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Abstract. Latent growth curve models (LGCMs) are becoming
increasingly important among growth models because they can
effectively capture individuals’ latent growth trajectories and also explain
the factors that influence such growth by analyzing the repeatedly
measured manifest variables. However, with the increase in complexity of
LGCMs, there is an increase in issues on model estimation. This research
proposes a Bayesian approach to LGCMs to address the perennial
problem of almost all longitudinal research, namely, missing data. First,
different missingness models are formulated. We focus on non-ignorable
missingness in this article. Specifically, these models include the latent
intercept dependent missingness, the latent slope dependent missingness,
and the potential outcome dependent missingness. To implement the
model estimation, this study proposes a full Bayesian approach through
data augmentation algorithm and Gibbs sampling procedure. Simulation
studies are conducted and results show that the proposed method
accurately recover model parameters and the mis-specified missingness
may result in severely misleading conclusions. Finally, the implications
of the approach and future research directions are discussed.

Keywords: Bayesian Estimation · Missing Data · Latent Growth Curve
Models · Non-ignorable Missingness · Longitudinal Analysis · Multilevel
Modeling

1 Introduction

In social and behavioral sciences, there has been great interest in the analysis
of change (e.g., Collins, 1991; Lu, Zhang, & Lubke, 2010; Singer & Willett,
2003). Growth modeling is designed to provide direct information of growth by
measuring the variables of interest on the same participants repeatedly through
time (e.g., Demidenko, 2004; Fitzmaurice, Davidian, Verbeke, & Molenberghs,
2008; Fitzmaurice, Laird, & Ware, 2004; Hedeker & Gibbons, 2006; Singer
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& Willett, 2003). Among the most popular growth models, latent growth
curve models (LGCMs) are becoming increasingly important because they can
effectively capture individuals’ latent growth trajectories and also explain the
latent factors that influence such growth by analyzing the repeatedly measured
manifest variables (e.g., Baltes & Nesselroade, 1979). Manifest variables are
evident in the data, such as observed scores; latent variables cannot be measured
directly and are essentially hidden in the data, such as the latent initial levels and
latent growth rates (Singer & Willett, 2003). We use the term “latent” because
these variables are not directly observable but rather are assumed to be inferred,
although they may be closely related to observed scores. For example, the latent
intercept (i.e., the latent initial level) may be related to the test score at the first
occasion, the prior knowledge of a course (such as mathematical knowledge), or
other similar variables. The latent slope (i.e., the latent growth rate) may be
related to the participant’s learning ability, the attitude toward the course, the
instructor’s teaching methods, or other similar types of variables.

However, with an increase in complexity of LGCMs, comes an increase in
difficulties estimating such models. First, missing data are almost inevitable with
longitudinal data (e.g., Jelicic, Phelps, & Lerner, 2009; Little & Rubin, 2002).
Second, conventional likelihood estimation procedures might fail for complex
models with complicated data structures.

1.1 Missing Data

As LGCMs involve data collection on the same participants through multiple
waves of surveys, tests, or questionnaires, missing data are almost inevitable.
Research participants may drop out of a study, or some students may miss a test
due to absence or fatigue (e.g., Little & Rubin, 2002; Schafer, 1997). Missing data
can be investigated from their mechanisms, or why missing data occur. Little and
Rubin (2002) distinguished ignorable missingness mechanism and non-ignorable
missingness mechanism. For ignorable missingness mechanism, estimates are
usually asymptotically consistent when the missingness is ignored (Little &
Rubin, 2002), because the parameters that govern the missing process either
are distinct from the parameters that govern the model outcomes or depend on
the observed variables in the model. The non-ignorable missingness mechanism
is also referred to as missing not at random (MNAR), in which the missing data
probability depends either on unobserved outcomes, or on latent variables that
cannot be fully measured by the observed data, in other words, latent variables
that depend on the missing values.

With the appearance of missing data comes the challenge in estimating
growth model parameters. To address the challenge, statisticians have developed
different approaches and models. Although there are a large amount of literature
to address this problem in applied behavioral sciences (e.g., Acock, 2005; Schafer
& Graham, 2002; Schlomer, Bauman, & Card, 2010), especially in longitudinal
studies (e.g., Jelicic et al., 2009; Roth, 1994), the majority of the literature
is on ignorable missingness. This is mainly because (1) analysis models or
techniques for non-ignorable missing data are traditionally difficult to implement
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and not yet easy to use (e.g., Baraldi & Enders, 2010), and (2) missingness
mechanisms are not testable (e.g., Little & Rubin, 2002). At the same time,
however, non-ignorable missingness analysis is a crucial and a serious concern in
applied research areas, in which participants may be dropping out for reasons
directly related to the response being measured (e.g., Baraldi & Enders, 2010;
Enders, 2011b; Hedeker & Gibbons, 1997). Not attending to the non-ignorable
missingness may result in severely biased statistical estimates, standard errors,
and associated confidence intervals, and thus poses substantial risk of leading
researchers to incorrect conclusions (e.g., Little & Rubin, 2002; Schafer, 1997;
Zhang & Wang, 2012).

In a study of latent growth models, Lu, Zhang, and Lubke (2011) investigated
non-ignorable missingness in mixture models. However, the missingness in that
study was only allowed to depend on latent class membership. In practice,
even within one population, the missingness may depend on many other latent
variables, such as latent initial levels and latent growth rates. When observed
data are not completely informative about these latent variables, the missingness
is non-ignorable. Furthermore, Lu et al. (2011) did not examine how to identify
the missingness mechanisms. Accordingly, this study extends previous research
to more general non-ignorable missingness and also investigates the influences
of different types of non-ignorable missingness on model estimation.

1.2 Bayesian Approach

To implement the model estimation, we propose a full Bayesian approach.
Traditionally, maximum likelihood methods have been widely used in most
studies for estimating parameters of models in the presence of missing data (e.g.,
Enders, 2011a; Muthén, Asparouhov, Hunter, & Leuchter, 2011), and statistical
inferences have been carried out using conventional likelihood procedures (e.g.,
Yuan & Lu, 2008). Recently, multiple imputation (MI) methods have been
proposed as an alternative approach (e.g., Enders, 2011a; Muthén et al., 2011).
MI is a Monte Carlo technique that replaces the missing values with multiple
simulated values to generate multiple complete datasets. Each of these simulated
datasets is then analyzed using methods that do not account for missingness,
that is, using standard analytical methods. Results are then combined to produce
estimates and confidence intervals that incorporate the uncertainty due to
the missing-data (Enders, 2011a; Rubin, 1987; Schafer, 1997). Both ML and
MI estimation methods typically assume that missing data mechanisms are
MCAR or MAR. Further, using conventional estimation procedures may fail
or may provide biased estimates (Yuan & Zhang, 2012) when estimating model
parameters in complex models with complicated data structures such as GMMs
with missing data and outliers. In addition, MI requires data to be imputed under
a particular model (e.g., Allison, 2002; Newman, 2003). And literature also shows
that multiple imputation is inappropriate as a general purpose methodology
for complex problems or large datasets (e.g., Fay, 1992). When missingness is
MNAR, most work augments the basic analysis using with a model that explains
the probability of missing data (e.g., Enders, 2011a; Muthén et al., 2011).
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In this article, a full Bayesian estimate approach (e.g., Lee, 2007; Muthén
& Asparouhov, 2012) is proposed. There are several advantages. First, this
approach involves Gibbs sampling methods (Geman & Geman, 1984). Gibbs
sampling is especially useful when the joint distribution is complex or unknown
but the conditional distribution of each variable is available. The sequence of
samples constructs a Markov chain that can be shown to be ergodic (Geman
& Geman, 1984). That is, once convergence is obtained, the samples can
be assumed to be independent draws from the stationary distribution. Thus,
after convergence the generated value is actually from the joint distribution
of all parameters. Each variable from the Markov chain has also been shown
to converge to the marginal distribution of that variable (Robert & Casella,
2004). Additional advantages of Bayesian methods include their intuitive
interpretations of statistical results, their flexibility in incorporating prior
information about how data behave in similar contexts and findings from
experimental research, their capacity for dealing with small sample sizes (such as
occur with special populations), and their flexibility in the analysis of complex
statistical models with complicated data structure (e.g., Dunson, 2000; Scheines,
Hoijtink, & Boomsma, 1999).

1.3 Goals and Structure

The goals of the paper are to propose latent growth curve models with
non-ignorable missingness and to evaluate the performance of Bayesian methods
to recover model parameters. The rest of the article consists of four sections.
Section 2 presents and formulates three non-ignorable missingness selection
models. Section 3 presents a full Bayesian method to estimate the latent growth
models through the data augmentation and Gibbs sampling algorithms. Section 4
conducts a simulation study. Estimates from models with different non-ignorable
missingness and different sample sizes are summarized, analyzed, and compared.
Conclusions based on the simulation study are drawn. Section 5 discusses the
implications and future directions of this study. Finally, the appendix presents
technical details.

2 Non-ignorable Missingness in Latent Growth Models

In this section, we model the non-ignorable missingness in growth models. Before
we introduce the three selection models, we first review the latent growth curve
models (LGCMs).

2.1 Latent Growth Curve Models (LGCMs)

The latent growth curve models (LGCMs) can be expressed by a regression
equation with latent variables being regressors. Specifically, for a longitudinal
study with N subjects and T measurement time points, let yi = (yi1, yi2, ..., yiT )′

be a T × 1 random vector, where yit stands for the outcome or observation of



Non-ignorable Missingness in LGCMs 5

individual i at occasion t (i = 1, 2, ..., N ; t = 1, 2, ..., T ), and let ηi be a q × 1
random vector containing q continuous latent variables. A latent growth curve
model for the outcome yi related to the latent ηi can be written as

yi = Ληi + ei (1)

ηi = β + ξi, (2)

where Λ is a T × q matrix consisting of factor loadings, ei is a T × 1 vector of
residuals or measurement errors that are assumed to follow multivariate normal
distributions, i.e., ei ∼MNT (0,Θ) 1, and ξi is a q×1 vector that is assumed to
follow a multivariate distribution, i.e., ξi ∼MNq(0,Ψ). In LGCMs, β is called
fixed effects and ξi is called random effects (e.g., Fitzmaurice et al., 2004; Hedges,
1994; Luke, 2004; Singer & Willett, 2003). The vectors β, ηi, and the matrix
Λ determine the growth trajectory of the model. For instance, when q = 2,
β = (I, S)′, ηi = (Ii, Si)

′, and Λ is a T ×2 matrix containing the first column of
1s and the second column of (0, 1, ..., T −1). The corresponding model represents
a linear growth model in which I is the latent population intercept (or latent
random initial level), S is the latent population slope, Ii is individual i’s latent
random intercept and Si is individual i’s latent random slope. Furthermore, when
q = 3, β = (I, S,Q)′, ηi = (Ii, Si, Qi)

′, and Λ is a T × 3 matrix containing the
first column of 1s, the second column of (0, 1, ..., T − 1), and the third column
of (0, 1, ..., (T − 1)2). The corresponding model represents a quadratic growth
curve model with Q and Qi being latent quadratic coefficients for population
and individual i, respectively.

2.2 Selection Models for Non-ignorable Missingness

To address the non-ignorable missingness, there are two general approaches,
pattern-mixture models (Hedeker & Gibbons, 1997; Little & Rubin, 1987) and
selection models (Glynn, Laird, & Rubin, 1986; Little, 1993, 1995). In both
cases, the statistical analysis requires joint modelling of dependent variable and
missing data processes. In this research, selection models are used, mainly for
two reasons. First, substantively, it seems more natural to consider the behavior
of the response variable in the full target population of interests, rather than
in the sub-populations defined by missing data patterns (e.g., Fitzmaurice et
al., 2008). Second, the selection model formulation leads directly to the joint
distribution of both dependent variables and the missingness (e.g., Fitzmaurice
et al., 2008) as follows,

f(yi,mi|ν,φ,xi) = f(yi|ν,xi) f(mi|yi,ν,φ,xi)

where f(.) is a density function, xi is a vector of covariates for individual i,
yi is a vector of individual i’s outcome scores, Θ = (ν,φ) are all parameters
in the model, in which ν are parameters for the growth model and φ are

1 Throughout the article, MNn(·) denotes a n-dimensional multivariate normal
distribution, and Mtn(·) denotes a n-dimensional multivariate t distribution.
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parameters for the missingness, and mi is a vector mi = (mi1,mi2, ...,miT )′

that indicates the missingness status for yi. Specifically, if yi is missing at time
point t, then mit = 1; otherwise, mit = 0. Here, we assume the missingness
is conditionally independent (e.g., Dawid, 1979), which means across different
occasions the conditional distributions of missingness are independent with
each other. Let τit = f(mit = 1) be the probability that yit is missing, then
mit follows a Bernoulli distribution of τit, and the density function of mit is
f(mit) = τmit

it (1 − τit)1−mit . For different non-ignorable missingness patterns,
the expressions of τit are different. Lu et al. (2011) investigated the non-ignorable
missingness in mixture models. The τit in that article is a function of latent class
membership, and thus the missingness is Latent Class Dependent (LCD).

However, LCD was proposed in the framework of mixture models. Within
each latent population, there is no class membership indicator. Consequently, the
missingness is ignorable. In this article, we consider more complex non-ignorable
missingness mechanisms within a population. In general, we assume Li is a vector
of latent variables that depend on the missing values. A general class of selection
models for dealing with non-ignorable missing data in latent growth modelling
can be formulated as

f(yi,mi|β, ξi,Li,γt,xi) = f(ηi|β, ξi)f(yi|ηi)Φ(ω′i γt)
mit [1− Φ(ω′i γt)]

1−mit

= f(ηi|β, ξi)f(yi|ηi)Φ(γ0t + LiγLt + x′iγxt)
mit

×[1− Φ(γ0t + LiγLt + x′iγxt)]
1−mit (3)

where xi is an r-dimensional vector, ωi = (1,L′i,x
′
i)
′ and γt = (γ0t,γ

′
Lt,γ

′
xt)
′.

The missingness is non-ignorable because it depends on the latent variables Li
in the model and the observed data are not completely informative about these
latent variables. Note that the vector γLt here should be non-zero. Otherwise,
the missingness becomes ignorable.

Specific sub-models under different situations can be derived from this general
model. For example, missingness may be related to latent intercepts, latent
growth rates, or potential outcomes. To show different types of non-ignorable
missingness, we draw the path diagrams, as shown in Figures 1, 2, and 3, to
illustrate the sub-models. These sub-models are based on three types of latent
variables on which the missingness might depend. In these path diagrams, a
square/rectangle indicates an observed variable, a circle/oval means a latent
variable, a triangle represents a constant, and arrows show the relationship
among them. yt is the outcome at time t, which is influenced by latent effects
such as I, S, and ηq. As the value of yt might be missing, we use both circle and
square in the path diagram. If yt is missing, then the potential outcome cannot
be observed and the corresponding missingness indicator mt becomes 1. The
dashed lines between yt and mt show the 1-1 relationship. In these sub-models,
the value of mt depends on the observed covariate xr and some latent variables.
The details of these three sub-models are described as follows.

2.2.1 Latent Intercept Dependent (LID) Missingness (Figure 1). It
illustrates the situation where the missingness depends on individual’s latent
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intercept, Ii. For example, a student’s latent initial ability level of the knowledge
of a course influences the likelihood of that participant dropping out of or staying
in that course. If the latent initial ability of a course is not high, a student may
choose to drop that course or even drop out a school. In the case of LID, the Li
in Equation (3) is simplified to a univariate Ii. Suppose that the missingness is
also related to some observed covariates xi, such as parents’ education or family
income, then τIit is expressed as a probit link function of Ii and xi

τIit = Φ(γ0t + IiγIt + x′iγxt) = Φ(ω′Ii γIt), (4)

where ωIi = (1, Ii,x
′
i)
′ and γIt = (γ0t, γIt,γ

′
xt)
′.
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Figure 1. Path diagram of a latent growth model with latent intercept dependent
missingness (LID) where f(mt) depends on covariates xrs and latent intercept I.

2.2.2 Latent Slope Dependent (LSD) Missingness (Figure 2). It
describes the situation where the missingness depends on the latent slope, Si. For
example, a student’s latent rate of change in a course influences the likelihood
that the participant misses a test in the future. This might be the case, if the
student didn’t see any improvement over time, at which point he/she might
choose to drop out. In the case of LSD, the Li in Equation (3) becomes a
univariate Si. Together with some other observed covariates xi, for example,
parents’ education or family income, the missing data rate τit can be expressed
as a probit link function of Si and xi,

τSit = Φ(γ0t + SiγSt + x′iγxt) = Φ(ω′Si γSt), (5)



8 Z. Lu and Z. Zhang

with ωSi = (1, Si,x
′
i)
′ and γSt = (γ0t, γSt,γ

′
xt)
′.
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Figure 2. Path diagram of a latent growth model with latent slope dependent
missingness (LSD) where f(mt) depends on covariates xrs and latent slope S.

2.2.3 Latent Outcome Dependent (LOD) Missingness (Figure 3). It
assumes that the missingness depends on potential outcomes yit. For example, a
student who feels not doing well on a test may be more likely to quit taking the
rest of the test. As a result, the missing score is due to the perceived potential
outcome of the test. In this case, the Li in Equation (3) is the potential outcome
yit. With some covariates xi, we express τit as a probit link function as follows.

τyit = Φ(γ0t + yitγyt + x′iγxt) = Φ(ω′yit γyt), (6)

with ωyit = (1, yit,x
′
i)
′ and γyt = (γ0t, γyt,γ

′
xt)
′.

3 Bayesian Estimation

In this article, a full Bayesian estimation approach is used to estimate growth
models. The algorithm is described as follows. First, model related latent
variables are added via the data augmentation method (Tanner & Wong, 1987).
By including auxiliary variables, the likelihood function for each model is
obtained. Second, proper priors are adopted. Third, with the likelihood function
and the priors, based on the Bayes’ Theorem, the posterior distribution of
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Figure 3. Path diagram of a latent growth model with latent outcome dependent
missingness (LOD) where f(mt) depends on covariates xrs and potential outcome y.

the unknown parameters is readily available. We obtain conditional posterior
distributions instead of the joint posterior because the integrations of marginal
posterior distributions of the parameters are usually hard to obtain explicitly for
high-dimensional data. Fourth, with conditional posterior distributions, Markov
chains are generated for the unknown model parameters by implementing a
Gibbs sampling algorithm (Casella & George, 1992; Geman & Geman, 1984).
Finally, statistical inference is conducted based on converged Markov chains.

3.1 Data Augmentation and Likelihood Functions

In order to construct the likelihood function explicitly, we use the data
augmentation algorithm (Tanner & Wong, 1987). The observed outcomes yobsi
can be augmented with the missing values ymisi such that yi = (yobsi ,ymisi )′ for
individual i. Also, the missing data indicator variable mi is added to models.
Then the joint likelihood function of the selection model for the ith individual
can be expressed as Li(ηi,yi,mi) = [f(ηi) f(yi|ηi)] f(mi|yi,ηi,xi). For the
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whole sample, the likelihood function is specifically expressed as

L(y,η,m) ∝
N∏
i=1

{
|Ψ|−1/2 exp

[
−1

2
(ηi − β)′Ψ−1(ηi − β)

]
× |φ|−T/2 exp

[
− 1

2φ
(yi −Ληi)

′(yi −Ληi)

]
×

T∏
t=1

[
τmit
it (1− τit)1−mit

]}
,

(7)

where τit is defined by Equation (4) for the LID missingness, (5) for the LSD
missingness, and (6) for the LOD missingness.

3.2 Prior and Posterior Distributions

The commonly used proper priors (e.g., Lee, 2007) are adopted in the
study. Specifically, (1) an inverse Gamma distribution prior is used for φ ∼
IG(v0/2, s0/2) where v0 and s0 are given hyper-parameters. The density function
of an inverse Gamma distribution is f(φ) ∝ φ−(v0/2)−1 exp(−s0/(2φ)). (2)
An inverse Wishart distribution prior is used for Ψ. With hyper-parameters
m0 and V0, Ψ ∼ IW (m0,V0), where m0 is a scalar and V0 is a q × q
matrix. Its density function is f(Ψ) ∝ |Ψ|−(m0+q+1)/2 exp[−tr(V0Ψ

−1)/2]. (3)
For β a multivariate normal prior is used, and β ∼ MNq(β0,Σ0) where the
hyper-parameter β0 is a q-dimensional vector and Σ0 is a q× q matrix. (4) The
prior for γt (t = 1, 2, . . . , T ) is chosen to be a multivariate normal distribution
γt ∼ MN(2+r)(γt0,Dt0), where γt0 is a (2 + r)-dimensional vector, Dt0 is a
(2 + r)× (2 + r) matrix, and both are pre-determined hyper-parameters.

After constructing the likelihood function and assigning the priors, the joint
posterior distribution for unknown parameters is readily available. Considering
the high-dimensional integration for marginal distributions of parameters, the
conditional distribution for each parameter is obtained instead. The derived
conditional posteriors are provided in Equations (8) - (11) in the appendix. In
addition, the conditional posteriors for the latent variable ηi and the augmented
missing data ymisi (i = 1, 2, ..., N) are also provided by Equations (12) and (13),
respectively, in the appendix.

3.3 Gibbs Sampling

After obtaining the conditional posteriors, the Markov chain for each model
parameter is generated by implementing a Gibbs sampling algorithm (Casella &
George, 1992; Geman & Geman, 1984). Specifically, the following algorithm is
used in the research.

1. Start with a set of initial values for model parameters φ(0), Ψ(0), β(0), γ(0),
latent variable η(0), and missing values ymis(0).
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2. At the sth iteration, the following parameters are generated: φ(s), Ψ(s), β(s),
γ(s), η(s), and ymis(s). To generate φ(s+1), Ψ(s+1), β(s+1), γ(s+1), η(s+1),
and ymis(s+1), the following procedure is implemented:
(a) Generate φ(s+1) from the distribution in Equation (8) in the appendix.
(b) Generate Ψ(s+1) from the inverse Wishart distribution in Equation (9) in

the appendix. iv. Generate β(s+1) from the multivariate normal distribution
in Equation (10) in the appendix.
(c) Generate γ(s+1) from the distribution in Equation (11) in the appendix.
(d) Generate η(s+1) from the multivariate normal distribution in Equation
(12) in the appendix.
(e) Generate ymis(s+1) from the normal distribution in Equation (13) in the
appendix.

3.4 Statistical Inference

After passing convergence tests, the generated Markov chains can be viewed
as from the joint and marginal distributions of all parameters. The statistical
inference can then be conducted based on the generated Markov chains.

Suppose θ is an unknown parameter. For different loss functions of θ, the
point estimates are different. For example, if a square loss function, LF = (θ −
θ̂)2, is used, then the posterior mean is the estimate of θ; but if an absolute loss

function, LF = |θ− θ̂|, is used, then its estimate is the posterior median. There
are other function forms, such as 0-1 loss function, but in this research we use
the square loss function.

Let Θ = (θ1, θ2, ..., θp)
′ denote a vector of all the unknown parameters

in the model. Then the converged Markov chains can be recorded as
Θ(s), s = 1, 2, . . . , S, and each parameter estimate θ̂j (j = 1, 2, ..., p) can

be calculated as θ̂j =
∑S
s=1 θ

(s)
j /S with standard error (SE) s.e.(θ̂j) =√∑S

s=1(θ
(s)
j − θ̂j)2/(S − 1). To get the credible intervals, both percentile

intervals and the highest posterior density intervals (HPD, Box & Tiao, 1973) of

the Markov chains can be used. Percentile intervals are obtained by sorting θ
(s)
j .

HPD intervals may also be referred as minimum length confidence intervals for a
Bayesian posterior distribution, and for symmetric distributions HPD intervals
obtain equal tail area probabilities.

4 Simulation Studies

In this section, simulation studies are conducted to evaluate the performance of
the proposed models estimated by the Bayesian method.

4.1 Simulation Design

In the simulation, we focus on linear LGCMs to simplify the presentation. Higher
order LGCMs can be easily expanded by adding quadratic or higher order terms.
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First, four waves of complete LGCM data yi are generated based on
Equations (1) and (2). The random effects consist of the intercept Ii and the
slope Si, with V ar(Ii) = 1, V ar(Si) = 4, and Cov(Ii, Si) = 0. The fix-effects
are (I, S) = (1, 3). The measurement errors are assumed to follow a normal
distribution with mean 0 and standard deviation 1. In the simulation, we
also assume there is one covariate X generated from a normal distribution,
X ∼ N(1, sd = 0.2). Missing data are created based on different pre-designed
missingness rates. We assume the true missingness is LSD (also noted as the
XS missingness in this study because the missingness depends on the latent
individual slope S and covariate X). With LSD, the bigger the slope is, the more
the missing data. For the sake of simplicity in the simulation, the missingness
rate is set the same for every occasion. Specifically, we set the missingness
probit coefficients as γ0 = (−1,−1,−1,−1), γx = (−1.5,−1.5,−1.5,−1.5), and
γS = (0.5, 0.5, 0.5, 0.5). With the setting, missingness rates are generated based
on Equation (5). If a participant has a latent growth slope 3, with a covariate
value 1, his or her missingness rate at each wave is τ ≈ 16%; and if the slope
is 5, with the same covariate value, the missing rate increases to τ ≈ 50%; but
when the slope is 1, the missingness rate decreases to τ ≈ 2.3%.

Next, we fit data with LGCMs with different missingness. Specifically, the
model design with different missingness is shown in Table 1, where the symbol
“X” shows the related factors on which the missing data rates depend. For
example, when both “X” and “I” are checked, the missingness depends on the
individual’s latent intercept “I” and the observed covariate “X”. Four types of
missingness are studied: LID (also noted as XI in Table 1), LSD (XS), LOD
(XY), and ignorable (X). The shaded model, LSD (XS), is the true model we
used for generating the simulation data. Five levels of sample size (N=1000,
N=500, N=300, N=200 and N=100) are investigated, and for each sample size.
In total, 4×5=20 summary tables are combined and presented in Tables 2, 3,
and 5-9 2. Each result table is summarized from 100 converged replications.

4.2 Simulation Implementation

The simulation studies are implemented by the following algorithm. (1) Set
the counter R = 0. (2) Generate complete longitudinal growth data according
to predefined model parameters. (3) Create missing data according to missing
data mechanisms and missing data rates. (4) Generate Markov chains for model
parameters through the Gibbs sampling procedure. (5) Test the convergence of
generated Markov chains. (6) If the Markov chains pass the convergence test,
set R = R + 1 and calculate and save the parameter estimates. Otherwise, set
R = R and discard the current replication of simulation. (7) Repeat the above
process till R = 100 to obtain 100 replications of valid simulation.

In step 4, priors carrying little prior information are adopted (Congdon, 2003;
Gill, 2002; Zhang, Hamagami, Wang, Grimm, & Nesselroade, 2007). Specifically,

2 The summary table for the model with the latent intercept dependent (LID)
missingness (XI), for N=100 is not included due to its low convergence rate.
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Table 1. Simulation model design. N=1000, 500, 300, 200 and 100

Model X5 I6 S7 Y8

Ignorable (X) X

LID2 (XI) X X

LSD3 (XS)1 X X

LOD4 (XY) X X

Note. 1The shaded model is the true model XS. 2LID: Latent Intercept
Dependent. 3LSD: Latent Slope Dependent. 4LOD: Latent Outcome Dependent.
5X: Observed covariates. If X is the only item checked, the missingness
is ignorable. 6I: Individual latent intercept. If checked, the missingness is
non-ignorable. 7S: Individual latent slope. If checked, the missingness is
non-ignorable. 8Y: Individual potential outcome y. If checked, the missingness
is non-ignorable.

for ϕ1, we set µϕ1
= 02 and Σϕ1

= 103I2. For φ, we set v0k = s0k = 0.002. For
β, it is assumed that βk0 = 02 and Σk0 = 103I2. For Ψ, we define mk0 = 2
and Vk0 = I2. Finally, for γt, we let γt0 = 03 and Dt0 = 103I3, where 0d
and Id denote a d-dimensional zero vector and a d-dimensional identity matrix,
respectively. In step 5, the iteration number of burn-in period is set. The Geweke
convergence criterion indicated that less than 10,000 iterations was adequate for
all conditions in the study. Therefore, a conservative burn-in of 20,000 iterations
was used for all iterations. And then the Markov chains with a length of 20, 000
iterations are saved for convergence testing and data analysis. After step 7,
12 summary statistics are reported based on 100 sets of converged simulation
replications. For the purpose of presentation, let θj represent the jth parameter,
also the true value in the simulation. Twelve statistics are defined below. (1)
The average estimate (est.j) across 100 converged simulation replications of

each parameter is obtained as est.j =
¯̂
θj =

∑100
i=1 θ̂ij/100, where θ̂ij denotes the

estimate of θj in the ith simulation replication. (2) The simple bias (BIAS.smpj)

of each parameter is calculated as BIAS.smpj =
¯̂
θj − θj . (3) The relative bias

(BIAS.relj) of each parameter is calculated using BIAS.relj = (
¯̂
θj − θj)/θj when

θj 6= 0 and BIAS.relj =
¯̂
θj − θj when θj = 0. (4) The empirical standard error

(SE.empj) of each parameter is obtained as SE.empj =

√∑100
i=1(θ̂ij − ¯̂

θj)2/99,

and (5) the average standard error (SE.avgj) of the same parameter is calculated

by SE.avgj =
∑100
i=1 ŝij/100, where ŝij denotes the estimated standard error of

θ̂ij . (6) The average mean square error (MSE) of each parameter is obtained

by MSEj =
∑100
i=1 MSEij/100, where MSEij is the mean square error for the

jth parameter in the ith simulation replication, MSEij = (Biasij)
2 + (ŝij)

2. The
average lower (7) and upper (8) limits of the 95% percentile confidence interval

(CI.lowj and CI.upperj) are respectively defined as CI.lowj =
∑100
i=1 θ̂

l
ij/100 and

CI.upperj =
∑100
i=1 θ̂

u
ij/100 where θ̂lij and θ̂uij denote the 95% lower and upper
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limits of CI for the jth parameter, respectively. (9) The coverage probability of
the 95% percentile confidence interval (CI.coverj) of each parameter is obtained

using CI.coverj = [#(θ̂lij ≤ θj ≤ θ̂uij)]/100. The average lower (10), upper (11)
limits, and (12) the coverage probability of the 95% highest posterior density
credible interval (HPD, Box & Tiao, 1973) of each parameter are similarly
defined by HPD.lowj , HPD.upperj , and HPD.coverj , respectively.

