Christensen, Moulder,
Kim, & Boker, 2020). As shown in Appendix A.2 and Christensen and Golino
(2021), the loading structures for factor and network loadings are consistent with
one another when the data are generated from a factor model, which suggests
that there is little consequence in whether a factor or network model is used to
estimate scores (Golino, Christensen, Moulder, Kim, & Boker, 2020). When the
data are generated (or even structured) as a network model, then there is di-
vergence between the loading structures with variables (e.g., dominant loadings;
Appendix A.2). This divergence can have a substantial effect on the computation
and interpretation of scores.

Such a consequence has been noted in less drastic circumstances with sum
scores and factor scores where differences can be observed when a tau-equivalent
latent variable model (i.e., sum scores) is applied to data generated from a con-
generic latent variable model (i.e., factor scores; McNeish & Wolf, 2020). These
differences in factor structures can potentially have substantial consequences for
the reliability and validity of measurement. Moreover, these consequences further
underscore the importance for researchers to consider that “scoring scales—by
any method—is a statistical procedure that requires evidence and justification”
(McNeish & Wolf, 2020, p. 2). Therefore, if data are generated from a network
model, then factor scores may not be appropriate and could possibly jeopar-
dize the validity of the research. Our study demonstrates that the LCT can be
used as one method to provide such evidence and justification as well as guide
researchers toward more valid measurement.

Importantly, we also echo recent calls by researchers who have stated that
there is no need to pit these models against each other but rather develop hybrid
models that include components that are from common cause and causal systems
(Christensen, Golino, & Silvia, 2020; Epskamp, Rhemtulla, & Borsboom, 2017;
Fried, 2020; Guyon, Falissard, & Kop, 2017). In this way, researchers should
consider the level of organization at which each phenomena is being measured.
Factor models, for example, may be more appropriate when measuring a specific
phenomenon with highly similar variables like a single characteristic of person-
ality whereas network models may be more appropriate for understanding how
these specific characteristics coalesce into more complex systems like a personal-
ity trait (Christensen, Golino, & Silvia, 2020; Mõttus & Allerhand, 2017). Even
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still, individual personality traits may then appear as a factor model when ex-
amined together. This suggests that the level of organization may influence the
data structure and the relationships between the psychological components. This
jibes with the notion that hybrid models may be the most optimal stance (Fried,
2020; Guyon, Falissard, & Kop, 2017). The LCT can help researchers explore
and verify these hypothesized structures to better determine how hybridization
should occur.

There are several limitations that researchers must consider when using the
LCT. First, the LCT was trained on small-world network models and therefore
carries the assumption that most psychological networks will be generated from
small-world network models. We think this assumption is reasonable because
many real-world networks show small-world structure (e.g., brain networks; Mul-
doon, Bridgeford, & Bassett, 2016) and many psychological phenomena exhibit
properties that align with these assumptions such as psychopathological disor-
ders (Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp, 2011): clustering
of symptoms within a disorder (high clustering coefficient) yet bridges between
symptoms to other disorders (low average shortest path lengths; Cramer, Wal-
drop, van der Maas, & Borsboom, 2010). Moreover, we demonstrate that the
LCT can generalize to random network structures, which may be more appro-
priate when the network consists of unique variables that represent a specific
dimension like a network comprised of individual latent variables that represent
causally distinct phenomena (Cramer et al., 2012).

There are few standards for the characteristics and topology of what can be
considered a “typical” psychological network. Our data generating assumptions
were based on previous evidence that most real-world networks tend to be small-
world (including psychological networks; Borsboom, Cramer, Schmittmann, Ep-
skamp, & Waldorp, 2011), but the extent to which psychological networks are
represented by small-world networks and whether the parameters used in the
study mimic real-world psychological networks requires empirical validation (but
see Wysocki & Rhemtulla, 2019). In large part, this is because few psychological
network studies have examined the topological features of psychological networks
such as their degree distribution, which is a critical characteristic for determining
the type of network (e.g., random, small-world, scale-free, exponential random
graph; Newman, 2010). Further, small-worldness measures should be used to
determine whether data are more like a random, lattice, or small-world network
(see Telesford, Joyce, Hayasaka, Burdette, & Laurienti, 2011). In practice, this
task is difficult because network estimation methods differ in their preference
for sparsity, which affects all network measures (Wysocki & Rhemtulla, 2019).
Better data generation follows from more studies examining and reporting the
topology of psychological networks (e.g., Battiston et al., 2020; Burger et al.,
2020), which can in turn be used to train better neural networks to make more
valid predictions.

This leads us to a second, influential limitation: the predictions of the neural
networks are only as good as the data they are trained on. Therefore, we must be
critical of our own data generating methods and question whether they resemble
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real-world data. We believe that we have provided reasonably realistic datasets
that include factor models with dominant loadings between .40 and .70 and
a varying degree of cross-loadings. The range of loadings represent what are
considered to be acceptable to very high (Comrey & Lee, 2013), with .40 being
considered a rule of thumb for appropriate measurement of a latent variable
(DeVellis, 2017). Still, not all datasets will have loadings on the dominant factor
that are within this range.

Finally, in light of our discussion on theory, the LCT is focused on cross-
sectional datasets when most phenomena are likely to be dynamical systems
(e.g., Haslbeck, Ryan, Robinaugh, Waldorp, & Borsboom, 2019). This is a limi-
tation of the current implementation of the LCT but we suspect that the LCT
can be generalized to time series data by using dynamic factor analysis and
dynamic EGA (Golino, Christensen, Moulder, Kim, & Boker, 2020). Such an
approach could lead to determining whether some people represent represent a
phenomenon of interest as a common cause or causal system. This in turn could
offer inferences into individualized psychopathological intervention (Wright &
Woods, 2020), providing more specific answers to whether it would be more
effective for a clinician to treat an underlying disorder or specific symptoms.
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A Appendix

A.1 Exploratory Graph Analysis

Exploratory graph analysis (EGA; Golino & Epskamp, 2017; Golino et al., 2020)
is a network psychometrics dimension identification method. The approach be-
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gins by estimating a network from the empirical data and applying a community
detection algorithm to identify communities (or dimensions) in the network. The
traditional EGA method estimates a Gaussian graphical model (GGM; Lau-
ritzen, 1996) where nodes are variables and edges are the partial correlations
between nodes after being conditioned on all other nodes. In psychological net-
works, the most common way of estimating a GGM is to use the graphical
least absolute shrinkage and selection operator (GLASSO; Friedman, Hastie, &
Tibshirani, 2008; Friedman, Hastie, & Tibshirani, 2014) with extended Bayesian
information criterion (EBICglasso; Chen & Chen, 2008; Epskamp & Fried, 2018).
Once the EBICglasso is applied, the Walktrap (Pons & Latapy, 2006) commu-
nity detection algorithm is applied. The Walktrap algorithm uses random walks
or stochastic steps from one node over an edge to another to determine the
distance and similarity between two nodes. These random walks tend to stay
within subsets of related nodes because they tend to be closer and more similar
to one another. The algorithm merges the results, based on an agglomerative
clustering approach (Ward, 1963), of the random walks to separate the com-
munities. Modularity or the extent to which nodes maximize the proportion of
connections within their community relative to connections to other communi-
ties (Newman, 2006) is then used as criterion for selecting the optimal clustering
(or community) organization.

A.2 Training the Neural Networks

A.2.1 Data Generation Following the same data generating procedures in
the main text, we generated 480,000 datasets in total. For the factor models,
we manipulated number of variables per factor (3, 4, 5, 6, and 7), number of
factors (3, 4, 5, and 6), and correlations between factors (.00, .30, .50, and .70).
In total, there were 240 conditions (sample size × number of variables per factor
× number of factors × correlations between factors). For each condition, 1,000
samples were generated.

In contrast to previous simulation studies on psychological networks which
have generated data from random network models (e.g., Epskamp, Rhemtulla, &
Borsboom, 2017; van Bork et al., 2019; Williams, Rhemtulla, Wysocki, & Rast,
2019), we generated the training network models based on small-world networks.
Despite being the most widely studied type of network, random network models
are largely incongruous with most real-world networks (e.g., lack of clustering,
no correlation between degrees of adjacent nodes, shape of degree distribution;
Newman, 2010). Small-world networks, however, at least mirror some properties
of real-world networks (e.g., clustering, shortcuts between nodes; Newman, 2010)
and are commonly found in real-world networks (e.g., brain networks; Muldoon,
Bridgeford, & Bassett, 2016). Therefore, small-world networks are more likely
to represent many psychological phenomena (e.g., psychopathology; Borsboom,
Cramer, Schmittmann, Epskamp, & Waldorp, 2011). Moreover, the structure
of small-world networks (high clustering and low distances between nodes) is
closer to structures produced by factor models than random networks. We ma-
nipulated number of variables (10, 20, 30, and 40), density (.20, .40, .60, and
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.80), and rewiring probability (.01, .05, .10, .25, and .50). In total, there were
240 conditions (sample size × number of variables × neighborhood × rewiring
probability). For each condition, we generated 1,000 samples.

A.2.2 Building Neural Networks Formal articles on steps for how to train
neural networks appropriately are sparse; however, there are several resources
available. Our approach followed Andrej Karpathy’s “recipe” for training neural
networks (Karpathy, 2019). This recipe starts by thoroughly inspecting the data
distributions and looking for patterns, developing a neural network skeleton by
making a simplified model, overfitting a small portion of samples (e.g., 100) from
the data, regularizing the model to prevent overfitting (e.g., early stopping),
optimizing hyperparameters (e.g., number of nodes and hidden layers, learning
rate, batch size), and using neural network ensembles (which we describe in
our Introduction section). To prevent overfitting of the training data, we added
an early stopping criterion: when the validation loss plateaued (i.e., decreases
in the loss function less than .001) for ten epochs (or ten runs through the
entire training dataset; Prechelt, 2012), then the best weights (highest training
accuracy) were kept and used as our model.

A.2.3 Input Nodes Neural networks require a specific structure for input.
We used the proportion of loading effect sizes to summarize the covariance matrix
into a specific set of variables for input. This approach makes it so that no matter
how many variables are in a dataset they can always be summarized into the
same variables that are fed into the neural network. Using proportions that are
equal to or larger than a certain effect size allows for more continuous cut-offs
that reduce some of arbitrariness that is inherent in rule-of-thumb effect sizes.

Following Christensen and Golino’s (2021) LCT algorithm, we submitted
each dataset to EGA and EFA (using the same number of dimensions estimated
by EGA). For both the network and factor loadings, we computed the proportion
of loadings that were greater than small (.15 and .40, respectively), moderate
(.25 and .55, respectively), and large (.35 and .70, respectively) effect sizes as
well as the proportion of loadings that were greater than small effect sizes for
dominant and cross-loadings (Christensen & Golino, 2021; Comrey & Lee, 2013).
For each dataset, this created 10 proportions in total (five proportions for each
loading type) that were used as the base input nodes for all neural networks.

Additional input nodes were created by computing the ratio between the
exponent of a base network loading (i.e., small, moderate, large, dominant, and
cross) and the exponent of the corresponding base factor loading. To normalize
these ratios to be between zero and one (the same range as the proportions), we
used min-max normalization using the minimum and maximum possible ratio:

x− exp(0)
exp(1)

exp(1)
exp(0) −

exp(0)
exp(1)

,
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where x is the ratio between the exponent of a network loading proportion (e.g.,
small) and the exponent of the corresponding factor loading proportion. Addi-
tional inputs were not included if they did not increase prediction beyond the
base model when training the logistic regression. For all models, only the dom-
inant ratio improved the accuracy of the logistic regression predictions. When
additional inputs were used, we mention them in their corresponding neural net-
work descriptions. Below is a figure representing the data processing pipeline to
be fed data into the neural network (Figure 4).

Figure 4 displays simulated data from a factor model with two factors, six
variables per factor, small correlations between factors (0.30), and sample size
of 1000. The pipeline from data to neural network starts by computing a corre-
lation matrix. Next, EGA is used to estimate the number of dimensions. These
dimensions are then used as the number of factors to estimate in an EFA model
with oblimin rotation. Factor and network loadings are then computed. The
proportion of loadings that are greater than or equal to small, moderate, and
large effect sizes are computed. Similarly, the proportion of dominant and cross-
loadings that are greater than or equal to a small effect size are computed. This
is done for both factor and network loadings. Finally, these loadings are fed
as input into the neural network. The neural network then predicts the model
that the data were generated from. The neural network was visualized using the
nnvizRt Shiny application (Jessen, 2021) in R.

A.2.4 Activation Function Activation functions determine the output from
a node given the input to the node. All hidden layers for all neural networks used
the Parametric Rectified Linear Unit (PReLu; He, Zhang, Ren, & Sun, 2015)
activation function. The Rectified Linear Unit (ReLu; Nair & Hinton, 2010) is the
contemporary choice for most applications of deep learning (as opposed to the
historically and often still used sigmoid function; Nwankpa, Ijomah, Gachagan,
& Marshall, 2018). The ReLu activation function is a non-linear function that
returns the input of the function as the output unless the input is negative, which
is instead set to zero (inspired by the action potential of biological neurons).
One limitation of the ReLu function is that it can cause some neurons to never
activate (no matter the input), always outputting zero (known as the “dying
neuron problem”; He, Zhang, Ren, & Sun, 2015). PReLu overcomes this issue
by allowing a trainable parameter α to be adjusted so that some small non-zero
negative weights still activate neurons in the network. When α is zero for a node,
then PReLu is equivalent to ReLu. This flexibility of PReLu allows it to perform
at least as well as ReLu. For all output layers, we used the sigmoid function
( ex

ex+1 ) to estimate the probability of a given sample belonging to the outcome
model (i.e., the model designated as 1 in the output). A cut-off probability
of .50 was used to determine what model the sample belonged to (e.g., factor
vs. network model).

A.2.5 Gradient Descent Optimizer For all models, we used the Nestorov
Adaptive Moment Estimation optimizer (NADAM; Dozat, 2016), which tends
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Figure 4. From Data to Neural Network Pipeline
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to be the contemporary choice of neural networks (Ruder, 2016). The details
of gradient descent optimizers are beyond the scope of this paper; however,
their purpose was to minimize their functions by iteratively moving towards the
steepest part of the gradient or slope of the loss function (Watt, Borhani, &
Katsaggelos, 2016). At each iteration, the algorithm takes certain sized steps
on the gradient, which are called the learning rate. Higher learning rates lead to
larger steps toward a loss minimum but can potentially over-step a more optimal
minimum; lower learning rates are more likely to reach an optimal minimum but
take more time to get there. NADAM is an adaptive algorithm that changes the
learning rate over time in order to achieve appropriate descent. The foundation
of this algorithm is based on the Adaptive Moment Estimation (ADAM) opti-
mizer (Kingma & Ba, 2014), but uses an alternative momentum parameter called
Nesterov’s accelerated gradient momentum (NAG; Sutskever, Martens, Dahl, &
Hinton, 2013). In NADAM, NAG moves toward an intermediate direction and
then corrects toward the gradient, which allows the momentum to be shifted
toward the minimum (even after moving past the minimum; for more details,
see Dozat, 2016).

A.2.6 Loss and Accuracy Gradient descent optimizers aim to minimize a
loss function or the error between the actual and predicted outcomes. In our
neural networks, this was binary cross entropy or logarithmic loss. Binary cross
entropy is defined as the distance between two probability distributions (e.g.,
actual and predicted outcomes) and mathematically represented as:

CE = −
(
y log(p) + (1− y) log(1− p)

)
,

where y is the actual model and p is the predicted probability of the dataset
belonging to the model. If y = 1, then CE; otherwise, if y = 0, then 1− CE.

Binary accuracy was our accuracy measure, which is the mean of correct
identifications in the total sample. The accuracy typically corresponds to loss
but not necessarily. This is because correct model identifications are part of the
binary cross entropy equation. Their difference arises in the fact that binary cross
entropy considers the probability in which a dataset belongs to the correct model.
In the random vs. non-random model, for example, a probability ≥ .50 would be
considered a random model (1); otherwise, it is considered a non-random model
(0). A correct identification would be a 1 but its probability could be as low as
.50. In terms of binary cross entropy, the loss for a correct identification could
range from 0 (p = 1) to 0.693 (p = .50). Therefore, loss is informative about the
decisiveness of the predictions and accuracy is informative about the correctness
of the predictions.

A.2.7 Training Neural Networks Models were set up with a certain num-
ber of samples, which were then split into the original training (80% of the
overall sample) and validation (20% of the overall sample) samples. The original
validation samples are then completely held out of the model training phase and
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were only seen after the model had been trained. The original training samples
were used to train the model. During training, the original training samples are
further split into a new training dataset (80% of the training samples) and vali-
dation dataset (20% of the training samples). This new training dataset is then
randomly sampled without replacement with a specific number of batch sizes
(number of training samples used in each update of the gradient and weights).
After all of the new training dataset samples have been used once, the model is
tested using the new validation dataset.

Loss and accuracy metrics are then provided with the training loss and accu-
racy representing the last model in the epoch and the validation loss and accuracy
representing the performance of this last model on the validation dataset. The
conclusion of a single run of this process is called an epoch. Each new epoch will
randomly draw samples without replacement from the original training samples
and form new training and validation datasets (a process known as shuffling).
For all neural networks, we set the total number of epochs to 100 to allow train-
ing to proceed as necessary to settle into a minimum. Training was terminated
when either the epochs reached 100 or our early stopping criterion was reached
(i.e., decrease in validation loss less than .001 for ten consecutive epochs). After
training was terminated, the final model was then tested on the original valida-
tion samples, which are considered to be novel because they had not been seen
during the training of the model.

As a baseline comparison model, we trained the lasso regularized logistic
regression models on the same original training data using the same input vari-
ables used in the neural networks. Regularized logistic regression models were
chosen as a comparison for two reasons: (1) logistic regression models tend to
perform better than other machine learning classification methods, such as sup-
port vector machines and decision trees, when there are overlapping classes, and
(2) regularization reduces the flexibility of the model, which makes it less likely
to overfit the underlying function in the training data and more likely to gener-
alize to other data conditions (James, Witten, Hastie, & Tibshirani, 2013). The
use of logistic regression models provides inference into whether more complex
neural networks are necessary. The coefficients of each trained logistic model
were extracted and then solved for each case of the original validation dataset.
Accuracy and loss were then computed for the original validation dataset.

A.2.8 Feature Importance In order to determine the importance of each
input into each neural network, we computed a measure of feature importance
on the original validation datasets that were held out of the original training
datasets following Fisher, Rudin, and Dominici (2019). The approach works by
permutating one-by-one each input variable and computing the loss. The loss is
then divided by the original loss to obtain the relative decrease in performance
for the permutated input. Because of the stochasticity of the permutations, we
computed this analysis ten times and computed the mean of the values. Values
greater than one suggest the input was important with larger values suggest-
ing greater importance whereas values near one suggest that the input did not
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improve the model and less than one suggest that the input made the model
worse.

A.2.9 Data Analysis All analyses were performed in R. All neural networks
were trained using the keras package (Allaire & Chollet, 2020) and all logistic
regression models were fit with the glmnet package (Friedman, Hastie, & Tib-
shirani, 2010). All data, R code and scripts are available on the Open Science
Framework (OSF). Each neural network is available on the OSF and can be
further fine-tuned and improved with new data and examples (i.e., the models
can be further trained with new models, data conditions, and methods of data
generation).

A.2.10 Results The mean proportions of the base network and factor load-
ings across each data-generating models are presented in Figure 5.
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Figure 5. Mean proportions of the base input loadings for the neural network models.
Error bars represent 0.5 standard deviations.

The most glaring differences between models are proportion of dominant
loadings that achieve a small effect size or larger for both network and factor
loadings. This difference is most apparent when the data are generated from
a network model. Table 1 presents a summary of the architecture the neural
networks including the parameters and validation estimates.

Across all neural networks, we found comparable or better performance than
the logistic regression models, suggesting that the neural networks were reason-
able and potentially necessary for optimal performance in the LCT algorithm.

Model 1: Low Correlation Factor vs. Network. For the low correla-
tion factor vs. network model, we removed the datasets corresponding to the

https://osf.io/4fe9g/
https://osf.io/4fe9g/
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Table 1. Neural Network Architectures, Parameters, and Metrics

Neural
Network

Logistic
Regression

Model Architecture
Batch
Size

Learning
Rate

Loss Accuracy Loss Accuracy

1 11 9 1 64 .0003 0.180 0.928 0.286 0.890
2 11 9 1 32 .0005 0.159 0.937 0.257 0.908
3 11 9 1 32 .001 0.239 0.902 0.401 0.846

Note. Model: 1 = low correlation vs. network; 2 = high correlation with
variables greater than factors vs. network; 3 = high correlation with
variables less than or equal to factors vs. network. Grey boxes denote
best values of loss and accuracy for each model.

data generated from factor models with correlations between factors of .50 and
.70 (120,000 samples), leaving us with 120,000 samples of orthogonal and low
correlations between factors (.00 and .30, respectively). To obtain an equivalent
number of datasets generated from the network models, we randomly sampled
40,000 network datasets from each level of sample size (i.e., 250, 500, and 1000),
resulting in 120,000 total network datasets. In total, we used 240,000 datasets.

We created a single binary output variable with 1 corresponding to a factor
model and 0 corresponding to not a low correlation factor model. Importantly,
it is possible that the learned weights of the low correlation factor model could
still correspond to other factor models even though they weren’t observed in
the trained model. This potential for overlap was on purpose and allowed mul-
tiple checks of factor models to be learned against network models in the LCT
algorithm.

The input of this model consisted of our base input nodes along with an
additional input: dominant ratio. This made for eleven input nodes in total.
There was one hidden layer with nine nodes. Our final model did not reach
our early stopping criterion and was terminated after the 100th epoch. We then
evaluated the model on the validation dataset, which achieved a loss of 0.180
and accuracy of 92.8%. The neural network model outperformed the regularized
logistic regression model by a full tenth in loss and over three percent in accuracy
(Table 1). The inputs that had the greatest importance were the cross factor
loading (2.57), dominant factor loading (2.55), and large factor loading (2.12).

Model 2: High Correlation with Variables per Factor Greater than
Factors vs. Network. The setup of the high correlation with variables greater
than factors vs. network model was identical to Model 1 except the samples
retained were the high correlation between factors (i.e., .50 and .70; 120,000
samples) rather than the low correlation between factors. From these samples,
we extracted samples that were generated with the number of variables per factor
that were greater than the number of factors (e.g., 4 variables per factor and 3
factors). This resulted in 60,000 samples used in training. Just as Model 1, we
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Table 2. Importance of Input for Each Model

Network Factor Ratio

Model Small Moderate Large Dominant Cross Small Moderate Large Dominant Cross Dominant

1 2.09 1.53 1.16 1.59 1.68 1.66 1.21 2.12 2.55 2.57 1.09
2 2.20 2.27 1.23 1.28 1.27 3.07 1.30 2.44 1.54 3.28 1.93
3 6.65 1.81 1.35 2.05 1.88 1.67 1.18 1.84 2.22 2.45 1.37

Note. Model: 1 = low correlation vs. network; 2 = high correlation with variables greater
than factors vs. network; 3 = high correlation with variables less than or equal to factors
vs. network. Grey boxes denote top three most important features for each model.

randomly sampled an equal number of network samples across the same sample
size levels, resulting in a total of 120,000 samples.

The exact same input and hidden layers were used as Model 1. Similarly, our
final model did not meet our early stopping criterion and was terminated after
the 100th epoch. We then evaluated the model on the validation dataset, which
achieved a loss of 0.159 and accuracy of 93.7%. This neural network outperformed
the logistic regression model in loss and accuracy (Table 1). The inputs that had
the greatest importance were the cross factor loading (3.28), small factor loading
(3.07), and large factor loading (2.44).

Model 3: High Correlation with Variables per Factor Less than
or Equal to Factors vs. Network. The setup of the high correlation with
variables less than or equal to factors vs. network model was the same as Model 2
except models with the samples retained were the moderate and high correlation
between factors (i.e., .50 and .70) with variables per factor than were equal to or
less than the number of factors (60,000 samples; e.g., 3 variables per factor and
5 factors). Similarly, an equivalent number of network models were randomly
drawn from the 240,000 network models (across the same sample size levels),
resulting in a total of 120,000 samples. The inputs and hidden layers were the
same as Model 1 and 2. Our final model reached our threshold of early stopping
on epoch 88. We then evaluated the model on the validation dataset, which
achieved a loss of 0.239 and accuracy of 90.2%. Relative to the other models,
the neural network substantially outperformed the logistic regression model on
both loss and accuracy (differences of .162 and 5.6%, respectively). The inputs
that had the greatest importance were the small network loading (6.65), cross
factor loading (2.45), and dominant factor loading (2.22).

A.3 Reproducible Code for the Loadings Comparison Test with Big
Five Inventory

# Set seed

set.seed (3532)

# Install latest EGAnet package

devtools :: install_github("hfgolino/EGAnet")
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# Load packages

library(psych)

library(EGAnet)

library(psychTools)

# Get BFI data

bfi.data <- bfi [ ,1:25]

# LCT of the full dataset

LCT(bfi.data)

# Randomly sample from BFI data

samps <- sample (1: nrow(bfi), nrow(bfi))

# Split samples into sizes of 400

start <- seq(1, nrow(bfi), 400)

end <- seq(400, nrow(bfi), 400)

# New samples

new.samps <- list()

for(i in 1: length(start )){

new.samps[[i]] <-

bfi.data[samps[start[i]:end[i]],]

}

# Apply LCT to new BFI samples

res.bfi <- lapply(new.samps , LCT)

## Empirical

mean(lapply(res.bfi ,

function(x){x$empirical }) == "Factor")

## Bootstrap

mean(lapply(res.bfi ,

function(x){x$bootstrap }) == "Factor")

## Proportion

mean(lapply(res.bfi , function(x){

names(x$proportion )[which.max(x$proportion )]
}) == "Factor")

A.4 Reproducible Code for the Loadings Comparison Test with
Default Mode Networks
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# Install latest EGAnet package

devtools :: install_github("hfgolino/EGAnet")

# Load packages

library(googledrive)

library(EGAnet)

# Create path to temporary file

temp <- tempfile ()

# Download to temporary file

drive_download( paste("https://drive.google.com/file/d/",

"1T7_mComB6HPxJxZZwwsLLSYHXsOuvOBt", "/view?usp=sharing",

sep = ""), path = temp)

# Load resting state brain data

load(temp)

# Get default mode network from Shen atlas

# (from NetworkToolbox)

atlasNet <-

c(2,4,3,2,3,3,2,2,2,1,4,1,3,2,4,1,2,4,2,4,2,

2,5,5,5,5,5,4,4,2,2,4,5,5,5,4,5,5,5,5,8,6,

8,4,5,5,2,2,3,3,5,1,1,1,2,1,1,5,8,5,5,5,5,

1,1,8,8,6,8,2,8,6,8,8,6,7,6,7,6,6,7,6,4,5,

3,3,6,4,5,3,4,5,4,4,4,3,5,6,4,7,4,7,4,4,4,

4,4,4,5,4,2,2,4,4,3,2,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,3,4,4,1,3,2,1,3,2,2,4,1,4,2,

1,1,1,1,4,1,2,4,1,2,5,5,5,5,1,5,2,1,5,5,5,

4,5,5,5,5,5,8,6,8,4,5,5,5,2,1,2,1,1,1,5,5,

1,5,1,2,1,5,2,5,6,2,8,8,5,3,8,6,8,6,6,8,8,

6,7,7,7,6,6,4,5,1,4,4,3,3,4,3,4,3,5,4,4,4,

4,4,4,5,4,4,4,3,8,7,2,4,4,4,2,2,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

dmn <- which(atlasNet == 3)