4.3 Simulation Results

In this section, we show simulation results for the estimates obtained from the
true model and misspecified models.

4.3.1 Estimates from the True Model. First, we investigate the estimates
obtained from the true model. Tables 3, 4 and 5 in the appendix show the
summarized estimates from the true model for N=1000, N=500, N=300, and
N=100. From Tables 3 with the sample size 1000, first, one can see that all the
relative estimate biases are very small, with the largest one being 0.067 for γ03.
Second, the difference between the empirical SEs and the average SEs is very
small, which indicates the SEs are estimated accurately. Third, both CI and
HPD interval coverage probabilities are very close to the theoretical percentage
95%, which means the type I error for each parameter is close to the specified
5% so that we can use the estimated confidence intervals to conduct statistical
inference. Fourth, this true model has 100% convergence rate. When the sample
sizes are smaller, the performance becomes worse as expected.

In order to compare estimates with different sample sizes, we further calculate
the five summary statistics across all parameters, which are shown in Table 2.
The first statistic is the average absolute relative biases (|Bias.rel|) across all
parameters, which is defined as |Bias.rel| =

∑p
j=1 |Bias.relj |/p, where p is the

total number parameters in a model. Second, we obtain the average absolute
differences between the empirical SEs and the average Bayesian SEs (|SE.diff|)
across all parameters by using |SE.diff| =

∑p
j=1 |SE.empj − SE.avgj |/p. Third,

we calculate the average percentile coverage probabilities (CI.cover) across all
parameters by using CI.cover =

∑p
j=1 CI.coverj/p. Fourth, we calculate the

average HPD coverage probabilities (HPD.cover) across all parameters by using
HPD.cover =

∑p
j=1 HPD.coverj/p. Fifth, the convergence rate is calculated.

Table 2 shows that, except for the case for N=100, the true mode can
recover model parameters very well, with small average absolute relative
biases of estimates, |Bias.rel|, small average absolute differences between the
empirical SEs and the average SEs, |SE.diff|, and almost 95% average percentile
coverage probabilities (CI.cover), and the average HPD coverage probabilities
(HPD.cover). With the increase of the sample size, both the point estimates and
standard errors get more accurate.

4.3.2 Comparison of Different Models. We now compare the estimates
obtained from the true model and different misspecified models. In this study,
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Table 2. Summary and Comparison of the Results of True Model XS

|Bias.rel|1 |SE.diff|2 MSE3 CI.cover4 HPD.cover5 CVG.rate6

N

1000 0.025 0.007 0.033 0.942 0.942 100%
500 0.052 0.021 0.079 0.932 0.939 100%
300 0.089 0.031 0.150 0.922 0.930 100%
200 0.160 0.090 0.366 0.909 0.924 94.34%
100 1.202 2.664 23.743 0.869 0.893 70.42%

Note. 1The average absolute relative bias across all parameters, defined by
|Bias.rel| =

∑p
j=1 |Bias.relj |/p. The smaller, the better. 2The average absolute

difference between the empirical SEs and the average Bayesian SEs across all
parameters, defined by |SE.diff| =

∑p
j=1 |SE.empj − SE.avgj |/p. The smaller,

the better. 3The Mean Square Errors (MSE) across all parameters, defined
by MSE =

∑p
j=1[(Biasj)

2 + (ŝj)
2]/p. The smaller, the better. 4The average

percentile coverage probability across all parameters, defined by CI.cover =∑p
j=1 CI.coverj/p, with a theoretical value of 0.95. 5The average highest

posterior density (HPD) coverage probability across all parameters, defined
by HPD.cover =

∑p
j=1 HPD.coverj/p, with a theoretical value of 0.95. 6The

convergence rate.

the true model is the LGCM with LSD (XS) missingness, and there are
three mis-specified models, the LGCM with LID (XI) missingness, the LGCM
with LOD (XY) missingness, and the LGCM with ignorable missingness
(see Table 1 for the simulation design). Table 6 in the appendix shows the
summarized estimates from the mis-specified model with LID (XI) missingness
for N=1000, N=500, N=300, and N=200 (the summarized estimates for N=100
are unavailable due to a low convergence rate). Table 8 in the appendix provides
the results for the mis-specified model with LOD (XY) missingness for N=1000,
N=500, N=300, N=200, and N=100. Table 10 in the appendix is the summary
table for the mis-specified model with ignorable (X) missingness for different
sample sizes.

To compare estimates from different models, we further summarize and
visualize some statistics. Figure 4 (a) compares the point estimates of intercept
and slope for all models when N=1000. The true value of slope is 3 but the
estimate is 2.711 when the missingness is ignored. Actually, for the model with
ignorable missingness, the slope estimates are all less than 2.711 for all sample
sizes in our study. Figure 4 (b) focuses on the coverage of slope. When the
missingness is ignored, it is as low as 4% for N=1000, and 21% for N=500 (the
coverage for N=1000 is lower because the SE for N=1000 is smaller than the
SE for N=500). As a result, conclusions based on the model with ignorable
missingness can be very misleading. Figure 4 (b) also shows that the slope
estimate from the model with the mis-specified missingness, LID (XI), has low
coverage, with 76% for N=1000 and 87% for N=500. So the conclusions based on
this model may still be incorrect. Figure 4 (c) compares the true model and the
model with another type of mis-specified missingness, LOD (XY) for N=1000.
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For the wrong model, the coverage is 51% for intercept, and 72% for Cov(I,S).
Finally, Figure 4 (d) compares the convergence rates for all models. One can see
that the convergence rates of LOD (XY) and LID (XI) models are much lower
than those of the true model LSD (XS) and the model with ignorable missingness.
When the missingness is ignored, the number of parameters is smaller than that
of non-ignorable models, and then convergence rate gets higher.Non-ignorable Missingness in LGCMs 17
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In summary, the estimates from mis-specified models may result in misleading
conclusions, especially when the missingness is ignored. Also, the convergence
rate of a mis-specified model is usually lower than that of the true model.
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4.4 Simulation Conclusions

Based on the simulation studies, we draw the following conclusions: (1) the
proposed Bayesian method can accurately recover model parameters (both
point estimates and standard errors), (2) the small difference between the
empirical SE and the average SE indicates that the Bayesian method used in
the study can estimate the standard errors accurately, (3) with the increase
of the sample size, estimates get closer to their true values and standard
errors become more accurate, (4) ignoring the non-ignorable missingness can
lead to incorrect conclusions, (5) mis-specified missingness may also result in
misleading conclusions, and (6) the non-convergence of models might be a sign
of a misspecified model.

5 Discussion

The models proposed in this article have several implications for future research.
First, the missingness in the simulation study is assumed to be independent
across different times. If this assumption is violated, likelihood functions might
be much more complicated. For example, if the missingness depends on the
previous missingness, then the autocorrelation among missingness might be
involved. A similar model is the Diggle and Kenward (1994)’s model, in which
the probability of missing data at current wave depends directly on the current
outcomes as well as on the preceding assessment. Another example is survival
analysis (e.g., Klein & Moeschberger, 2003), in which censoring is the common
form of missing data problem. In practice, the missingness can come from
different sources and can be modeled as a combination of different types of
missingness. Second, various model selection criteria could be considered (e.g.,
Cain & Zhang, 2019). It is an interesting topic for future work to propose
new criteria. For example, observed-data and complete-data likelihood functions
for random effects models can be used for f(y|θ); information criterion can
be proposed using other weighted combination of the growth model and the
missing data model. Third, the data considered in the study are assumed to be
normally distributed. However, in reality, data are seldom normally distributed,
particularly in behavioral and educational sciences (e.g., Cain, Zhang, & Yuan,
2017; Micceri, 1989). When data have heavy tails, or contaminated with outliers,
robust models (e.g., Hoaglin, Mosteller, & Tukey, 1983; Huber, 1996; Zhang,
2013; Zhang, Lai, Lu, & Tong, 2013) should be adopted to make models
insensitive to small deviations from the assumption of normal distribution.
Fourth, latent population heterogeneity (e.g., McLachlan & Peel, 2000) may
exist in the collected longitudinal data. Growth mixture models (GMMs) can
be considered to provide a flexible set of models for analyzing longitudinal data
with latent or mixture distributions (e.g., Bartholomew & Knott, 1999).
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where a1 = v0 +N T , and b1 = s0 +
∑N
i=1(yi −Ληi)

′(yi −Ληi).
Notice that tr(AB) = tr(BA), so the conditional posterior distribution for

Ψ is derived as an Inverse Wishart distribution,

Ψ|β,η ∼ IW (m1,V1) , (9)

where m1 = m0 +N , and V1 = V0 +
∑N
i=1(ηi − β)(ηi − β)′.

By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for β is derived as a multivariate
normal distribution,

β|Ψ,η ∼MN(β1,Σ1), (10)

where β1 =
(
N Ψ−1 + Σ−10

)−1 (
Ψ−1

∑N
i=1 ηi + Σ−10 β0

)
, and Σ1 =(

N Ψ−1 + Σ−10

)−1
.

The conditional posterior for γt, (t = 1, 2, . . . , T ), is a distribution of

f(γt|ω,x,m) ∝ exp

[
− 1

2
(γt − γt0)′D−1t0 (γt − γt0)

+

N∑
i=1

{mit logΦ(ω′iγt) + (1−mit) log[1− Φ(ω′iγt)]}
]
.

(11)
where Φ(ω′iγt) is defined by Equation (4), (5), or (6).

By expanding the terms inside the exponential part and combining similar
terms, the conditional posterior distribution for ηi, i = 1, 2, . . . , N , is derived as
a Multivariate Normal distribution,

ηi|φ,Ψ,β,yi ∼MN(µηi,Σηi), (12)

where µηi =
(

1
φΛ′Λ + Ψ−1

)−1 (
1
φΛ′yi + Ψ−1β

)
, and Σηi =(

1
φΛ′Λ + Ψ−1

)−1
.

The conditional posterior distribution for the missing data ymisi , i =
1, 2, . . . , N , is a normal distribution,

ymisi |ηi, φ ∼MN [Ληi, Iφ] , (13)

where I is a T × T identity matrix. The dimension and location of ymisi depend
on the corresponding mi value.
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Appendix B. Simulation Results

Table 3. Summarized Estimates from True Model: LGCM with LSD Missingness (XS).
N=1000 (convergence rate: 100/100 = 100%)

BIAS SE CI9 HPD13

para.1 true2 est.3 smp.4 rel.5 emp.6 avg.7 MSE8 lower10 upper11 cover12 lower upper cover

G
ro

w
th

C
u
rv

e I 1 0.998 -0.002 -0.002 0.05 0.053 0.005 0.894 1.101 0.99 0.894 1.101 0.98

S 3 3.003 0.003 0.001 0.079 0.077 0.012 2.853 3.155 0.97 2.853 3.154 0.96

var(I) 1 1.011 0.011 0.011 0.105 0.102 0.022 0.82 1.22 0.94 0.814 1.213 0.94

var(S) 4 3.99 -0.01 -0.003 0.232 0.232 0.107 3.56 4.468 0.94 3.545 4.449 0.93

cov(IS) 0 0.001 0.001 0.001 0.119 0.112 0.026 -0.221 0.217 0.94 -0.218 0.218 0.94

var(e) 1 1 0 0 0.043 0.042 0.004 0.92 1.086 0.92 0.918 1.084 0.93

M
is

si
n
gn

es
s

P
ar

a
m

et
er

s W
av

e
1 γ01 -1 -1.025 -0.025 0.025 0.184 0.174 0.065 -1.375 -0.694 0.93 -1.365 -0.69 0.94

γx1 -1.5 -1.541 -0.041 0.027 0.138 0.123 0.036 -1.795 -1.314 0.92 -1.783 -1.307 0.93

γS1 0.5 0.515 0.015 0.03 0.066 0.062 0.008 0.4 0.641 0.9 0.397 0.636 0.92

W
av

e
2 γ02 -1 -1.038 -0.038 0.038 0.191 0.171 0.067 -1.385 -0.714 0.96 -1.376 -0.711 0.97

γx2 -1.5 -1.551 -0.051 0.034 0.129 0.119 0.034 -1.798 -1.33 0.95 -1.786 -1.323 0.94

γS2 0.5 0.521 0.021 0.042 0.066 0.06 0.008 0.41 0.643 0.95 0.408 0.639 0.94

W
av

e
3 γ03 -1 -1.067 -0.067 0.067 0.186 0.172 0.069 -1.417 -0.741 0.94 -1.407 -0.737 0.94

γx3 -1.5 -1.557 -0.057 0.038 0.117 0.116 0.03 -1.796 -1.341 0.97 -1.785 -1.334 0.97

γS3 0.5 0.529 0.029 0.058 0.063 0.058 0.008 0.42 0.648 0.89 0.418 0.643 0.91

W
av

e
4 γ04 -1 -1.034 -0.034 0.034 0.18 0.173 0.063 -1.384 -0.709 0.94 -1.374 -0.704 0.93

γx4 -1.5 -1.539 -0.039 0.026 0.122 0.114 0.029 -1.773 -1.325 0.95 -1.763 -1.319 0.94

γS4 0.5 0.514 0.014 0.027 0.058 0.057 0.007 0.407 0.63 0.95 0.405 0.625 0.95

Note. The results are summarized based on 100 converged replications with a
convergence rate of 100/100 = 100%. 1The estimated parameter. 2The true
value of the corresponding parameter. 3The parameter estimate, defined by

est.j =
¯̂
θj =

∑100
i=1 θ̂ij/100. 4The simple bias, defined by BIAS.smpj =

¯̂
θj − θj .

5The relative bias, defined by BIAS.relj = (
¯̂
θj − θj)/θj when θj 6= 0 and

BIAS.relj =
¯̂
θj − θj when θj = 0. 6The empirical standard errors, defined

by SE.empj =

√∑100
i=1(θ̂ij − ¯̂

θj)2/99. 7The average standard errors, defined

by SE.avgj =
∑100
i=1 ŝij/100. 8The mean square error, defined by MSEj =∑100

i=1 MSEij/100, where MSEij = (Biasij)
2 + (ŝij)

2. 9For percentile confidence
interval. 10The average lower 2.5% percentile. 11The average upper 97.5%
percentile. 12The average 95% coverage of percentile confidence interval. 13The
lower,upper bounds, and coverage for HPD interval.
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Table 4. Summarized Estimates from True Model: LGCM with LSD Missingness (XS)
(con’t)

BIAS SE CI9 HPD13

para.1 true2 est.3 smp.4 rel.5 emp.6 avg.7 MSE8 lower10 upper11 cover12 lower upper cover

N=500 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 0.986 -0.014 -0.014 0.076 0.074 0.011 0.841 1.132 0.93 0.841 1.132 0.95

S 3 3.001 0.001 0 0.097 0.109 0.021 2.789 3.216 0.97 2.788 3.213 0.97

var(I) 1 0.976 -0.024 -0.024 0.146 0.144 0.042 0.712 1.274 0.97 0.7 1.26 0.97

var(S) 4 4.001 0.001 0 0.388 0.329 0.258 3.403 4.691 0.9 3.373 4.652 0.9

cov(IS) 0 -0.009 -0.009 -0.009 0.155 0.157 0.049 -0.324 0.294 0.96 -0.319 0.297 0.96

var(e) 1 1.014 0.014 0.014 0.06 0.061 0.007 0.901 1.141 0.96 0.897 1.136 0.96

M
is

si
n
gn

es
s

P
ar

a
m

et
er

s W
av

e
1 γ01 -1 -1.082 -0.082 0.082 0.254 0.255 0.137 -1.609 -0.608 0.95 -1.587 -0.596 0.97

γx1 -1.5 -1.606 -0.106 0.071 0.181 0.186 0.079 -2.002 -1.275 0.95 -1.975 -1.258 0.97

γS1 0.5 0.54 0.04 0.081 0.083 0.092 0.017 0.375 0.735 0.95 0.368 0.722 0.94

W
av

e
2 γ02 -1 -1.096 -0.096 0.096 0.281 0.252 0.152 -1.61 -0.624 0.89 -1.591 -0.615 0.89

γx2 -1.5 -1.615 -0.115 0.077 0.204 0.18 0.088 -1.996 -1.291 0.91 -1.971 -1.275 0.94

γS2 0.5 0.546 0.046 0.092 0.104 0.088 0.021 0.385 0.73 0.87 0.379 0.719 0.88

W
av

e
3 γ03 -1 -1.068 -0.068 0.068 0.32 0.248 0.169 -1.572 -0.602 0.93 -1.555 -0.594 0.93

γx3 -1.5 -1.613 -0.113 0.075 0.279 0.174 0.123 -1.978 -1.295 0.9 -1.958 -1.283 0.93

γS3 0.5 0.536 0.036 0.072 0.116 0.084 0.022 0.381 0.71 0.92 0.378 0.702 0.91

W
av

e
4 γ04 -1 -1.123 -0.123 0.123 0.261 0.257 0.15 -1.652 -0.647 0.94 -1.628 -0.633 0.95

γx4 -1.5 -1.579 -0.079 0.053 0.174 0.168 0.066 -1.933 -1.274 0.95 -1.913 -1.261 0.96

γS4 0.5 0.543 0.043 0.086 0.089 0.085 0.017 0.388 0.719 0.92 0.382 0.71 0.92

N=300 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.001 0.001 0.001 0.104 0.097 0.02 0.81 1.192 0.89 0.811 1.192 0.89

S 3 2.984 -0.016 -0.005 0.149 0.14 0.042 2.712 3.262 0.93 2.71 3.259 0.93

var(I) 1 1.014 0.014 0.014 0.183 0.19 0.07 0.673 1.418 0.96 0.654 1.392 0.96

var(S) 4 3.975 -0.025 -0.006 0.416 0.425 0.354 3.22 4.886 0.96 3.174 4.82 0.96

cov(IS) 0 0.054 0.054 0.054 0.212 0.205 0.09 -0.359 0.449 0.94 -0.351 0.454 0.93

var(e) 1 1.011 0.011 0.011 0.073 0.08 0.012 0.867 1.179 0.96 0.86 1.17 0.96

M
is

si
n
gn

es
s

P
ar

am
et

er
s W

av
e

1 γ01 -1 -1.094 -0.094 0.094 0.341 0.345 0.249 -1.822 -0.468 0.97 -1.778 -0.441 0.97

γx1 -1.5 -1.65 -0.15 0.1 0.265 0.253 0.162 -2.209 -1.217 0.92 -2.155 -1.185 0.94

γS1 0.5 0.548 0.048 0.097 0.121 0.124 0.033 0.331 0.82 0.97 0.318 0.794 0.97

W
av

e
2 γ02 -1 -1.106 -0.106 0.106 0.452 0.34 0.341 -1.819 -0.486 0.93 -1.782 -0.467 0.93

γx2 -1.5 -1.692 -0.192 0.128 0.345 0.253 0.23 -2.243 -1.254 0.89 -2.196 -1.227 0.9

γS2 0.5 0.566 0.066 0.132 0.158 0.121 0.046 0.354 0.827 0.93 0.343 0.807 0.92

W
av

e
3 γ03 -1 -1.139 -0.139 0.139 0.397 0.335 0.293 -1.845 -0.527 0.91 -1.801 -0.503 0.92

γx3 -1.5 -1.648 -0.148 0.099 0.305 0.236 0.175 -2.152 -1.233 0.86 -2.115 -1.21 0.92

γS3 0.5 0.566 0.066 0.132 0.141 0.115 0.038 0.361 0.811 0.9 0.352 0.794 0.91

W
av

e
4 γ04 -1 -1.217 -0.217 0.217 0.411 0.356 0.347 -1.976 -0.576 0.9 -1.932 -0.552 0.9

γx4 -1.5 -1.681 -0.181 0.121 0.263 0.241 0.163 -2.203 -1.257 0.9 -2.161 -1.231 0.92

γS4 0.5 0.583 0.083 0.165 0.138 0.118 0.041 0.372 0.839 0.88 0.363 0.82 0.91

Note. The same as Table 3
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Table 5. Summarized Estimates from True Model: LGCM with LSD Missingness (XS)
(con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=200 (convergence rate: 100/106 ≈ 94.34%)

G
ro

w
th

C
u
rv

e I 1 1.011 0.011 0.011 0.099 0.119 0.024 0.779 1.244 0.98 0.779 1.243 0.98
S 3 2.975 -0.025 -0.008 0.177 0.171 0.061 2.643 3.314 0.93 2.642 3.312 0.94
var(I) 1 1.011 0.011 0.011 0.228 0.233 0.107 0.601 1.516 0.94 0.572 1.476 0.92
var(S) 4 4 0 0 0.474 0.522 0.498 3.095 5.135 0.97 3.029 5.041 0.96
cov(IS) 0 0.065 0.065 0.065 0.257 0.252 0.134 -0.447 0.549 0.92 -0.436 0.557 0.92
var(e) 1 1.027 0.027 0.027 0.098 0.099 0.02 0.851 1.238 0.95 0.84 1.224 0.95

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 -1 -1.3 -0.3 0.3 0.671 0.5 0.901 -2.399 -0.449 0.93 -2.306 -0.402 0.94

γx1 -1.5 -1.874 -0.374 0.249 0.745 0.424 1.113 -2.868 -1.227 0.88 -2.735 -1.169 0.91
γS1 0.5 0.647 0.147 0.293 0.323 0.197 0.202 0.334 1.1 0.91 0.311 1.045 0.92

W
av

e
2 γ02 -1 -1.278 -0.278 0.278 0.69 0.468 0.838 -2.303 -0.463 0.87 -2.227 -0.426 0.89

γx2 -1.5 -1.779 -0.279 0.186 0.456 0.349 0.451 -2.578 -1.209 0.91 -2.487 -1.163 0.9
γS2 0.5 0.627 0.127 0.254 0.244 0.171 0.117 0.343 1.014 0.9 0.324 0.976 0.91

W
av

e
3 γ03 -1 -1.191 -0.191 0.191 0.505 0.436 0.5 -2.133 -0.419 0.91 -2.05 -0.377 0.93

γx3 -1.5 -1.721 -0.221 0.147 0.502 0.314 0.426 -2.428 -1.193 0.9 -2.348 -1.15 0.94
γS3 0.5 0.586 0.086 0.172 0.183 0.152 0.068 0.326 0.926 0.91 0.309 0.889 0.95

W
av

e
4 γ04 -1 -1.27 -0.27 0.27 0.594 0.467 0.67 -2.304 -0.457 0.86 -2.209 -0.404 0.9

γx4 -1.5 -1.808 -0.308 0.205 0.397 0.336 0.382 -2.56 -1.24 0.82 -2.48 -1.195 0.89
γS4 0.5 0.618 0.118 0.236 0.204 0.16 0.085 0.345 0.98 0.88 0.325 0.942 0.89

N=100 (convergence rate: 100/142 ≈ 70.42%)

G
ro

w
th

C
u
rv

e I 1 1.031 0.031 0.031 0.167 0.168 0.057 0.701 1.359 0.96 0.701 1.359 0.97
S 3 2.983 -0.017 -0.006 0.236 0.242 0.115 2.514 3.467 0.95 2.51 3.46 0.94
var(I) 1 0.933 -0.067 -0.067 0.305 0.323 0.206 0.408 1.665 0.93 0.355 1.574 0.91
var(S) 4 3.965 -0.035 -0.009 0.829 0.747 1.261 2.743 5.656 0.91 2.623 5.458 0.91
cov(IS) 0 0.069 0.069 0.069 0.333 0.357 0.246 -0.666 0.748 0.93 -0.646 0.762 0.95
var(e) 1 1.078 0.078 0.078 0.157 0.151 0.054 0.82 1.409 0.93 0.801 1.38 0.94

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 -1 -3.257 -2.257 2.257 5.794 1.333 42.792 -6.264 -1.131 0.84 -5.922 -1.018 0.86

γx1 -1.5 -4.314 -2.814 1.876 7.492 1.277 69.337 -7.171 -2.396 0.8 -6.739 -2.251 0.85
γS1 0.5 1.626 1.126 2.252 2.881 0.55 10.353 0.788 2.857 0.8 0.746 2.698 0.84

W
av

e
2 γ02 -1 -3.011 -2.011 2.011 5.719 1.322 41.711 -6.062 -1.027 0.85 -5.696 -0.893 0.88

γx2 -1.5 -3.772 -2.272 1.515 6.947 1.283 61.237 -6.811 -1.927 0.82 -6.385 -1.774 0.85
γS2 0.5 1.436 0.936 1.871 2.57 0.549 8.564 0.653 2.71 0.81 0.586 2.527 0.86

W
av

e
3 γ03 -1 -2.877 -1.877 1.877 5.93 1.2 42.401 -5.493 -0.898 0.89 -5.233 -0.806 0.91

γx3 -1.5 -3.86 -2.36 1.573 6.955 1.153 58.835 -6.508 -2.086 0.83 -6.125 -1.932 0.85
γS3 0.5 1.388 0.888 1.776 2.567 0.467 7.977 0.641 2.428 0.85 0.596 2.289 0.89

W
av

e
4 γ04 -1 -2.831 -1.831 1.831 5.646 1.297 39.835 -5.902 -0.891 0.89 -5.522 -0.753 0.90

γx4 -1.5 -3.386 -1.886 1.257 5.379 1.127 37.532 -6.048 -1.745 0.81 -5.622 -1.586 0.88
γS4 0.5 1.222 0.722 1.444 1.944 0.457 4.854 0.552 2.312 0.84 0.491 2.152 0.88

Note. Abbreviations are as given in Table 3.
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Table 6. Summarized Estimates from LGCM with LID Missingness (XI)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/112 ≈ 89.29%)

G
ro

w
th

C
u
rv

e I 1 1.064 0.064 0.064 0.052 0.044 0.009 0.977 1.151 0.66 0.977 1.150 0.66
S 3 2.921 -0.079 -0.026 0.082 0.074 0.018 2.776 3.067 0.77 2.777 3.066 0.76
var(I) 1 0.169 -0.831 -0.831 0.036 0.031 0.693 0.117 0.237 0 0.113 0.230 0
var(S) 4 3.494 -0.506 -0.126 0.218 0.203 0.344 3.116 3.913 0.40 3.103 3.897 0.37
cov(IS) 0 0.629 0.629 0.629 0.064 0.064 0.404 0.511 0.762 0 0.507 0.756 0
var(e) 1 1.439 0.439 0.439 0.049 0.050 0.197 1.343 1.540 0 1.341 1.538 0

M
is

si
n

gn
es

s
P

ar
am

et
er

s
W

av
e

1 γ01 NA -2.411 NA NA 0.476 0.442 NA -3.325 -1.619 NA -3.27 -1.612 NA
γx1 NA -1.632 NA NA 0.178 0.152 NA -1.961 -1.362 NA -1.939 -1.35 NA
γI1 NA 2.794 NA NA 0.479 0.442 NA 2.011 3.72 NA 2.009 3.661 NA

W
av

e
2 γ02 NA -2.439 NA NA 0.543 0.444 NA -3.395 -1.667 NA -3.321 -1.646 NA

γx2 NA -1.644 NA NA 0.163 0.148 NA -1.962 -1.382 NA -1.938 -1.368 NA
γI2 NA 2.826 NA NA 0.546 0.437 NA 2.074 3.762 NA 2.045 3.682 NA

W
av

e
3 γ03 NA -2.442 NA NA 0.492 0.426 NA -3.336 -1.678 NA -3.277 -1.662 NA

γx3 NA -1.632 NA NA 0.137 0.143 NA -1.934 -1.375 NA -1.915 -1.364 NA
γI3 NA 2.819 NA NA 0.482 0.422 NA 2.063 3.718 NA 2.048 3.646 NA

W
av

e
4 γ04 NA -2.367 NA NA 0.48 0.427 NA -3.262 -1.596 NA -3.199 -1.581 NA

γx4 NA -1.617 NA NA 0.146 0.141 NA -1.917 -1.362 NA -1.896 -1.35 NA
γI4 NA 2.733 NA NA 0.448 0.422 NA 1.98 3.616 NA 1.978 3.569 NA

N=500 (convergence rate: 100/118 ≈ 84.75%)

G
ro

w
th

C
u
rv

e I 1 1.060 0.060 0.060 0.076 0.063 0.013 0.938 1.186 0.78 0.937 1.184 0.79
S 3 2.914 -0.086 -0.029 0.099 0.105 0.028 2.710 3.120 0.88 2.709 3.118 0.87
var(I) 1 0.197 -0.803 -0.803 0.046 0.048 0.650 0.121 0.309 0 0.114 0.294 0
var(S) 4 3.448 -0.552 -0.138 0.315 0.284 0.484 2.934 4.043 0.56 2.909 4.012 0.54
cov(IS) 0 0.633 0.633 0.633 0.074 0.088 0.414 0.474 0.819 0 0.466 0.808 0
var(e) 1 1.425 0.425 0.425 0.079 0.072 0.192 1.289 1.571 0 1.286 1.567 0

M
is

si
n

g
n

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA -2.471 NA NA 0.726 0.665 NA -3.903 -1.333 NA -3.789 -1.292 NA

γx1 NA -1.765 NA NA 0.298 0.269 NA -2.385 -1.329 NA -2.31 -1.294 NA
γI1 NA 2.898 NA NA 0.716 0.671 NA 1.762 4.339 NA 1.718 4.215 NA

W
av

e
2 γ02 NA -2.393 NA NA 0.77 0.631 NA -3.746 -1.328 NA -3.63 -1.281 NA

γx2 NA -1.723 NA NA 0.265 0.239 NA -2.257 -1.325 NA -2.206 -1.297 NA
γI2 NA 2.815 NA NA 0.737 0.627 NA 1.759 4.162 NA 1.712 4.048 NA

W
av

e
3 γ03 NA -2.425 NA NA 0.779 0.644 NA -3.804 -1.337 NA -3.681 -1.293 NA

γx3 NA -1.761 NA NA 0.352 0.257 NA -2.336 -1.343 NA -2.271 -1.309 NA
γI3 NA 2.858 NA NA 0.796 0.647 NA 1.775 4.235 NA 1.729 4.104 NA

W
av

e
4 γ04 NA -2.396 NA NA 0.782 0.655 NA -3.86 -1.312 NA -3.693 -1.24 NA

γx4 NA -1.687 NA NA 0.294 0.24 NA -2.223 -1.288 NA -2.167 -1.259 NA
γI4 NA 2.805 NA NA 0.818 0.662 NA 1.713 4.275 NA 1.657 4.119 NA

Note. Abbreviations are as given in Table 3.
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Table 7. Summarized Estimates from LGCM with LID Missingness (XI) (con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=300 (convergence rate: 100/148 ≈ 67.57%)

G
ro

w
th

C
u
rv

e I 1 1.077 0.077 0.077 0.11 0.083 0.025 0.916 1.242 0.78 0.915 1.24 0.81
S 3 2.864 -0.136 -0.045 0.139 0.135 0.056 2.601 3.131 0.87 2.6 3.129 0.87
var(I) 1 0.251 -0.749 -0.749 0.084 0.076 0.574 0.136 0.429 0.01 0.123 0.402 0.01
var(S) 4 3.424 -0.576 -0.144 0.369 0.366 0.601 2.775 4.209 0.71 2.734 4.153 0.67
cov(IS) 0 0.656 0.656 0.656 0.118 0.119 0.458 0.445 0.909 0 0.433 0.892 0
var(e) 1 1.413 0.413 0.413 0.101 0.095 0.19 1.237 1.608 0 1.232 1.601 0

M
is

si
n

gn
es

s
P

ar
am

et
er

s
W

av
e

1 γ01 NA -2.672 NA NA 1.64 0.984 NA -4.884 -1.166 NA -4.637 -1.069 NA
γx1 NA -2.055 NA NA 0.913 0.487 NA -3.218 -1.343 NA -3.058 -1.277 NA
γS1 NA 3.108 NA NA 1.68 1.008 NA 1.582 5.378 NA 1.502 5.129 NA

W
av

e
2 γ02 NA -2.768 NA NA 3.488 0.966 NA -4.978 -1.265 NA -4.741 -1.185 NA

γx2 NA -2.243 NA NA 2.502 0.507 NA -3.445 -1.474 NA -3.282 -1.402 NA
γS2 NA 3.409 NA NA 4.711 0.994 NA 1.895 5.668 NA 1.809 5.422 NA

W
av

e
3 γ03 NA -2.68 NA NA 2.057 0.915 NA -4.769 -1.249 NA -4.567 -1.176 NA

γx3 NA -1.999 NA NA 0.878 0.421 NA -2.989 -1.348 NA -2.861 -1.289 NA
γS3 NA 3.118 NA NA 1.884 0.936 NA 1.66 5.234 NA 1.59 5.008 NA

W
av

e
4 γ04 NA -2.907 NA NA 2.499 0.941 NA -4.948 -1.426 NA -4.744 -1.353 NA

γx4 NA -2.204 NA NA 1.651 0.498 NA -3.333 -1.449 NA -3.196 -1.39 NA
γS4 NA 3.371 NA NA 2.766 0.98 NA 1.875 5.511 NA 1.804 5.296 NA

N=200 (convergence rate: 100/197 ≈ 50.76%)

G
ro

w
th

C
u
rv

e I 1 1.052 0.082 0.082 0.219 0.1 0.03 0.858 1.248 0.79 0.857 1.247 0.79
S 3 2.796 -0.114 -0.038 0.525 0.161 0.071 2.484 3.114 0.85 2.483 3.112 0.85
var(I) 1 0.322 -0.648 -0.648 0.15 0.115 0.469 0.15 0.593 0.1 0.13 0.549 0.07
var(S) 4 3.353 -0.527 -0.132 0.739 0.435 0.677 2.6 4.302 0.74 2.546 4.225 0.71
cov(IS) 0 0.617 0.617 0.617 0.276 0.147 0.479 0.352 0.93 0.01 0.338 0.91 0.01
var(e) 1 1.346 0.376 0.376 0.267 0.115 0.174 1.135 1.586 0.07 1.126 1.574 0.08

M
is

si
n

g
n

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA -2.974 NA NA 5.157 1.352 NA -6.046 -0.844 NA -5.701 -0.814 NA

γx1 NA -3.03 NA NA 3.647 0.986 NA -5.376 -1.659 NA -5.055 -1.54 NA
γS1 NA 3.622 NA NA 6.034 1.465 NA 1.414 6.896 NA 1.354 6.57 NA

W
av

e
2 γ02 NA -3.094 NA NA 3.737 1.162 NA -5.77 -1.267 NA -5.452 -1.163 NA

γx2 NA -2.551 NA NA 2.369 0.681 NA -4.154 -1.547 NA -3.906 -1.441 NA
γS2 NA 3.652 NA NA 4.116 1.194 NA 1.823 6.378 NA 1.709 6.06 NA

W
av

e
3 γ03 NA -2.198 NA NA 4.971 1.179 NA -4.869 -0.328 NA -4.545 -0.211 NA

γx3 NA -2.705 NA NA 3.501 0.746 NA -4.405 -1.534 NA -4.189 -1.452 NA
γS3 NA 2.627 NA NA 5.346 1.21 NA 0.723 5.342 NA 0.631 4.989 NA

W
av

e
4 γ04 NA -3.469 NA NA 4.108 1.285 NA -6.288 -1.421 NA -6.014 -1.338 NA

γx4 NA -3.122 NA NA 3.555 0.912 NA -5.198 -1.739 NA -4.895 -1.646 NA
γS4 NA 4.199 NA NA 4.895 1.378 NA 2.059 7.192 NA 1.978 6.86 NA

N=100 (unavailable due to low convergence rate)

Note. Abbreviations are as given in Table 3.
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Table 8. Summarized Estimates from LGCM with LOD Missingness (XY)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/126 ≈ 79.37%)

G
ro

w
th

C
u
rv

e I 1 1.12 0.12 0.12 0.062 0.06 0.022 1.002 1.238 0.52 1.002 1.237 0.51
S 3 3.003 0.003 0.001 0.084 0.078 0.013 2.85 3.158 0.94 2.849 3.156 0.94
var(I) 1 1.03 0.03 0.03 0.105 0.108 0.024 0.828 1.252 0.93 0.823 1.245 0.93
var(S) 4 3.994 -0.006 -0.002 0.253 0.235 0.119 3.556 4.479 0.91 3.542 4.46 0.90
cov(IS) 0 0.112 0.112 0.112 0.146 0.116 0.047 -0.118 0.337 0.74 -0.115 0.338 0.72
var(e) 1 1.015 0.015 0.015 0.048 0.044 0.004 0.933 1.105 0.91 0.93 1.102 0.92

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.164 NA NA 0.134 0.117 NA -0.072 0.387 NA -0.066 0.39 NA

γx1 NA -1.106 NA NA 0.076 0.071 NA -1.249 -0.973 NA -1.244 -0.97 NA
γS1 NA 0.156 NA NA 0.093 0.073 NA 0.014 0.299 NA 0.014 0.297 NA

W
av

e
2 γ02 NA -1.156 NA NA 0.185 0.196 NA -1.557 -0.789 NA -1.54 -0.781 NA

γx2 NA -1.468 NA NA 0.127 0.108 NA -1.69 -1.267 NA -1.682 -1.262 NA
γS2 NA 0.387 NA NA 0.047 0.044 NA 0.304 0.477 NA 0.302 0.473 NA

W
av

e
3 γ03 NA -1.235 NA NA 0.196 0.186 NA -1.611 -0.88 NA -1.602 -0.878 NA

γx3 NA -1.515 NA NA 0.117 0.109 NA -1.739 -1.311 NA -1.731 -1.306 NA
γS3 NA 0.241 NA NA 0.028 0.025 NA 0.193 0.292 NA 0.193 0.291 NA

W
av

e
4 γ04 NA -1.179 NA NA 0.189 0.182 NA -1.547 -0.833 NA -1.537 -0.831 NA

γx4 NA -1.511 NA NA 0.111 0.109 NA -1.735 -1.308 NA -1.726 -1.302 NA
γS4 NA 0.164 NA NA 0.018 0.017 NA 0.131 0.2 NA 0.131 0.198 NA

N=500 (convergence rate: 100/110 ≈ 90.91%)

G
ro

w
th

C
u
rv

e I 1 1.121 0.121 0.121 0.098 0.085 0.032 0.956 1.288 0.68 0.956 1.287 0.69
S 3 3.008 0.008 0.003 0.107 0.11 0.024 2.793 3.226 0.95 2.793 3.224 0.94
var(I) 1 1.004 0.004 0.004 0.146 0.152 0.044 0.725 1.322 0.96 0.714 1.308 0.95
var(S) 4 3.996 -0.004 -0.001 0.399 0.334 0.27 3.391 4.698 0.86 3.365 4.662 0.86
cov(IS) 0 0.102 0.102 0.102 0.178 0.163 0.069 -0.223 0.417 0.88 -0.219 0.42 0.89
var(e) 1 1.026 0.026 0.026 0.062 0.063 0.008 0.91 1.156 0.95 0.906 1.151 0.94

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 NA 0.131 NA NA 0.2 0.175 NA -0.228 0.459 NA -0.214 0.467 NA

γx1 NA -1.143 NA NA 0.119 0.107 NA -1.366 -0.947 NA -1.354 -0.939 NA
γS1 NA 0.18 NA NA 0.133 0.109 NA -0.032 0.396 NA -0.03 0.395 NA

W
av

e
2 γ02 NA -1.246 NA NA 0.344 0.292 NA -1.854 -0.709 NA -1.822 -0.691 NA

γx2 NA -1.52 NA NA 0.171 0.162 NA -1.859 -1.225 NA -1.841 -1.215 NA
γS2 NA 0.409 NA NA 0.078 0.066 NA 0.288 0.547 NA 0.285 0.539 NA

W
av

e
3 γ03 NA -1.282 NA NA 0.332 0.278 NA -1.858 -0.768 NA -1.827 -0.753 NA

γx3 NA -1.577 NA NA 0.257 0.166 NA -1.922 -1.275 NA -1.903 -1.262 NA
γS3 NA 0.249 NA NA 0.049 0.038 NA 0.18 0.327 NA 0.178 0.324 NA

W
av

e
4 γ04 NA -1.277 NA NA 0.277 0.269 NA -1.833 -0.774 NA -1.808 -0.763 NA

γx4 NA -1.546 NA NA 0.171 0.159 NA -1.878 -1.255 NA -1.861 -1.244 NA
γS4 NA 0.174 NA NA 0.028 0.026 NA 0.126 0.227 NA 0.125 0.224 NA

Note. Abbreviations are as given in Table 3.



Non-ignorable Missingness in LGCMs 29

Table 9. Summarized Estimates from LGCM with LOD Missingness (XY) (con’t)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=300 (convergence rate: 100/107 ≈ 93.46%)
G

ro
w

th
C

u
rv

e I 1 1.139 0.139 0.139 0.127 0.111 0.047 0.922 1.357 0.70 0.922 1.356 0.69
S 3 2.988 -0.012 -0.004 0.157 0.144 0.046 2.708 3.274 0.90 2.707 3.272 0.90
var(I) 1 1.045 0.045 0.045 0.196 0.204 0.082 0.682 1.479 0.94 0.661 1.451 0.95
var(S) 4 4.04 0.04 0.01 0.463 0.44 0.41 3.261 4.982 0.92 3.212 4.915 0.95
cov(IS) 0 0.153 0.153 0.153 0.256 0.215 0.135 -0.277 0.569 0.85 -0.27 0.574 0.84
var(e) 1 1.021 0.021 0.021 0.079 0.082 0.013 0.873 1.195 0.94 0.865 1.184 0.94

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.103 NA NA 0.25 0.235 NA -0.394 0.533 NA -0.365 0.549 NA

γx1 NA -1.187 NA NA 0.163 0.147 NA -1.499 -0.924 NA -1.478 -0.91 NA
γS1 NA 0.201 NA NA 0.178 0.144 NA -0.075 0.491 NA -0.075 0.487 NA

W
av

e
2 γ02 NA -1.251 NA NA 0.441 0.392 NA -2.087 -0.547 NA -2.028 -0.514 NA

γx2 NA -1.583 NA NA 0.264 0.224 NA -2.063 -1.189 NA -2.026 -1.165 NA
γS2 NA 0.416 NA NA 0.098 0.088 NA 0.258 0.605 NA 0.251 0.591 NA

W
av

e
3 γ03 NA -1.333 NA NA 0.438 0.368 NA -2.102 -0.666 NA -2.058 -0.641 NA

γx3 NA -1.614 NA NA 0.295 0.222 NA -2.084 -1.218 NA -2.054 -1.199 NA
γS3 NA 0.259 NA NA 0.063 0.05 NA 0.169 0.364 NA 0.166 0.358 NA

W
av

e
4 γ04 NA -1.406 NA NA 0.434 0.387 NA -2.231 -0.712 NA -2.169 -0.682 NA

γx4 NA -1.656 NA NA 0.26 0.232 NA -2.152 -1.245 NA -2.117 -1.223 NA
γS4 NA 0.188 NA NA 0.042 0.037 NA 0.122 0.268 NA 0.119 0.261 NA

N=200 (convergence rate: 100/104 ≈ 96.15%)

G
ro

w
th

C
u
rv

e I 1 1.154 0.154 0.154 0.141 0.135 0.062 0.892 1.421 0.75 0.891 1.419 0.76
S 3 2.986 -0.014 -0.005 0.187 0.176 0.066 2.648 3.336 0.92 2.644 3.331 0.93
var(I) 1 1.019 0.019 0.019 0.233 0.25 0.117 0.583 1.562 0.96 0.552 1.517 0.97
var(S) 4 4.034 0.034 0.008 0.516 0.536 0.557 3.107 5.202 0.96 3.043 5.11 0.96
cov(IS) 0 0.182 0.182 0.182 0.311 0.263 0.199 -0.347 0.691 0.85 -0.338 0.697 0.85
var(e) 1 1.047 0.047 0.047 0.103 0.104 0.024 0.863 1.27 0.92 0.852 1.255 0.94

M
is

si
n
gn

es
s

P
ar

am
et

er
s

W
av

e
1 γ01 NA 0.043 NA NA 0.375 0.32 NA -0.654 0.608 NA -0.594 0.642 NA

γx1 NA -1.269 NA NA 0.266 0.212 NA -1.739 -0.911 NA -1.69 -0.883 NA
γS1 NA 0.227 NA NA 0.272 0.197 NA -0.148 0.631 NA -0.15 0.616 NA

W
av

e
2 γ02 NA -1.46 NA NA 0.675 0.542 NA -2.674 -0.532 NA -2.541 -0.471 NA

γx2 NA -1.683 NA NA 0.373 0.311 NA -2.387 -1.165 NA -2.303 -1.125 NA
γS2 NA 0.463 NA NA 0.153 0.123 NA 0.253 0.738 NA 0.24 0.707 NA

W
av

e
3 γ03 NA -1.442 NA NA 0.608 0.502 NA -2.541 -0.573 NA -2.457 -0.535 NA

γx3 NA -1.718 NA NA 0.632 0.322 NA -2.445 -1.19 NA -2.377 -1.153 NA
γS3 NA 0.271 NA NA 0.091 0.069 NA 0.154 0.421 NA 0.148 0.41 NA

W
av

e
4 γ04 NA -1.454 NA NA 0.597 0.478 NA -2.471 -0.601 NA -2.4 -0.563 NA

γx4 NA -1.757 NA NA 0.37 0.304 NA -2.414 -1.227 NA -2.364 -1.194 NA
γS4 NA 0.196 NA NA 0.056 0.046 NA 0.114 0.295 NA 0.11 0.287 NA

N=100 (convergence rate: 100/138 ≈ 72.46%)

G
ro

w
th

C
u
rv

e I 1 1.161 0.161 0.161 0.252 0.197 0.129 0.776 1.551 0.81 0.775 1.549 0.81
S 3 3.028 0.028 0.009 0.254 0.259 0.133 2.535 3.548 0.97 2.528 3.539 0.97
var(I) 1 0.937 -0.063 -0.063 0.332 0.354 0.246 0.375 1.751 0.92 0.315 1.637 0.90
var(S) 4 4.136 0.136 0.034 0.845 0.809 1.414 2.817 5.971 0.93 2.686 5.757 0.94
cov(IS) 0 0.15 0.15 0.15 0.453 0.394 0.39 -0.657 0.902 0.88 -0.633 0.918 0.88
var(e) 1 1.153 0.153 0.153 0.34 0.176 0.184 0.847 1.529 0.86 0.825 1.494 0.89

M
is

si
n
gn

es
s

P
a
ra

m
et

er
s

W
av

e
1 γ01 NA -0.711 NA NA 5.806 1.29 NA -3.446 1.305 NA -3.079 1.381 NA

γx1 NA -3.4 NA NA 6.975 1.599 NA -7.14 -1.402 NA -6.495 -1.259 NA
γS1 NA 0.468 NA NA 4.682 0.964 NA -1.317 2.211 NA -1.201 2.072 NA

W
av

e
2 γ02 NA -3.803 NA NA 9.225 1.602 NA -7.571 -1.469 NA -6.978 -1.269 NA

γx2 NA -3.378 NA NA 6.747 1.042 NA -5.814 -1.866 NA -5.463 -1.739 NA
γS2 NA 1.029 NA NA 2.14 0.367 NA 0.49 1.883 NA 0.444 1.762 NA

W
av

e
3 γ03 NA -3.148 NA NA 6.553 1.128 NA -5.681 -1.244 NA -5.386 -1.19 NA
γx3 NA -3.039 NA NA 4.774 0.759 NA -4.767 -1.788 NA -4.554 -1.735 NA
γS3 NA 0.534 NA NA 0.974 0.156 NA 0.275 0.888 NA 0.264 0.839 NA

W
av

e
4 γ04 NA -2.582 NA NA 4.213 1.27 NA -5.474 -0.588 NA -5.149 -0.48 NA

γx4 NA -3.259 NA NA 5.963 0.989 NA -5.478 -1.717 NA -5.176 -1.583 NA
γS4 NA 0.297 NA NA 0.719 0.146 NA 0.064 0.611 NA 0.055 0.579 NA

Note. Abbreviations are as given in Table 3 .
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Table 10. Summarized Estimates from LGCM with Ignorable Missingness (X)

BIAS SE CI HPD

para. true est. smp. rel. emp. avg. MSE lower upper cover lower upper cover

N=1000 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.009 0.009 0.009 0.051 0.052 0.005 0.906 1.111 0.94 0.906 1.111 0.93
S 3 2.711 -0.289 -0.096 0.078 0.077 0.095 2.56 2.863 0.04 2.561 2.863 0.04
var(I) 1 1.008 0.008 0.008 0.108 0.104 0.022 0.813 1.221 0.95 0.807 1.214 0.95
var(S) 4 3.837 -0.163 -0.041 0.232 0.223 0.13 3.422 4.297 0.87 3.409 4.279 0.86
cov(IS) 0 0.004 0.004 0.004 0.115 0.109 0.025 -0.214 0.214 0.96 -0.21 0.216 0.96
var(e) 1 0.999 -0.001 -0.001 0.044 0.043 0.004 0.919 1.086 0.92 0.917 1.084 0.92

N=500 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 0.999 -0.001 -0.001 0.073 0.074 0.011 0.854 1.143 0.98 0.855 1.143 0.98
S 3 2.711 -0.289 -0.096 0.099 0.109 0.105 2.497 2.925 0.21 2.497 2.925 0.21
var(I) 1 0.973 -0.027 -0.027 0.146 0.146 0.043 0.705 1.277 0.98 0.693 1.263 0.98
var(S) 4 3.852 -0.148 -0.037 0.371 0.317 0.259 3.276 4.518 0.86 3.248 4.48 0.88
cov(IS) 0 -0.008 -0.008 -0.008 0.154 0.154 0.047 -0.317 0.287 0.96 -0.311 0.292 0.96
var(e) 1 1.014 0.014 0.014 0.06 0.062 0.008 0.9 1.141 0.96 0.895 1.136 0.95

N=300 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.009 0.009 0.009 0.103 0.096 0.02 0.821 1.197 0.89 0.821 1.197 0.89
S 3 2.687 -0.313 -0.104 0.139 0.141 0.137 2.411 2.964 0.34 2.411 2.963 0.35
var(I) 1 1.006 0.006 0.006 0.189 0.194 0.073 0.657 1.416 0.94 0.639 1.391 0.94
var(S) 4 3.816 -0.184 -0.046 0.412 0.41 0.372 3.091 4.694 0.93 3.045 4.631 0.92
cov(IS) 0 0.045 0.045 0.045 0.214 0.2 0.088 -0.359 0.429 0.94 -0.351 0.435 0.94
var(e) 1 1.01 0.01 0.01 0.075 0.08 0.012 0.864 1.179 0.96 0.857 1.17 0.94

N=200 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.019 0.019 0.019 0.098 0.116 0.023 0.792 1.247 0.97 0.791 1.246 0.97
S 3 2.69 -0.31 -0.103 0.178 0.173 0.157 2.352 3.029 0.52 2.351 3.027 0.52
var(I) 1 0.99 -0.01 -0.01 0.232 0.236 0.11 0.576 1.5 0.94 0.548 1.461 0.95
var(S) 4 3.884 -0.116 -0.029 0.47 0.509 0.495 3.004 4.992 0.96 2.938 4.898 0.96
cov(IS) 0 0.066 0.066 0.066 0.25 0.246 0.127 -0.434 0.538 0.91 -0.422 0.546 0.92
var(e) 1 1.02 0.02 0.02 0.094 0.1 0.019 0.843 1.233 0.95 0.833 1.219 0.97

N=100 (convergence rate: 100/100 = 100%)

G
ro

w
th

C
u
rv

e I 1 1.031 0.031 0.031 0.174 0.161 0.057 0.714 1.348 0.94 0.715 1.348 0.95
S 3 2.699 -0.301 -0.1 0.239 0.248 0.209 2.21 3.187 0.78 2.212 3.187 0.78
var(I) 1 0.863 -0.137 -0.137 0.275 0.315 0.197 0.354 1.579 0.94 0.302 1.487 0.86
var(S) 4 3.951 -0.049 -0.012 0.815 0.753 1.247 2.726 5.66 0.92 2.601 5.456 0.92
cov(IS) 0 0.063 0.063 0.063 0.35 0.35 0.25 -0.658 0.728 0.91 -0.637 0.744 0.94
var(e) 1 1.063 0.063 0.063 0.137 0.149 0.045 0.808 1.39 0.94 0.788 1.361 0.95

Note. Abbreviations are as given in Table 3.
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timates conditional average treatment effects in each node. We provide
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1 Introduction

Understanding the causal effect of a treatment has historically been of great
scientific interest and remains one of the most frequently pursued objectives in
scientific research today. The gold standard for evaluating treatment effects is
the randomized controlled trial, where the researcher randomly assigns treatment
status to each individual. The benefit of this approach is that the causal effect
of the treatment can be estimated by simply comparing outcomes between those
who were treated and those who were not (Greenland, Pearl, & Robins, 1999).
Random assignment of treatment guarantees that, on average, the treated and
untreated individuals will be equal on all potential confounding variables, both
measured and unmeasured. Eliminating the possibility of confounding clears the
way for a direct comparison to be made.

However, random assignment is not always possible. This can be for ethical
reasons, since researchers cannot, for example, force participants to smoke to
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investigate the effects of smoking. It can also be for practical reasons, where
the researcher cannot control the assignment of a treatment. For example, re-
searchers cannot randomly assign depression to some participants, enact a law
or policy in a randomly assigned jurisdiction, or choose where their participants
live. An observational study, where treatment is not randomly assigned, may be
the only available option in these cases. Unlike randomized controlled trials, di-
rect comparisons between treated and untreated individuals in an observational
study cannot be made as easily. This is because treated and untreated partic-
ipants may not be equal in all other characteristics, creating the potential for
confounding effects. In fact, it may be differences in these very characteristics
that lead some participants to select treatment, making the estimation of the
treatment’s effect less straightforward. To estimate a treatment’s effect, it must
first be defined, which we do in the context of the potential outcomes framework.

1.1 Potential Outcomes Framework and Assumptions

The foundations for the potential outcomes framework were laid out by Neyman,
Iwaszkiewicz, and Kolodziejczyk (1935) and further developed by Rubin (1974),
resulting in it also being called the Rubin Causal Model, Neyman-Rubin Causal
Model, and Neyman-Rubin counterfactual framework of causality. The model
can be conceptualized as follows. Let Y1i be the potential outcome of individual
i if they received the treatment and Y0i be the potential outcome of individual
i if they did not receive the treatment. The observed score Yi, can be written as

Yi = WiY1i + (1−Wi)Y0i (1)

where Wi = 1 if the individual received treatment and Wi = 0 if they did not.
Wi simply acts as an indicator variable denoting the receipt of treatment. The
term treatment here and throughout the paper is used rather loosely and can be
used interchangeably with exposure.

The effect of the treatment is simply Y1i − Y0i, the difference between the
potential outcomes if the individual had received treatment and if they had not.
The fundamental problem of causal inference, as stated by Holland (1986), is
that it is impossible to observe both Y1i and Y0i for the same individual. If the
individual received treatment, we can observe Y1i, but not its counterfactual,
Y0i . The inverse is also true: if the individual did not receive treatment, we
can observe Y0i , but not its counterfactual, Y1i. Therefore, it is impossible to
observe the effect of the treatment on the individual. As an example, we can see
that it is impossible to observe the effect of divorce on a child’s academic test
scores because at a given moment in time, the parents can either be divorced
or not divorced, but not both. We cannot observe the test scores under both
conditions, so we cannot observe the effect of divorce on that child’s scores.

Though we cannot observe the effect of the treatment on a given individual,
we can estimate the average treatment effect (ATE) on a population. The ATE
is the average effect expected from taking a population where no individuals re-
ceived the treatment and providing the treatment to all of them (Austin, 2011).
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The ATE is defined as ATE = E(Y1i − Y0i) = E(Y1i) − E(Y0i), where E(·) is
the expected value operator. Conceptually, this implies that although we cannot
observe the treatment effect at the individual level, we can do so at a popula-
tion level by using the average of the untreated participants as a proxy for the
unobservable counterfactual (Guo & Fraser, 2010). A related effect of interest
in this paper is the conditional average treatment effect , or CATE, (Abrevaya,
Hsu, & Lieli, 2015), defined as CATE = E(Y1i − Y0i|Xi), where Xi is a vector
of covariates. The CATE allows us to evaluate heterogeneity in treatment effects
between subpopulations, for example, allowing for separate estimation of the
ATE in males and females if they are believed to be different.

One important assumption of the potential outcomes framework is the Stable
Unit Treatment Value Assumption, or SUTVA (Rubin, 1980, 1986). It repre-
sents the assumption that the potential outcomes would be the same no matter
how an individual came to be assigned to a treatment, and no matter what
treatments are received by other individuals. It assumes that neither treatment
assignment mechanisms nor social interactions affect potential outcomes. An-
other assumption, one we give more attention due to the focus of this paper,
is known as the strong ignorability assumption (Rosenbaum & Rubin, 1983).
Treatment assignment is strongly ignorable if two conditions collectively hold.
The first condition is (Y0, Y1) ⊥ W |X, that treatment assignment is indepen-
dent of the potential outcomes conditional on covariates. The second condition
is 0 < P (W = 1|X) < 1, that every participant has a nonzero probability of
receiving either treatment, conditional on covariates.

The necessity of the conditional independence piece of the strong ignorability
assumption becomes evident when considering the necessary conditions for using
untreated participants as a proxy for the counterfactual. To estimate the ATE
by taking the difference between the averages of treated and untreated partici-
pants, we implicitly assume that the average scores produced by the untreated
participants are an unbiased estimate of what the average scores produced by
the treated participants would have been had they not received the treatment.
In doing so, we must ensure that the treated and untreated participants are sim-
ilar in relevant characteristics, so that the untreated participants can serve as a
faithful representation for their treated counterparts. For example, if the treated
group contained only males and the untreated group contained only females,
using the untreated group as a proxy for the treated group might not produce
a fair comparison, depending on what is being studied. This is why randomized
controlled trials are considered the gold standard: random assignment ensures
that, on average, all such possible confounders are balanced, making the treated
and untreated participants comparable.

As pointed out by Thoemmes and Kim (2011), the strong ignorability as-
sumption cannot be empirically tested. This is because treatment assignment
must be conditionally independent of all relevant covariates both observed and
unobserved, and it is not possible to empirically verify that variables that are
not collected do not play a role. As such, researchers who attempt to justify this
assumption are limited to making a convincing argument that they have mea-
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sured the relevant covariates and showing that these are balanced across treated
and untreated participants. The most common way of demonstrating balance
in an observed covariate across groups is via a standardized mean difference.
This takes the form of the mean difference in the covariate between groups (in
absolute value) divided by either a pooled standard deviation or an unpooled
standard deviation of one of the groups.

A standardized mean difference of 0 would indicate the covariate has the
same mean across groups. However, there is no universally agreed upon metric
for judging how small a nonzero standardized mean difference must be to be
considered negligible enough for the groups to be considered balanced on the
covariate for practical purposes. Many recommendations exist in the method-
ological literature. Harder, Stuart, and Anthony (2010) use a value less than
0.25, based on a suggestion by Ho, Imai, King, and Stuart (2007). Austin (2011)
suggests a stricter value of less than 0.1, based on work by Normand et al. (2001).
Leite, Stapleton, and Bettini (2018) point out that for educational research, the
What Works Clearinghouse Procedures and Standards Handbook (version 4.0)
requires a value less than 0.05 without additional covariate adjustment, or be-
tween 0.05 and 0.25 with additional regression adjustment (U.S. Department
of Education, Institute of Education Sciences, & What Works Clearinghouse,
2017).