# Grab only default mode networks

rest.dmn <- restOpen[dmn ,dmn ,]

# Convert array to list

dmn.list <- list()

## Make diagonals 1

for (i in 1:dim(rest.dmn )[3]){
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net <- rest.dmn[,,i]

diag(net) <- 1

dmn.list[[i]] <- net

}

# Apply LCT to DMN list

## 150 = length of original time series

res.dmn <- lapply(dmn.list , LCT , n = 150)

## Empirical

mean(lapply(res.dmn , function(x){x$empirical }) == "Network")

## Bootstrap

mean(lapply(res.dmn , function(x){x$bootstrap }) == "Network")

## Proportion

mean(lapply(res.dmn , function(x){

names(x$proportion )[which.max(x$proportion )]
}) == "Network")

A.5 Session Information for Appendix A.3 and A.4

R version 4.0.5 (2021-03-31)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] psych_2.1.3 EGAnet_0.9.9 googledrive_1.0.1

[4] papaja_0.1.0.9997 ggplot2_3.3.3

loaded via a namespace (and not attached):

[1] pillar_1.6.0 compiler_4.0.5 tools_4.0.5
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[4] digest_0.6.27 nlme_3.1-152 lattice_0.20-44

[7] evaluate_0.14 lifecycle_1.0.0 tibble_3.1.1

[10] gtable_0.3.0 pkgconfig_2.0.3 rlang_0.4.11

[13] xfun_0.22 DBI_1.1.1 parallel_4.0.5

[16] yaml_2.2.1 withr_2.4.2 stringr_1.4.0

[19] dplyr_1.0.6 knitr_1.33 generics_0.1.0

[22] vctrs_0.3.8 grid_4.0.5 tidyselect_1.1.1

[25] glue_1.4.2 R6_2.5.0 fansi_0.4.2

[28] rmarkdown_2.8 bookdown_0.22 purrr_0.3.4

[31] magrittr_2.0.1 scales_1.1.1 ellipsis_0.3.2

[34] htmltools_0.5.1.1 mnormt_2.0.2 assertthat_0.2.1

[37] colorspace_2.0-1 utf8_1.2.1 stringi_1.6.1

[40] munsell_0.5.0 tmvnsim_1.0-2 crayon_1.4.1

A.6 Example of data-generating model Manipulation

To demonstrate how the structure of data can be manipulated toward a cer-
tain model, we used a dataset that consisted of 2,832 observations on items
from the Broad Autism Phenotype Questionnaire (BAPQ; Hurley, Losh, Parlier,
Reznick, & Piven, 2007) that was a collected as a part of the Simons Foundation
Autism Research Initiative’s Simplex Collection (https://www.sfari.org/).
The BAPQ was completed by the mothers and fathers of children on the Autism
spectrum. The BAPQ consists of three sub-scales—aloof personality, pragmatic
language problems, and rigid personality—that are based on direct assessment
interviews with parents of autistic people that correspond to defining behavioral
domains of autism: social, communication deficits, and stereotyped-repetitive be-
haviors (Hurley, Losh, Parlier, Reznick, & Piven, 2007). The BAPQ has demon-
strated a robust three-factor structure (Ingersoll, Hopwood, Wainer, & Donnel-
lan, 2011) with each sub-scale containing twelve items that are rated on a 6-point
Likert scale. Correlations between the means of the sub-scales tend to be highly
correlated in clinical samples (r’s from .50 to .70; Hurley, Losh, Parlier, Reznick,
& Piven, 2007) but smaller when using factor analysis in non-clinical samples
(r’s from .10 to .30; Ingersoll, Hopwood, Wainer, & Donnellan, 2011).

Because we have data for both mothers and fathers, we applied the LCT
to each parent’s datasets. We split the datasets into training (n = 1,699) and
testing (n = 1,133) sets to validate the LCT’s results. Below we present a table
(Table 3) for the predictions of the LCT.

The results demonstrate that the BAPQ in mothers is a factor model based
on the empirical prediction and network model based on the bootstrap and
proportion prediction. For the fathers, the training data were predicted to be
a factor model across all predictions while the testing data were predicted to
be a network model across all predictions. In short, the results are mixed but
lean towards a network model with three out of for datasets having network
predictions for the proportion prediction. Based on this result, we would conclude
that the data for mothers and fathers are most likely generated from a network

https://www.sfari.org/


124 A. P. Christensen & H. Golino

Table 3.

Predictions

Parent Dataset Empirical Bootstrap Proportion

Mother
Training Factor Network

Network (0.59)
Factor (0.41)

Testing Factor Network
Network (0.71)
Factor (0.29)

Father
Training Factor Factor

Factor (0.72)
Network (0.28)

Testing Network Network
Network (0.55)
Factor (0.45)

model. Notably, the fathers’ datasets were leaning towards a factor model relative
to the mothers datasets (including the training data being a factor model across
predictions).

If, for example, we thought that the data generating mechanism was a factor
model, then we should try to adjust the data’s structure toward a factor model.
To do so, we could analyze the structure of the data to see which items are
multidimensional or leading to larger cross-loadings between dimensions. One
approach for achieving these results is called bootstrap exploratory graph analysis
(bootEGA; Christensen & Golino, 2019).

bootEGA applies a parametric bootstrap approach where N number of repli-
cate samples are generated from a multivariate normal distribution based on the
empirical correlation matrix. Each replicate sample is then analyzed using EGA
(see Appendix A.1 for a description), forming a distribution of factors and item
placement within those factors. Taking advantage of the deterministic alloca-
tion of items into factors, we can determine how often items are replicating in
their empirical dimension as well as other dimensions. That is, we can deter-
mine how stable the factors are with respect to how items are placed into them
(Christensen, Golino, & Silvia, 2020). Items that are not replicating well in their
empirically derived factor (e.g., EGA identified factor) indicate that these items
are likely to be multidimensional, have larger cross-loadings, and are likely lead-
ing the data structure to be more like a network model.

When performing such an analysis, we found that there were four factors
with identical item placement for the mothers and fathers datasets’ empirically
derived structure (using EGA). Using this factor structure and item placement,
we applied bootEGA (n = 500) to the training and testing datasets for both
mothers and fathers. The item stability analysis found one factor containing
items that were relative unstable. These items and their stability (number of
times replicating in their empirically derived structure) are presented in Table
4. When removing these items, the data structure for all datasets moved closer
to a factor model structure as shown in Table 5.

Indeed, three out of four datasets now suggest a factor model relative to
a network model. For those three models suggesting a factor model (mothers
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Table 4.

Replication Proportion

Mother Father

Item Description Training Testing Training Testing

7. I am ”in-tune” with the
other person during con-
versation

0.41 0.59 0.18 0.11

12. People find it easy to
approach me

0.33 0.10 0.03 0.02

21. I can tell when someone
is not interested in what I
am saying

0.42 0.62 0.18 0.11

23. I am good at making
small talk

0.33 0.10 0.03 0.02

25. I feel like I am really
connecting with other peo-
ple

0.33 0.10 0.03 0.02

28. I am warm and friendly
in my interactions with
others

0.34 0.10 0.03 0.02

34. I can tell when it is time
to change topics in conver-
sation

0.42 0.62 0.18 0.11

Table 5.

Predictions

Parent Dataset Empirical Bootstrap Proportion

Mother
Training Factor Factor

Factor (0.73)
Network (0.27)

Testing Network Network
Network (0.58)
Factor (0.42)

Father
Training Factor Factor

Factor (1.00)
Network (0.00)

Testing Factor Factor
Factor (0.72)

Network (0.28)
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training and both fathers), all predictions were for a factor model. The testing
mothers dataset was a network across all predictions but notably the proportions
prediction suggested that the model moved away from a network model and
closer to a factor model (from 0.71 to 0.58 for a network model and 0.29 to 0.42
for a factor model).
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Abstract. Decision trees (DTs) is a machine learning technique that
searches the predictor space for the variable and observed value that leads
to the best prediction when the data are split into two nodes based on
the variable and splitting value. The algorithm repeats its search within
each partition of the data until a stopping rule ends the search. Missing
data can be problematic in DTs because of an inability to place an ob-
servation with a missing value into a node based on the chosen splitting
variable. Moreover, missing data can alter the selection process because
of its inability to place observations with missing values. Simple miss-
ing data approaches (e.g., listwise deletion, majority rule, and surrogate
split) have been implemented in DT algorithms; however, more sophisti-
cated missing data techniques have not been thoroughly examined. We
propose a modified multiple imputation approach to handle missing data
in DTs, and compare this approach with simple missing data approaches
as well as single imputation and a multiple imputation with prediction
averaging via Monte Carlo Simulation. This study evaluated the perfor-
mance of the missing data approaches when data were missing at random
or missing completely at random. The proposed multiple imputation ap-
proach and the surrogate split approach had superior performance with
the proposed multiple imputation approach performing best in the more
severe missing data conditions. We conclude with recommendations for
handling missing data in DTs.

Keywords: Multiple Imputation · Classification and Regression Tree
(CART) · Missing Data

1 Introduction

Missing data are endemic in research and appropriate handling of missing data is
required to ensure unbiased parameter estimates. Missing data are often caused
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by participant nonresponse due to an unwillingness to divulge information, inad-
vertent skipping, fatigue, or time considerations (Hattie, 1983; Holmanx& Glas,
2005; Huggins-Manley, Algina,x& Zhou, 2018; Moustakix& Knott, 2000). Miss-
ing data are particularly problematic when nonresponding participants system-
atically differ from participants who completed the study. Known as nonresponse
bias (Lavrakas, 2008), systematic differences in responding may affect estimated
model parameters and threaten the validity of conclusions drawn from the sta-
tistical model (Enders, 2010; Grovesx& Peytcheva, 2008; Lavrakas, 2008).

Several methods have been developed for handling missing data due to nonre-
sponse (Baraldix& Enders, 2010). One widely recommended approach for han-
dling missing data is multiple imputation (Allison, 2002; Baraldix& Enders,
2010; Enders, Dietz, Montague,x& Dixon, 2006; Schaferx& Olsen, 1998). Multi-
ple imputation is a four-step procedure. First, plausible values from a distribution
specifically modeled for the missing data are drawn. Second, the statistical model
is fit to the imputed dataset and parameter estimates and standard errors are
retained. Third, the first two steps are repeated a specified (e.g., 20) number of
times. Fourth, the parameter estimates and standard errors are pooled to deter-
mine the point estimate for each parameter along with an appropriate standard
error (Enders, 2010; Rubin, 1987; van Buurenx& Groothuis-Oudshoorn, 2011).
Proper standard errors are calculated to account for the within (square of the
average standard error) and between (variance of the parameter estimates across
imputations) imputation variation in the parameter estimates. This final step is
referred to as the pooling step.

Multiple imputation is an effective missing data strategy for theoretically-
driven statistical models (e.g., regression, ANOVA, etc.; Baraldix& Enders,
2010); however, the pooling step can be challenging when fitting exploratory/data
driven models because the statistical models for each imputed dataset may in-
clude different model parameters (i.e., due to variable selection). Decision trees
(DTs) are an exploratory model where the standard multiple imputation ap-
proach is not viable. In DTs, the data are recursively split into two nodes based
on the variable and value that lead to an optimal prediction. Implementing the
standard multiple imputation approach with DTs will likely lead to different
variables being selected to partition the data in each imputed dataset, which
makes the pooling stage challenging, if not impossible. In this paper, we pro-
pose and examine the performance of a modified multiple imputation approach
for handling missing data with DTs. We compare the performance of the pro-
posed approach against the standard approach for handling missing data in DTs
(surrogate splits), simple missing data approaches (listwise deletion, delete if
selected, and majority rule), single imputation, and a multiple imputation ap-
proach that ignores variation DT structures and pools the predicted values from
the DTs (multiple imputation with prediction averaging). We continue with an
overview of the classification and regression tree (CART) algorithm for DTs,
review currently implemented missing data approaches in CART, and describe
our proposed multiple imputation approach. We then outline and review our
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simulation study to evaluate the performance of each missing data approach,
and conclude with recommendations.

1.1 Classification and Regression Tree (CART)

CART is an algorithm for DTs that has become a very popular machine learning
technique because of its ability to create powerful prediction models with non-
linear and interactive effects. Moreover, the resulting DT is easy to interpret.
CART is a greedy DT algorithm that recursively partitions the data and con-
siders the mean (quantitative outcome) or the mode (categorical outcome) as
the predicted value within each partition (James, Witten, Hastie,x& Tibshirani,
2013; Loh, 2011). Three critical aspects of the CART algorithm are variable split-
ting (fit criteria), stopping criteria, and model selection. For variable splitting,
the CART algorithm selects the variable and partitioning value that splits the
data into two groups where the outcome is maximally homogenous within each
group (Breiman, Friedman, Stone,x& Olshen, 1984). The two resulting groups
are often referred to as child nodes (with the node that was split referred to as
the parent node). All values of the predictors are considered potential splitting
values to partition the data into two child nodes. For a regression tree (numeric
outcome), the predictor variable and splitting value that minimizes the residual
sum of squares is selected to split the node (Gonzalez, O’Rourke, Wurpts,x&
Grimm, 2018; Loh, 2011). For a classification tree (categorical outcome), the
predictor variable and splitting value that minimizes the Gini Index (entropy-
/information can be used instead of the Gini Index) is selected to partition the
node. This process in repeated on each child node until a stopping criterion is
reached. Stopping criteria include a minimum improvement in prediction accu-
racy, tree depth, and sample size required to partition a node. These stopping
criteria prevent further node splits, but are not often used for model selection.
Once a stopping rule is reached for each node and tree growth has stopped, the
DT is then pruned (reduced in size) with the final model selected based on k -fold
cross-validation. A large DT is often grown in order to ensure that a useful split
is not inadvertently missed because of an arbitrary stopping rule (Breimanxet
al., 1984).

1.2 Missing Data Mechanisms

Missing data occur when an observation contains no value for a given variable.
There are numerous situations that lead to missing data, which makes it difficult
to know exactly how and why each missing value appears in a dataset. Rubin
(1976) proposed using observed variables to predict the occurrence of missing
values and coined the term missing data mechanisms to classify relationships
between missing values and the observed variables in a dataset. Specifically,
missing data mechanisms describe how the propensity for a missing value re-
lates to other measured variables and itself. Rubin (1976) presented three types
of missing data mechanisms: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). Data are MCAR when
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missing values on variable x are unrelated to both the observed variables and
the underlying values of x itself (Enders, 2003; Rubin, 1976). Thus, MCAR indi-
cates the occurrence of missing data is purely random making MCAR desirable;
however, MCAR assumptions are rarely met in practice (Enders, 2010; Muthén,
Kaplan,x& Hollis, 1987; Raghunathan, 2004). Data are MAR when missingness
is systematic and correlated with other variables in the dataset. Specifically, data
are considered MAR when the missing values on the variable x are related to
other variables in a dataset but not related to x itself (Enders, 2003; Rubin,
1976). Most advanced missing data handling procedures (e.g., multiple impu-
tation, full information maximum likelihood) rely on MAR assumptions. Data
are MNAR when missing values on x are dependent on the underlying values
of x itself (Enders, 2003; Rubin, 1976). Missingness does not depend only on
observed data when data are MNAR making it the most challenging missing
data mechanism to handle in practice.

The missing data mechanisms determine how well a given missing data
approach will perform. According to Baraldixand Enders (2010), deletion ap-
proaches (i.e., listwise, pairwise, etc.) perform well in situations when data are
MCAR, whereas more advanced approaches, such as multiple imputation or full
information maximum likelihood (FIML), outperform deletion and produce un-
biased parameter estimates when data are MCAR or MAR. It is important to
note that many approaches commonly used to treat missing data (e.g., deletion,
imputation, FIML etc.) do not perform well when data are MNAR.

1.3 Missing Data in CART

Missing data are problematic in CART because an observation with a missing
value on the predictor variable provides no information about the child node to
which the observation belongs. The advanced missing data techniques for han-
dling MAR data, such as multiple imputation and full information maximum
likelihood, cannot be applied in a straightforward manner in CART, and DTs
more generally. Given the challenges for advanced missing data approaches, sim-
pler strategies have been utilized in CART. We review these approaches next.

1.3.1 Listwise Deletion A simple missing data strategy for CART is to
remove observations where a missing value is present. This approach is taken
when preparing the data for analysis.

1.3.2 Delete if Selected The second missing data strategy for CART is to
retain participants with missing values until a variable with missing values is
selected. For example, a participant has a missing value on x1. This participant
would be retained in the DT until x1 is selected to partition the data. Thus, if
x1 is not selected, then the participant is retained in the model. Importantly, the
participant contributes to the formation of the DT until s/he cannot be placed
into a child node because of the missing value.
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1.3.3 Majority Rule In majority rule, if a variable is selected for partitioning
and a participant has a missing value, then the participant is placed in the child
node that contains the most observations. Thus, the participant contributes to
the formation of the DT even after the participant has a missing value for a
selected splitting variable.

1.3.4 Surrogate Splits When an observation has a missing value on a se-
lected splitting variable, surrogate splits uses another variable in the dataset to
place the observation into a child node. That is, a surrogate variable is used to
determine the child node for the observation with a missing value. To do this, the
partitioning algorithm is applied with the two child nodes as a classification out-
come and the other variables in the dataset as splitting variables (Therneaux&
Atkinson, 2019). The usefulness of each surrogate variable is determined by ex-
amining the misclassification error for each variable (misclassification error for
predicting child node using participants with available data). Additionally, the
misclassification rate is computed for majority rule, where observations with
missing values on the splitting variable is placed in the child node with the most
observations. Each variable that performs better than majority rule is considered
a surrogate and is ranked based on its performance. The first-ranked surrogate
variable is then used to place observations with missing values. If an observation
is missing the first-ranked surrogate, then the second-ranked surrogate variable
is used to place the observation, and so forth. In the rare situations where no
surrogate variables are present, the observation is placed in whichever child node
contains the most observations (Therneaux& Atkinson, 2019).

1.3.5 Single Imputation Imputation strategies use information from the
complete data to estimate what a missing value would be if it was observed. Sin-
gle imputation draws a plausible value from a predictive distribution based on
available data (Littlex& Rubin, 2002) to fill in a given missing value. The impu-
tation model is typically built on a linear or logistic regression model depending
on the nature of the variable with the missing values; however, imputation mod-
els have been built upon more complex algorithms, such as DTs and random
forests (Tangx& Ishwaran, 2017). Once data are imputed, the CART algorithm
can be implemented using the imputed dataset, which does not have any missing
values.

1.3.6 Multiple Imputation with Prediction Averaging Multiple impu-
tation with prediction averaging (Feelders, 1999; Twala, 2009) follows a fairly
straightforward multiple imputation approach involving the four steps described
above. First, missing values are imputed from a distribution specifically modeled
for the missing data. Second, a DT is fit to the imputed data. Third, the first
and second steps are repeated multiple (e.g., 20) times. Fourth, the predicted
values from the DTs for an individual are averaged and the average serves as
the predicted value for the individual. This approach does not try to summarize
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the decision rules of the DTs – just their predicted values. Thus, there is not a
single DT with a single set of decision rules that can be interpreted. Averaging
predicted values from the DTs fit to multiple imputed datasets is a viable ap-
proach when researchers are primarily interested in prediction because of the lack
of interpretability. This approach will likely lead to better prediction accuracy
because it is similar to bagging (Breiman, 1996).

1.3.7 Comparative Studies Several studies have been conducted to com-
pare DT missing data approaches (Batistax& Monard, 2003; Beaulacx& Rosen-
thal, 2020; Feelders, 1999; Twala, 2009). Across four studies, the following miss-
ing data approaches have been evaluated: listwise deletion, surrogate splits, single
imputation (i.e., k -nearest neighbor imputation, mean/mode imputation, EM/l-
ogistic imputation, decision tree imputation, and distribution based imputation),
multiple imputation with prediction averaging, separate class, Branch-Exclusive
Splits Tree (BEST) algorithm, and several methods that were developed and im-
plemented in other DT algorithms (e.g., C4.5 and C5.0). Nearly all studies used
complete data sets (from the UCI machine learning repository) and artificially
imposed missing values.

The studies that evaluated multiple imputation with prediction averaging
found this approach outperformed all approaches it was compared against (e.g.,
single imputation, surrogate splits, listwise deletion) when data were MCAR and
MAR (Feelders, 1999; Twala, 2009). The same studies found single imputation
to be the second-best performing approach (Feelders, 1999; Twala, 2009). How-
ever, it is important to consider the different single imputation techniques. For
example, EM single imputation performed well for numeric variables (Twala,
2009), whereas decision tree single imputation and k -nearest neighbor imputa-
tion performed best with categorical variables (Batistax& Monard, 2003; Twala,
2009). Surrogate splits performed well when there are high correlations among
variables (Twala, 2009) and listwise deletion generally performed poorly (Twala,
2009). Separate class and the BEST algorithm approaches have been found to
perform well when data were MNAR (Beaulacx& Rosenthal, 2020).

Previous research supports the current method of employing multiple im-
putation in DTs (i.e., averaging predicted values over different imputed tree
structures) when data are MAR or MCAR, but only when a researcher is inter-
ested in prediction accuracy and not interested in interpretability. The purpose
of this study is to modify the current multiple imputation approach in such a way
that the proposed approach produces interpretable tree structures and reduces
prediction accuracy inflation.

1.4 Proposed Modified Multiple Imputation Approach

The modified multiple imputation approach for CART follows the first three
steps of multiple imputation; however, the pooling step is different. First, data
are imputed from a distribution specifically modeled for the missing data. Sec-
ond, a CART is fit to the imputed data with the complexity parameter (cp)
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Figure 1. Imputation and analysis phase of the modified multiple imputation approach
for DTs.

optimized using cost-complexity pruning through k -fold cross-validation. The cp
controls the tree size for each imputed dataset. We use the cp to control tree size
because the cp is used in rpart (Therneaux& Atkinson, 2019), a common CART
package available in R and the package we use in our simulation work. Other
measures of tree size (e.g., depth) could be implemented based on availability.
Third, the first two steps are repeated multiple times (e.g., 20). Figure figure1
depicts a simple example of the first three steps. Fourth, the imputed datasets
are stacked to create a single, large data set consisting of m ·N rows, where m
is the number of imputed datasets and N is the sample size for each imputed
dataset. A CART is then fit to the stacked dataset with the cp set to the average
of the optimized cp obtained when a CART was fit to each imputed dataset.
Thus, in this pooling step, we pool the cp that controls tree growth and then
use this value to fit a CART to the stacked data. This leads to a single DT that
is indirectly optimized to the stacked multiply imputed dataset with a single set
of decision rules that are easily interpreted (shown in Figure figure2).

Fitting the final CART to the stacked multiply imputed dataset provides an
optimal set of decision rules, but ignores the variability across imputed datasets.
While imputation variability is an important component of the calculation of
standard errors in the application of multiple imputation with a theoretically



134 D. Rodgers et al.

Figure 2. The pooling phase of the modified multiple imputation approach. Multiply
imputed datasets are stacked into a single data frame, a DT is fit to the stacked dataset,
and the DT is pruned based on the average tree structure from individual DTs.

driven statistical model (e.g., multiple regression model), standard errors are
not part of CART (and DTs more generally). The splitting values in CART
are considered point estimates and CART does not provide information on the
uncertainty of the point estimate.

Pooling the cp to control tree size is an important aspect of the modified mul-
tiple imputation approach. We note that the optimal cp cannot be determined
through k -fold cross validation of the stacked multiply imputed data because the
different folds of the data are too similar. For example, say we have a dataset
with 10% MCAR missingness on ten variables. We conduct m = 20 imputations
and stack the multiply imputed data. Approximately 35% of the sample will
have complete data leading to the same data appearing in the stacked data 20
times. Another 39% of the sample will be missing one value leading to 90% of
their data appearing in the stacked data 20 times. The high degree of the same
data appearing in the dataset is problematic for k -fold cross-validation because
the data from k−1 folds that are used to train the algorithm are too similar
to the data in the k th fold that is used to test the model. Thus, using k -fold
cross validation with the stacked multiply imputed data leads to an overgrown
(overfit) CART. Determining tree size based on pooling the cp leads to more
appropriately sized DTs.

Next, we conduct a Monte Carlo simulation study to examine the perfor-
mance of the modified multiple imputation approach outlined above and compare
its performance to the missing data methods currently implemented with DTs
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in terms of its predictive performance, variable selection, variable importance,
and tree size.

2 Methods

A Monte Carlo simulation study was conducted to compare how well the dif-
ferent missing data approaches performed with CARTs. Data were generated
from a population tree structure, missing values were generated following differ-
ent missing data protocols, CARTs were fit to these datasets using each missing
data handling approach, and we examined various indices of the resulting predic-
tion model. This process was repeated 1,000 times for every condition. Baseline
measures were taken from complete datasets (i.e., containing no missing val-
ues) and used for comparison. We examined the performance of each missing
data approach with respect to prediction accuracy, variable selection, and vari-
able importance. All programming scripts are contained on the third author’s
website.

2.1 Data Generation

Data were generated using R (R Core Team, 2020). All predictor variables were
independently drawn from a standard normal distribution (i.e., µ=0, σ=1). De-
pending on the condition, one (x1) or four (x1, x2, x3, x4) variables were created.
Three predictor variables, z1, z2, and z3, were then generated to either corre-
late .4 or .6 with the x variables, and z1, z2, and z3, were subsequently used to
generate the outcome using a series of decision rules from a population DT. The
population tree structure included six splits and seven terminal nodes. The out-
come variable, y, was generated from the population tree shown in Figure figure3
with values generated from a normal distribution with the mean and variance
reported in each terminal node. Of note, the first split in the population tree
was on z1. Additionally, six distractor predictor variables, z4 through z9 were
generated from a standard normal distribution and correlated .15 with z1, z2,
and z3. Each simulated dataset included 10 or 13 predictor variables (i.e., three
used in the population DT, one or four used for missing data generation, and
six distractors), and the outcome variable.

2.2 Manipulated Features

Manipulated features included sample size and characteristics of missing values.
The sample sizes considered wereN = 200,N= 500, orN= 1,000 to cover a range
of sample sizes common in the social and behavioral sciences. Missing values
were imposed across all predictors, but they were not imposed on the outcome
variable. The nature of the missing values only varied for z1, which was the first
splitting variable in the population tree structure. The missing data mechanism
was varied, the percentage of missing data, the number of variables that the
likelihood of a missing value was dependent on, and the degree of association
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Figure 3. Population Tree Structure

between the likelihood of missingness and the other variable(s) in the dataset.
Missing data generation on all other predictors (all predictor variables excluding
z1) were MCAR with a 2.5% probability of being recorded as missing.

2.2.1 Missing Data Generation The method for imposing missing val-
ues on z1 closely followed methods from Mazza, Enders,xand Ruehlman (2015).
Missing values were designed to either be missing at random (MAR) or missing
completely at random (MCAR). In the MAR condition, missing values on z1
were generated to relate to one (x1) or four variables (x1, x2, x3, and x4). The
association between the likelihood of missingness and the other variable(s) in the
dataset was specified using a logistic regression model (Agresti, 2012; Johnsonx&
Albert, 1999; Mazzaxet al., 2015), with slope and intercept parameters chosen
to produce the desired level of association between the underlying missingness
probability and the complete variable(s) as well as the overall percentage of miss-
ing values. Slopes were selected such that the strength of association between
the underlying missingness probability and the complete variable(s) was either
R2 = .2 for a moderate association or R2 = .4 for a strong association. Intercepts
were selected so that the percentage of missing values on z1 was either 15% or
30%, which are rates commonly found in psychological and educational research
(Enders, 2003). The MCAR condition had fewer manipulated features than the
MAR conditions because missingness was unrelated to any other variables in
the dataset. Since MCAR occurs when the likelihood of missingness occurs at
random, the slope for the logistic regression model was 0 and intercepts were
chosen such that the percentage of missing values was either 15% or 30% on z1.
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2.2.2 Approaches for Handling Missing Data Listwise deletion, delete if
selected, majority rule, surrogate splits, single imputation, multiple imputation
with prediction averaging, and the proposed multiple imputation approach were
used to handle the missing data. Listwise deletion was employed by deleting cases
with missing values prior to analyses. Delete if selected was applied using the
control settings (i.e., usesurrogate=0) from the rpart package (Therneaux&
Atkinson, 2019) in R (R Core Team, 2020). Majority rule was also employed
using the control function by specifying that no surrogates would be used in the
analyses (i.e., maxsurrogate=0). By setting the max number of surrogates in
the analysis to zero (maxsurrogate=0), the algorithm was forced to assign cases
with missing values based on majority rule. Delete if selected control setting
specifies that the surrogate split method would not be used to treat missing
data (usesurrogate=0). The surrogate split approach used the default method
(i.e., usesurrogate=2) to place observations with missing values. If no surrogates
were found, then majority rule was enacted.