Analyzing standardized mean differences is reasonable when attempting to
balance across demographic covariates such as sex, age, race, etc. Yet some char-
acteristics do not lend themselves well to being assessed in this way. Consider
an example where we are interested in evaluating the effects of a breakup from
a romantic relationship (the treatment) on life satisfaction (the outcome). For
simplicity, let us assume that we only collect data from one partner per couple.
Putting demographics aside, affect might be an important covariate to balance
on. However, ensuring that couples who do and do not break up have the same
average affect might not be especially useful. Stability of affect has been shown
to be predictive of whether couples remain together or break up (Ferrer, 2016;
Ferrer, Steele, & Hsieh, 2012). That is, fluctuations in affect are what need to
be balanced, not simply average affect. Consider the plot given in Figure 1 of
two hypothetical individuals, J and K, and their affect over time. J has highly
variable affect, whereas K has relatively stable affect. Based on the aforemen-
tioned research, J is more likely to experience a breakup, given their instability.
However, both J and K have the same average affect. Imagine a treatment group
filled with individuals like J and an untreated group filled with individuals like
K. According to the standardized mean difference, these two groups would be
balanced across affect, because they have the same mean affect. The fact that
they have different patterns with regard to the variability would be entirely
missed.

The literature does recommend that covariates should be balanced across
groups on not just the mean, but the distribution of the variables (Austin, 2011;
Ho et al., 2007). Researchers are encouraged to examine higher-order moments,
as well as interactions between covariates. Graphical methods are often used
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Figure 1. Stability of Affect in Two Hypothetical Individuals

to make these comparisons, including quantile-quantile plots, boxplots, density
plots, etc. Though visualizations can be helpful for univariate or even bivariate
data, they become less useful with higher-dimensional data, as in our example.
Furthermore, in this case, they do not quite address the issue directly. We would
like to balance on stability of affect, which is not entirely captured by either
univariate higher order moments or interactions.

1.2 Purpose

Although conventional approaches can be useful when balancing on demographic
variables and other such covariates, they are not as well suited for balancing
on more complex functions of the data, such as stability of affect. This paper
seeks to develop an approach that allows us to balance on more flexibly defined
characteristics of interest. We begin by reviewing some classic and recent ap-
proaches to matching. We then provide an introduction to structural equation
model trees and their variations. Drawing from these, we propose our own algo-
rithm, Causal Mplus Trees, and describe its implementation. We then conduct
two small simulation studies demonstrating our algorithm’s effectiveness and an
empirical analysis of COVID-19 data. We conclude with a discussion of practical
recommendations and future directions.

1.3 Propensity Score Matching

Thus far we have discussed ways to evaluate whether treated and untreated
participants are balanced on covariates. If they are found to be unbalanced, we
can turn to statistical approaches to balance them. A natural initial thought
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would be to use ordinary least squares regression, conditioning on covariates
within the model. However, Berk (2004) points out that simply calculating a
conditional distribution of the outcome is not sufficient to draw causal inference
and that stronger assumptions are needed.

A popular alternative is to use propensity scores, defined as the probability
of treatment conditional on observed covariates (Rosenbaum & Rubin, 1983). It
has been shown that propensity scores can balance treated and untreated par-
ticipants in the sample, and that both treatment assignment as well as observed
covariates are conditionally independent given the propensity score (Rosenbaum
& Rubin, 1983). This implies that for participants with the same propensity
score, the mean difference in the outcome between treated and untreated partic-
ipants is an unbiased estimate of the ATE at that propensity score (Guo & Fraser,
2010). Propensity scores are typically calculated using logistic regression, with
the observed covariates predicting treatment status (W ). The estimated regres-
sion coefficients are then used as weights in a model predicting the probability of
treatment for each individual. The estimated propensity score is this predicted
probability of treatment.

Once propensity scores have been calculated, they can be used in various
ways, including propensity score matching (Rosenbaum & Rubin, 1985), strati-
fication on the propensity score (Rosenbaum & Rubin, 1984), and inverse prob-
ability of treatment weighting using the propensity score (Hirano & Imbens,
2001). Of these three, propensity score matching seems to eliminate more of
the systematic differences in covariates (Austin, 2009) and also seems to be the
most popular (Thoemmes & Kim, 2011), so we limit our focus to propensity score
matching. Propensity score matching involves finding treated and untreated par-
ticipants with similar propensity scores to use as each other’s counterfactuals.
According to Austin (2011) and the systematic review conducted by Thoemmes
and Kim (2011), the most commonly used form of matching is 1:1 matching,
where each treated participant is matched with a single untreated participant,
forming a pair. Thoemmes and Kim (2011) found that the most popular way to
do this in the social sciences was to use greedy matching, in which a treated sub-
ject is selected at random and the untreated subject with the closest propensity
score is paired with them. The process is repeated until all treated subjects have
a match. This is in contrast to optimal matching, where matches are selected
to optimize the distance between propensity scores for the entire sample, which
has been shown to perform comparably to greedy matching (Gu & Rosenbaum,
1993). The 1:1 matching scheme produces pairs of treated and untreated par-
ticipants who should in theory be balanced on the propensity scores. The ATE
can then be estimated simply by performing a paired t test (Austin, 2011).

Of course, one must still ensure that the propensity scores are balanced across
treated and untreated participants. If they are not, it is recommended that the
logistic regression model be iteratively refined by including nonlinear terms and
interactions between covariates until balance has been achieved (Austin, 2011;
Rosenbaum & Rubin, 1984, 1985; West et al., 2014). Latent variable models can
be used to calculate propensity scores by balancing on latent covariates whose
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scores are estimated via factor score estimation (Raykov, 2012), or by using
structural equation modeling to estimate propensity scores directly (Leite et
al., 2018). Machine learning techniques including bagging, boosting, trees, and
random forests, have also been used for the estimation of propensity scores (Lee,
Lessler, & Stuart, 2010).

1.4 Causal Trees

A recent alternative to propensity score matching is the causal tree approach
proposed by Athey and Imbens (2016). Essentially, they use decision trees to
partition the sample into groups of individuals who are similar on important
dimensions. They then treat these groupings as matched, and use them to es-
timate the ATE. Decision trees (Breiman, Friedman, Olshen, & Stone, 1984),
use recursive partitioning to separate a predictor space into regions that are as
homogeneous as possible on a target variable of interest. Binary splits are made
on predictors (e.g. female vs. male, age ≤ 60 vs. age > 60, etc.), splitting the
sample into two nodes. All possible splits are made on all predictors, and the
split that makes the resulting samples in each node as homogeneous as possible is
presented as a candidate split. If this split exceeds a predetermined fit criterion,
the split is made, partitioning the sample into the two daughter nodes. Other-
wise, the split is not made, and the parent node becomes a terminal node. The
process continues recursively on each daughter node until all nodes are terminal
nodes. We refer readers to Serang et al. (2021) for additional description of the
procedure.

Decision trees are most often used for prediction of a target variable. The
critical insight of Athey and Imbens (2016) is that trees have a natural procliv-
ity for creating homogeneous subgroups. Instead of trying to predict a target
variable, we can substitute the vector of covariates, X. The tree will then pro-
duce terminal nodes where the observations in each terminal node are as similar
as possible on the covariates, achieving the same aim as matching. Each termi-
nal node is characterized by splits on predictors (separate from X) that define
membership in that node. In what they call an honest approach to estimation,
the authors recommend that these subgroup definitions be applied to a fresh
holdout sample not involved in the construction of the tree, to create subgroups
using the new data. CATEs (ATEs conditional on subgroup membership) can
then be estimated in each subgroup via mean differences between treated and
untreated participants within the subgroup. Causal inference can also be drawn
using standard approaches, such as an independent-samples t test.

The advantage of causal trees over propensity score methods is that one need
not worry about the estimation of or balancing on propensity scores. Propensity
scores only serve as a middleman in propensity score matching, and causal trees
use the properties of decision trees to bypass them entirely. Additionally, causal
trees easily accommodate heterogeneity in causal effects. In our running exam-
ple, we wish to match on stability of affect. If we use demographic variables as
splitting variables in the tree, we can potentially find subgroups defined by these
demographic characteristics (e.g. sex, age, etc.) that have different levels of affect
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stability. The causal tree approach would then allow us to estimate the causal
effect of a breakup separately in each of these subgroups, as well as compare
them to see if the causal effect differs by subgroup.

1.5 Structural Equation Model Trees

One limitation of causal trees as described is that they assume we wish to match
on observed covariates. However, stability in our example is not an observed vari-
able in the data: it is a characterization based on a pattern. One way to charac-
terize stability for the data in our example would be to fit a simple intercept-only
growth curve model and examine the residual variance. A model fit to individ-
uals such as J would produce a large residual variance, whereas a model fit to
individuals like K would yield a relatively small residual variance. Thus, stability
of a group can be characterized by model-based parameter estimates, in lieu of
observed variables.

To do this within the causal tree framework, we would need a mechanism
to fit a model within each node. For longitudinal models, we can use an ap-
proach like the nonlinear longitudinal recursive partitioning algorithm proposed
by Stegmann, Jacobucci, Serang, and Grimm (2018), which allows the user to
fit linear and nonlinear longitudinal models within each node. A more general
approach is the structural equation model tree (SEM Tree) proposed by Brand-
maier, Oertzen, McArdle, and Lindenberger (2013), which allows for structural
equation models (SEMs) to be fit within each node. A benefit of the latter is
the flexibility of the SEM framework, which can accommodate a wide range of
models, including many longitudinal models, via latent growth curve modeling
(Meredith & Tisak, 1990).

The logic of SEM Trees is similar to that of standard decision trees, with
some minor variations. A prespecified SEM is first fit to the full sample, and
the minus two log-likelihood (−2LogL) is calculated. Then, the −2LogL for
the candidate split is calculated. Since the split can be conceptualized as a
multiple group model (Jöreskog, 1971), the −2LogL for the split is simply the
sum of the −2LogL values for each daughter node. A likelihood ratio test is then
conducted with these two −2LogL values. If it rejects, the split is made. As in
other decision trees, this process is recursively repeated until all daughter nodes
are terminal nodes. Unlike conventional decision trees, terminal nodes in SEM
Trees do not provide a predicted proportion or mean. Rather, each terminal
node is characterized by a set of parameter estimates for the SEM fit to the
sample in that node. In this way, SEM Trees can be used to identify subgroups
of people who are similar in that they can be represented by a set of parameter
estimates that is distinct from the parameter estimates that characterize those in
other nodes. SEM Trees can therefore identify subgroups with distinct patterns
of stability, growth, or other patterns reflected in the parameter estimates.
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1.6 Mplus Trees

The SEM Trees algorithm is implemented in the semtree (Brandmaier, Prindle,
& Arnold, 2021) package in R (R Core Team, 2020). The SEMs are fit in either
the OpenMx package (Neale et al., 2016) or the lavaan package (Rosseel, 2012).
The OpenMx package is flexible but challenging to use, especially for casual users,
given the need to specify the entirety of the model with limited defaults. The
lavaan package is much easier to use given the ease with which one can specify
models, however it is currently more limited in the scope of the models it can
fit. The MplusTrees package (Serang et al., 2021) is an implementation of SEM
Trees which uses Mplus (Muthén & Muthén, 1998-2017) to fit the models, the
rpart package (Therneau & Atkinson, 2018) to perform the recursive partition-
ing needed to grow the trees, and the MplusAutomation package (Hallquist &
Wiley, 2018) to interface between R and Mplus. MplusTrees capitalizes on the
wide variety of complex models that can be specified in Mplus, the ease with
which they can be specified, and the currently superior estimation algorithms it
uses for fitting these models.

The Mplus Trees algorithm itself (Serang et al., 2021) is very similar to the
SEM Trees algorithm (Brandmaier et al., 2013). However, one key difference is
the criterion used for splitting. Although the MplusTrees package also has the
capability to split using the likelihood ratio test, this is not the primary method.
Instead, Mplus Trees uses a complexity parameter, cp. This cp parameter is a
proportion specified in advance by the user. A split will be made if that split
improves on the -2LogL of the full sample (the parent node) by at least cp times
that -2LogL. Smaller values of cp result in more splits since a relatively smaller
improvement in the -2LogL is needed for a split to be made, whereas larger
values lead to fewer splits. As such, the use of cp serves more as a heuristic than
a formal test based on statistical significance. Ideally, cp would be selected by
cross-validation, and this functionality is available in the MplusTrees package.
However, long computational times may require users to simply try a handful of
cp values and select the most appropriate one given the context.

2 Causal Mplus Trees

We now propose our own matching algorithm, Causal Mplus Trees, using Mplus
Trees to create causal trees that match on parameters from an SEM, and esti-
mating CATEs in a holdout sample. We begin by first randomly partitioning the
dataset into two parts, one subsample to perform the matching and the other to
perform the estimation of the CATEs. In most cases, the matching subsample
will require more participants, since fitting an SEM and building a decision tree
is more sample intensive than estimating a mean difference. We suggest devot-
ing 80% of the sample to the matching subsample and 20% to the estimation
subsample, though this ratio can be adjusted depending on the complexity of
the SEM, the overall sample size, etc.

Beginning with the matching subsample, we can partition X into two parts:
XM , the modeled covariates modeled in the SEM whose parameters we wish to
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match on, and XS , the splitting covariates we want to split on in the recursive
partitioning process which define the subgroups of the tree’s terminal nodes.
Guidance for whether a covariate should be a modeled covariate or a splitting
covariate is provided in the discussion. Let M be an SEM with parameters θ
that produces XM , so that M(θ) = XM . In our running example, M would be
the intercept-only growth model and θ would be its parameters. For properly
specified M , XM can be used to estimate θ, resulting in parameter estimates θ̂.
Using Mplus Trees, we can build a tree that matches on θ̂, with groups (terminal
nodes) defined by their covariate patterns on XS . The treatment assignment
information,W , is not provided to the recursive partitioning algorithm and so the
tree is built blind to W . In the estimation subsample, we can divide participants
into groups according to the splits found by the tree. Within each group, we
can estimate the CATE as defined before by taking the difference between the
means of the outcomes of the treated and untreated participants in each group.
Since we are using a fresh sample, we can draw inference using hypothesis tests
such as an independent-samples t test or another suitable alternative. We can
also test whether the CATE differs by group by testing the interaction effect in
a two-way independent ANOVA.

3 Simulation Studies

As a proof of concept for Causal Mplus Trees, we performed two small simulation
studies. The simulation studies were conducted in R using the lavaan package
to simulate data and the MplusTrees package for analysis. Readers are referred
to the package documentation for details regarding the implementation of the
algorithm in the software. Each simulation consisted of 1,000 replications.

3.1 Longitudinal Simulation

The first simulation mapped onto our running example regarding stability of
affect. Each sample consisted of N = 2,000 individuals, 1,000 in each of two
groups. The data were generated from an intercept-only (no growth) model with
10 time points. The intercept had a mean of 10 with a variance of 1. The only
difference between the groups was in the residual variance, σ2

ε . One group had a
residual variance of 1 (the group with stable affect), and the other had a residual
variance of 10 (the group with unstable affect). The group memberships were
identified by a dichotomous covariate, used as a splitting variable. Thus, the
tree matched on the growth curve, using the group membership to split. Within
each group, treated and untreated participants were evenly split (500 each).
A diagram of this population tree is given in Figure 2. For the stable affect
group, outcomes were generated using a standard normal distribution, N(0, 1),
for the untreated group and a N(0.5, 1) distribution for the treated group, to
represent a medium-sized CATE. However, for the unstable affect group, the
outcome distributions were flipped, with the untreated group’s outcome being
generated from a N(0.5, 1) distribution, whereas the treated group’s outcome
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was generated from a N(0, 1) distribution. In this way, although the ATE for
the full sample was 0, the CATE for each group was 0.5 in absolute value.

Figure 2. Population Tree for Longitudinal Simulation

It should be noted that these groups are, from the start, balanced on the
modeled covariates. Since the growth curve variables were all generated to have
a mean of 10, they would be considered balanced according to the standardized
mean difference. Thus, if one were to follow conventional procedure, propensity
scores would not be needed here, and the estimation of the ATE would consist
of simply the mean difference between treated and untreated participants, which
would be 0 on average.

The Causal Mplus Trees algorithm was implemented as described in the prior
section, with 80% of the sample (1,600 individuals) used for matching and 20%
(400 individuals) used to estimate CATEs. A cp value of .01 was used to split,
with a minimum of 100 individuals required to consider splitting on a node. Each
terminal node was also required to have at least 100 individuals within it. For
each replication, the CATE was estimated in each group using an independent
samples t test. A two-way independent ANOVA was also conducted to determine
if CATEs differed by group.

Overall, the results demonstrated the effectiveness of the algorithm. Across
all replications, 94.5% of CATEs were detected. Additionally, 99.8% of the in-
teractions from the two-way ANOVA were detected, showing that the algorithm
can detect differences in CATEs by group. As a comparison, we also analyzed
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these data as they would have been analyzed using the conventional approach.
Since the covariates were on average balanced according the standardized mean
difference, the ATE would have been estimated by using the full sample to esti-
mate the mean difference between treated and untreated participants. Despite a
sample size of 2,000 to do this (relative to the only 400 available to Causal Mplus
Trees after performing the matching), only 3.4% of datasets yielded statistically
significant ATEs, consistent with a nominal false positive rate of 5%.

3.2 Measurement Simulation

The second simulation study is similar to the first, but used a measurement
model as opposed to a longitudinal model for the matching. For the second study,
each sample consisted of N = 3,000 individuals, divided into three groups. One
group (the small loading group) contained 1,500 individuals, while the remaining
two groups (the medium and large loading group) each contained 750. Data were
generated from a one-factor confirmatory factor analysis model with 15 items.
Factor variances were fixed to 1, and uniquenesses were also simulated to be
1. As implied above, the only differences were in the loadings, λ. In the small
loading group, all loadings were simulated to be 0.1, in the medium loading
group they were 0.5, and in the large loading group they were 0.9. The model was
generated to reflect the case where items are more related to a latent construct for
some people than for others. If the latent variable were a psychological disorder,
this would map onto the idea that the items better reflect the presence of that
disorder in some groups relative to others.

As with the previous simulation study, a single splitting covariate denoting
group membership was used as the splitting variable, albeit with three values
given the three groups. Figure 3 shows a diagram for this population tree. As
with the other simulation study, each group was evenly divided on treated and
untreated participants. In the small loading group untreated participants had
outcomes generated from a N(0, 1) distribution, whereas the treated group’s
outcome was generated from a N(0.5, 1) distribution. In the medium and large
loading groups this was reversed: untreated participants had outcomes from a
N(0.5, 1) distribution whereas treated participants had outcomes from a N(0, 1)
distribution. In this way, these samples too had an average ATE of 0, in addi-
tion to being on average balanced on the modeled covariates according to the
standardized mean difference, since all items had an average score of 0.

The algorithm again used 80% of each sample (2,400 participants) for match-
ing and 20% (600 participants) for estimation. As before, a minimum of 100
individuals was required to consider splitting a node and in each terminal node,
however this study used a cp value of .001. Unlike the previous study where
the split was made in every replication, the algorithm had some slight trouble
finding all the groups in this study. All three groups were found in 92.7% of
simulations, but only two groups were found in the remaining 7.3%. Among all
the groups found, 88.3% of the CATEs were detected, along with 99.7% of the
interactions. Alternatively, when using the entire sample to calculate the ATE,
only 3.5% of simulations yielded significant results. These results are similar
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to those found in the first simulation study. Taken together, they show that
the Causal Mplus Trees algorithm is able to estimate CATEs and support hy-
pothesis testing to determine their statistical significance. It can also determine
whether the CATEs differ by group. Notably, CATEs were found in the absence
of ATEs, with modeled covariates already balanced across treated and untreated
participants according to the standardized mean difference.

Figure 3. Population Tree for Measurement Simulation

4 Empirical Example

As an illustration of how Causal Mplus Trees can be used in practice, we present
an analysis of COVID-19 data. The dataset contains information from four dif-
ferent sources: public health data from the COVID-19 Data Repository by the
Center for Systems Science and Engineering (CSSE) at Johns Hopkins Univer-
sity (Dong, Du, & Gardner, 2020), demographic data from the 2010 US Decen-
nial Census (U.S. Census Bureau, 2010), governor’s party information obtained
from the National Governors Association Roster (National Governors Associa-
tion, 2020), and mobility data from Unacast, a location data analytics company
(Unacast, 2020).
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To capture how individuals’ travel activity patterns responded to the spread
of COVID-19, we utilized Unacast’s measure of the change in average distance
traveled. Travel distance was measured using the GPS positions of millions of
mobile devices and aggregated each day to a county-level average. For a detailed
overview of variable construction and discussion of potential sources of bias, see
Sears, Villas-Boas, Villas-Boas, and Villas-Boas (2020). The data were analyzed
at the county level, consisting of 3,030 counties or county-equivalents from all
50 US states except Alaska. This represents over 95% of counties in the US.

The goal of this analysis was to estimate the CATE of the governor’s party
(Democrat or Republican) on mobility in counties matched on the trajectory
of COVID-19 cases early in the pandemic. We sought to answer the question:
“for counties with similar trajectories of the rise in COVID-19 cases from March
through June 2020, could differences in mobility in July 2020 be attributed
to the governor’s party?” Prior studies reveal strong links between political
partisanship and the adoption of stay-at-home and social distancing orders as
well as changes in residents’ travel behavior and time spent at home (Adolph,
Amano, Bang-Jensen, Fullman, & Wilkerson, 2020; Allcott et al., 2020; Brzezin-
ski, Deiana, Kecht, & Van Dijcke, 2020; Gadarian, Goodman, & Pepinsky, 2020).
We provide a complementary analysis allowing us to understand whether the ef-
fect of gubernatorial political alignment extended beyond stay-at-home adoption
timing to continued behavioral changes among constituents. Our analysis also
examined how this effect differed across counties depending on demographic
characteristics.

Case trajectories were modeled using the cumulative cases in the county
divided by the population per 10,000 residents, hereafter referred to as COVID
rates. COVID rates were calculated weekly from March 9, 2020 (around when
states began reporting their first cases) until June 29, 2020, resulting in 17 time
points of data per county. The SEM fit within each node of the tree was the
logistic growth model given by

COV IDi =
β1i

1 + e−(t−γ)α + εi (2)

where COV IDi is the COVID rate for county i, β1i is the county-specific COVID
rate when the “curve has flattened” (the upper asymptote), t is the number of
weeks (t = 1, 2, . . . , 17), γ is the inflection point, α is the rate of change, and ε is
the residual. The model was specified using Taylor-series approximation (Browne
& Toit, 1991; Grimm & Ram, 2009) with equal residual variances across time,
σ2
ε , to aid estimation.

We used six demographic splitting variables: population (the total population
of the county), white (the percentage of non-Hispanic Whites), age65 older (the
percentage of people ages 65 years and older), median inc (the median household
income), bachelors (the percentage of people with at least a bachelor’s degree),
and rural (the percentage of the population considered rural). To reduce the
computational burden of the algorithm, we reassigned values from 1 to 4 to each
of these splitting covariates depending on the quartile in which they fell relative
to the other counties.
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In implementing the Causal Mplus Trees algorithm, we used 2,424 counties
to match the data and the remaining 606 to estimate the CATEs. We required
that a minimum sample size of 300 was required to both attempt a split and
to remain in each terminal node. A cp value of .01 was used to split. The tree
grown from the training data is given in Figure 4, with corresponding parameter
estimates provided in Table 1. Group 1 consisted of those in the bottom three
quartiles (<93.1%) on white, below the median (<17.2%) on age65 older, and
in the bottom three quartiles of median inc (<$53,601). It contained 29% of the
counties, and was characterized by the highest asymptote, 61.33 cases per 10,000.
Group 2 was made up of those in the bottom three quartiles (<93.1%) on white,
below the median (<17.2%) on age65 older, but in the top quartile of median inc
(>$53,601). It represented 15% of the counties, and was characterized by the
second highest asymptote, 50.19 cases per 10,000. Group 3 contained those in the
bottom three quartiles (<93.1%) on white, but above the median (>17.2%) on
age65 older. This group had 31% of counties, with the second lowest asymptote,
35.88 cases per 10,000. Group 4 consisted of those in the top quartile (>93.1%) on
white, with 26% of counties and the lowest asymptote at 19.04 cases per 10,000.
Group 4 also happened to be the most rural and least populated, potentially
explaining the low asymptote.

Figure 4. Tree from COVID-19 Data Matching Subsample

Governor’s party (with Republican arbitrarily selected as the treatment) was
used as the treatment variable in part because much of the policy, coordination,
and messaging thus far has occurred via executive action at the state level.
The outcome, mobility, was operationalized as the change in average distance
traveled, or CADT. CADT for each day in July was calculated as the county-



46 S. Serang and J. Sears

Table 1. Parameter Estimates for SEMs from the Groups in Figure 4

Group 1 Group 2 Group 3 Group 4

n 696 362 744 622
β1 (Mean) 61.33 50.19 35.88 19.04

β1 (Variance) 13,377.34 7,767.81 2,425.19 455.58
γ 9.33 6.94 10.23 10.44
α 0.69 0.56 0.44 0.40
σ2
ε 554.05 139.86 88.02 18.73

day level percentage point change in average travel distance relative to that
day-of-week’s average in early 2020 (average for Feb 10 to March 8, prior to
the presence of COVID-19 in the US). Accordingly, a value of –3 indicates a
3 percentage point decline in average travel distance relative to baseline levels.
A positive value of CADT signals that residents of that county increased their
travel distances relative to their pre-COVID-19 patterns, whereas a negative
value indicates reduced travel distances (that can occur through reductions in
both the distances traveled per trip as well as the overall number of trips taken).
Each county’s average CADT for July was estimated by taking the mean of the
daily CADT for each day from July 1, 2020 until July 31, 2020. The estimate
of the CATE in each group, along with corresponding information, is given in
Table 2.

Table 2. CATEs and Significance Tests for COVID-19 Groups

Group 1 Group 2 Group 3 Group 4

nRep;nDem 104; 59 58; 55 104; 94 76; 60

CADTRep -0.93% -4.47% -0.58% -0.78%

CADTDem -2.47% -10.92% 0.88% -2.30%
CATE 1.54% 6.46% -1.46% 1.53%
t test t(104.08) = 0.94 t(108.76) = 2.84 t(186.87) = -0.86 t(122.99) = 1.15
p value .349 .006 .389 .252

Of the four groups, the only one with a statistically significant CATE was
Group 2, where counties in states with Democratic governors had an average
CADT that was 6.46 percentage points less than counties in states with Repub-
lican governors t(108.76) = -2.84, p = .006. Group 2 was on average the most
populous, least rural group of the four, as well as the most educated with highest
median incomes. As such, Group 2 contained the country’s more metropolitan
areas. We interpret this result to mean that in metropolitan counties matched
for COVID rates, people in counties in states with Democratic governors trav-
eled 6.5 percentage points less in July than people in comparable counties in
states with Republican governors. Of note, the two-way independent ANOVA
found that in the estimation subsample, a significant main effect of party was
not found F (1, 598) = 3.76, p = .053, whereas a main effect of Group F (3, 598)
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= 13.45, p < .001, and an interaction F (3, 598) = 3.41, p = .017 were. This
suggests that the party effect is more prominent for more metropolitan counties,
but would be obscured if examining the country as a whole. The mean difference
between parties in CADT for all 3,030 counties was only 0.60 percentage points,
with a t test on the full dataset yielding t(2422.6) = -1.50, p = .133, though this
result should be read with the caveat that nearly all counties were represented in
the sample. The value of Causal Mplus Trees in analyzing these data is evident
in its ability to find a group of counties exhibiting stronger party effects, while
simultaneously matching on COVID-19 trajectories.

Our findings corroborate those of previous COVID-19 partisanship studies.
Allcott et al. (2020) found evidence of 3.6 percent fewer point of interest visits
associated with a 10 percentage point decrease in the Republican vote share
(roughly equivalent to shifting from the median to the 25th percentile Republi-
can vote share county for the 2010 presidential election). Brzezinski et al. (2020)
estimated a 3 percentage point difference in the share of devices staying fully
at home for the 90th vs 10th percentile Democrat vote share counties 15 days
after a county’s first case. Areas with relatively greater viewership of conserva-
tive news shows that initially downplayed the threat of coronavirus (versus those
that accurately portrayed the pandemic) have also been linked to delayed behav-
ior changes and higher initial occurrences of cases and deaths (Bursztyn, Rao,
Roth, & Yanagizawa-Drott, 2020). Further, our Group 2 CATE is comparable
in magnitude to the decline in travel distance attributable to statewide stay-
at-home mandates (Sears et al., 2020). While prior studies employ traditional
approaches for discussing treatment effect heterogeneity (i.e. running difference-
in-differences or event study regressions on subgroups of interest), the Causal
Mplus Trees method provides a data-driven approach to identifying comparable
groups on model fit and analyzing treatment effect heterogeneity.

5 Discussion

In this paper, we proposed the Causal Mplus Trees algorithm, which matches
on parameter estimates of an SEM using a tree-based approach and uses these
groupings to estimate CATEs in a holdout sample. We used two small simulation
studies to demonstrate a proof of concept for the approach. We also showed
how it could be used to estimate party effects on mobility using COVID-19
data. We reiterate that we do not see Causal Mplus Trees as a substitute for
traditional matching methods. Propensity score matching and related methods
have their place and can be effective in matching on covariates, both observed
and latent. We believe that our approach offers an alternative option to those
whose research questions would be better addressed by the ability to match on
parameter estimates from an SEM.