For single and multiple imputation, data were imputed using the Multivari-
ate Imputation by Chained Equations (mice) package (van Buurenx& Groothuis-
Oudshoorn, 2011) in R (R Core Team, 2020). The elementary imputation method
was specified using program defaults, which used predictive mean matching. In
the single imputation approach, missing values were imputed once to create a
single dataset (i.e., m = 1), which was then analyzed. In the multiple imputation
approaches, missing values were imputed 20 times (i.e., m = 20). According to
van Buurenxand Groothuis-Oudshoorn (2011), mice assumes that the multivari-
ate distribution of an incomplete variable is completely specified by a vector of
unknown parameters, θ. Sampling iteratively, the algorithm models the condi-
tional distributions of the incomplete variable given the other variables to obtain
a posterior distribution of θ. Using Gibbs sampling, the algorithm selects and
fills in plausible values for the missing values on the incomplete variables. Out-
come distributions are assumed for each variable instead of the whole dataset.
The chained equations within mice refer to concatenating univariate procedures
to fill in missing data (van Buurenx& Groothuis-Oudshoorn, 2011).

2.2.3 Stopping Criteria DTs recursively partitions data until one of the
stopping criteria is reached for each node. Optimal tree sizes were determined
using a two-step procedure for listwise deletion, delete if selected, majority rule,
surrogate splits, and single imputation. First, all stopping criteria were set to
small values to generate an overgrown tree. For all splits in this overgrown tree,
10-fold cross-validation was used to determine the relative cross-validation pre-
diction error associated with the split. The tree was then pruned by specifying
the cp associated with the smallest estimate of cross-validated prediction error
from the 10-fold cross-validation. In multiple imputation, each imputed dataset
was analyzed separately and each tree was overgrown. The cp associated with
the optimal tree size determined through 10-fold cross-validation was retained.
In multiple imputation with prediction averaging, the predicted values from each
pruned tree were averaged. In the modified multiple imputation approach, the
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multiply imputed data were stacked and analyzed with the cp set to the aver-
age value of the cp obtained when the CART was fit to each imputed dataset
separately.

There are several viable approaches to choosing tuning parameters in ma-
chine learning. This study used the minimum cross-validated prediction error to
determine the best model that would optimize prediction accuracy. However, it is
important to note that methods like the “one standard error” rule (Breimanxet
al., 1984) are often used in practice. The “one standard error rule” uses the most
parsimonious model whose error is no more than one standard error above the
error of the best model (Hastie, Tibshirani,x& Friedman, 2009).

2.3 Evaluation Metrics

Four evaluation metrics were examined to assess and compare the performance of
the missing data approaches. The metrics were the averaged mean square error
(MSE) in a test dataset, the proportion of replicates where the first splitting
variable was z1, variable importance metrics, and the median number of splits.

The final DT from each missing data approach was used to generate predicted
values in the test dataset with N = 10,000 drawn from the same population.
The test dataset contained no missing values, and was not used to estimate any
of the models. The predicted values in the test dataset were calculated and used
to determine the MSE - a measure of prediction accuracy. Lower MSE values
indicated stronger prediction accuracy, whereas higher MSE values indicated
weaker prediction accuracy. The performance of missing data approaches was
compared to each other and with the CART estimated using the complete data.

The second evaluation metric was proportion of replicates where z1 was the
first variable selected to split the data. Recall that variable z1 was the first
spitting variable in the population tree. Thus, the proportion of times z1 (i.e.,
the target variable) was correctly selected for the first split indicates the CART
properly selected the primary splitting variable. The third evaluation metric
was variable importance. Variable importance assesses the degree to which each
variable contributes to the prediction of the outcome. Variable importance is
calculated for every predictor by summing together the decrease in error for
every split using the variable as the splitting variable. We assessed and compared
variable importance values for z1, z2, and z3 across each missing data approach,
and compared variable importance to the values obtained when analyzing the
complete data.

The median number of splits was the last evaluation metric. Seven decision
trees were fit (i.e., complete data and the six missing data approaches) for each
replication within a condition. The median number of splits across all replications
within a condition was recorded for each approach. This was compared across
missing data approaches and compared to the number of splits in the population
DT as an indication of proper tree size.
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3 Results

3.1 Summary

Overall, the proposed multiple imputation approach and surrogate splits per-
formed well across all outcome measures. The proposed multiple imputation ap-
proach (closely followed by single imputation) performed best when data were
MAR with multiple variables strongly predicting missing values and strong as-
sociations among predictors. Surrogate splits performed well when data were
MCAR or MAR with a single variable predicting missing values and weak as-
sociations among predictors. Other approaches stood out on specific outcomes.
For example, multiple imputation with prediction averaging had the greatest pre-
diction accuracy. Listwise deletion correctly selected z1 for the first split more
often than all other approaches. However, these methods only performed well on
specific outcomes and not across all outcome measures. The following sections
summarize and compare the approaches for each outcome.

3.2 Mean Square Error (MSE)

MSE values for each missing data approach are shown in Figure figure4 for four
representative conditions. The conditions were selected to represent (1) a mild
MCAR condition (i.e., 15% missingness and predictors correlated .16), (2) a mild
MAR condition (i.e., 15% missingness, weak association among predictors and
missing values (R2 = .2), a single predictor of missingness, predictors correlated
.16), (3) a moderate MAR condition (i.e., 30% missingness, greater association
among predictors and missing values (R2 = .4), a single predictor of missingness,
predictors correlated .36), and (4) a severe MAR condition (i.e., 30% missingness,
greater association among predictors and missing values (R2 = .4), multiple
predictors of missingness, predictors correlated .36).

Overall, a higher percentage of missing data led to higher MSE across all
approaches for handling missing data. This effect was greater in the smaller
sample size conditions. Multiple imputation with prediction averaging produced
the least amount of bias, which was likely because this approach is an ensemble-
type approach like bagging (Breiman, 1996). The average MSE for this approach
most closely resembled the results when the CART was fit to the complete data
(see Figure figure4). The proposed multiple imputation approach and surrogate
splits produced more bias than the multiple imputation approach with predic-
tion averaging. Differences between the proposed approach and surrogate splits
were minimal (i.e., average MSE typically only differed by .01) and became less
apparent in the larger sample size conditions. The proposed multiple imputation
approach produced less bias than surrogate splits when there were multiple pre-
dictors of missingness, stronger associations between predictors and missingness,
and a higher percentage of missing data (fourth panel in Figure figure4). This
approach generally handled small sample sizes (N = 200) better than surrogate
splits across all MAR conditions.
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Figure 4. Bias produced in each missing data approach in four representative condi-
tions. Missing data approaches include: (A) Baseline - No Missing Data; (B) Listwise
Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate Splits; (F) Single
Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Imputation
with Prediction Averaging. The first panel represents a condition where 15% of the
data on z1 were MCAR, the predictors were correlated .16, and N = 200. In the condi-
tion represented in the second panel (top right), 15% of the data on z1 were MAR with
a single variable predicted missing values (R2 = .2), predictors were correlated .16, and
N = 1,000. Third panel (bottom left) represents a condition where 30% of the data on
z1 were MAR where a single variable predicted missing values (R2 = .4), predictors
were correlated .36, and N = 500. The fourth panel represents a condition where 30%
of the data on z1 were MAR with multiple variables predicted missing values (R2 =
.4), predictors were correlated .36, and N = 200.

Surrogate splits often produced the same amount of bias as the proposed
multiple imputation approach when data were MCAR and in the MAR con-
ditions with a single predictor of missingness and weaker associations between
variables and missingness (first and second panel in Figure figure4). Overall sur-
rogate splits produced less bias than the proposed approach across these mild
missing data conditions (see Table S1 in supplemental materials). Single imputa-
tion closely followed the proposed multiple imputation approach and surrogate
splits but had slightly greater average MSE values. Also, single imputation per-
formed fairly well in the conditions where missingness was related to multiple
predictors. Delete if selected and listwise deletion produced slightly greater bias
across all the conditions and majority rule produced the greatest amount of bias
across all conditions.



A Multiple Imputation Approach for CART 141

3.3 Proportion of Correct First Variable Splits

The proportion of times that z1 was chosen for the first split was recorded.
Figure figure5 illustrates the performances of each approach in four example
conditions that range from mild to severe missing data conditions in this simula-
tion. Across all approaches, higher rates of missing values led to fewer instances
that z1 was chosen for the first split. Greater effects were found in small sam-
ple sizes. Conditions represented in Figure figure5 have a consistent sample size
and rate of missing to simplify comparisons across missing data patterns and
associations.

Listwise deletion correctly selected first split more frequently than the other
approaches and most closely resembled the complete data conditions (see Fig-
ure figure5). The performance of the other approaches depended on the missing
data pattern, strength of association among predictors and missing values, and
the percentage of missing data. When data were MCAR, surrogate splits and
delete if selected correctly chose z1 for the first split more often than the remain-
ing approaches (first panel in Figure figure5).

Performance across the MAR conditions depended on the strength of associ-
ation among predictors and percent missingness. When there were weak associ-
ations between predictors and missing values (i.e., association between z1, z2, z3
and x variables used to generate missing values) and only 15% missing data, the
proposed multiple imputation approach selected z1 more often than all other
approaches with the exception of listwise deletion. However, delete if selected
and surrogate splits outperformed the proposed multiple imputation approach
in the same conditions with 30% missing data (second panel in Figure figure5).
This pattern of results can be found in supplemental materials (see Table S2
in supplemental materials). When there were strong associations between the
predictors and variables used to generate missing values, the proposed multiple
imputation approach correctly selected z1 more frequently than the remaining
approaches, such as single imputation, delete if selected, surrogate splits, and
majority rule (fourth panel in Figure figure5).

Averaging the proportion of correct first variable splits across all conditions
leads to the following set of results. In the complete data conditions, z1 was
selected for the first split 98% of the time. Listwise deletion correctly identified
the first split 94% of the time, which was more often than the other approaches
(Table table1). The proposed multiple imputation approach correctly selected
z1 for the first variable split 88% of the time, whereas single imputation av-
eraged 87%. Delete if selected slightly outperformed surrogate splits, but both
approaches were nearly identical in correctly selecting the variable for first split
85% of the time. Majority rule selected the correct variable for the first split
56% of the time. Multiple imputation with prediction averaging did not produce
a single tree structure, so this outcome was not evaluated for this approach.

3.4 Variable Importance

Variable importance values ranged from 0 to 1 for z1, z2, and z3. Recall that
z1 was the target variable that contained missing values, was the first variable
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Figure 5. Correct First Variable Splits. The number of times each missing data ap-
proach correctly chose z1 for the first split in DT out of 1,000 replications is shown in
Figure figure5. Missing data approaches include: (A) Baseline - No Missing Data; (B)
Listwise Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate Splits; (F)
Single Imputation; (G) Proposed Multiple Imputation Approach; (H) Multiple Impu-
tation with Prediction Averaging. The first panel represents a condition where 30% of
the data on z1 were MCAR, the predictors were correlated .16, and N = 500. In the
condition represented in the second panel (top right), 30% of the data on z1 were MAR
where a single variable predicted missing values (R2 = .2), predictors were correlated
.16, and N = 500. Third panel (bottom left) represents a condition where 30% of the
data on z1 were MAR with a single variable predicted missing values (R2 = .4), predic-
tors were correlated .36, and N = 500. The fourth panel represents a condition where
30% of the data on z1 were MAR with multiple variables predicted missing values (R2

= .4), predictors were correlated .36, and N = 500.

Table 1. Average Proportion of Correct First Variable Splits

Complete
Data

Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

Single
Imputation

MI Proposed
Approach

.980 .941 .848 .562 .854 .873 .882

split, which is often associated with the greatest variable importance values. In
conditions where the data were MCAR, listwise deletion most closely mimicked
the variable importance values from the complete data conditions (see the left
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panel of Figure figure6). Surrogate splits performed well, but tended to over-
estimated the importance of z1 and z2, and underestimated the importance of
z3, especially with larger sample sizes. The single and proposed multiple im-
putation approaches performed moderately well and produced nearly identical
results. Both approaches underestimated the importance of z1 and slightly over-
estimated the importance of the other predictors. The delete if selected and ma-
jority rule approaches mimicked the pattern for surrogate splits, but had greater
discrepancy in overestimating the importance of z1. Majority rule consistently
performed poorly with respect to this outcome compared to the other missing
data handling approaches.

Figure 6. Variable importance measures from each missing data approach in three
representative conditions. Missing data approaches include: (A) Baseline - No Missing
Data; (B) Listwise Deletion; (C) Delete if Selected; (D) Majority Rule; (E) Surrogate
Splits; (F) Single Imputation; (G) Proposed Multiple Imputation Approach; (H) Multi-
ple Imputation with Prediction Averaging. The first panel represents a condition where
15% of the data on z1 were MCAR, the predictors were correlated .36, and N = 500. In
the condition represented in the second panel, 15% of the data on z1 were MAR where
a single variable predicted missing values (R2 = .2), predictors were correlated .16, and
N = 500. Third panel represents a condition where 30% of the data on z1 were MAR
where multiple variables predicted missing values (R2 = .4), predictors were correlated
.36, and N = 200.

The results for variable importance revealed a distinction between the MAR
conditions. MAR conditions with a single variable predicting missing values
and weak associations among variables had similar results when compared to
MCAR conditions. However, in the more severe MAR conditions (i.e., multi-
ple variables predicting missing values, stronger association among predictors,
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high percentage of missing data), single imputation started to outperform the
other approaches. Single imputation still underestimated the importance of z1
and overestimated the other variables, but this approach had small discrepan-
cies when compared to the complete data conditions. The proposed multiple
imputation approach and delete if selected closely followed single imputation.
Listwise deletion followed the same trajectory as the complete data but under-
estimated the importance of all predictors with larger discrepancies. Surrogate
splits performed poorly in the most severe MAR conditions because it largely
underestimated the importance of z1 and overestimated the importance of z2
(third panel in Figure figure6). Majority rule consistently had the greatest dis-
crepancies (shown in Figure figure6).

3.5 Median Number of Splits

The median number of splits for each DT was recorded. The population tree
contained six splits. The median number of splits across each approach ranged
from zero to four indicating that each DT tended to underfit the data. There
were little differences among most approaches across conditions. Complete data,
listwise deletion, delete if selected, surrogate splits, and single imputation all had
a median of two splits. The proposed multiple imputation approach often aver-
aged one more split than the other approaches in the large sample size conditions
(N = 1,000), but the overall differences were minimal. Majority rule approach
averaged two splits in most conditions, but failed to find any variable to predict
the outcome (i.e., resulting in zero splits) when there was a high percentage of
missing values that were MAR. Multiple imputation with prediction averaging
did not produce a single DT structure, so the median number of splits was not
recorded.

4 Illustrative Example

Data were drawn from the Head Start Family and Child Experiences Survey
1997-2001 (FACES1997) study. The goals of FACES1997 were to (1) examine
whether Head Start enhances children’s development and school readiness, (2)
evaluate whether Head Start strengthens families as the primary nurturers of
their children, (3) determine whether Head Start provides children with high
quality educational, health, and nutritional services, and (4) determine how
Head Start classroom quality is related to children’s outcomes. FACES1997
is a longitudinal study of 1,968 children enrolled in a Head Start program
in 1997 with data collected on the cognitive, social, emotional, and physical
development of Head Start children, characteristics and opinions of Head
Start teachers, and characteristics and evaluations of Head Start classrooms
(https://www.childandfamilydataarchive.org/cfda/archives/cfda/studies/4134).

The analytic sample contained N = 785 children who were in first grade
during the 1999-2000 school year and completed cognitive testing in the spring
of 2000. Of these 785 children, 370 (47%) were female. The sample was diverse



A Multiple Imputation Approach for CART 145

with respect to race/ethnicity. Twenty-nine percent of this subsample identified
as white (non-Hispanic), 39% black (non-Hispanic), 1% Asian or Pacific Islander,
and 2% Native American Indian or Alaskan. Thirty-two percent of the sample
identified as Hispanic. Seventy-one percent were living below the poverty line
determined by an income-to-needs ratio less than 1.0. Seventy-seven percent of
families reported that at least one parent obtained a 12th grade education (e.g.,
graduated from high school, received a GED).

These data were split into training and testing samples using a 60-40 split.
Given the focus of the paper, the testing sample had complete data to make
model evaluation clean, and the training data contained missing values. The
training data were analyzed to develop statistical models using different miss-
ing data handling methods. DTs were overgrown and then pruned using cost-
complexity pruning and k-fold cross-validation following the approach in our
simulation work. Once an optimal model was determined for the training data,
the model was used to generate predicted values in the testing dataset and the
MSE was calculated.

The outcome variable was the Peabody Picture Vocabulary Test (PPVT;
Dunnx& Dunn, 1981) standard score, which was measured in the spring of 2000.
Predictor variables included a series of assessments collected during Head Start
in the fall of 1997. These assessments were academic (e.g., Woodcock-Johnson
Letter-Word Identification) or social (e.g., Social Skills Rating Scale) in nature.

5 Results

The DTs from each missing data handling method are shown in Figure figure7.
Each terminal node contains the predicted value of the PPVT and the per-
cent of the sample in the node. The predictor variable used to split the data
is labeled within each tree node and split values are presented within the tree
branches. Overall, DTs varied across methods. Note that multiple imputation
with prediction averaging did not produce a consistent tree structure, so it is
not included in Figure figure7. For the remaining approaches, the number of
splits across DTs ranged from 1 to 13. However, many of the resulting trees
shared splitting variables and values. In all remaining missing data approaches,
the first splitting value was a score of 15 on identifying colors by name (COL-
ORS). The tree produced from the surrogate split approach contained no subse-
quent splits. For all other approaches, the node for participants with identifying
colors by name greater than or equal to 15 was split based on a value of 88 on
the Woodcock-Johnson Letter-Word Identification (WJWORDSS; Woodcockx&
Johnson, 1989). Notably, majority rule and single imputation had identical tree
structures and did not contain any further splits. Delete if selected, listwise dele-
tion, and the modified multiple imputation approach shared another common
split value of nine on print concepts (PRCONCEPT). The DT using the modified
multiple imputation approach did not contain any additional splits, whereas the
listwise deletion approach contained one additional split at the value of five on
McCarthy Drawing Test score (DRAWSCR; McCarthy, 1972). Lastly, the delete
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if selected approach contained several additional splits beyond those described
above (shown in Figure figure7).

Multiple Imputation Listwise Deletion

Single Imputation Majority Rule

Surrogate Splits Delete if Selected

Figure 7. Illustrative Data DTs
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Variable importance measures for the predictors for each DT are shown in
Table table2. There was agreement across many of the missing data approaches.
All missing data approaches that produced variable importance measures em-
phasized COLORS as an important predictor. On the other hand, a few vari-
ables were highlighted among most, but not all, missing data approaches. For
example, all the approaches that were evaluated, except surrogate splits, in-
dicated that WJWORDSS was an important variable. Nearly all approaches
highlighted print concepts, The McCarthy Drawing Test score, book knowledge
(BOOKKNLG), social awareness (SAWARE), and the Child Behavior Prob-
lems Index (PBEPROB; Petersonx& Zill, 1986) as important variables in all
DTs, with majority rule as the exception. The last three predictors were only
highlighted by a few approaches. Social skills (SSRS; Greshamx& Elliott, 1990)
was deemed important with listwise deletion, delete if selected, and surrogate
split approaches, whereas social skills/positive approach to learning (PSSPAL)
was considered important using listwise deletion, delete if selected, and single
imputation. Behavior problems total score (BPROB) was uniquely selected as
an important predictor by the delete if selected approach. In summary, all ap-
proaches agreed on the variable of greatest importance (i.e., COLORS), and
six out of the ten remaining predictors were highlighted in DTs using different
missing data approaches.

Table 2. Illustrative Data Variable Importance

Predictors
Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

Single
Imputation

MI Proposed
Approach

COLORS 0.34 0.37 0.86 0.55 0.46 0.44
WJWORDSS 0.21 0.07 0.14 - 0.14 0.12
PRCONCPT 0.21 0.22 - 0.13 0.12 0.17
DRAWSCR 0.09 0.04 - 0.04 0.04 0.03
BOOKKNLG 0.08 0.11 - 0.11 0.10 0.11
SAWARE 0.03 0.10 - 0.14 0.13 0.12
PBEPROB 0.02 0.01 - - 0.01 <0.01
SSRS 0.02 0.03 - 0.03 - -
PSSPAL 0.01 0.02 - - <0.01 -
BPROB - 0.02 - - - -
BEARCNT - - - - - -

Predictions from each DT were generated for the test data. Test data con-
tained no missing values and consisted of 314 participants. To evaluate prediction
accuracy, the MSE (i.e., average squared difference of estimated scores from DTs
and actual scores on test data) was calculated for each missing data approach (see
Table table3). Overall, listwise deletion produced the best prediction of PPVT in
the test data. The proposed multiple imputation approach had the second-best
performance. Majority rule, single imputation, and multiple imputation with
prediction averaging performed similarly to the proposed multiple imputation
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approach with only minor increases in MSE. Delete if selected performed poorly,
and surrogate splits had the poorest performance.

Table 3. Illustrative Data MSE and R2

Measures
Listwise
Deletion

Delete if
Selected

Majority
Rule

Surrogate
Splits

SI
MI Proposed

Approach
MI Prediction

Averaging

MSE 134.60 149.85 145.16 156.24 146.07 144.00 146.17
R2 0.37 0.35 0.36 0.25 0.36 0.37 0.33

Note. SI: Single Imputation.

We also calculated an R2 value to measure predictive quality of each missing
data approach (shown in Table table3). Specifically, R2 was calculated as the
squared correlation between the predicted and observed outcome values using
the test data. It represents the percent of variance in test data PPVT scores
accounted for by the prediction model using each missing data approach. Thirty-
seven percent of the variance in PPVT scores was accounted for by the predicted
values produced by the listwise deletion approach. Similarly, 37% of the variance
in PPVT scores was accounted for by predicted scores from the modified multiple
imputation approach. Single imputation and majority rule approach led to R2

values of 36% and delete if selected led to an R2 of 35%. Multiple imputation
with prediction averaging had an R2 of 33% and the DT using surrogate splits
had an R2 of 25%. In summary, listwise deletion and the modified multiple
imputation approach led to DTs that performed best in the test dataset.

6 Discussion

A modified multiple imputation approach was proposed for handling missing
data in DTs. The proposed approach involves four steps: (1) Impute missing
values, (2) Fit a DT to the imputed dataset, prune the DT using k -fold cross
validation, and retain the associated cp value, (3) Repeat steps 1 and 2 mul-
tiple times, and (4) stack all imputed datasets into a single data frame, fit a
DT to the stacked dataset, and using the averaged cp value from when the DTs
were fit to each imputed dataset. A simulation was conducted to compare the
proposed approach to listwise deletion, delete if selected, majority rule, surro-
gate splits, single imputation, and multiple imputation with prediction averaging
under multiple MAR and MCAR conditions.

6.1 Summary of Findings

Overall, all missing data approaches produced DTs with better performance in
conditions with larger sample sizes and lower rates of missing values. Across the
outcome measures, the proposed multiple imputation method performed bet-
ter than the other approaches when data were MAR with a strong association



A Multiple Imputation Approach for CART 149

between multiple predictors and missing values. Additionally, the proposed mul-
tiple imputation approach handled small sample sizes (N = 200) better than
the other approaches across the MAR conditions. On the other hand, surrogate
splits performed the best when data were MCAR and when data were MAR with
a single predictor that had a weak association with missing values. It appears
the weak associations in these MAR conditions led to conditions that were close
to MCAR.

In addition to the simulation work, empirical data from FACES 1997-2001
were analyzed to compare the seven approaches for handling missing data. A
series of assessments were taken on a total of N = 785 children. We found that
listwise deletion and multiple imputation had the highest prediction accuracy as
measured by MSE and R2. Majority rule, single imputation, and delete if selected
had relatively high prediction accuracy. Surprisingly, multiple imputation with
prediction averaging had lower prediction accuracy and surrogate splits had the
worst prediction accuracy.

6.2 Recommendations

The results of our simulation research leads to the following set of recommenda-
tions. The proposed multiple imputation approach is recommended in situations
where data are MAR, especially when dealing with small sample sizes. Surro-
gate splits are recommended when data are MCAR or mildly MAR (i.e., data
are MAR with weak associations and a fairly large sample sizes, N ≥ 500). If a
researcher is only interested in prediction accuracy and has no interest in inter-
preting the DT, multiple imputation with prediction averaging is recommended
for either MAR and MCAR data. However, in these situations, an ensemble
method, such as random forests (Breiman, 2001) or boosting (Breiman, 1998;
Friedman, 2002), may be preferred. Single imputation is a simple approach, but
is not recommended over the proposed multiple imputation approach because it
often underperformed by comparison.

Listwise deletion, delete if selected, and majority rule are not generally rec-
ommended. Both listwise deletion and delete if selected could be recommended
when data are MCAR and there is a small percentage of missing data. Deletion
approaches may be a relatively simple and convenient method for handling miss-
ing data in such situations, but these methods proved inferior in most conditions.
Majority rule generally had the poorest performance across all conditions and is
not recommended.

6.3 Limitations and Future Directions

A limitation of this study is that missing data were handled with a single type of
imputation. A variety of imputation methods have been developed in statistical
frameworks, which are typically built upon linear or logistic regression models.
However, imputation models have also been built upon partitioning algorithms,
such as DTs and random forests (Tangx& Ishwaran, 2017), and these imputation
approaches were not considered.
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A second limitation is that we only considered one pooling approach in the
proposed multiple imputation approach. That is, when analyzing the stacked
multiply imputed dataset, the cp was set to the average value obtained from an-
alyzing each imputed dataset. Another metric may be more appropriate instead
of the average. For example, the minimum value of the cp or the 5th percentile
would lead to larger DTs and may be more appropriate because the resulting
DTs were smaller than the population DT. More research is needed to deter-
mine the optimal approach to determining the size of the DT with the stacked
multiply imputed data.

Another consideration is that this study evaluated how well missing data ap-
proaches performed when the predictors contain missing values and the outcome
variable does not. The nature of the missing values was manipulated only on the
first splitting variable, z1. However, in practice, missing values may appear across
both the predictors and outcome variable. Future studies should consider how
to treat the case where values on the outcome variable are missing.

6.4 Concluding Remarks

The proposed modified multiple imputation approach for handling missing data
in DTs was found to outperform surrogate splits, the default approach in sev-
eral DT packages, for handling MAR data, particularly in small samples. To our
knowledge, multiple imputation has only been implemented in DTs by averag-
ing predicted values from different tree structures fit to each imputed dataset
(Feelders, 1999; Twala, 2009). Our proposed modified multiple imputation ap-
proach leads to a single DT so that a single set of splitting variables can be
interpreted.