5.1 Practical Recommendations

We encourage users of Causal Mplus Trees to carefully consider how they select
and differentiate between modeled covariates and splitting covariates. Although
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the procedure ultimately matches on both, the way it does so differs by co-
variate type. Matching is performed on modeled covariates indirectly through
the parameter estimates produced by the model, whereas splitting covariates
are matched more directly on the observed values of the scores. The choice of
whether a covariate should be used as a modeled or splitting covariate depends
upon what specifically the user wants to match, which can vary based on the
research question, study design, and characteristics of the sample collected.

Another consideration for researchers using Causal Mplus Trees is the depth
to which the tree should be grown. Cross-validation is the most commonly used
approach for this in the context of conventional decision trees. However, we
believe that cross-validation may not be as well suited for our purposes primarily
because it is designed to optimize predictive accuracy. In our algorithm, the goal
of the tree is not to optimize predictive accuracy, but rather to partition the
sample into groups that are matched well enough on θ̂ to justify causal inference
in the holdout sample. As in propensity score matching, there is no objective
criterion for this, so the researcher must make a subjective judgment and make
a case to justify it.

We urge researchers to take into account the following considerations. First,
the sample size in each parent node must be large enough to estimate M in not
only the parent node, but also each of the daughter nodes. SEMs can require
larger sample sizes to estimate, so limits should be placed on the splitting pro-
cedure so as not to consider splitting on a sample that does not have a large
enough sample to do this. Related to this is the need for a sufficient number of
treated and untreated participants in each terminal node to be able to estimate
the CATEs in the holdout sample. If a group has no treated (or no untreated)
participants, the CATE cannot be estimated. Of course, it is possible that the
mix in the tree differs from the mix in the holdout sample, but to the extent
that the matching subsample is a reflection of the estimation subsample, the
matching subsample can give a sense of the mix one would expect in the estima-
tion subsample. If performing hypothesis tests, certain minimum sample sizes
are required to meet the assumptions of the test as well as to detect the effects,
so these must also be kept in mind when deciding how deep to grow the tree.

Parsimony is also important to consider, especially with respect to building a
coherent narrative with policy implications. We are typically searching for groups
with qualitative meaning given the relevant theoretical framework. If the tree
were to produce a dozen groups, it may be challenging to map this onto available
theory in order to interpret the results. The relative importance of parameters
in characterizing a pattern should be taken into account as well. Theory may
dictate that some parameters may be more important to match on than others
for a given context (e.g., the residual variance in our stability example). As such,
it could be justifiable to trim the tree earlier if splits begin resulting in differences
in less relevant parameters. The size of parameter estimates may also play a role.
For example, the algorithm could decide on a split that results in two daughter
nodes with only small differences in their parameter estimates. Treating these
as two separate groups for the purpose of estimating the CATE may not be
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worthwhile. Similar to the logic used in propensity score analysis, the treated
and untreated participants in each node should be compared on their parameters
estimates, to verify, even if only subjectively, that they are similar and therefore
matched to some degree.

The choice for the depth of the tree depends on a trade-off between inter-
pretability of a result and the validity of the causal inference. If one were to view
the ability to draw causal inference as how well treated and untreated partici-
pants are matched, then the ability to draw causal inference can be conceptu-
alized not as a dichotomy but as a continuum with perfectly matched partici-
pants on one end and perfectly unmatched participants on the other. The better
matched participants are, the greater the ability to draw causal inference. How-
ever, better matching requires a deeper tree, which becomes less interpretable
and generalizable as the depth grows. This trade-off exists in propensity score
matching as well but is more apparent in the context of decision trees where
such trade-offs are more apparent and a language with which to conceptualize
and discuss them already exists.

5.2 Future Research and Conclusions

Plenty of opportunities exist to expand on this work. Although two simulation
studies were conducted, they only served as a proof of concept. Additional simu-
lations would be helpful in evaluating the effectiveness of the algorithm across a
variety of conditions. The causal tree approach has been extended to use random
forests (Wager & Athey, 2018), which are known to be more stable than decision
trees. These causal forests have also been modified to accommodate multilevel
data structures (Suk, Kang, & Kim, in press). SEM Trees have been expanded
to SEM Forests (Brandmaier, Prindle, McArdle, & Lindenberger, 2016), so ex-
panding our algorithm to use random forests would be a natural next step.
Additionally, we note that our discussion of treatment effects was limited to
mean differences in univariate outcomes. However, given that SEM is already
being employed as well as the flexibility of Causal Mplus Trees, it is possible
that the outcome measure could be generalized to the multivariate context, with
treated and untreated participants being compared on a model using, for ex-
ample, a multiple group SEM. To conclude, we believe our proposed algorithm
can provide researchers with the opportunity to match on SEM parameter esti-
mates, thereby allowing them greater flexibility in what they can match on and
the kinds of research questions they can address as a result.
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Abstract. Empirical researchers are usually interested in investigating
the impacts that baseline covariates have when uncovering sample het-
erogeneity and separating samples into more homogeneous groups. How-
ever, a considerable number of studies in the structural equation mod-
eling (SEM) framework usually start with vague hypotheses in terms of
heterogeneity and possible causes. It suggests that (1) the determination
and specification of a proper model with covariates is not straightfor-
ward, and (2) the exploration process may be computationally intensive
given that a model in the SEM framework is usually complicated and
the pool of candidate covariates is usually huge in the psychological and
educational domain where the SEM framework is widely employed. Fol-
lowing Bakk and Kuha (Bakk & Kuha, 2017), this article presents a
two-step growth mixture model (GMM) that examines the relationship
between latent classes of nonlinear trajectories and baseline character-
istics. Our simulation studies demonstrate that the proposed model is
capable of clustering the nonlinear change patterns, and estimating the
parameters of interest unbiasedly, precisely, as well as exhibiting appro-
priate confidence interval coverage. Considering the pool of candidate
covariates is usually huge and highly correlated, this study also proposes
implementing exploratory factor analysis (EFA) to reduce the dimension
of covariate space. We illustrate how to use the hybrid method, the two-
step GMM and EFA, to efficiently explore the heterogeneity of nonlinear
trajectories of longitudinal mathematics achievement data.

Keywords: Growth Mixture Models · Nonlinear Trajectories · Individual
Measurement Occasions · Covariates · Simulation Studies · Exploratory
Factor Analysis

1 Introduction

1.1 Motivating Example

Earlier studies have examined the impacts of time-invariant covariates (TICs) on
nonlinear mathematics achievement trajectories. For example, Liu, Perera, Kang,
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Kirkpatrick, and Sabo (2019) associated nonlinear change patterns of mathemat-
ics IRT scaled scores to baseline covariates, including demographic information,
socioeconomics factors, and school information. With the assumption that all
covariates explain sample variability directly, this study showed that some base-
line characteristics, such as sex, school type, family income, and parents’ highest
education, can explain the heterogeneity in the nonlinear trajectories of math-
ematics scores. However, Kohli, Hughes, Wang, Zopluoglu, and Davison (2015)
showed that latent classes of change patterns of mathematics achievement ex-
ist. Accordingly, these covariates may also inform latent class formation. In this
study, we want to investigate the indirect impacts the baseline characteristics
have on sample heterogeneity.

1.2 Finite Mixture Model

The finite mixture model (FMM) represents heterogeneity in a sample by al-
lowing for a finite number of latent (unobserved) classes. The idea of mixture
models is to put multiple probability distributions together using a linear com-
bination. Although researchers may want to consider two different or multiple
different families for the different kernels in some circumstances, the assumption
that all latent classes’ probability density functions follow normal distributions
with class-specific parameters is common in application.

This framework has gained considerable attention in the past twenty years
among social and behavioral scientists due to its advantages over other cluster-
ing algorithms such as K-means for investigating sample heterogeneity. First, in
the SEM framework, the FMM can incorporate any form of within-class models.
For instance, Lubke and Muthén (2005) specified factor mixture models, where
the within-class model is a factor model to investigate heterogeneity in common
factors. In contrast, Muthén and Shedden (1999) defined growth mixture models
(GMM), where the within-class model is a latent growth curve model to exam-
ine heterogeneity in trajectories. More importantly, the FMM is a model-based
clustering method (Bouveyron, Celeux, Murphy, & Raftery, 2019) so that re-
searchers can specify a model in this framework with domain knowledge: which
parameters can be fixed to specific values, which need to be estimated, and
which can be constrained to be equal (for example, invariance across classes).
Additionally, the FMM is a probability-based clustering approach. Unlike other
clustering methods, such as the K-means clustering algorithm, which aims to
separate all observations into several clusters so that each entry belongs to one
cluster without considering uncertainty, the FMM allows each element to belong
to multiple classes simultaneously.

This article focuses on the GMM with a nonlinear latent growth curve model
as the within-class model. Specifically, trajectories in each class in the proposed
GMM is a linear-linear piecewise model (Harring, Cudeck, & du Toit, 2006;
Kohli, 2011; Kohli & Harring, 2013; Kohli, Harring, & Hancock, 2013; Kohli et
al., 2015; Sterba, 2014), also referred to as a bilinear growth model (Grimm,
Ram, & Estabrook, 2016; Liu, 2019; Liu et al., 2019) with an unknown change-
point (or knot). We decide to use the bilinear spline functional form for two
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considerations. First, in addition to examining the growth rate of each stage
directly, this piecewise function allows for estimating the transition time from
one stage to the other. Additionally, Kohli et al. (2015) and Liu et al. (2019), have
shown that a growth model with this functional form can capture the underlying
change patterns of mathematics achievement and outperforms several parametric
functions: linear, quadratic, and Jenss-Bayley from the statistical perspective.

Similar to Liu et al. (2019), we propose the model in the framework of indi-
vidual measurement occasions to account for possible heterogeneity in the mea-
surement time in longitudinal studies (Cook & Ware, 1983; Finkel, Reynolds,
Mcardle, Gatz, & Pedersen, 2003; Mehta & West, 2000). Earlier studies, for
example, (Preacher & Hancock, 2015; Sterba, 2014) have demonstrated one pos-
sible solution to individual measurement occasions is to place the exact time to
the matrix of factor loadings, termed the definition variable approach (Mehta
& Neale, 2005; Mehta & West, 2000). Earlier studies have shown that the def-
inition variable approach outperforms some approximate methods such as the
time-bins approach (where the assessment period is divided into several bins,
and the factor loadings are set as those time-bins) in terms of bias, efficiency,
and Type I error rate (Blozis & Cho, 2008; Coulombe, Selig, & Delaney, 2015).

1.3 Challenges of Finite Mixture Models Implementation

Many studies in the SEM framework start from an exploratory stage where even
empirical researchers only have vague assumptions about sample heterogeneity
and possible reasons. It suggests that we usually have two challenges when im-
plementing a FMM, deciding the number of latent classes and selecting which
covariates need to be included in the model. To investigate which criterion can
be used to decide the number of latent classes, Nylund, Asparouhov, and Muthén
(2007) evaluated the performance of likelihood-based tests and the traditionally
used information criteria and showed that the bootstrap likelihood ratio test is
a consistent indicator while the Bayesian information criterion (BIC) performs
the best among all information criteria. Note that in practice, the BIC, which is
calculated from the estimated likelihood directly, is usually more favorable due
to its computational efficiency.

It is also challenging to decide to include which covariates as predictors of
class membership. Previous studies have shown that including subject-level pre-
dictors for latent classes can be realized by either one-step models (Bandeen-
Roche, Miglioretti, Zeger, & Rathouz, 1997; Clogg, 1981; Dayton & Macready,
1988; Goodman, 1974; Haberman, 1979; Hagenaars, 1993; Kamakura, Wedel,
& Agrawal, 1994; Vermunt, 1997; Yamaguchi, 2000), two-step models (Bakk &
Kuha, 2017) or three-step models (Asparouhov & Muthén, 2014; Bolck, Croon,
& Hagenaars, 2004; Vermunt, 2010). The one-step model is suitable if a study
is conducted in a confirmatory way or driven by answering a particular ques-
tion, where specifying a proper mixture model for the covariates is usually a
knowledge-driven process. On the contrary, the stepwise model is more suitable
for an exploratory study in which empirical researchers usually have limited a
priori knowledge about possible class structure. For such studies, the current
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recommended approach is to investigate the number and nature of the clusters
without adding any covariates so that they do not inform class formation.

In this study, we utilize the two-step model given that a considerable number
of studies investigated in the SEM framework start from the exploratory stage
and that Bakk and Kuha (2017) has shown that the two-step procedure is con-
sistently better than the three-step approach as it does not ignore the presence
of uncertainty in the modal class assignments. Accordingly, by extending the
method proposed in Bakk and Kuha (2017) to the FMM with a bilinear spline
growth curve as the within-class model, we first group nonlinear trajectories and
estimate class-specific parameters with a pre-specified number of clusters by fit-
ting the measurement-model portion of the mixture model; we then investigate
the associations between the ‘soft clusters’, where each sample is assigned with
different posterior weights, and the individual-level covariates by fitting the mea-
surement and structural model but fixing the measurement parameter estimates
as their values from the first step. By utilizing the two-step model, we only need
to refit the model in the second step rather than the whole model when adding
or removing covariates, saving the computational budget.

However, the covariate space in the psychological and educational domains
where the SEM framework is widely utilized is usually large, and some covariates
are highly correlated. To address this issue, we propose to leverage a common
multivariate data analysis approach in the SEM framework, exploratory factor
analysis (EFA), to reduce the covariate space’s dimension and address potential
multicollinearity. Note that in this current study, it is not our aim to examine
EFA comprehensively. We only want to demonstrate how to use the individual
scores, for example, Thompson’s scores (Thomson, 1939), or Bartlett’s weighted
least-squares scores (Bartlett, 1937), based on the output of EFA, with a basic
understanding of its algorithm.

EFA is a useful multivariate data analysis approach to explain the variance-
covariance matrix of the dataset by replacing a large set of manifest variables
with a smaller latent variable set. In this approach, manifested variables are as-
sumed to be caused by latent variables. When implementing EFA, we impose no
constraints on the relationships between manifested and latent variables. Assum-
ing that all manifested variables are related to all latent variables, this approach
aims to determine the appropriate number of factors and factor loadings (i.e.,
correlations between observed variables and unobserved variables). Next, we cal-
culate a score for each factor of each individual based on the factor loadings and
standardized covariate values. We then view these individual-level scores instead
of the covariates as baseline characteristics in the second step.

The proposed hybrid method aims to provide an analytical framework for ex-
amining heterogeneity in an exploratory study. We extend the two-step method
proposed by Bakk and Kuha (2017) to investigate the heterogeneity in nonlin-
ear trajectories in the framework of individually varying time points (ITPs).
Specifically, we consider the bilinear spline growth curve with an unknown knot
as the within-class model. We specify the model with truly individual measure-
ment occasions, which are ubiquity in longitudinal studies, to avoid unnecessary
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inadmissible estimation. Additionally, we propose to use EFA to reduce the di-
mension of the covariate space.

The remainder of this article is organized as follows. We describe the model
specification and model estimation of the two-step growth mixture model in the
framework of ITPs in the method section. In the subsequent section, we describe
the design of the Monte Carlo simulation for model evaluation. We evaluate the
model performance through the performance measures, which include the rela-
tive bias, the empirical standard error (SE), the relative root-mean-squared-error
(RMSE), and the empirical coverage for a nominal 95% confidence interval of
each parameter of interest, as well as accuracy. We then introduce the dataset of
repeated mathematics achievement scores from the Early Childhood Longitudi-
nal Study, Kindergarten Class of 2010-11 (ECLS-K: 2011), and demonstrate the
implementation of the hybrid method in the application section. Finally, discus-
sions are framed concerning methodological considerations and future directions.

2 Method

2.1 Model Specification

In this section, we specify the GMM with a bilinear spline growth curve as the
within-class model. Harring et al. (2006) showed there are five parameters in the
bilinear spline functional form: an intercept and slope of each linear piece and
a change-point, yet the degree of freedom of the bilinear spline is four since two
linear pieces join at the knot. In this study, we view the initial status, two slopes,
and the knot as the four parameters. We construct the model with consideration
of the variability of the initial status and two slopes, but assuming that the class-
specific knot is the same across all individuals in a latent class though Liu et al.
(2019); Preacher and Hancock (2015) have shown that the knot can also have a
random effect by relaxing the assumption. Suppose the pre-specified number of
latent classes is K, for i = 1 to n individuals and k = 1 to K latent classes, we
express the model as

p(yi|zi = k,xi) =

K∑
k=1

π(zi = k|xi)× p(yi|zi = k), (1)

π(zi = k|xi) =


1

1+
∑K

k=2 exp(β
(k)
0 +β(k)Txi)

Reference Group (k = 1)

exp(β
(k)
0 +β(k)Txi)

1+
∑K

k=2 exp(β
(k)
0 +β(k)Txi)

Other Groups (k = 2, . . . ,K)
, (2)

yi|(zi = k) = Λi(γ
(k))ηi|(zi = k) + εi|(zi = k), (3)

ηi|(zi = k) = µη
(k) + ζi|(zi = k). (4)

Equation (1) defines a FMM that combines mixing proportions, π(zi = k|xi),
and within-class models, p(yi|zi = k), where xi, yi and zi are the covariates,
J × 1 vector of repeated outcome (where J is the number of measurements)
and membership of the ith individual, respectively. For Equation (1), we have
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two constratints: 0 ≤ π(zi = k|xi) ≤ 1 and
∑K
k=1 π(zi = k|xi) = 1. Equation

(2) defines mixing components as logistic functions of covariates xi, where β
(k)
0

and β(k) are the class-specific logistic coefficients. These functions decide the
membership for the ith individual, depending on the values of the covariates xi.

Equations (3) and (4) together define a within-class model. Similar to all
factor models, Equation (3) expresses the outcome yi as a linear combination of
growth factors. When the underlying functional form is bilinear spline growth
curve with an unknown fixed knot, ηi is a 3× 1 vector of growth factors (ηi =
η0i, η1i, η2i, for an initial status and a slope of each stage of the ith individual).
Accordingly, Λi(γ

(k)), which is a function of the class-specific knot γ(k), is a J×3
matrix of factor loadings. Note that the subscript i in Λi(γ

(k)) indicates that it
is a function of the individual measurement occasions of the ith individual. The
pre- and post-knot yi can be expressed as

yij =

{
η0i + η1itij + εij tij ≤ γ(k)

η0i + η1iγ
(k) + η2i(tij − γ(k)) + εij tij > γ(k)

,

where yij and tij are the measurement and measurement occasion of the ith

individual at time j. Additionally, εi is a J × 1 vector of residuals of the ith

individual. Equation (4) further expresses the growth factors as deviations from
their class-specific means. In the equation, µη

(k) is a 3×1 vector of class-specific
growth factor means and ζi is a 3×1 vector of residual deviations from the mean
vector of the ith individual.

To unify pre- and post-knot expressions, we need to reparameterize growth
factors. Earlier studies, for example, Grimm et al. (2016); Harring et al. (2006);
Liu et al. (2019), presented multiple ways to realize this aim. Note that no matter
which approach we follow to reparameterize growth factors, the reparameterized
coefficients are not directly related to the underlying change patterns and need
to be transformed back to be interpretable. In this article, we follow the reparam-
eterized method in Liu et al. (2019) and define the class-specific reparameterized
growth factors as the measurement at the knot, mean of two slopes, and the half
difference of two slopes. Note that the expressions of the repeated outcome yi
using the growth factors in the original and reparameterized frames are equiva-
lent. We also extend the (inverse-)transformation functions and matrices for the
reduced model in Liu et al. (2019), with which we can obtain the original pa-
rameters efficiently for interpretation purposes. Detailed class-specific reparam-
eterizing process and the class-specific (inverse-) transformation are provided in
Appendix 6.2 and Appendix 6.2, respectively.

2.2 Model Estimation

To simplify the model, we assume that class-specific growth factors follow a mul-
tivariate Gaussian distribution, that is, ζi|k ∼ MVN(0,Ψη

(k)). Note that Ψη
(k) is

a 3×3 variance-covariance matrix of class-specific growth factors. We also assume
that individual residuals follow identical and independent normal distributions
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over time in each latent class, that is, εi|k ∼ N(0, θ
(k)
ε I), where I is a J×J iden-

tity matrix. Accordingly, for the ith individual in the kth unobserved group, the

within-class model implied mean vector (µ
(k)
i ) and variance-covariance matrix

(Σ
(k)
i ) of repeated measurements are

µ
(k)
i = Λiµη

(k), (5)

Σ
(k)
i = ΛiΨη

(k)ΛTi + θ(k)ε I. (6)

Step 1 In the first step, we estimate the class-specific parameters and mixing
proportions for the model specified in Equations (1), (2), (3) and (4) without
considering the impact that covariates xi have on the class formation. The pa-
rameters need to be estimated in this step include

Θs1 = {µ(k)
η0 , µ

(k)
η1 , µ

(k)
η2 , γ

(k), ψ
(k)
00 , ψ

(k)
01 , ψ

(k)
02 , ψ

(k)
11 , ψ

(k)
12 , ψ

(k)
22 , θ

(k)
ε , π(2), · · · , π(K)}.

We employ full information maximum likelihood (FIML) technique, which ac-
counts for the potential heterogeneity of individual contributions to the like-
lihood, to estimate Θs1. The log-likelihood function of the model specified in
Equations (1), (2), (3) and (4) without the effect of xi is

log lik(Θs1) =

n∑
i=1

log

( K∑
k=1

π(zi = k)p(yi|zi = k)

)

=

n∑
i=1

log

( K∑
k=1

π(zi = k)p(yi|µ
(k)
i ,Σ

(k)
i )

)
.

(7)

Step 2 In the second step, we examine the associations between the ‘soft clus-
ters’, where each trajectory is assigned with different posterior probabilities, and
the baseline characteristics by fixing the class-specific parameters as their esti-
mates from the first step, that is, the parameters need to be estimated in this

step are those logistic coefficients, Θs2 = {β(k)
0 ,βT (k)} (k = 2, . . . ,K), in Equa-

tion (2). The log-likelihood function in Equation (7) also needs to be modified
as

log lik(Θs2) =

n∑
i=1

log

( K∑
k=1

π(zi = k|xi)p(yi|zi = k)

)

=

n∑
i=1

log

( K∑
k=1

π(zi = k|xi)p(yi|µ̂
(k)
i , Σ̂

(k)

i )

)
.

(8)

We construct the proposed two-step GMM using the R package OpenMx
with the optimizer CSOLNP (Boker et al., 2020; Hunter, 2018; Neale et al.,
2016; Pritikin, Hunter, & Boker, 2015), with which we can fit the proposed
GMM and implement the class-specific inverse-transformation matrices to obtain
coefficients that are directly related to underlying change patterns as shown in
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Appendix 6.2. In the online appendix (https://github.com/Veronica0206/
Dissertation projects), we provide the OpenMx code for the proposed model
as well as a demonstration. For the researchers interested in using Mplus, we
also provide Mplus 8 code for the model in the online appendix.

3 Model Evaluation

We evaluate the proposed model using a Monte Carlo simulation study with
two goals. The first goal is to evaluate the model performance by examining the
relative bias, empirical SE, relative RMSE, and empirical coverage for a nominal
95% confidence interval (CI) of each parameter. Table 1 lists the definitions and
estimates of these performance metrics.

Table 1. Performance Metrics: Definitions and Estimates

Criteria Definition Estimate

Relative Bias Eθ̂(θ̂ − θ)/θ
∑S
s=1(θ̂s − θ)/Sθ

Empirical SE

√
V ar(θ̂)

√∑S
s=1(θ̂s − θ̄)2/(S − 1)

Relative RMSE
√
Eθ̂(θ̂ − θ)2/θ

√∑S
s=1(θ̂s − θ)2/S/θ

Coverage Probability Pr(θ̂low ≤ θ ≤ θ̂upper)
∑S
s=1 I(θ̂low,s ≤ θ ≤ θ̂upper,s)/S

Note. θ: the population value of the parameter of interest; θ̂: the estimate of θ; S: the

number of replications and set as 1, 000 in our simulation study; s = 1, . . . , S: indexes
the replications of the simulation; θ̂s: the estimate of θ from the sth replication; θ̄: the
mean of θ̂s’s across replications; I(): an indicator function

The second goal is to evaluate how well the clustering algorithm performs
to separate the heterogeneous trajectories. To evaluate the clustering effects, we
need to calculate the posterior probabilities for each individual belonging to the
kth unobserved group. The calculation is based on the class-specific estimates and
mixing proportions obtained from the first step and realized by Bayes’ theorem

p(zi = k|yi) =
π(zi = k)p(yi|zi = k)∑K
k=1 π(zi = k)p(yi|zi = k)

.

We then assign each individual to the latent class with the highest posterior
probability to which that observation most likely belongs. If multiple posterior
probabilities equal to the maximum value, we break the tie among competing
components randomly (McLachlan & Peel, 2000). We evaluate the clustering
effects by accuracy and entropy. Since the true membership is available in simu-
lation studies, we are able to calculate accuracy, which is defined as the fraction
of all correctly labeled instances (Bishop, 2006). Entropy, which is given

Entropy = 1 +
1

n log(K)

( n∑
n=1

K∑
k=1

p(zi = k|yi) log p(zi = k|yi)
)
, (9)

https://github.com/Veronica0206/Dissertation_projects
https://github.com/Veronica0206/Dissertation_projects
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is a metric based on the average posterior probabilities (Stegmann & Grimm,
2018). It ranges from 0 to 1, where 0 and 1 suggesting no cluster separation
and complete separation, respectively. It is an indicator of the quality of the
mixture model. In the current study, entropy reflects separation only based on
the trajectories as shown in Equation (9). Earlier studies, for example, Lubke and
Muthén (2007), have demonstrated that entropy is a good indicator of accuracy
when we exclude all covariates from the mixture model. It is our interest to test
the robustness of this recommendation in the context of the growth mixture
model with nonlinear trajectories.

We decided the number of repetitions S = 1, 000 by an empirical approach
proposed by Morris, White, and Crowther (2019) in the simulation design. The
(relative) bias is the most important performance metric in our simulation, so
we want to keep its Monte Carlo standard error3 less than 0.005. We ran a pilot
simulation study and noted that standard errors of all parameters except the
intercept variances were less than 0.15, so we needed at least 900 replications to
ensure the Monte Carlo standard error of bias is as low as we expected. We then
decided to proceed with S = 1, 000 to be more conservative.

3.1 Design of Simulation Study

The simulation study has two parts. As mentioned earlier, we propose the two-
step model with a bilinear spline growth curve with an unknown knot as the
within-class model, assuming that the change-point is roughly similar for all
individuals in each latent class as the knot variance is not the primary interest
of this study. In the first part, we restricted the knot to be identical for all
trajectories in a latent class to evaluate the model performance when being
specified correctly. We are also interested in examining how the proposed model
works when relaxing the restriction. Accordingly, in the second part, by allowing
for the individual difference in the knot, we investigated the robustness of the
proposed model by assessing the model performance in the presence of knots
with the standard deviation set as 0.3.

We list all conditions of simulation studies for Part 1 and Part 2 in Table 2.
All conditions except the knot variance for both parts were set to be the same.
For both parts, we fixed the conditions that are not of the primary interests of the
current study. For example, we considered ten scaled and equally-spaced waves
since Liu et al. (2019) has shown that the bilinear growth model had decent per-
formance concerning the performance measures to a longitudinal data set with
ten repeated measures and fewer number of measurements only affected model
performance slightly. Similar to Liu et al. (2019), we allowed the time-window
of individual measurement occasions ranging from −0.25 and +0.25, which was
viewed as a ‘medium’ deviation, as an existing simulation study (Coulombe et
al., 2015), around each wave. We also fixed the variance-covariance matrix of
the class-specific growth factors that usually change with the time scale and
the measurement scale in practice; accordingly, we kept the index of dispersion

3 Monte Carlo SE(Bias) =

√
V ar(θ̂)/S (Morris et al., 2019).
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(σ2/µ) of each growth factor at the one-tenth scale, guided by Bauer and Curran
(2003); Kohli (2011); Kohli et al. (2015). Further, the growth factors were set to
be positively correlated to a moderate degree (ρ = 0.3).

For both parts, the primary aim was to investigate how the separation be-
tween latent classes, the unbalanced class mixing proportion, and the trajectory
shape affected the model performance. Utilizing a model-based clustering al-
gorithm, we are usually interested in examining how well the model can detect
heterogeneity in samples and estimate parameters of interest in each latent class.
Intuitively, the model should perform better under those conditions with a larger
separation between latent classes. We wanted to test this hypothesis. In the sim-
ulation design, we had two metrics to gauge the separation between clusters: the
difference between the knot locations and the Mahalanobis distance (MD) of the
three growth factors of latent classes. We set 1, 1.5 and 2 as a small, medium,
and large difference between the knot locations. We chose 1 as the level of small
difference to follow the rationale in Kohli et al. (2015) and considered the other
two levels to investigate whether the more widely spaced knots improve the
model performance. We considered two levels of MD, 0.86 (i.e., small distance)
and 1.72 (i.e., large distance), for class separation. Note that both the small
and large distance in the current simulation design was smaller than the corre-
sponding level in Kohli et al. (2015) because we wanted to examine the proposed
model under more challenging conditions in terms of cluster separation.

We chose two levels of mixing proportion, 1:1 and 1:2, for the conditions with
two latent classes and three levels of mixing proportion, 1:1:1, 1:1:2 and 1:2:2, for
the scenarios with three clusters. We selected these levels because we wanted to
evaluate how the challenging conditions (i.e., the unbalanced allocation) affect
performance measures and clustering effects. We also examined several common
change patterns shown in Table 2 (Scenario 1, 2 and 3). We changed the knot
locations and one growth factor under each scenario but fixed the other two
growth factors to satisfy the specified MD. We considered θ = 1 or θ = 2 as two
levels of homogeneous residual variances across latent classes to see the effect of
the measurement precision, and we considered two levels of sample size.

3.2 Label Switching

All mixture models suffer from the label switching issue: inconsistent assign-
ments of membership for multiple replications in simulation studies. The label
switching does not hurt the model estimation in the frequentist framework since
the likelihood is invariant to permutation of cluster labels; however, the esti-
mates from the first latent class may be mislabeled as such from other latent
classes (Class 2 or Class 3 in our case) (Tueller, Drotar, & Lubke, 2011). In this
study, we utilized the column maxima switched label detection algorithm devel-
oped by Tueller et al. (2011) to check whether the labels were switched; and if
it occurred, the final estimates were relabeled in the correct order before model
evaluation.
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Table 2. Simulation Design for the Proposed Two-step Growth Mixture Model

Fixed Conditions

Variables Conditions

Variance of Intercept ψ
(k)
00 = 25

Variance of Slopes ψ
(k)
11 = ψ

(k)
22 = 1

Correlations of GFs ρ(k) = 0.3

Time (t) 10 scaled and equally spaced tj(j = 0, · · · , J − 1, J = 10)

Individual t tij ∼ U(tj −∆, tj +∆)(j = 0, · · · , J − 1;∆ = 0.25)

Manipulated Conditions

Variables 2 latent classes 3 latent classes

Sample Size n = 500 or 1000 n = 500 or 1000

Variance of Knots
ψ

(k)
γγ = 0.00(k = 1, 2) ψ

(k)
γγ = 0.00(k = 1, 2, 3)

ψ
(k)
γγ = 0.09(k = 1, 2) ψ

(k)
γγ = 0.09(k = 1, 2, 3)

Ratio of Proportions
π(1) : π(2) = 1 : 1 π(1) : π(2) : π(3) = 1 : 1 : 1

π(1) : π(2) = 1 : 2 π(1) : π(2) : π(3) = 1 : 1 : 2

π(1) : π(2) : π(3) = 1 : 2 : 2

Residual Variance θ
(k)
ε = 1 or 2 θ

(k)
ε = 1 or 2

Locations of knots
µγ = (4.00, 5.00) µγ = (3.50, 4.50, 5.50)
µγ = (3.75, 5.25) µγ = (3.00, 4.50, 6.00)
µγ = (3.50, 5.50)

Mahalanobis distance d = 0.86 or 1.72 d = 0.86

Scenario 1: Different means of initial status and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Slope 1’s µ
(k)
η1 = −5 (k = 1, 2) µ

(k)
η1 = −5 (k = 1, 2, 3)

Means of Slope 2’s µ
(k)
η2 = −2.6 (k = 1, 2) µ

(k)
η2 = −2.6 (k = 1, 2, 3)

Means of Intercepts
µη0 = (98, 102), (d = 0.86) µη0 = (96, 100, 104)
µη0 = (96, 104), (d = 1.72)

Scenario 2: Different means of slope 1 and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Intercepts µ
(k)
η0 = 100 (k = 1, 2) µ

(k)
η0 = 100 (k = 1, 2, 3)

Means of Slope 2’s µ
(k)
η2 = −2 (k = 1, 2) µ

(k)
η2 = −2 (k = 1, 2, 3)

Means of Slope 1’s
µη1 = (−4.4,−3.6), (d = 0.86) µη1 = (−5.2,−4.4,−3.6)
µη1 = (−5.2,−3.6), (d = 1.72)

Scenario 3: Different means of slope 2 and (means of) knot locations

Variables 2 latent classes 3 latent classes

Means of Intercepts µ
(k)
η0 = 100 (k = 1, 2) µ

(k)
η0 = 100 (k = 1, 2, 3)

Means of Slope 1’s µ
(k)
η1 = −5 (k = 1, 2) µ

(k)
η1 = −5 (k = 1, 2, 3)

Means of Slope 2’s
µη2 = (−2.6,−3.4), (d = 0.86) µη2 = (−1.8,−2.6,−3.4)
µη2 = (−1.8,−3.4), (d = 1.72)
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3.3 Data Generation and Simulation Step

For each condition listed in Table 2, we used two-step data generation to obtain
a component label zi for each individual and then generated data for each com-
ponent. The general steps of the simulation for the proposed two-step model in
the framework of individual measurement occasions were carried out as follows:

1. Create component label zi for the ith individual:
(a) Generate data matrix of exogenous variables,
(b) Calculate the probability vector for each entry with a set of specified

regression coefficients using a multinomial logit link and assign a com-
ponent label zi to each observation,

2. Generate data for growth factors and a knot of each latent class using the
R package MASS (Venables & Ripley, 2002),

3. Generate the time structure with J scaled and equally-spaced waves tj and
obtain individual measurement occasions: tij ∼ U(tj−∆, tj+∆) by allowing
disturbances around each wave,

4. Calculate factor loadings, which are functions of ITPs and the knot, for each
individual,

5. Calculate values of the repeated measurements based on the class-specific
growth factors, corresponding factor loadings, and residual variances,

6. Apply the proposed model to the generated data set, estimate the parame-
ters, and construct corresponding 95% Wald CIs, as well as calculate poste-
rior probabilities that each individual belongs to each of the multiple latent
classes, followed by accuracy and entropy,

7. Repeat the above steps until after obtaining 1, 000 convergent solutions to
calculate the mean accuracy and mean entropy, perform the column maxima
switched label detection algorithm, relabel the clusters if labels had been
switched, and calculate the relative bias, empirical SE, relative RMSE and
coverage probability of each parameter under investigation.

4 Result

4.1 Model Convergence

In this section, we first examine the convergence4 rate of two steps for each
condition. Based on our simulation studies, the convergence rate of the proposed
two-step model achieved around 90% for all conditions, and the majority of non-
convergence cases occurred in the first step. To elaborate, for the conditions with
two latent classes, 96 out of total 288 conditions reported 100% convergence rate,
while for the conditions with three latent classes, 12 out of total 144 conditions
reported 100% convergence rate. Among all conditions with two latent classes,
the worst scenario regarding the convergence rate was 121/1121, indicating that

4 In our project, convergence is defined as to reach OpenMx status code 0, which
indicates a successful optimization, until up to 10 attempts with different collections
of starting values (Neale et al., 2016).
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we need to replicate the procedure described in Section 3.3 1, 121 times to have
1, 000 replications with a convergent solution. Across all scenarios with three
latent classes, the worst condition was 134/11345.

4.2 Performance Measures

Performance Measures of the First Part of Simulation Study In this
section, we evaluate the performance measures of the proposed model across the
conditions with fixed knots (i.e., knots without considering variability), under
which the proposed model was specified correctly. In the result section, we named
the latent classes from left to right as Class 1 (the left cluster) and Class 2
(the right cluster) and called them as Class 1 (the left cluster), Class 2 (the
middle cluster) and Class 3 (the right cluster) for the model with two and three
pre-specified clusters, respectively. We first calculated each performance metric
across 1, 000 replications for each parameter of interest under each condition
with two latent classes and fixed knots. We then summarized each metric across
all conditions as the corresponding median and range.

Tables 3 and 4 present the median (range) of the relative bias and empirical
SE for each parameter of interest of the two-step model, respectively. We ob-
served that the proposed model generated unbiased point estimates with small
empirical SEs when being specified correctly in the first step. Specifically, the
magnitude of the relative biases of the growth factor means and growth factor
variances across all conditions were under 0.016 and 0.038, respectively. In the
second step, the median of relative bias of the logistic coefficients was around
−0.010, although they may be underestimated under conditions with the small
sample size (i.e., n = 500), the small difference in knot locations (i.e., the dif-
ference is 1) and less precise measurements (i.e., θε = 2). From Table 4, the
magnitude of empirical SE of all parameters except intercept means and vari-
ances were under 0.52 (i.e., the variances of estimates were under 0.25), though
the median value of empirical SE of µη0 and ψ00 were around 0.40 and 2.50,
respectively.

Table 5 list the median (range) of relative RMSE of each parameter, which
assesses the point estimates holistically. From the table, the model was capable
of estimating the parameters accurately in the first step. Under the conditions
with two latent classes and fixed knots, the magnitude of the relative RMSEs of
the growth factor means and variances were under 0.081 and 0.296, respectively.
The relative RMSE of the logistic coefficients was relatively larger under some
conditions due to their larger relative biases.

Table 6 shows the median (range) of the coverage probability for each param-
eter of interest of the two-step model with two latent classes under conditions
with fixed knots. Overall, the proposed model performed well regarding empirical
coverage under the conditions with the relatively large separation between two

5 Conditions of these worst cases were the small sample size (n = 500), unbalanced
allocation rate, small residual variance, small distance between the latent classes,
and small or medium difference in the knot locations.
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Table 3. Median (Range) of the Relative Bias over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Parameters Latent Class 1 Latent Class 2

Mean

µη0 0.000 (0.000, 0.001) 0.000 (−0.001, 0.000)
µη1 0.000 (−0.008, 0.003) 0.001 (−0.001, 0.012)
µη2 0.000 (−0.009, 0.016) −0.002 (−0.012, 0.003)
µγ 0.000 (−0.001, 0.002) 0.000 (−0.001, 0.002)

Variance

ψ00 −0.002 (−0.014, 0.006) −0.005 (−0.031, 0.005)
ψ11 −0.005 (−0.028, 0.028) −0.007 (−0.038, 0.003)
ψ22 −0.005 (−0.026, 0.031) −0.007 (−0.037, 0.005)

Path Coef.

β0 — −0.009 (NA, NA)
β1 — −0.012 (−0.225, 0.018)
β2 — −0.010 (−0.218, 0.015)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
NA: Note that for the conditions with balanced allocation, the population value of
β0 = 0 and its relative bias goes infinity. The bias median (range) of β0 is −0.002
(−0.070, 0.017).

Table 4. Median (Range) of the Empirical SE over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Parameters Latent Class 1 Latent Class 2

Mean

µη0 0.422 (0.242, 0.933) 0.336 (0.198, 0.709)
µη1 0.101 (0.051, 0.276) 0.073 (0.042, 0.175)
µη2 0.100 (0.054, 0.276) 0.072 (0.042, 0.160)
µγ 0.039 (0.017, 0.110) 0.046 (0.020, 0.134)

Variance

ψ00 2.662 (1.692, 5.073) 2.173 (1.423, 3.942)
ψ11 0.124 (0.073, 0.296) 0.093 (0.059, 0.168)
ψ22 0.126 (0.072, 0.286) 0.095 (0.062, 0.178)

Path Coef.

β0 — 0.168 (0.083, 0.516)
β1 — 0.120 (0.080, 0.200)
β2 — 0.124 (0.082, 0.198)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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Table 5. Median (Range) of the Relative RMSE over 1, 000 Replications of Parameters
of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 0.004 (0.002, 0.009) 0.003 (0.002, 0.007)
µη1 −0.021 (−0.063, −0.010) −0.016 (−0.045, −0.009)
µη2 −0.045 (−0.112, −0.020) −0.028 (−0.081, −0.012)
µγ 0.010 (0.005, 0.028) 0.009 (0.004, 0.027)

Variance

ψ00 0.106 (0.068, 0.203) 0.087 (0.057, 0.161)
ψ11 0.124 (0.074, 0.296) 0.093 (0.060, 0.172)
ψ22 0.126 (0.072, 0.288) 0.095 (0.062, 0.182)

Path Coef.

β0 — NA (0.121, NA)
β1 — 0.297 (0.197, 0.542)
β2 — 0.234 (0.155, 0.431)

Note. Para.: Parameters. —: when fitting the proposed model, we set the first latent

class as the reference group; accordingly, the coefficients of that class do not exist.
NA: Note that for the conditions with balanced allocation, the population value of
β0 = 0 and its relative RMSE goes infinity. The RMSE median (range) of β0 is 0.168
(0.083, 0.521).

latent classes and the higher measurement precision. Specifically, coverage prob-
ability of all parameters except knots and intercept coefficient β0 can achieve at
least 90% across all conditions with a medium or large separation between the
knot locations (i.e., 1.5 or 2) and small residual variance (i.e., θε = 1).

Additionally, when being specified correctly, the model with three latent
classes, similar to that with two clusters, performed well in terms of performance
measures, though we noticed that the empirical SE of parameters in the middle
cluster were slightly larger than those in the other two groups.

Performance Measures of the Second Part of Simulation Study In
this section, we assess the robustness of the proposed model by examining the
performance measures in the presence of random knots (i.e., the knots with the
standard deviation set as 0.3), under which the model was underspecified. We
noted that the relative biases increased slightly and that the empirical SE did not
change meaningfully when the proposed model was misspecified, which decreased
the performance of relative RMSE and coverage probability. For those conditions
under which the model was underspecified, the summary of the relative bias and
empirical SE were provided in 6.2.

4.3 Accuracy and Entropy

In this section, we evaluate the clustering effects across all conditions that we
considered in the simulation design. We first calculated mean values of accuracy
and entropy across 1, 000 Monte Carlo replications for each condition. Of all
the conditions we investigated, the mean entropy ranges from 0.3 to 0.8, while
the mean accuracy ranges from 0.55 to 0.95. Factors such as the separation
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Table 6. Median (Range) of the Coverage Probabilities over 1, 000 Replications of
Parameters of Interest under the Conditions with Fixed Knots and 2 Latent Classes

Small Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .937 (.913, .961) .915 (.866, .950) .942 (.920, .971) .919 (.867, .952)
µη1 .919 (.861, .948) .874 (.766, .942) .936 (.901, .962) .904 (.819, .941)
µη2 .926 (.849, .949) .893 (.747, .940) .938 (.888, .956) .913 (.855, .949)
µγ .629 (.493, .724) .476 (.290, .623) .522 (.406, .685) .355 (.227, .541)

ψ00 .939 (.916, .954) .932 (.896, .950) .939 (.927, .957) .925 (.888, .963)
ψ11 .933 (.878, .950) .921 (.831, .957) .935 (.911, .966) .927 (.877, .947)
ψ22 .929 (.862, .950) .904 (.809, .935) .938 (.902, .961) .930 (.888, .957)

β0 — — .789 (.665, .854) .643 (.502, .739)
β1 — — .950 (.935, .960) .936 (.891, .957)
β2 — — .944 (.930, .959) .933 (.873, .958)

Medium Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .944 (.918, .959) .929 (.899, .951) .943 (.923, .957) .932 (.905, .955)
µη1 .938 (.897, .957) .922 (.833, .951) .947 (.917, .959) .932 (.884, .959)
µη2 .935 (.910, .948) .913 (.835, .947) .940 (.913, .959) .934 (.883, .954)
µγ .814 (.786, .854) .740 (.684, .800) .767 (.721, .833) .682 (.626, .780)

ψ00 .940 (.925, .953) .935 (.912, .955) .944 (.927, .953) .939 (.901, .950)
ψ11 .939 (.905, .952) .929 (.853, .953) .939 (.914, .961) .937 (.909, .952)
ψ22 .930 (.906, .958) .920 (.878, .951) .939 (.917, .962) .934 (.889, .951)

β0 — — .858 (.782, .905) .770 (.658, .839)
β1 — — .954 (.937, .961) .944 (.921, .965)
β2 — — .949 (.934, .964) .942 (.923, .961)

Large Separation between the Knots Locations

Latent Class 1 Latent Class 2

Small Residuals Large Residuals Small Residuals Large Residuals

µη0 .946 (.931, .955) .938 (.921, .965) .946 (.932, .959) .940 (.921, .967)
µη1 .938 (.921, .959) .936 (.875, .953) .947 (.926, .958) .937 (.893, .961)
µη2 .939 (.907, .956) .928 (.876, .951) .949 (.937, .964) .940 (.916, .955)
µγ .952 (.935, .970) .946 (.935, .961) .950 (.933, .965) .946 (.932, .960)

ψ00 .946 (.929, .957) .944 (.916, .963) .943 (.916, .958) .942 (.921, .959)
ψ11 .938 (.917, .952) .934 (.859, .951) .942 (.918, .955) .938 (.902, .956)
ψ22 .935 (.910, .950) .928 (.857, .951) .946 (.925, .959) .938 (.919, .953)

β0 — — .892 (.825, .924) .805 (.703, .865)
β1 — — .950 (.927, .958) .949 (.937, .960)
β2 — — .950 (.934, .964) .946 (.924, .958)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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between two latent classes and the precision of measurements were the primary
determinants of entropy and accuracy.
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Figure 1. Accuracy vs Entropy of the Proposed Mixture Model (Step 1) with 2-
Clusters and Small Mahalanobis Distance

Figure 1 depicts the mean accuracy against the mean entropy for each condi-
tion with two latent classes, the small Mahalanobis distance, and change patterns
of Scenario 1 listed in Table 2. In the plot, we colored the conditions with the
smaller and the larger residual variances black and grey, respectively. Squares,
triangles, and circles are for the small, medium, and large differences between
the locations of the knots. Additionally, we set solid and hollow shapes for the
proportions 1:1 and 1:2, respectively. From the figure, we observed that both
entropy and accuracy increased when the separation between two latent classes
increased and as the residual variances were small. Additionally, unbalanced al-
location tended to yield relatively larger accuracy and entropy. We also noticed
that the scenario of change patterns only affected entropy and accuracy slightly,
while other factors such as the knot standard deviation and the sample size did
not have meaningful impacts on entropy and accuracy. We observed the same
patterns between the mean accuracy and the mean entropy of conditions with
three latent classes.

5 Application

In this section, we demonstrate how to fit the proposed model to separate non-
linear trajectories and associate the ‘soft clusters’ to the baseline characteristics
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using the motivating data. We extracted a random subsample (n = 500) from the
Early Childhood Longitudinal Study Kindergarten Cohort: 2010-11 (ECLS-K:
2011) with complete records of repeated mathematics IRT scaled scores, de-
mographic information (sex, race, and age in months at each wave), baseline
school information (school location and baseline school type), baseline social-
economic status (family income and the highest education level between parents),
baseline teacher-reported social skills (including interpersonal skills, self-control
ability, internalizing problem, externalizing problem), baseline teacher-reported
approach to learning, and baseline teacher-reported children behavior question
(including inhibitory control and attentional focus)6.

ECLS-K: 2011 is a nationally representative longitudinal sample of US chil-
dren enrolled in about 900 kindergarten programs beginning with 2010 − 2011
school year, where children’s mathematics ability was evaluated in nine waves:
fall and spring of kindergarten (2010 − 2011), first (2011 − 2012) and second
(2012 − 2013) grade, respectively as well as spring of 3rd (2014), 4th (2015)
and 5th (2016), respectively. Only about 30% students were assessed in the fall
of 2011 and 2012 (Lê, Norman, Tourangeau, Brick, & Mulligan, 2011). In the
analysis, we used children’s age (in months) rather than their grade-in-school to
obtain the time structure with individual measurement occasions. In the subset
data, 52% of students were boys, and 48% of students were girls. Additionally,
50% of students were White, 4.8% were Black, 30.4% were Hispanic, 0.2% were
Asian, and 14.6% were others. We dichotomized the variable race to be White
(50%) and others (50%) for this analysis. At the beginning of the study, 87%
and 13% students were from public and private schools, respectively. The covari-
ates including school location (ranged between 1 and 4), family income (ranged
between 1 and 18) and the highest parents’ education (ranged between 0 and 8)
were treated as a continuous variables, and the corresponding mean (SD) was
2.11 (1.12), 11.99 (5.34) and 5.32 (1.97), respectively.

Step 1

In the first step, we first fit a latent growth curve model with a linear-linear
piecewise functional form and three GMMs with two-, three- and four-class and
provided the obtained estimated likelihood, information criteria (AIC and BIC),
residual of each latent class in Table 7. All four models converged. As introduced
earlier, the BIC is a compelling information criterion for the enumeration process
as it penalizes model complexity and adjusts for sample size (Nylund et al., 2007).
The four fits led to BIC values of 31728.23, 31531.60, 31448.99, and 31478.35,
respectively, which led to the selection of the GMM with three latent classes.

Table 8 presents the estimates of growth factors from which we obtained
the model implied trajectory of each latent group, as shown in Figure 2. The
estimated proportions in Class 1, 2 and 3 were 29.6%, 47.8% and 22.6%, re-
spectively. On average, students in Class 1 had the lowest levels of mathematics

6 The total sample size of ECLS-K: 2011 n = 18174. The number of entries after
removing records with missing values (i.e., rows with any of NaN/-9/-8/-7/-1) is
n = 1853.
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Table 7. Summary of Model Fit Information For the Bilinear Spline Growth Models
with Different # of Latent Classes

1-Class 2-Class 3-Class 4-Class

-2LL 31659.87 31388.67 31231.48 31186.26
AIC 31681.87 31434.67 31301.48 31280.26
BIC 31728.23 31531.6 31448.99 31478.35
Residual 1 35.6 28.57 28.47 26.78
Residual 2 - 35.02 33.89 32.51
Residual 3 - - 32.03 33.36
Residual 4 - - - 26.63

Note. − indicates that the metric was not available for the model.

achievement throughout the entire duration (the fixed effects of the baseline and
two slopes were 24.133, 1.718 per month, and 0.841 per month, respectively).
On average, students in Class 2 had a similar initial score and slope for the
first stage but relatively lower slope in the second stage (the fixed effects of the
baseline and two slopes were 24.498, 1.730 per month, and 0.588 per month, re-
spectively) compared to the students in the Class 1. Students in Class 3 had the
best mathematics performance on average (the fixed effects of the baseline and
two slopes were 36.053, 2.123 per month, and 0.605 per month, respectively).
For all three classes, post-knot development in mathematics skills slowed sub-
stantially, yet the change to the slower growth rate occurred earlier for Class 1
and 3 (around 8-year old: 91 and 97 months, respectively) than Class 2 (around
9-year old, 110 months). Additionally, for each latent class, the estimates of the
intercept variance and first slope variance were statistically significant, indicat-
ing that each student had a ‘personal’ intercept and pre-knot slope, and then a
‘personal’ trajectory of the development in mathematics achievement.

Step 2

Table 9 summarizes the estimates of the second step of the GMM to associate
‘soft clusters’ of mathematics achievement trajectories to individual-level co-
variates. From the table, we noticed that the impacts of some covariates, such
as baseline socioeconomic status and teacher-reported skills, may differ with or
without other covariates. For example, higher family income, higher parents’
education, higher-rated attentional focus, and inhibitory control increased the
likelihood of being in Class 2 or Class 3 in univariable analyses, while these four
baseline characteristics only associated with Class 3 in multivariable analyses. It
is reasonable that the effect sizes of the Class 3 were larger than those of the Class
2, given its more evident difference from the reference group, as shown in Table
8 and Figure 2. However, it is still too rush to neglect that students from families
with higher socioeconomic status and/or higher-rated behavior questions were
more likely to be in Class 2 at the significant level of 0.05 in an exploratory
study. Another possible explanation for this phenomenon is multicollinearity.
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Table 8. Estimates of the Proposed Mixture Model with 3 Latent Classes (Step 1)

Estimate (SE) P value

Class 1

Mean

Intercept1 24.133 (1.250) < 0.0001∗

Slope 1 1.718 (0.052) < 0.0001∗

Slope 2 0.841 (0.031) < 0.0001∗

Knot 90.788 (0.733) < 0.0001∗

Variance
Intercept 79.696 (17.419) < 0.0001∗

Slope 1 0.104 (0.023) < 0.0001∗

Slope 2 0.049 (0.011) < 0.0001∗

Class 2

Mean

Intercept1 24.498 (0.813) < 0.0001∗

Slope 1 1.730 (0.024) < 0.0001∗

Slope 2 0.588 (0.032) < 0.0001∗

Knot 109.653 (0.634) < 0.0001∗

Variance
Intercept 77.302 (11.973) < 0.0001∗

Slope 1 0.026 (0.007) 0.0002∗

Slope 2 0.012 (0.011) 0.2753

Class 3

Mean

Intercept1 36.053 (1.729) < 0.0001∗

Slope 1 2.123 (0.035) < 0.0001∗

Slope 2 0.605 (0.027) < 0.0001∗

Knot 97.610 (0.068) < 0.0001∗

Variance Intercept 211.198 (36.057) < 0.0001∗

Slope 1 0.065 (0.017) 0.0001∗

Slope 2 −0.002 (0.006) 0.7389

Note. 1Intercept was defined as mathematics IRT scores at 60-month old in this case.
∗ indicates statistical significance at 0.05 level.
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Table 9. Odds Ratio (OR) & 95% Confidence Interval (CI) of Individual-level Predic-
tor of Latent Class in Mathematics Achievement(Reference group: Class 1)

Class 2

Predictor Uni-variable Multi-variable

OR 95% CI OR 95% CI

Sex(0−Boy; 1−Girl) 0.435 (0.254, 0.745)∗ 0.332 (0.174, 0.633)∗

Race(0−White; 1−Other) 0.764 (0.455, 1.281) 1.249 (0.624, 2.498)
School Location 1.407 (1.093, 1.811)∗ 1.357 (0.981, 1.877)
Parents’ Highest Education 1.208 (1.051, 1.388)∗ 1.155 (0.933, 1.431)
Income 1.074 (1.023, 1.128)∗ 1.067 (0.987, 1.154)
School Type (0−Public;
1−Private)

0.573 (0.250, 1.317) 0.442 (0.149, 1.313)

Approach to Learning 1.305 (0.883, 1.929) 0.957 (0.384, 2.389)
Self-control 1.146 (0.764, 1.718) 0.663 (0.272, 1.616)
Interpersonal Skills 1.479 (0.959, 2.282) 1.276 (0.513, 3.175)
External Prob Behavior 0.858 (0.559, 1.319) 1.391 (0.571, 3.386)
Internal Prob Behavior 1.139 (0.658, 1.972) 1.190 (0.589, 2.406)
Attentional Focus 1.251 (1.035, 1.511)∗ 1.139 (0.764, 1.698)
Inhibitory Control 1.238 (1.007, 1.520)∗ 1.557 (0.915, 2.649)

Class 3

Predictor Uni-variable Multi-variable

OR 95% CI OR 95% CI

Sex(0−Boy; 1−Girl) 0.379 (0.205, 0.700)∗ 0.212 (0.098, 0.459)∗

Race(0−White; 1−Other) 0.397 (0.219, 0.721)∗ 0.943 (0.429, 2.073)
School Location 1.266 (0.957, 1.676) 1.211 (0.835, 1.755)
Parents’ Highest Education 1.713 (1.418, 2.068)∗ 1.345 (1.043, 1.734)∗

Income 1.241 (1.155, 1.334)∗ 1.195 (1.083, 1.318)∗

School Type (0−Public;
1−Private)

1.437 (0.661, 3.124) 0.665 (0.234, 1.892)

Approach to Learning 2.624 (1.590, 4.332)∗ 5.363 (1.731, 16.612)∗

Self-control 1.436 (0.903, 2.284) 0.414 (0.136, 1.265)
Interpersonal Skills 1.740 (1.057, 2.862)∗ 0.771 (0.269, 2.209)
External Prob Behavior 0.761 (0.451, 1.283) 1.565 (0.561, 4.367)
Internal Prob Behavior 0.787 (0.405, 1.532) 1.170 (0.488, 2.808)
Attentional Focus 1.601 (1.253, 2.045)∗ 1.095 (0.671, 1.787)∗

Inhibitory Control 1.439 (1.116, 1.855)∗ 1.324 (0.720, 2.434)∗

Note. ∗ indicates 95% confidence interval excluded 1.
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Figure 2. Three Latent Classes: Model Implied Trajectories and Smooth Lines of Ob-
served Mathematics IRT Scores

Figure 3 visualizes the correlation matrix of all baseline characteristics, from
which we can see that two socioeconomic variables, family income and par-
ents’ highest education, were highly correlated (ρ = 0.66). Additionally, teacher-
rated baseline abilities were highly correlated; for example, the correlation of ap-
proach to learning with self-control, interpersonal ability, attentional focus, and
inhibitory control was 0.68, 0.72, 0.79 and 0.79, respectively. We then conducted
the exploratory factor analysis to address this collinearity issue for socioeconomic
variables and teacher-reported abilities.

The exploratory factor analysis was conducted using the R function factanal
in the stats package (R Core Team, 2020) with 2 specified factors as suggested
by the eigenvalues greater than 1 (EVG1) component retention criterion, scree
test (Cattell, 1966; Cattell & Jaspers, 1967), and parallel analysis (Horn, 1965;
Humphreys & Ilgen, 1969; Humphreys & Montanelli, 1975). We employed the
‘varimax’ option to get a type of orthogonal rotation (Kaiser, 1958). By using
Bartlett’s weighted least-squares methods, we obtained the factor scores. Table
10 summarizes the results from the EFA. The first factor differentiates between
teacher-rated abilities and teacher-reported problems; the second factor can be
interpreted as general socioeconomic status. We then re-ran the second step with
the two factors as well as demographic information and school information.

Table 11 summarizes the estimates obtained from the second step with fac-
tor scores, demographic information, and school information. From the table,
we observed that boys with higher values of the first factor scores, and higher
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Table 10. Exploratory Factor Analysis of Socioeconomic Variables and Teacher-
reported Abilities

Factor Loadings

Baseline Characteristics Factor 1 Factor 2

Parents’ Highest Education 0.10 0.76
Family Income 0.03 0.86
Approach to Learning 0.90 0.04
Self-control 0.77 0.08
Interpersonal Skills 0.76 0.05
External Prob Behavior −0.72 0.00
Internal Prob Behavior −0.24 −0.07
Attentional Focus 0.83 0.07
Inhibitory Control 0.89 0.01

Explained Variance

Factor 1 Factor 2

SS Loadings 4.04 1.34
Proportion Variance 0.45 0.15
Cumulative Variance 0.45 0.60

values of the second factor scores were more likely to be in Class 27 or Class 38.
It suggests that both socioeconomic variables and teacher-rated abilities were
positively associated with mathematics performance, while externalizing/inter-
nalizing problems were negative associated with mathematics achievement.

Table 11. Odds Ratio (OR) & 95% Confidence Interval (CI) of Factor Scores, Demo-
graphic Information and School Information of Latent Class in Mathematics Achieve-
ment (Reference group: Class 1)

Predictor Class 2 Class 3

OR 95% CI OR 95% CI
Sex(0−Boy; 1−Girl) 0.345 (0.183, 0.651)∗ 0.234 (0.111, 0.494)∗

Race(0−White; 1−Other) 1.221 (0.638, 2.339) 1.021 (0.486, 2.145)
School Type (0−Public;
1−Private)

0.439 (0.149, 1.291) 0.709 (0.244, 2.056)

School Location 1.333 (0.995, 1.786) 1.133 (0.806, 1.593)
Factor 1 1.454 (1.090, 1.939)∗ 2.006 (1.408, 2.858)∗

Factor 2 1.656 (1.226, 2.235)∗ 3.410 (2.258, 5.148)∗

Note. ∗ indicates 95% confidence interval excluded 1.