Machine learning techniques are becoming more widely accepted in the social
and behavioral sciences where missing data are a common problem. Additional
research is needed to more fully examine how different machine learning al-
gorithms, including different DT algorithms, such as conditional inference trees
(Hothorn, Hornik,x& Zeileis, 2006) and evolutionary trees (De Jong, 2006; Eiben,
2003; Fogel, Bäck,x& Michalewicz, 2000), perform under a variety of missing
data conditions and whether novel missing data approaches can improve upon
the default strategies. We look forward to this research.
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Abstract. It is crucial for policymakers to understand the commu-
nity prevalence of COVID-19 so combative resources can be effectively
allocated and prioritized during the COVID-19 pandemic. Tradition-
ally, community prevalence has been assessed through diagnostic and
antibody testing data. However, despite the increasing availability of
COVID-19 testing, the required level has not been met in parts of the
globe, introducing a need for an alternative method for communities to
determine disease prevalence. This is further complicated by the observa-
tion that COVID-19 prevalence and spread vary across different spatial,
temporal, and demographic verticals. In this study, we study trends in
the spread of COVID-19 by utilizing the results of self-reported COVID-
19 symptoms surveys as a complement to COVID-19 testing reports.
This allows us to assess community disease prevalence, even in areas
with low COVID-19 testing ability. Using individually reported symptom
data from various populations, our method predicts the likely percent-
age of the population that tested positive for COVID-19. We achieved
a mean absolute error (MAE) of 1.14 and mean relative error (MRE)
of 60.40% with 95% confidence interval as [60.12, 60.67]. This implies
that our model predicts +/- 1140 cases than the original in a population
of 1 million. In addition, we forecast the location-wise percentage of the
population testing positive for the next 30 days using self-reported symp-
toms data from previous days. The MAE for this method is as low as
0.15 (MRE of 11.28% with 95% confidence interval [10.9, 11.6]) for New
York. We present an analysis of these results, exposing various clinical
attributes of interest across different demographics. Lastly, we qualita-
tively analyze how various policy enactments (testing, curfew) affect the
prevalence of COVID-19 in a community.
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1 Introduction

The rapid progression of the COVID-19 pandemic has provoked large-scale data
collection efforts on an international level to study the epidemiology of the
virus and inform policies. Various studies have been undertaken to predict the
spread, severity, and unique characteristics of the COVID-19 infection, across a
broad range of clinical, imaging, and population-level datasets (Gostic, Gomez,
Mummah, Kucharski, & Lloyd-Smith, 2020; Liang et al., 2020; Menni et al.,
2020; Shi et al., 2020). For instance, Menni et al. (2020) use self-reported data
from a mobile app to predict a positive COVID-19 test result based upon symp-
tom presentation. Anosmia was shown to be the strongest predictor of disease
presence, and a model for disease detection using symptoms-based predictors was
indicated to have a sensitivity of about 65%. Studies like Parma et al.(2020) have
shown that ageusia and anosmia are widespread sequelae of COVID-19 patho-
genesis. From the onset of COVID-19, there also has been a significant amount
of work in mathematical modeling to understand the outbreak under different
situations for different demographics (Menni et al., 2020; Saad-Roy et al., 2020;
Wilder, Mina, & Tambe, 2020). However, these works primarily focus on the
population level. Further, the estimation of different transition probabilities to
move between compartments is challenging.

Carnegie Mellon University (CMU) and the University of Maryland (UMD)
have built chronologically aggregated datasets of self-reported COVID-19 symp-
toms by conducting surveys at national and international levels (Delphi group,
2020; Fan et al., 2020). The surveys contain questions regarding whether the re-
spondent has experienced several of the common symptoms of COVID-19 (e.g.
anosmia, ageusia, cough, etc.) in addition to various behavioral questions con-
cerning the number of trips a respondent has taken outdoors and whether they
have received a COVID-19 test.

In this work, we perform several studies using the CMU (Delphi group, 2020),
UMD (Fan et al., 2020), and OxCGRT (Hale, Webster, Petherick, Phillips, &
Kira, 2020) datasets. Our experiments examine correlations among variables in
the CMU data to determine which symptoms and behaviors are most corre-
lated to high percentages of Covid Like Illness (CLI). We investigate how the
different symptoms impact the percentage of populations with CLI across dif-
ferent spatio-temporal and demographic (age, gender) settings. We also predict
the percentage of population who got tested positive for COVID-19 and achieve
60% Mean Relative Error. Further, our experiments involve time-series analy-
sis of these datasets to forecast CLI over time. Here, we identify how different
spatial window trends vary across different temporal windows. We aim to use
the findings from this method to understand the possibilities of modeling CLI
for geographic areas in which data collection is sparse or non-existent. Further-
more, results from our experiments can potentially guide public health policies
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for COVID-19. Understanding how the disease is progressing can help the poli-
cymakers introduce non-pharmaceutical interventions (NPIs) and also help them
understand how to distribute critical resources (medicines, doctors, healthcare
workers, transportation, and more). This could now be done based on the in-
sights provided by our models, instead of relying completely on clinical testing
data. Prediction of outbreaks using self-reported symptoms can also help reduce
the load on testing resources. Similar self reported data and survey data have
been used by (Rodriguez, Muralidhar, et al., 2020; Rodriguez, Tabassum, et al.,
2020; Garcia-Agundez et al., 2021) for understanding the pandemic and drawing
actionable insights.

2 Datasets

The CMU Symptom Survey aggregates the results of a survey run by CMU
(Delphi group, 2020) that was distributed across the US to approx 70k random
Facebook users daily. It gives a set of indicators that can inform our reasoning
about the pandemic. The indicators include:

– Symptoms related indicators like the percentage of respondents reporting
fever and the percentage of respondents reporting sore throat.

– Pre-existing medical condition related indicators like the percentage of re-
spondents having diabetes and the percentage of respondents having Au-
toimmune Disorder.

– Behavior related indicators like the percentage of respondents who avoid
contact with others most of the time and the percentage of respondents who
worked outside home.

The data set has a total of 104 columns (in October 2020), including weighted
(adjusted for sampling bias), unweighted signals, and demographic information
(age, gender, etc.) at county and state level. In this study, we use the state level
data from Apr. 4, 2020 to Sep. 11, 2020, which is henceforth referred to as the
CMU dataset in the paper.

The UMD Global Symptom Survey aggregates the results of a survey
conducted by UMD through Facebook (Fan et al., 2020). The survey is avail-
able in 56 languages. A representative sample of Facebook users were invited
on a daily basis to report on topics including symptoms and social distancing
behavior. Facebook provides weights to reduce non-response and coverage bias.
Country and region-level statistics are published daily via the public API and
dashboards, and micro-data is available for researchers via data use agreements.
Over half a million responses were collected daily. We use the data of 968 regions,
available from May 1 to September 11, 2020. There are 49 (in October 2020)
unweighted signals, as well as their weighted forms (adjusted for sampling bias).

The Oxford COVID-19 Government Response Tracker (OxCGRT)
(Hale et al., 2020) contains government COVID-19 policy data as a numeri-
cal scale value representing the extent of government action. OxCGRT collects
publicly available information on 20 indicators of government response. This
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information was collected by a team of over 200 volunteers from the Oxford
community and was updated continuously. The data set also includes statistics
on the number of reported Covid-19 cases and deaths in each country, which
were taken from the JHU CSSE (Dong, Du, & Gardner, 2020) data repository
for all countries and the US.

The Prevalence of Self-Reported Obesity by State and Territory,
BRFSS, 2019 - CDC (CDC, 2020) is a dataset published by CDC containing
the aggregated self-reported obesity values. The data are at the state level and
contain the obesity values and confidence intervals (95%). This dataset contains
other information like race, ethnicity, and food habits that can be used for further
analysis.

3 Methods and Experiments

Different methods and strategies have been used to analyze the data. Our code
used in the analysis is publicly available at https://github.com/PrivateKit/
CovidSymptomChallenge.

3.1 Correlation Studies

Correlations between features of the datasets provide crucial information about
the features and the degree of influence they have over the target value. We con-
ducted correlation analysis on different subgroups like symptomatic and asymp-
tomatic subjects, and varying demographic regions in the CMU dataset to dis-
cover relationships among the signals and with the target variable. We also
investigated the significance of obesity and population density on the suscepti-
bility to COVID-19 at the state level (CDC, 2020). Refer to the supplementary
materials for more information.

3.2 Feature Pruning

We first dropped demographic features such as date, gender, and age. Next, we
dropped the unweighted features because their weighted counterparts were used.
We also dropped features including the percentage of people who tested nega-
tive, the weighted percentage of people who tested positive because they were
directly related to testing and would make the prediction trivial. Furthermore,
we dropped the derived features such as the estimated percentage of people with
influenza-like illness because they were not directly reported by the respondents.
Finally, we dropped some features with aggregated information such as the av-
erage number of people in respondent’s household who have Covid Like Illness.
After the entire process, we selected 36 features. The selected feature list is
provided in the supplementary materials.

https://github.com/PrivateKit/CovidSymptomChallenge
https://github.com/PrivateKit/CovidSymptomChallenge
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3.3 Outbreak Prediction

We predicted the percentage of the population that tested positive at the state
level from the CMU dataset. We ranked these 36 signals using f regression
(“sklearn f regression”, 2007-2020) (f statistic of the correlation to the target
variable) and predicted the target variable using the top n ranked features.
We experimented with the top n features value from 1 to 36 for various de-
mographic groups. We trained linear regression (Galton, 1886), decision tree
(Quinlan, 1986), and gradient boosting (Friedman, 2001) models. All the mod-
els were implemented using scikit-learn (Pedregosa et al., 2011). We used 80%
of the data for training and the remaining 20% of the data for testing. The data
were split randomly.

3.4 Time Series Analysis

We predicted the percentage of people that tested positive using the CMU
dataset and the percentage of people with CLI with the UMD dataset. We in-
dependently used the top ”n” features (according to their ranking obtained in
outbreak prediction and empirical evidence combined with human experts rank-
ing) from the CMU (36) and UMD (49) datasets for multivariate multi-step time
series forecasting. Given the data spread across different spatial windows (ge-
ographies) at the state level, we employed an agglomerative clustering method
independently on symptoms and behavioral/external patterns, and sample loca-
tions that were not in the same cluster for our analysis. Using the Augmented
Dickey-Fuller test (Cheung & Lai, 1995), we found the time series samples for
these spatial windows to be stationary. Furthermore, we bucketed the data based
on the age and gender of the respondents, to provide granular insights on the
model performance on various demographics. With a total of 12 demographic
buckets [(age, gender) pairs], we used a vector autoregressive (VAR) (Holden,
1995) model and an LSTM (Gers, Schmidhuber, & Cummins, 1999) model for
the experiments. Furthermore, we qualitatively evaluated the impact of govern-
ment policies, e.g., curfew, on the spread of the virus. We used 80% of the data
for training and the remaining 20% of the data for testing.

4 Results and Discussion

4.1 Correlation Studies

The state level analysis revealed a moderate positive correlation, r= 0.24 (p-value
< 0.001), between the percentage of people tested positive and the statewide obe-
sity level. Here, the obesity is defined as BMI> 30.0 (NIH, 2020). The results
are consistent with prior clinical studies like (Chan et al., 2020) and indicate
that further research is required to investigate if the lack of certain nutrients
like Vitamin B, Zinc, Iron, or having a BMI> 30.0 could make an individual
more susceptible to COVID-19. Figure 1 shows the correlations among multiple
self-reported symptoms and the symptoms with significant positive correlations
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Figure 1. Correlation among self-reported symptoms and the percent of population
tested COVID positive.

are highlighted. This clearly reveals that anosmia, ageusia and fever are rela-
tively strong indicators of COVID-19. From Figure 2, we see that contact with
a COVID-19 positive individual is strongly correlated with testing COVID-19
positive. Conversely, the percentage of population who avoid outside contact and
the percentage of population testing positive for COVID-19 have a negative cor-
relation. We also found a moderate positive correlation between the population
density and the percentage of population reporting positive COVID-19, which
indicates easier transmission of the virus in a congested environment. These ob-
servations reaffirm the highly contagious nature of the virus and the need for
social distancing.

The results motivated us to estimate the percentage of people who tested
COVID-19 positive based on the percentage of people who had a direct contact
with anyone who recently tested positive. In doing so, we achieve a mean relative
error (MRE) of 2.33% and a mean absolute error (MAE) of 0.03.

Here, MAE is the absolute value of the difference between the predicted value
and the actual value, averaged over all data points:

MAE =
1

n

n∑
i=1

|yi − xi|,
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Figure 2. Correlations between the percent of people having contact with someone
having CLI and the percent of people who tested positive. Here, the attribute (1) =
percentage of people who had contact with someone having COVID-19, (2) = percent-
age of people tested positive, (3) = percentage of people who avoided contact all/most
of the time.

where n is the total data instances, yi is the predicted value and xi is the actual
value. Relative error is the absolute difference between the predicted value and
the actual value, divided by the actual value. MAE is the relative error averaged
over all the data points:

MRE =
1

n

n∑
i=1

∣∣∣∣yi − xi

xi + 1

∣∣∣∣ ,
where 1 is added in the denominator to avoid division by 0.

We found that a low MAE value can be misleading in the case of predicting
the spread of the virus. The MAE for the outbreak prediction was low and had a
small range (1-1.4) but more than 75% of the target lied between 0-2.6, meaning
only a small percentage of the entire population had COVID-19 (if 1% of the
entire population was affected and an MAE of 1 indicates the predicted cases
could double the actual cases). MRE accounts for even minute changes (errors)
in the prediction. Hence, it is a better metric to judge a system.

4.2 Policies vs CLI/Community Sick Impacts

The impacts of different non-pharmaceutical interventions (NPIs) could be an-
alyzed by combining the CMU, UMD, and Oxford data. A particular analysis
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from that is reported here, where we noticed that lifting of stay at home restric-
tions resulted in a sudden spike in the number of cases. This is visualized in
figure 3.