7 OR (95% CI) for sex, factor score 1 and factor score 2 was 0.345 (0.183, 0.651), 1.454
(1.090, 1.939) and 1.656 (1.226, 2.235), respectively.

8 OR (95% CI) for sex, factor score 1 and factor score 2 was 0.234 (0.111, 0.494), 2.006
(1.408, 2.858) and 3.410 (2.258, 5.148), respectively.
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6 Discussion

This article extends Bakk and Kuha (2017) study to conduct a stepwise anal-
ysis to investigate the heterogeneity in nonlinear trajectories. We fit a growth
mixture model with a bilinear spline functional form to describe the underlying
change pattern of nonlinear trajectories in the first step. In the second step, we
investigated the associations between the ‘soft’ clusters and baseline character-
istics. Although this stepwise method follows the recommended approach to fit
a FMM model (i.e., separate the estimation of the class-specific parameters and
that of the logistic coefficients), it is not our aim to show that this stepwise
approach is universally preferred. Based on our understanding, this approach is
more suitable for an exploratory study where empirical researchers only have
vague assumptions in terms of sample heterogeneity and its possible causes.

On the one hand, the two-step model can save computational budget as we
only need to refit the second-step model rather than the whole model when
adding or removing covariates. On the other hand, our simulation study showed
that the proposed model works well in terms of performance measures and accu-
racy, especially under preferable conditions, such as well-separated latent classes
and precise measurements. This stepwise approach can also be utilized to analyze
any other types of FMMs in the SEM framework to explore sample heterogeneity.

6.1 Methodological Consideration

Although this stepwise model can expedite the exploratory process, it is still
challenging to decide which covariates should be added in the mixture model to
inform the class formation. An additional challenge lies in that, in the psycho-
logical and behavioral research where the SEM framework is widely used, the
candidate pool of covariates is huge, or some variables are highly correlated (i.e.,
collinearity issue), as shown in the application.

In the statistical and machine learning (ML) literature, multiple approaches
have been proposed to reduce the number of covariates. These methods include
greedy search, regularization to select covariates based on their corresponding
coefficients, principal component analysis (PCA) to transform all features to
space with fewer dimensions, and tree-based models (such as regression and
classification trees, boosting, and bagging). In the SEM framework, the ma-
jority of counterparts of the above models have been proposed. For example,
Marcoulides and Drezner (2003); Marcoulides, Drezner, and Schumacker (1998)
proposed to conduct a heuristic specification search algorithm to identify an op-
timal set of models; Jacobucci, Grimm, and McArdle (2016); Scharf and Nestler
(2019); Sun, Chen, Liu, Ying, and Xin (2016), demonstrated how to regularize
parameters in the SEM framework to reduce the complexity of the model by se-
lecting or removing paths (i.e., variables). Additionally, by applying a tree-based
model Brandmaier, von Oertzen, McArdle, and Lindenberger (2013), Jacobucci,
Grimm, and McArdle (2017) captured the heterogeneity in trajectories with re-
spect to baseline covariates, where the FMM was compared with the tree-based
model in terms of membership components and result interpretation.
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This article proposes to employ the EFA to reduce the dimensions of covari-
ates and address the multicollinearity issue. In this application, we applied the
EFA in a process termed as ‘feature engineering’ in the ML literature, where re-
searchers employ the PCA technique to reduce the covariate space and address
the multicollinearity issue conventionally, as the interpretation of covariate co-
efficients is out of the primary interest in the ML literature. In this article, we
decided to use the EFA rather than the PCA for two reasons. First, empirical
researchers using the SEM framework are more familiar with the EFA as the idea
behind it is very similar to another model in the SEM framework, the confirma-
tory factor analysis (CFA). More importantly, the factors (i.e., latent variables)
obtained from the EFA are interpretable so that the estimated coefficients from
the second step are interpretable, and we then gain valuable insights from an
exploratory study. For example, in the application, we concluded that a student
with a higher value of the difference between teacher-rated abilities and teacher-
reported problems and/or from a family with higher socioeconomic status was
more likely to achieve higher mathematics scores (i.e., in Class 2 and Class 3).

Although it is not our aim to comprehensively investigate the EFA, we still
want to add two notes about factor retention criteria and factor rotation to
empirical researchers. Following Fabrigar, Wegener, MacCallum, and Strahan
(1999), we used multiple criteria in the application, including the EVG1 rule,
scree test, and parallel analysis to decide the number of factors; fortunately, all
these criteria gave the same decision. Patil, Singh, Mishra, and Todd Donavan
(2008) also suggested conducting a subsequent CFA to evaluate the measure-
ment properties of the factors identified by the EFA (if the number of factors is
different from multiple criteria).

Additionally, several analytic rotation techniques have been developed for
the EFA, with the most fundamental distinction lying in orthogonal and oblique
rotation. Orthogonal rotations constrain factors to be uncorrelated, and the pro-
cedure, varimax, which we used in the application, is generally regarded as the
best one and the most widely used orthogonal rotation in psychological research.
One reason for this choice was its simplicity and conceptual clarity. More im-
portantly, we assumed that the constructs (i.e., the factor of the socioeconomic
variables and that of teacher-rated scores) identified from the covariates set are
independent. However, many theoretical and empirical researchers provided the
basis for expecting psychological constructs, such as personality traits, ability,
and attitudes, to be associated with each other. Consequently, oblique rotations
provide a more realistic and accurate picture of these factors.

One limitation of the proposed two-step model lies in that it only allows
(generalized) linear models in the second step. If the linear assumption is in-
valid, we need to resort to other methods, such as structural equation model
trees (SEM trees, Brandmaier et al. (2013)) or structural equation model forests
(Brandmaier, Prindle, McArdle, & Lindenberger, 2016) to identify the most im-
portant covariates by investigating the variables on which the tree splits first
(Brandmaier et al., 2013; Jacobucci et al., 2017) or the output named ‘variable
importance’ (Brandmaier et al., 2016), respectively. Note that Jacobucci et al.
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(2017) pointed out that the interpretations of the FMM and SEM trees are dif-
ferent, and the classes obtained from the SEM tree can be viewed as the clusters
of associations between the covariates and trajectories.

6.2 Future Research

One possible future direction of the current study is to build its confirmatory
counterpart. Conceptually, the confirmatory model consists of two measurement
models, and there exists a unidirectional relationship between the factors of
the EFA and the latent categorical variable. Additionally, driven by domain
knowledge, the EFA can be replaced with the CFA in the confirmatory model.
Additionally, the two-step model is proposed under the assumption that these
covariates only indirectly impact the sample heterogeneity. It is also possible to
develop a model that allows these baseline covariates to simultaneously explain
between-group differences and within-group differences by relaxing the assump-
tion.
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Appendix A. Formula Derivation

A.1. The Reparameterizing Procedure for a Fixed Knot

In the original setting of the bilinear spline model, we have three growth factors:
an intercept at t0 (η0) and one slope of each stage (η1 and η2, respectively). To
estimate knots, we may reparameterize the growth factors. For the ith individual,
according to Seber and Wild (Seber & Wild, 2003), we may re-expressed them
as the measurement at the knot (i.e., η0i + η1iγ

(k)), the mean of two slopes (i.e.,
η1i+η2i

2 ), and the half difference between two slopes (i.e., η2i−η1i
2 ).

Tishler and Zang (1981) and Seber and Wild (2003) showed that the re-
gression model with two linear stages can be written as either the minimum or
maximum response value of two trajectories. Liu et al. (2019) extended such
expressions to the latent growth curve modeling framework and showed two
forms of bilinear spline for the ith individual in Figure A.1. In the left panel
(η1i > η2i), the measurement yij is always the minimum value of two lines; that
is, yij = min (η0i + η1itij , η02i + η2itij). To unify the formula of measurements
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Figure A.1. Reparameterizing growth factors for Estimating a Fixed Knot

pre- and post-knot, we express yij as

yij = min (η0i + η1itij , η02i + η2itij)

=
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(tij − γ(k))2,

(A.1)

where η
′

0i, η
′

1i and η
′

2i are the measurement at the knot, the mean of two slopes,
and the half difference between two slopes. Similarly, the measurement yij of the
bilinear spline in the right panel, in which the measurement yij is always the
maximum value of two lines, has the identical final form in Equation A.1.

A.2. Class-specific Transformation and Inverse-transformation
between Two Parameter-spaces

Suppose f : R3 → R3 is a function, which takes a point ηi ∈ R3 as input and
produces the vector f(ηi) ∈ R3 (i.e., η

′

i ∈ R3) as output. By the multivariate
delta method (Lehmann & Casella, 1998, Chapter 1), for an individual in the
kth class

η
′

i = f(ηi) ∼ N
(
f(µη

[k]),∇f (µη
[k])Ψη

[k]∇T
f (µη

[k])

)
, (A.2)

where µη
[k] and Ψη

[k] are the mean vector and variance-covariance matrix of
original class-specific growth factors, respectively, and f is defined as

f(ηi) =
(
η0i + γ[k]η1i

η1i+η2i
2

η2i−η1i
2

)T
.
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Similarly, suppose h : R3 → R3 is a function, which takes a point η
′

i ∈ R3

as input and produces the vector h(η
′

i) ∈ R3 (i.e., ηi ∈ R3) as output. By the
multivariate delta method,

ηi = h(η
′[k]
i ) ∼ N

(
h(µ

′[k]
η ),∇h(µ

′[k]
η )Ψ

′[k]
η ∇T

h(µ
′[k]
η )

)
, (A.3)

where µ
′[k]
η and Ψ

′[k]
η are the mean vector and variance-covariance matrix of

class-specific reparameterized growth factors, respectively, and h is defined as

h(η
′

i) =
(
η

′

0i − γ[k]η
′

1i + γ[k]η
′

2i η
′

1i − η
′

2i η
′

1i + η
′

2i

)T
.

Based on Equations (A.2) and (A.3), we can make the transformation be-

tween the growth factor means of two parameter-spaces by µ
′[k]
η = f(µ

[k]
η )

and µ
[k]
η = h(µ

′[k]
η ), respectively. We can also define the transformation ma-

trix ∇f (µ
[k]
η ) and ∇h(µ

′[k]
η ) between the variance-covariance matrix of two

parameter-spaces as

Ψ
′[k]
η = ∇f (µ[k]

η )Ψ [k]
η ∇T

f (µ[k]
η )

=

1 γ[k] 0
0 0.5 0.5
0 −0.5 0.5
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η
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0 −0.5 0.5

T

and
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′[k]
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h(µ
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η )

=

1 −γ[k] γ[k]
0 1 −1
0 1 1
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η

1 −γ[k] γ[k]
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T

,

respectively.

B. More Results
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Table B.1. Median (Range) of the Relative Bias over 1, 000 Replications of Parameters
of Interest under the Conditions with Random Knots of the Standard Deviation of 0.3
and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 −0.003 (−0.009, 0.003) 0.002 (0.000, 0.007)
µη1 0.008 (−0.009, 0.029) −0.009 (−0.024, 0.007)
µη2 0.033 (0.007, 0.098) −0.019 (−0.060, 0.001)
µγ −0.005 (−0.016, 0.004) 0.003 (−0.005, 0.013)

Variance

ψ00 −0.001 (−0.069, 0.037) −0.016 (−0.055, 0.006)
ψ11 −0.076 (−0.126, −0.040) −0.030 (−0.083, −0.008)
ψ22 −0.015 (−0.061, 0.137) −0.057 (−0.089, 0.179)

Path Coef.

β0 — −0.055 (NA, NA)
β1 — −0.042 (−0.332, 0.013)
β2 — −0.038 (−0.332, 0.019)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist. NA: Note that for the
conditions with balanced allocation, the population value of β0 = 0 and its relative
bias goes infinity. The bias median (range) of β0 is −0.015 (−0.204, 0.118).

Table B.2. Median (Range) of the Empirical SE over 1, 000 Replications of Parameters
of Interest under the Conditions with Random Knots of the Standard Deviation of 0.3
and 2 Latent Classes

Para. Latent Class 1 Latent Class 2

Mean

µη0 0.432 (0.243, 0.892) 0.350 (0.200, 0.707)
µη1 0.106 (0.053, 0.294) 0.074 (0.042, 0.174)
µη2 0.103 (0.052, 0.280) 0.079 (0.042, 0.164)
µγ 0.055 (0.024, 0.167) 0.062 (0.024, 0.198)

Variance

ψ00 2.652 (1.731, 4.817) 2.201 (1.400, 3.789)
ψ11 0.123 (0.069, 0.272) 0.092 (0.057, 0.170)
ψ22 0.128 (0.071, 0.333) 0.101 (0.062, 0.219)

Path Coef.

β0 — 0.182 (0.084, 0.592)
β1 — 0.120 (0.079, 0.186)
β2 — 0.124 (0.083, 0.199)

Note. —: when fitting the proposed model, we set the first latent class as the reference

group; accordingly, the coefficients of that class do not exist.
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Abstract. Global Positioning System (GPS) data have become one of
the routine data streams collected by wearable devices, cell phones, and
social media platforms in this digital age. Such data provide research op-
portunities in that they may provide contextual information to elucidate
where, when, and why individuals engage in and sustain particular be-
havioral patterns. However, raw GPS data consisting of densely sampled
time series of latitude and longitude coordinate pairs do not readily con-
vey meaningful information concerning intra-individual dynamics and
inter-individual differences; substantial data processing is required. Raw
GPS data need to be integrated into a Geographic Information System
(GIS) and analyzed, from which the mobility and activity patterns of in-
dividuals can be derived, a process that is unfamiliar to many behavioral
scientists. In this tutorial article, we introduced GPS2space, a free and
open-source Python library that we developed to facilitate the processing
of GPS data, integration with GIS to derive distances from landmarks
of interest, as well as extraction of two spatial features: activity space
of individuals and shared space between individuals, such as members
of the same family. We demonstrated functions available in the library
using data from the Colorado Online Twin Study to explore seasonal
and age-related changes in individuals’ activity space and twin siblings’
shared space, as well as gender, zygosity and baseline age-related differ-
ences in their initial levels and/or changes over time. We concluded with
discussions of other potential usages, caveats, and future developments
of GPS2space.

Keywords: Spatial Measure · Twins · Behavior Genetics · Latent Growth
Curve Model · Python

1 Introduction

Spatial analysis is used to explain locations, attributes, and relationships of fea-
tures in spatial data and has increasingly become a subject of interest in many
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social and behavioral science disciplines including psychology, sociology, demog-
raphy, and environmental science (Chi & Zhu, 2019; Sui & Goodchild, 2011).
The past three decades have witnessed the emergence and substantial growth of
using spatial analysis to investigate environmental effects on behavioral changes
and population dynamics. Many earlier analyses of spatial and mobility patterns
were based mostly on self-reports, surveys, or administrative data (Chi & Mar-
couiller, 2013; Kestens et al., 2012; Vallée, Cadot, Roustit, Parizot, & Chauvin,
2011). For example, participants were usually asked to draw a map displaying
their daily mobility patterns or provide locations they frequently visited in their
daily routines. Recent advances in mobile technology tools (e.g., smartphones,
wearable sensors) now allow researchers to collect physical location data in real-
time over very short intervals (e.g., across seconds or minutes) (Kerr, Duncan, &
Schipperjin, 2011; Kestens, Thierry, Shareck, Steinmetz-Wood, & Chaix, 2018;
Russell, Almeida, & Maggs, 2017). Such intensive and continuous location data
streams provide contextual information to elucidate the context in which (e.g.,
where, when, and why) individuals engage in and sustain particular behavioral
and lifestyle patterns. However, the central focus of many studies in the social
and behavioral sciences not only examines individuals’ short-term spatial activ-
ities over hours or days, but also those that may extend over weeks, months,
or even years, as well as across large populations. In such scenarios, as in the
case of the Colorado Online Twin Study (CoTwins) used for demonstration
in this study, the sheer quantity and density of the longitudinal Global Posi-
tioning System (GPS) data (approximately 6.65 million points from June 2016
to December 2018) make the spatial measure extraction via conventional and
non-programmable spatial analysis tools highly impractical, inefficient, and ir-
reproducible. In this article, we introduced GPS2space, a user-friendly Python
package that can be used to facilitate and automate the processes of spatial data
building, activity and shared space measure extraction, and fast distance query.

Myriad spatial and aspatial measures can be extracted from raw physical
location data or social network data. One measure that has been found to be
a useful lifestyle indicator is activity space, which has been used in studies of
obesity, substance use, and mental health. Generally, these studies treat activ-
ity space as the space within which an individual engages in routine activities.
This space measure may be quantified subjectively via individuals’ self-reports
(Buchowski, Townsend, Chen, Acra, & Sun, 1999), or objectively via location
data (N. C. Lee et al., 2016). For example, using a representative sample from
the Paris metropolitan area of France, Vallée et al. (2011) explored the relation-
ship between depression and activity space as measured by individuals’ daily
activities. They found that depression was related to limited activity space and
neighborhood characteristics such as deprivation status. Mason et al. (2010)
constructed activity space from 301 Philadelphia adolescents’ place-based social
networks, and found that adolescents’ substance use depended on their activity
space, as moderated by participants’ age and gender.

Another measure is shared space, which can be spatial or aspatial depending
on disciplines and research questions. From a social science perspective, shared
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space refers to the socio-psychological or physical space within which individuals
share a common identity and social belonging (Cleaveland & Kelly, 2008; Fine,
2012), or a common physical area. Studies have shown that shared space, such as
coworking space shared by independent professionals, can provide social support
(Gerdenitsch, Scheel, Andorfer, & Korunka, 2016). Shared space also increases
neighborhood satisfaction and sense of community (Kearney, 2006).

In this study, we define an individual’s activity space as the area of the mini-
mum bounding geometry consisting of routine locations visited by the individual
over a specific period of time (i.e., daily, weekly, or monthly). Accordingly, we
define shared space as the overlapping areas of two individuals’ activity spaces.
Activity space depends on the spatial distributions of the geolocations: geoloca-
tions spanning larger areas and broader geographical regions would give rise to
higher values of activity space. In contrast, geolocations that are concentrated
around certain places such as home and working place would yield smaller ac-
tivity space. Shared space is not necessarily linearly related to activity space
because the latter is determined by the extent to which two individuals’ activity
spaces overlap with each other, in other words, how much they share the same
area within their activity spaces.

Despite the richness of information available in location data, the mapping
of raw data consisting of latitude and longitude coordinate pairs to landmarks of
inferential interest requires reverse geocoding. Reverse geocoding is the process
of converting machine-readable GPS coordinates into location information for
geoprocessing, such as the nearest distance query, as well as specialized spatial
feature extraction procedures (Yin et al., 2020). These procedures are typically
implemented via specialized spatial software that may not be familiar or acces-
sible to many social and behavioral scientists (McCormick, Lee, Cesare, Shojaie,
& Spiro, 2017; Shelton, 2017; Shelton, Poorthuis, & Zook, 2015). Commercial
software such as ArcGIS, TransCAD, and MapInfo (Drummond & French, 2008;
Murray, Xu, Wang, & Church, 2019) are available and relatively easy to use.
However, licensing restrictions may prevent broad dissemination of methodolog-
ical advances and reproducibility of analytic results, and these programs are not
readily available on High Performance Computing (HPC) platforms used to pro-
cess data and perform large-scale analyses. ArcGIS and an open-source software,
QGIS, are programmable, but their programming environments are not well de-
veloped. In contrast, R is an open-source programmable statistical language
whose usage has been increasing in social and environmental sciences (Bivand,
2006). However, R poses known challenges in handling very large data sets, and
often performs less satisfactorily in terms of memory management and computa-
tional speed (Patil, 2016). Taking into consideration computational speed, ease
of usage, and open-source availability, we developed GPS2space in Python, a
popular open-source programming language among researchers and data scien-
tists.

The objectives of this tutorial are to introduce and demonstrate the use of
GPS2space, a new, open-source Python library that we created to facilitate the
construction of spatial data, simplify extraction of mobility-related measures
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such as activity space and shared space, and boost the nearest distance query
for big data. GPS2space builds upon existing functions and includes all the nec-
essary, tunable parameters as arguments for generating spatial measures in a
straightforward and well-documented package that can be readily implemented
by newer users. We used the terms library, package, and toolbox interchange-
ably throughout the article, as these terms all refer to reusable chunks of code
but are used differently in different conventions. Likewise, we used the terms
methods and functions interchangeably, in that they both refer to snippets of a
library/package/toolbox that are used for specific purposes.

The remainder of the article proceeds as follows. First, we briefly introduce
commonly used Python libraries for managing and analyzing GPS data and
highlight the contributions of GPS2space. Then, we illustrate the utility of the
GSP2space library using the CoTwins data to extract the twin siblings’ activity
space and shared space. These measures are used to address questions related to
seasonal, age-based, gender, and zygosity effects in shaping individuals’ activity
space and shared space. Finally, we conclude with discussions on other potential
usages, caveats, and future developments of GPS2space.

2 Contributions of GPS2space Relative to Other
Commonly Used Spatial Python Packages

Like many data analysis procedures, geospatial analyses involve data reading
and writing, data managing and processing, and visualization. Beyond that,
geospatial analyses also deal with spatial projection and operation, Exploratory
Spatial Data Analysis (ESDA), and spatial modeling. There are existing Python
libraries that focus on certain specific functions useful for geospatial analysis –
a brief overview is provided next.

Geospatial Data Abstraction Library (GDAL/OGR contributors, 2020) spe-
cializes in reading and writing raster and vector data, which are the two com-
monly used data types in GIS. It supports 168 raster data formats and 99 vector
data formats at the time of writing (October 2020). Fiona (Gillies et al., 2011)
and Rasterio (Gillies et al., 2013), two other popular libraries in Python, focus on
reading, writing, and manipulating vector and raster data, respectively. Pyproj
exclusively focuses on cartographic projections and coordinate transformations
(Crickard, Toms, & Rees, 2018). Shapely specializes in spatial operations such
as distance query and intersecting and overlapping analyses (Gillies et al., 2007).
Python Spatial Analysis Library (PySAL) is the most commonly used library
in conducting ESDA and spatial modeling (Rey, 2019; Rey & Anselin, 2007).
GeoPandas, on the other hand, combines Pandas, a widely used Python data
analysis library, and GIS science, providing a wide array of geospatial functions
such as spatial operation, spatial projection transformation, and visualization
(Jordahl, 2014). These packages are often used together to conduct a series of
data managing, manipulation, visualization, and modeling tasks. For example,
GeoPandas relies on Fiona to read and write spatial data and PyProj to perform
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spatial projection transformations. Rasterio also uses PyProj for its projection
functionalities.

The packages reviewed thus far do have limitations, especially for novices
who do not have strong background in programming and GIS. For example,
Shapely does not provide options for coordinate system transformations, so the
original units of distance and area measures are usually degrees, which may not
be intuitive for non-specialist audiences. GeoPandas incorporates many useful
geoprocessing methods and spatial analysis techniques and provides foundational
functions for such spatial operations; however, it assumes users have GIS and
programming background to perform the analyses. For example, to calculate the
area of a polygon from GPS data with latitude and longitude coordinate pairs
using GeoPandas, a researcher has to first build a spatial data set, project it to
an appropriate coordinate reference system (CRS), and then calculate the area.

Even though we did not provide an exhaustive list of all the Python packages
that can perform geospatial manipulation and analysis, we highlighted that al-
most all of these packages are tailored for experts with considerable spatial data
handling and GIS experience, and require function customizations in multiple
steps. For novices such multi-step data pre-processing and function customiza-
tion processes can be challenging and error-prone. In addition, none of the above
packages provides immediately available functions for constructing activity space
and shared space.

In this article, we introduced GPS2space with the aim to facilitate and au-
tomate, whenever possible, the processes of spatial data building, activity and
shared space measure extraction, and distance query. Specifically, GPS2space
has three functionalities: (1) building unprojected spatial data from geoloca-
tions with latitude and longitude coordinate pairs using the geodf function; (2)
constructing buffer- and convex hull-based activity space and shared space at
different timescales using the space function; and (3) performing nearest distance
query using the dist function, which incorporates cKDTree 1 and spatial index-
ing and R-Tree 2 algorithms to decrease execution time. GPS2space provides
an easily replicable and open-source solution to building spatial data directly
from latitude and longitude coordinate pairs. It also provides default parameter-
izations suited for many longitudinal spatial data streams that can be used to
simplify and reduce the specification steps needed for extraction of activity- and
shared-space-related and distance measures included in the package. GPS2space
enables transparent and easily replicable ways to change these default options for
experienced GIS scientists and programmers to perform custom specifications.

1 cKDTree is a function from SciPy, a commonly used library for scientific computing
in Python. cKDTree is used to rapidly look up the nearest neighbors of any point
and can dramatically reduce the time needed for such processes.

2 GeoPandas incorporated spatial indexing using the R-tree algorithm to boost the
performance of spatial queries. R-tree is a tree-like data structure that groups nearby
objects together along with their minimum bounding box. In this tree-like data
structure, spatial queries such as finding the nearest neighbor does not have to travel
through all geometries, dramatically increasing performance, especially for two data
sets with different bounding boxes.
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These spatial measures provide additional contextual information and expand
the usages of GPS data. In sum, GPS2space provides an open-source tool to con-
solidate, simplify, and automate data processing and spatial measure extraction
from large (e.g., intensive longitudinal) GPS data sets. In this way, replicability
and reproducibility of results can be greatly enhanced – for veteran and novice
researchers alike.

3 Motivating Data: The CoTwins Study

We used data from the CoTwins study to illustrate the utility of GPS2space
and demonstrate how spatial activity measures can shed light on individual and
dyadic activity patterns between twin siblings. Twin studies have the advantage
of disentangling genetic and environmental factors for the trait of interest (New-
man, Freeman, & Holzinger, 1937). Despite the increasing application of spatial
thinking and spatial data in social and behavioral research, few twin studies have
been designed to collect twins’ location data, which often convey valuable infor-
mation concerning social contexts. For instance, shared activity space and time
spent with each other reflect opportunities for relationship bonding, and may
thus convey the extent of emotional closeness between two individuals (Ben-Ari
& Lavee, 2007). Furthermore, with twins’ location data, it would be interest-
ing to investigate how monozygotic (MZ; identical) twins and dizygotic (DZ;
fraternal) twins differ in their shared activity space.

The CoTwins study comprises data on substance use among 670 twins. Twins
were initially recruited at ages 14 to 17 and followed from 2015 to 2018. Through-
out 2016 to 2018, the twins’ geolocations were recorded and reported via their
GPS enabled smartphones. iOS devices used the built-in significant-change lo-
cation service to record and report geolocations whenever they detected a sig-
nificant position change of 500 meters or more. Android devices recorded and
reported geolocations every five minutes as long as the device was in use. Over
the course of the study, the twins’ spatial footprints covered locations within
and outside of the United States. In this article, we only used locations in the
contiguous United States, which includes the District of Columbia but excludes
Alaska and Hawaii.

Figure 1 shows the spatial distribution of the twins’ footprints in 2016, 2017,
and 2018 across Colorado and the contiguous United States. The CoTwins study
began collecting locations in June 2016 so the figure shows fewer data points
in 2016. Throughout 2017 and 2018, the twins set foot in almost every state
of the contiguous United States and showed a consistent pattern of footprints
concentrated in Colorado and all over parts of the contiguous US, with North
Dakota, Arkansas, and Alabama as the least visited states. In Colorado in 2017
and 2018 they showed consistent mobility patterns with geolocations clustered
around metropolitan areas such as Denver and Colorado Springs and along major
roads within the state. The border counties in Colorado such as Moffat, Rio
Blanco, Yuma, Cheyenne, Kiowa, and Baca were rarely visited. The code for
Figure 1 can be found in Supplementary Material.
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Figure 1. Distribution of geolocations in the contiguous United States and Colorado
across 2016, 2017, and 2018 in the CoTwins study.

Many related works have demonstrated the spatial aspects of activity space
and shared space and their impact on human behaviors such as substance use
(Mason et al., 2010) and social support in a specific setting such as working space
(Gerdenitsch et al., 2016); however, the temporal variations of such spatial mea-
sures and interindividual differences therein have not been thoroughly explored.
Hence, we employed passive sensor (GPS) data to investigate whether meaning-
ful seasonal, time- (e.g., weekend), and age-based variations, as well as between-
individual differences in these intra-individual changes, could be meaningfully
inferred from individuals’ spatial measures as extracted using GPS2space. In
particular, we examined (1) whether there were seasonal effects in twins’ activ-
ity space/shared space; (2) whether there were weekend effects in twins’ activity
space/shared space; (3) inter-individual differences in initial levels of activity
space/shared space, and possible associations with gender, baseline age, and twin
type (MZ vs. DZ twins); and (4) age-related changes in activity space/shared
space, and possible roles of gender as correlates of interindividual differences in
these age-based changes.