Figure 3. Policy impacts: When Stay at home restrictions were stronger, even with
higher testing rates, the percentage of population with CLI (pct cli ew) had a down-
ward trend.

4.3 Outbreak prediction on CMU Dataset

Gradient boosting performed the best and considerably better than the next best
algorithm in terms of the error metrics for every demographic group. Hence, only
the results for Gradient Boosting are presented. Table 1 shows the best accuracy
achieved per dataset. For every dataset, the best ”n” number of features is about
30. We achieved an MRE of 60.40% for the entire dataset. The performance
was better on the female-only data when compared to the male-only data. The
performance was slightly better on 55+ age data than other age groups. This
can also be observed from figure 4.

4.3.1 Top Features Except for minor reordering, the top 5 features were
CLI in community, loss of smell, CLI in house hold (HH), fever in HH, and
fever across every data split. The top 6 to 10 features per data split are given in
figure 5. We can see that ’worked outside home’ and ’avoid contact most time’
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Table 1. Results of gradient boosting model for the prediction of the percentage of
population tested positive across demographics. The mean relative error (MRE) and
mean absolute error (MAE) are average of 20 runs. The 95% confidence interval (CI)
for MRE is calculated on 20 runs (data were shuffled randomly each time).

Demographic best n MAE MRE CI

Entire 35 1.14 60.40 (60.12, 60.67)
Male 34 1.38 78.14 (77.67, 78.62)
Female 36 1.10 56.89 (56.48, 57.30)
Age 18-34 30 1.23 66.35 (65.59, 67.12)
Age 35-54 35 1.29 67.59 (67.13, 68.04)
Age 55+ 33 1.20 66.40 (65.86, 66.94)

Figure 4. Error vs. the number of top features used for the gradient boosting model.
Errors vary across demographics and generally decrease with the increase of the number
of features (n). The decrease is not considerable after n = 20.

are useful features for male, female, and 55+ age groups. Figure 4 shows MRE
vs. the number of features selected for different data splits. Overall, the error
decreased as we added more features. However, the decrease in error was not
considerable when we went beyond 20 features (< 1%).

4.4 Time Series Analysis

As seen in Tables 2 and 3, we were able to forecast the PCT CLI with an MRE of
15.31% using just 23 features from the UMD dataset for Lombardia and with an
MRE of 42.72% for Northern Ireland. The 23 features (provided in the supple-
mentary materials) were selected with the help of human experts and empirical
analysis. We can see that VAR performed better than LSTM on average. This
can be explained by the dearth of data available. Furthermore, we can see that
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Figure 5. After the top 5 predictive features (which were roughly identical), there
are considerable differences between the most predictive features segmented across
demographics. For example, for the age 34-55 group, ’sore throat in hh (household)’
was the sixth most predictive feature but it is not even in the top 10 most predictive
features for the 55+ age group.

the outbreak forecasting for New York achieved 11.28% MRE, making use of only
10 features (these features were selected based on the outbreak prediction results
and further empirically identified as well). This might be caused by an inherent
bias in the sampling strategy or participant responses. For example, the high
correlation noted between anosmia and COVID-19 prevalence suggested several
probable causes of confounding relationships between the two. This could also
occur if both symptoms were specific and sensitive for COVID-19 infection.

4.5 Symptoms vs CLI overlap

The percentage of population with symptoms like cough, fever, and runny nose
was much higher than the percentage of people who suffered from CLI or the
percentage of people who were sick in the community. Only 4% of the people in
the UMD dataset who reported having CLI did not suffer from chest pain and
nausea.
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Table 2. The errors of forecasting the outbreak of COVID-19 (the percentage of people
who tested positive) for the next 30 days using VAR and LSTM.

Location MRE MAE

VAR

New York 11.28, 95% CI [10.9, 11.6] 0.15
California 13.48, 95% CI [13.4, 13.5] 0.23
Florida 17.49, 95% CI [17.5, 17.5] 0.38
New Jersey 17.93, 95% CI [17.9, 18] 0.26

LSTM

New York 23.61, 95% CI [23.6, 23.7] 0.36
California 45.06, 95% CI [45, 45.2] 0.91
Florida 64.98, 95% CI [64.8, 65.1] 1.51
New Jersey 15.78, 95% CI [15.7, 15.9] 0.26

Table 3. Results of forecasting the outbreak of COVID-19 (the percentage of people
with COVID-19 like illness in the population - PCT CLI) for the next 30 days using
the VAR and LSTM models.

Location MRE MAE

VAR

Tokyo 17.77, 95% CI [17.7, 17.8] 0.28
British Columbia 21.35, 95% CI [21.3, 21.4] 0.34
Northern Ireland 42.72, 95% CI [42.7, 42.8] 0.87
Lombardia 15.31, 95% CI [15.3, 15.4] 0.22

LSTM

Tokyo 30.00, 95% CI [29.9, 30.1] 0.53
British Columbia 31.11, 95% CI [30.9, 31.3] 0.56
Northern Ireland 42.46, 95% CI [42.1, 42.9] 1.21
Lombardia 16.11, 95% CI [16, 16.2] 0.21

4.6 Ablation Studies

We performed ablation studies to verify and investigate the relative importance
of the features that were selected using f regression feature ranking algorithm
(“sklearn f regression”, 2007-2020). In the following experiments, the top N = 10
features obtained from the f regression algorithm are considered as the subset
for evaluation.

4.6.1 All-but-one experiment In this experiment, the target variable which
is the percentage of people affected by COVID-19 was estimated by considering
N − 1 features from a given set of top N features by dropping 1 feature at a
time in every iteration in descending order. The results were visualized in figure
6 from which it is clear that there was a considerable increased error when the
most significant feature was dropped and the loss in performance was not as
drastic when any other feature was dropped. This reaffirms our feature selection
method.
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Figure 6. Results of all-but-one experiment (MRE).

4.6.2 Cumulative Feature Dropping In this experiment, we estimated
the target variable based on the top N=10 features and then carried out the
experiment with N−i features in every iteration where i was the iteration count.
The features were dropped in descending order. Figure 7 shows the results. The
change in slope from the start to the end of the graph shows that the most
important feature had a huge significance of the performance. This observation
reinforces the inference of the all-but-one experiment and validates our feature
selection algorithm.
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Figure 7. Results of cumulative feature dropping.

5 Conclusion And Future Work

In this work, we analyzed the benefits of the COVID-19 self-reported symptoms
presented in the CMU, UMD, and Oxford datasets. We conducted correlation
analysis, outbreak prediction, and time series prediction of the percentage of re-
spondents with positive COVID-19 tests and the percentage of respondents who
show COVID-like illness. By clustering datasets across different demographics,
we revealed micro and macro level insights into the relationship between symp-
toms and outbreaks of COVID-19. These insights might form the basis for future
analysis of the epidemiology and manifestations of COVID-19 in different patient
populations. Our correlation and prediction studies identified a small subset of
features that can predict measures of COVID-19 prevalence to a high degree
of accuracy. Using this, more efficient surveys can be designed to measure only
the most relevant features to predict COVID-19 outbreaks. Shorter surveys will
increase the likelihood of respondent participation and decrease the chances that
respondents provide false (or incorrect) information. We believe that our analysis
will be valuable in shaping health policy and in COVID-19 outbreak predictions
for areas with low levels of testing by providing prediction models that rely on
self-reported symptom data. As shown from our results, the predictions from
our models could be reliably used by health officials and policymakers, in order
to prioritize resources. Furthermore, having crowd-sourced information as the
base helps scale this method at a much higher pace, if and when required in the
future, e.g., due to the advent of a new virus or a strain.
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In the future, we plan to use advanced deep learning models for predictions.
Furthermore, given the promise shown by population level symptoms data, we
find more relevant and timely problems that can be solved with individual data.
Machine learning systems based on data from mobile/wearable devices can be
built to understand users’ vitals, sleep behavior, and so on. Having the data
shared at an individual level can augment the participatory surveillance dataset
and thereby the predictions made. This can be achieved without compromising
the privacy of individuals. We also plan to compare the reliability of such sur-
vey methods with actual number of cases in the corresponding regions and its
generalizability across populations.

Acknowledgement

We thank Seojin Jang, Chirag Samal, Nilay Shrivastava, Shrikant Kanaparti,
Darshan Gandhi and Priyanshi Katiyar for their inputs in various stages of this
study. We further thank Prof. Manuel Morales (University dé Montreal), Morteza
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The book Mastering Software Development in R is an excellent intro-
duction to the use of R (R Core Team, 2020) software, and its focus is on teaching
how to develop packages for R and how to create complex graphs with ggplot2.
The package ggplot2 is one of the most popular and downloaded R packages and
was created in 2005 by Hadley Wickham as a data visualization package for the
statistical programming language R based on the grammar of graphics–a general
scheme for data visualization which breaks up graphs into semantic components
such as scales and layers. In particular, ggplot2 can serve as a replacement for the
base graphics in R and contains a number of defaults for web and print display
of data. The book covers a wide variety of other packages including: choro-
plethr, choroplethrMaps, data.table, datasets, devtools, dlnm, dplyr, faraway, for-
cats, GGally, ggmap, ggthemes, ghit, GISTools, grid, gridExtra, httr, knitr, leaflet,
lubridate, magrittr, methods, microbenchmark, package, pander, plotly, profvis,
pryr, purrr, rappdirs, raster, RColorBrewer, readr, rmarkdown, scales, sp, stats,
stringr, testthat, tidyr, tidyverse, tigris, titanic, and viridis.

Developing R packages and making specialized statistical graphics are very
relevant skills today because as new models and statistical methodologies emerge,
there must be software available to apply the cutting edge theory to real prob-
lems. In addition, publishing packages on CRAN (comprehensive R archive net-
work) is a way of scientific dissemination that can increase the impact of a sci-
entific research because the packages allow for quick applications of the method-
ology developed in the research. The importance of data visualization is obvious
and a well-thought-out graph can synthesize a lot of information (descriptive or
inferential) clearly and intuitively.

The book has at least three main advantages: it is affordable (can even be
acquired for free), it serves both as an introductory book for R and as a “bridge”

https://leanpub.com/msdr
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for more advanced books such as: Wickham (2015), Wickham (2016), Wickham
(2019) and Xie, Allaire, and Grolemund (2018), and it goes straight to the point,
allowing for faster and more fluid learning. It is an ideal book for anyone who
wants to learn advanced R topics without investing a lot of time. I believe that
this book is important for anyone who is starting to develop their own packages
(including experienced researchers who are not familiar with programming or
software development).

Now, I want to compare the book with four other books on R. Wickham
(2015) is the reference book for anyone who wants to learn how to create their
own R packages. It covers all the steps of creating a package, from organizing
function codes to disseminating the package. Wickham (2016) is a book on gg-
plot2 written by the main author of this package and consequently is a reference
book on ggplot2. Wickham (2019) is a book that addresses more advanced R

topics, such as metaprogramming and techniques to improve the performance
of R codes. Xie et al. (2018) is the first official book authored by the core R

Markdown developers that provides a comprehensive and accurate reference to
the R Markdown ecosystem. The four books together cover the same content as
the reviewed book and each was written by the package developers themselves
or at least by people who have contributed a lot to the area corresponding to
its content. The reviewed book is able to provide a broad overview of several
important R topics but clearly does not offer the depth of a reference book. The
reviewed book is great for beginning learners of the topics that are not covered in
a first R course and the books mentioned here are useful if deeper understanding
of any of the topics covered in the reviewed book is needed.

The book contains a brief introduction and 4 chapters with well-defined
scopes. The introduction states the R packages that will be used in this book.
Chapter 1 covers the introduction to R and how to clean and to tidy data. Chap-
ter 2 covers introductory programming topics, such as if, else and object-oriented
programming and other more advanced topics like profiling and benchmarking,
robust error handling and debugging. Chapter 3 deals with building packages
for R and covers R package development, writing good documentation and vi-
gnettes using knitr and R Markdown, writing tests for an R package using the
testthat package, continuous integration1 tools such as Travis and Appveyor, and
distributing packages via CRAN and GitHub. Finally, Chapter 4 covers build-
ing graphics with the ggplot2 package, creation of simple and dynamic maps,
creation of new ggplot2 theme by modifying an existing theme, creation of new
geom function to implement a new feature or simplify a workflow, and other
related topics.

Each of the book’s 4 chapters begins with a description of what will be learned
in a short paragraph and follows by a list of topics covered in the chapter. At
the beginning of each section, there is also a list of topics covered, except for the
sections of Chapter 4 and Sections 2.8, 3.1 and 3.10. These sections without a list

1 The topic of continuous integration is a little known topic in the statistical commu-
nity and has the role of ensuring that the package continues to function properly
after successive updates.
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of topics covered are either conceptual in nature or the title is self-explanatory.
The list of topics covered helps navigate the book and learn exactly what you
want without having to read the entire book. This makes the book to be a quick
reference to find information in short time. Although the book does not include
exercises, it constantly encourages the readers to experiment with variations of
the codes presented and for that it is enough to copy, paste and edit the codes
of the book itself in R. For readers who have already taken an introductory
R course or acquired basic knowledge of R through practice, Chapters 3 and
4 will certainly be most interesting. Chapter 3 provides technical details for
the development and publication of packages on CRAN and GitHub. Publishing
packages on CRAN and GitHub are great ways to share R code with the scientific
community, but it’s also possible to simply share the package in a standardized
way at one’s company, university, or research institute. Chapter 4 teaches how
to develop customized visualization tools through packages such as ggplot2 and
ggmap.

In general, the book achieved the proposed objectives of what? Some changes
can be made to improve a reader’s experience. For example, it can list the R

packages required for each of the 4 chapters so the reader can prepare the com-
putational environment in advance for a specific chapter, such as Chapter 3 or
4. It also benefits by adding an index to show the pages on which each pack-
age it is mentioned since the book has more than 400 pages. By doing so, the
reader interested in using a specific package can be directed more quickly to the
examples of the desired package.
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