4 Example I: Buffer- and Convex hull-based Activity
Space and Shared Space

As previously defined, activity space refers to the area of individuals’ routine lo-
cations over a specific time period. Practically, ellipses, convex hulls, and density
kernels are often used to construct the activity space (Huang & Wong, 2016).
The GPS2space library currently includes two commonly used methods for con-
structing activity space: the buffer method and the convex hull method. The
buffer method uses a user-specified buffer distance as the radius in determining
activity space, while the convex hull method lines up the outermost points to
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a minimum bounding geometry (J. H. Lee, Davis, Yoon, & Goulias, 2016) to
represent activity space. Both buffer- and convex hull-based activity space ap-
proaches are associated with their own pros and cons. For buffer-based activity
space, users have to specify a buffer distance to group and dissolve points into
polygons to enable extraction of activity space. The choice of buffer distance can
be arbitrary and application-specific, and it affects the sizes of activity space and
shared space. However, this approach provides interpretable mobility estimates
even with only one data point. In this case, activity space for that one data
point is simply the area of the circle whose radius is the buffer distance. Impor-
tantly, it is less sensitive to extreme geolocations that are beyond the clusters
of geolocation. Convex hull-based activity space does not require any arbitrary
parameter. However, convex hull-based activity space computations require at
least three non-collinear points to form an enclosed convex hull. In addition,
convex hull-based activity space is sensitive to extreme geolocations, giving ex-
treme activity space values in the presence of outliers. For example, instances
where individuals travel via cars or flights from one main location to another
would be outliers. The convex hull method would yield extreme activity space
values in trying to construct a convex hull containing all the data points prior
to, during, and after such travels, whereas the buffer-based method would use
the user-specified buffer value to “group” the data points into clusters of points
and compute activity and other spatial activity measures accordingly. We rec-
ommend that users consider their respective applications and contexts in detail
when choosing between these two methods.

To illustrate how buffer- and convex hull-based activity space and shared
space are obtained from raw GPS data with latitude and longitude coordinate
pairs, we used one randomly selected twin pair, denoted herein as TwinX, and
their geolocations on May 12, 2017. For buffer-based activity space, we used a
buffer distance of 1000 meters based on common choices of buffer distance in
other published studies (Perchoux, Chaix, Brondeel, & Kestens, 2016; Stewart et
al., 2015). The process of computing activity and shared spaces can be grouped
largely into 3 steps. We described each step and provided the associated code as
organized by these steps.

Step 1: Conversion of raw GPS data into spatial data.

To perform spatial operations, we need to first convert raw GPS data with
latitude and longitude coordinate pairs to spatial data using the df to gdf func-
tion in the GPS2space library. The df to gdf function takes three parameters:
the first one is the Pandas dataframe 3 that contains GPS data with geolocation
information as represented by latitude and longitude coordinate pairs; the sec-
ond one is the column name of the longitude information; the third one is the
column name of the latitude information. The df to gdf function returns an un-

3 Pandas is a commonly used library for data manipulation analysis in Python. A
Pandas dataframe is a 2-dimensional data structure with rows representing obser-
vations and columns representing variables. A column can have different data types
in a Pandas dataframe.
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projected GeoPandas dataframe 4 in the World Geodetic System 84 (WGS84).
The following code imports the required libraries for the process, then reads
in latitude and longitude coordinate pairs stored in two csv files comprising
the two twin members’ respective data, TwinXa 512.csv and TwinXb 512.csv,
and finally converts the non-spatial dataframe to spatial data using the df to gdf
function. One important note is that users must pass the longitude column name
to x and the latitude column name to y.

# Import required libraries for the analyses.

import pandas as pd

import geopandas as gpd

from gps2space import geodf , space , dist

# Read TwinXa_512 and TwinXb_512 as Pandas dataframes.

df_twinXa_512 = pd.read_csv (‘./data/TwinXa_512.csv’)

df_twinXb_512 = pd.read_csv (‘./data/TwinXb_512.csv’)

# Convert Pandas dataframes to GeoPandas dataframes.

gdf_twinXa_512 = geodf.df_to_gdf(df_twinXa_512 , x=‘

longitude ’, y=‘latitude ’)

gdf_twinXb_512 = geodf.df_to_gdf(df_twinXb_512 , x=‘

longitude ’, y=‘latitude ’)

Step 2: Spatial projection and spatial measure extraction of activity space.

After successful data conversion, the next step is to project the spatial data
and calculate buffer- and convex hull-based activity space using the space.buffer space
and space.convex space functions, respectively. The buffer space takes four pa-
rameters: the first is the unprojected GeoPandas dataframe; the second is a user-
defined buffer distance dist, where the default value is 0; the third is dissolve,
the user-specified level of timescale at which the geolocations are aggregated to
form polygons, where the default value is “week”; the fourth is proj, the user-
specified EPSG identifier 5 based on the selected spatial data for projection.
The default value for proj is 2163 (US National Atlas Equal Area projection),
a commonly used projection for the US. The buffer space function returns a
GeoPandas dataframe with a “buff area” column representing the buffer-based
activity space. The proj parameter specifies the unit for activity space, shared
space, and buffer distance in the buffer space function. For instance, the unit of
EPSG 2163 is meter, so the unit for dist is meter; accordingly, the unit for activ-
ity space and shared space is square meter. We recommend that users choose a
meter-based projection system because it provides more intuitive measurement

4 A GeoPandas dataframe is an extension of Pandas dataframe with a “geometry”
column storing geolocation information.

5 EPSG identifiers are codes representing different spatial reference systems that can
be used to project, reproject, and transform between different spatial reference sys-
tems. For example, the EPSG: 4326 is the default spatial reference system used by
GPS, the EPSG: 3857 is used by Google Map and OpenStreetMap.
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units than a degree-based projection system. 6 As mentioned above, the buffer
distance in the buffer space function is an application-specific parameter, users
can refer to Browning and Lee (2017), K. Lee and Kwan (2019), Sugiyama, Kub-
ota, Sugiyama, Cole, and Owen (2019), and Prins et al. (2014) for discussion on
selecting buffer distances and their impacts on the study involved.

The convex space takes three parameters: the first is the unprojected GeoPan-
das dataframe; the second is group, the level of timescale at which users want
to group geolocations to form polygons, where the default value is “week”; the
third is the EPSG identifier, where the default value is 2163. The convex space
function returns a GeoPandas dataframe with a “convx area” column represent-
ing the convex hull-based activity space. When constructing activity space, the
timescale should either be one of the variables in the dataframe, or it can be
inferred and included as a variable in the dataframe from the timestamp when
the geolocations are recorded. In the following example, we constructed TwinXa
and TwinXb’s daily activity space on May 12, 2017, and the variable “day” is
inferred from the twin pairs’ timestamps ranging from 5/12/2017 at 07:25 to
5/12/2017 at 20:10.

# Project spatial data.

gdf_twinXa_512 = gdf_twinXa_512.to_crs(‘epsg :2163’)

gdf_twinXb_512 = gdf_twinXb_512.to_crs(‘epsg :2163’)

# Buffer - and convex hull -based activity space.

buff_twinXa_512 = space.buffer_space(gdf_twinXa_512 ,

dist =1000, dissolve=‘day’, proj =2163)

buff_twinXb_512 = space.buffer_space(gdf_twinXb_512 ,

dist =1000, dissolve=‘day’, proj =2163)

convex_twinXa_512 = space.convex_space(gdf_twinXa_512 ,

group=‘day’, proj =2163)

convex_twinXb_512 = space.convex_space(gdf_twinXb_512 ,

group=‘day’, proj =2163)

Step 3: Extraction of shared space by overlaying activity space features.
Once we have the activity space, we can utilize the overlay function from

GeoPandas to calculate shared space by overlaying and intersecting the activ-
ity spaces of two individuals. For instance, in the following code example, we
overlaid the buffer- and convex hull-based activity space. We specified “intersec-
tion” for the how parameter to extract the intersection area between the twins’
activity space. We then invoked the area function to obtain a column named
“share space,” representing the areas of the twins’ shared space. A loop to it-
erate over multiple activity space features to obtain shared space between one
another is provided in Supplementary Material.

# Calculate shared space from activity space.

buff_share = gpd.overlay(buff_twinXa_512 ,

buff_twinXb_512 , how=‘intersection ’)

6 For the unit of different projection systems, see https://epsg.io/.
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buff_share[‘share_space ’] = buff_share[‘geometry ’].area

convex_share = gpd.overlay(convex_twinXa_512 ,

convex_twinXb_512 , how=‘intersection ’)

convex_share[‘share_space ’] = convex_share[‘geometry ’].

area

Figure 2 shows the buffer- and convex hull-based activity space and shared
space for TwinX on May 12, 2017. The buffer-based approach using 1000 meters
as buffer distance gives an activity space of 10.32 and 12.54 square miles 7 for
TwinXa and TwinXb, and a shared space of 8.08 square miles between them.
The convex hull-based approach produces an activity space of 8.99 and 11.08
square miles for each individual of TwinX and a shared space of 8.48 square
miles between them. The code for Figure 2 can be found in Supplementary
Material.

Figure 2. (a) Buffer-based activity space and shared space for TwinX on May 12, 2017
in Colorado. (b) Convex hull-based activity space and shared space for TwinX on May
12, 2017 in Colorado.

7 For illustration purposes, we converted area measurement in square meters to square
miles.
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5 Example II. The Nearest Distance Query

The nearest distance measure is a useful indicator of accessibility of infrastruc-
tures and places that would influence behavioral and socioeconomic outcomes.
For example, research has shown that the distance to the ballot drop box influ-
ences voters’ turnout (McGuire, O’Brien, Baird, Corbett, & Collingwood, 2020),
and access to highways affects population distribution (Chi, 2010). However, the
nearest distance query can be computationally demanding and time-consuming,
especially for processing data in large volumes. To boost the nearest distance
query, the dist function in the GPS2space library incorporates two types of
spatial indices to rapidly look up the nearest neighbor and calculate the dis-
tance. When the geometries of target features are points, dist to point in the
dist function utilizes the cKDTree from SciPy to search for nearest neighbors;
when the geometries of target features are polygons, dist to poly in the dist
function utilizes the R-Tree from Geopandas to search for nearest neighbors.
Both cKDTree and R-Tree algorithms create tree-like data structures from the
Geopandas dataframe which enable fast nearest neighbor searching, therefore
working efficiently with data sets in large volumes.

We used TwinXa’s geolocations on May 12, 2017 to demonstrate the utility
of the dist function and calculated the distance from each unique location to its
nearest supermarket (represented as points) and park (represented as polygons)
in Colorado. The supermarket and park data were obtained from OpenStreetMap
(OSM). The OSM started in 2004 and its main goal is to collect and provide free
access to geospatial data. The initial focus was on transportation infrastructure
(streets, highways, railways, etc.), but data collection has expanded to multiple
points of interest, such as buildings and community landmarks. Since most com-
mercial data sources are expensive and have data sharing restrictions, OSM has
quickly become a popular data source for geospatial-related research.

We downloaded and compiled the OSM data from Geofabrik 8, a Germany-
based company specializing in processing and reorganizing free geodata created
by projects like OSM. There are some concerns, however, about the quality of
OSM data. For example, studies have shown that there were some disparities
in data quality between urban/densely populated areas and rural/sparsely pop-
ulated areas in OSM (Barron, Neis, & Zipf, 2014). In this study we compared
OSM data with a high quality commercial data source called Infogroup Business
Dataset, which contains more than 15 million geocoded business locations in the
US. We found that the OSM data provided solid coverage when it came to major
retail chains and good positional accuracy for corresponding locations. For ex-
ample, comparing Infogroup and OSM data for the major Colorado supermarket
chain “Safeway,” 94% of the Safeway locations contained in the OSM data were
also found in Infogroup. We also found similar results for two other major retail
chains – “King Soopers” and “Whole Foods.”

The dist to point function takes three parameters: the first one is the source
GeoPandas dataframe; the second one is the target GeoPandas dataframe; and

8 See https://www.geofabrik.de/geofabrik/geofabrik.html.
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the third one is the EPSG identifier, with a default value of 2163. When dist to point
function is called, the nearest neighbor search is then performed by traversing
the cKDTree created on the spatial points in the target data set, which only
deals with a subset of the points for the distance calculation. As shown in the
following code example, we first constructed the spatial data set for the super-
market data, then we provided three parameters to the dist to point function
for the nearest distance query from the TwinXa to supermarkets. The “dist”
is the outcome GeoPandas dataframe with a “dist2point” column showing the
distance from the source point to its nearest supermarket. All the columns from
both the source and target dataframes are preserved in the outcome dataframe.

# Read market data into Pandas dataframes.

df_market = pd.read_csv (‘./data/market.csv’)

# Convert Pandas dataframes to GeoPandas dataframes.

gdf_market = geodf.df_to_gdf(df_market , x=‘longitude ’,

y=‘latitude ’)

# The nearest distance from twinXa_512 to supermarket.

dist = dist.dist_to_point(gdf_twinXa_512 , gdf_market ,

proj =2163)

The dist to poly function is similar to the dist to point function, except that
the nearest neighbors in the dist to poly function are polygons. The dist to poly
function takes four parameters: the first one is the source GeoPandas dataframe;
the second one is the target GeoPandas dataframe; the third one is the EPSG
identifier, with a default value of 2163; and the fourth one is a search radius in
meters, with a default value of None. If the search radius is not specified, the
dist to poly function employs a brute-force search to find the nearest distance,
and the computation time increases significantly as the number of polygons
grows. If the search radius is specified, R-tree is implemented by creating a
minimum bounding box (MBR) for each target polygon. Instead of calculating
the distance from the source point to every polygon in the target dataframe,
the dist to poly function takes advantage of the R-tree index to only consider
those polygons whose MBRs intersected with the search radius and calculate the
minimum distance. If no polygon is within the search radius, then the dist to poly
function returns a NaN value, a common way to represent missing values in
Python. The dist to poly function works efficiently in calculating the nearest
distance by specifying a search radius, but at the expense of missing values for
points with no neighbors within the search radius. We recommend choosing an
appropriate search radius based on how it can affect specific research designs.

As shown in the following code example, we read the park data in the form
of shapefiles as GeoPandas dataframe, then we provided the parameters to
the dist to poly function for the nearest distance query from the TwinXa to
parks. The “dist no radius” and “dist with radius” are the outcome GeoPan-
das dataframes with a “dist2poly” column showing the distance from the source
point to its nearest park.
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# Read parks as GeoPandas dataframes.

gdf_parks = gpd.read_file (‘./data/parks.shp’)

# The nearest distance without search radius.

dist_no_radius = dist.dist_to_poly (gdf_twinXa_512 ,

gdf_parks , proj =2163)

# The nearest distance with search radius of 5000m.

dist_with_radius = dist.dist_to_poly(gdf_twinXa_512 ,

gdf_parks , proj =2163, search_radius =5000)

The two functions, dist to point and dist to poly, serve to provide distance
measures geared respectively toward places of interest that are adequately rep-
resented as points (typically places covering smaller geographical regions such
that the centroids of their enclosing polygon provide a reasonable representation,
such as supermarkets, transportation terminals, and health facilities) vs. poly-
gons (typically geographically dispersed places of interest or places that require
precise definitions of boundaries, such as parks, water bodies, and administra-
tive boundaries). Results from dist to poly and dist to point do not always agree,
mainly because dist to poly and dist to point treat points within polygons dif-
ferently. To illustrate the differences, we calculated the nearest distance from
TwinX to the nearest park, playground, and supermarket (represented as poly-
gons, search radius not specified) and their centroids (represented as points).
Table 1 shows the results. Overall, the two functions produce similar results
except for differences in minimum distance, where dist to poly may produce 0
values while dist to point rarely produces 0 values. The main reason for the
differences in the minimum distance is that once dist to poly detects the point
is within the polygon it assigns 0 to the nearest distance, while dist to point
calculates the Euclidean distance between the two points and only returns 0 if
the geolocations of the two points are identical. In sum, the distance measure
between dist to point and dist to poly depends on the source data’s relative po-
sition to the target polygon and the shape of the target polygon. The code for
Table 1 can be found in Supplementary Material.

Table 1. Comparison between the nearest distance from TwinX to polygon boundary
and polygon centroid for parks, playgrounds, and supermarkets in Colorado

Nearest distance to landmark measure Mean SD Min Median Max

Distance to park (point) 0.57 0.39 0.01 0.46 6.60
Distance to park (polygon) 0.50 0.38 0.00 0.42 6.46
Distance to playground (point) 0.84 0.53 0.01 0.93 8.29
Distance to playground (polygon) 0.83 0.53 0.00 0.92 8.29
Distance to supermarket (point) 1.30 1.06 0.01 0.98 9.36
Distance to supermarket (polygon) 1.27 1.06 0.00 0.95 9.33

Note. The original distance measures were in meters, we converted them to miles for
illustration purposes.
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6 Example III. Growth Curve Analysis of Activity and
Shared Spaces

6.1 Data Pre-Processing

Before extracting the daily activity space and shared space for all participants
using the functions presented above, we pre-processed the GPS data following
procedures implemented in the previous study (Li et al., in press). First, we ex-
cluded records with fewer than 20 valid data points within a week because these
unusually low numbers of GPS points lacked sufficient variability. Then we ex-
cluded data points showing atypical travel trajectories as detected by dbscan
(Density-Based Spatial Clustering of Applications with Noise), an R package
that is commonly used to identify clusters and outlying points (Hahsler, Pieken-
brock, & Doran, 2019). Then the daily activity space was calculated using a
buffer distance of 1000 meters and transformed from square meters to square
miles for illustrative purposes. The activity space was then log transformed to
reduce skewness in the data. The log transformed activity space was referred to
hereafter as LAS. For each participant, we focused on the proportion of shared
space, referred to as PSS hereafter and defined as the proportion of one’s daily
activity space that overlapped with his/her twin sibling’s daily activity space.
The distributions of LAS and PSS were shown in Figure 3. The final data set
consisted of 558 participants with baseline ages between 14 and 20 (mean = 17),
followed between 1 to 3 years (mean = 2). 43% of the participants were males.
In terms of twin types, 33% were MZ twins, 41% were DZ twins of the same sex,
and 26% were DZ twins of opposite sex.

Figure 3. Distributions of (a) log activity spaces (LAS) and (b) proportions of shared
space (PSS) across participants.
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6.2 Data Analytic Plans

As mentioned before, we were interested in exploring within-individual changes
of LAS and PSS and inter-individual differences in their initial levels and changes
over time, including both between-individual and between-family differences. At
the within-individual level, we sought to address the seasonal effect (research
question 1), the weekend effect (research question 2), and age-related changes
(research question 4) in LAS and PSS; at the between-individual level, we sought
to explore gender differences in the initial levels and changes of LAS and PSS,
as well as the effect of baseline ages on the initial levels (research questions 3-4);
at the between-family level, we investigated the effect of twin zygosity (MZ vs.
DZ twins) on the initial levels of PSS (research question 3). Therefore, we used
three-level growth curve models (see, e.g., Enders & Tofighi, 2007; Hoffman,
2015) as implemented using the R package, brms (Bürkner, 2017), to study
these temporal changes and levels of nesting within this data set, namely, time
nested within individuals within family. In particular, we used seasonal and
weekend indicators, as well as participants’ ages as within-individual (or so-
called level-1) predictors, gender and baseline age as between-individual (level-
2) predictors, and twin zygosity as a between-family (level-3) predictor when
relevant to address our questions of interest. The R code for model fitting can
be found in Supplementary Material.

We first introduced the model for LAS, as shown below.

Level-1 model:

LASitk = β0ik+β1ikAgeitk+β2Weekendt+β3Summert+β4Fallt+β5Wintert+eitk
(1)

Level-2 model:

β0ik = γ00k + γ01kGenderik + γ02kAgei0k + u0ik (2)

β1ik = γ10k + γ11kGenderik + u1ik (3)

Level-3 model:

γ00k = δ000 + v0k (4)

γ01k = δ010 + v1k (5)

γ02k = δ020 + v2k (6)

γ10k = δ100 + v3k (7)

γ11k = δ110 + v4k (8)

with,



GPS2space Python Library for Spatial Measure Extraction 143
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The seasonal effect, weekend effect, and age-based changes in LAS were modeled
in the level-1 model, where LASitk was the LAS of person i in family k on day t,
and Ageitk was the age of person i in family k on day t, centered by subtracting
the baseline age from each age instance so that 0 corresponded to the baseline
age. The Weekend, Summer, Fall, and Winter variables were dummy-coded, with
1 each representing weekend, summer (June 1 to August 30), fall (September 1
to November 30), and winter (December 1 to February 28 or 29). Based on the
definitions of these variables, β0ik represented person i’s initial LAS at baseline
age on Spring weekdays; β1ik was the effect of age on the LAS for person i; and
βj (j = 2, . . . , 5) represented weekend or seasonal effects, which were not set as
person-specific since we focused on the overall seasonal and weekend effects in
this study. Finally, the level-1 error eitk followed a normal distribution with a
zero mean and a variance of σ2.

In the level-2 model, the level-1 parameters, β0ik and β1ik, were regressed on
a person-specific variable, Genderik (1 = male; -1 = female), to explore gender
differences in the initial levels and age-based changes of LAS. In addition, β0ik
was regressed on the baseline age, Agei0k, centered by subtracting the mean
of baseline ages so that 0 corresponded to the average baseline age. Thus, the
corresponding coefficient γ02k represented the effect of baseline ages on the initial
LAS, and γ00k and γ10k represented the overall initial level and growth rate
of LAS across individuals, respectively, while 2γ01k and 2γ11k represented the
corresponding gender differences, respectively. The level-2 random effects were
denoted as u0ik and u1ik, which described person i’s deviations in the values
of β0ik and β1ik not accounted for by the predictors. Finally, the variance and
covariance structure of level-2 random effects was defined in T. For instance,
the variance of β0ik, denoted as τ20 , described the extent of between-individual
difference in the initial LAS; the covariance between β0ik and β1ik, denoted as
τ01, described the relationship between initial levels and growth rates of LAS.

The level-3 model was built to capture between-family differences. Specifi-
cally, we would like to investigate whether twins from different families would
have different initial levels and growth rates of LAS and whether the effects of
gender and baseline age on the initial levels and/or growth rates of LAS would
differ across families as well. Note that twin type was not included as a predictor
in the level-3 model because the magnitudes of activity space were not expected
to be significantly different between MZ and DZ twins (although they might be
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expected to differ in the degree to which they share space with their siblings,
which was addressed below in the model for PSS). Among parameters in the
level-3 model, δ010 and δ110 were of particular interest because they reflected the
differences between males and females in terms of their average initial levels and
growth rates of LAS, respectively. The level-3 random effects, v0k - v4k, followed
a multivariate normal distribution with zero means and a covariance matrix, Φ,
where the variances, denoted as ϕ2

0 - ϕ2
4, captured the extent of between-family

differences in the overall initial LAS, the effects of gender and baseline age on
the initial LAS, the overall growth rate of LAS and gender differences therein,
respectively.

In terms of the model for PSS, some slight modeling adaptations were needed
to capture characteristics of the PSS data. As noted, PSS was defined as the
proportion of one’s activity space that overlapped with his/her twin sibling’s
activity space, thus yielding a value ranging from 0 to 1. The model presented
above, which assumed that the error term followed a normal distribution with
a constant variance, might not be appropriate for the data in this scenario.
However, the beta distribution is known for its flexibility in modeling proportions
because its density can display different shapes as decided by the values of α
and β. The beta density can be expressed as:

f(α, β) =
Γ (α+ β)

Γ (α)Γ (β)
yα−1(1 − y)β−1, 0 < y < 1, α > 0, β > 0 (9)

Thus, in the generalized growth curve model with PSS as the dependent variable,
PSS was specified to conform to a beta distribution. Consistent with the beta
regression specification proposed by Ferrari and Cribari-Neto (2004), which is
similar to that of the well-known class of generalized linear models (McCullagh
& Nelder, 1989), we defined µ = α/(α + β) and φ = α + β, then E(y) = µ
and V ar(y) = µ(1 − µ)/(1 + φ), where µ was the mean and φ was called the
precision parameter. In our case, we assumed that the PSS, PSSitk, followed
a beta distribution with person-specific means (i.e., E(PSSitk) = µitk). Then
we implemented a logit transformation of µitk and built a three-level growth
curve model on the transformed value (i.e., ηitk). The level-1 model for PSS was
specified as:

ηitk = log(
µitk

1 − µitk
)

= β0ik + β1ikAgeitk + β2Weekendt + β3Summert + β4Fallt + β5Wintert
(10)

where µitk

1−µitk
, denoted below as the odds of PSS, represented the average level

of PSS for individual i in family k at time t relative to not sharing space with
twin siblings, and ηitk = log( µitk

1−µitk
) represented the corresponding log odds.

The independent variables were as summarized in Equation 1. Note that the re-
gression coefficients had different interpretations due to the logit transformation.
For instance, β0ik represented the log-odds of PSS for person i in family k at the
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baseline age on Spring weekdays; β1ik was the age-related log-odds ratio, which
means that the odds of PSS would multiply by eβ1ik for every 1-unit increase in
Ageitk. Other parameters (e.g., seasonal and weekend effects) can be interpreted
in a similar way.

The level-2 model for PSS was identical to the level-2 model for LAS (see
Equations 2 - 3), but the regression coefficients had different interpretations for
the reason stated above. For instance, the level-2 intercept, γ00k, represented the
overall log-odds of PSS.

In terms of the level-3 model, we hypothesized that MZ and DZ twins might
have different levels of space sharing to the extent that these spatial measures
reflect genetically influenced behavior/preferences. To evaluate this hypothesis,
we added a predictor, twin type, to Equations 4 - 6 (i.e., the level-3 model for
γ00k, γ01k, and γ02k, which were the coefficients in the level-2 model for β0ik, the
log-odds of initial levels of PSS), to investigate zygosity differences in PSS and
how these differences might affect the effects of gender and baseline age on PSS,
as shown below.

γ00k = δ000 + δ001DZSSk + δ002DZOSk + v0k (11)

γ01k = δ010 + δ011DZSSk + δ012DZOSk + v1k (12)

γ02k = δ020 + δ021DZSSk + δ022DZOSk + v2k (13)

Specifically, we set MZ twins as the reference and added two dummy-coded,
family-specific variables, DZSSk(1 = DZ twins of the same sex) and DZOSk (1
= DZ twins of opposite sex). Thus, δ000, δ001, and δ002 represented the average
log-odds of PSS for MZ twins, DZ twins of the same sex, and DZ twins of the
opposite sex, respectively; δ010, δ011, and δ012 represented the corresponding
gender differences in each twin type group; and δ020, δ021, and δ022 represented
the effect of the baseline age on the average log-odds of PSS in each twin type
group. The models for other level-2 parameters (i.e., γ10k, γ11k) were identical
to the level-3 model for LAS (see Equations 7 - 8).

6.3 Results

With the brms package, the models were fitted in a Bayesian framework using
Markov chain Monte Carlo (MCMC) methods. Specifically, we ran two chains,
each with 5000 iterations in total and a burn-in of 2000 (discarded) iterations. On
an Intel i5-8350U, 16GB RAM, Windows 10 computer, it took about 40 hours to
run each model. Two diagnostic statistics were used to check the sampling quality
(Gelman et al., 2013): (1) the effective sample size (ESS), which describes how
many posterior draws in the MCMC procedure can be regarded as independent,
and (2) R̂, which describes the ratio of the overall variance of posterior samples
across chains to the within-chain variance. The diagnostic criteria for adequate
sampling and convergence were set as ESS greater than 800 and R̂ below 1.1,
respectively. Results showed that ESS was greater than 800 for most parameters,
except for some random effect standard deviation parameters (e.g., ϕ1−ϕ4), for
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which the average ESS was about 400, which can be deemed satisfactory. R̂ was
below 1.1 for all parameters in both models.

Table 2. Parameter estimates of the model for LAS from the CoTwins study, 2016-2018

Parameter Estimate SE 95% CI

Fixed effects
Intercept, δ000 1.81 0.03 [1.76, 1.86]
Gender, δ010 -0.07 0.02 [-0.11, -0.01]
Baseline age, δ020 0.13 0.02 [0.09, 0.16]
Age, δ100 -0.01 0.01 [-0.03, 0.02]
Age*Gender, δ110 0.01 0.01 [-0.01, 0.03]
Weekend, β2 0.06 0.00 [0.05, 0.07]
Summer, β3 0.07 0.00 [0.06, 0.07]
Fall, β4 -0.12 0.00 [-0.13, -0.11]
Winter, β5 -0.08 0.01 [-0.09, -0.07]

Level-2 random effects
Intercept standard deviation, τ0 0.25 0.01 [0.22, 0.28]
Age standard deviation, τ1 0.19 0.01 [0.16, 0.22]
Intercept-Age correlation, τ01/(τ0 ∗ τ1) -0.31 0.08 [-0.46, -0.16]

Level-3 random effects
Intercept standard deviation, ϕ0 0.37 0.02 [0.33, 0.42]
Age standard deviation, ϕ3 0.11 0.03 [0.06, 0.16]

Residual standard deviation, σ 0.72 0.00 [0.71, 0.72]

Note. SE = standard errors estimated by standard deviations of the posterior
samples; CI = credible interval. N = 558 participants. The number of time points for
each participant ranged from 3 to 569.

Table 2 shows the parameter estimates for LAS. In terms of the fixed ef-
fects, weekend and seasonal effects were found in the trajectory of LAS. Specifi-
cally, the participants showed greater LAS values on weekends than on weekdays
(β2 = 0.06, 95% CI = [0.05, 0.07]), which was reasonable since most of the par-
ticipants were supposed to be spending most of their time in school on weekdays,
thus yielding limited activity space. Seasonally, the participants tended to display
greater LAS in summer (β3 = 0.07, 95% CI = [0.06, 0.07]), which was likely due
to summer break as well as the warmer weather. Gender differences were found
in the initial levels of LAS (δ010 = −0.07, 95% CI = [−0.11, −0.01]), although
the upper bound of the 95% credible interval was close to 0. No gender differ-
ences were found in the growth rates of LAS. Finally, older participants tended
to have higher levels of LAS at baseline (δ020 = 0.13, 95% CI = [0.09, 0.16]),
but when it comes to within-individual changes over time, participants’ ages
were not found to be credibly linked to their levels of LAS, as indicated by the
95% credible interval including 0.
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In terms of the random effects, we found between-individual and between-
family differences in both initial levels and age-based changes of LAS. These
differences were indicated by the relatively high magnitude of random effect
standard deviations and the credible intervals whose lower bounds were far from
0 (see, τ0, τ1, ϕ0, and ϕ3; random effect standard deviation parameters whose
credible intervals were close to 0 were not shown in Table 2). We also found
negative associations between the initial levels and growth rates at the individual
level, indicating that individuals who had higher initial levels of activity space
tended to experience larger decreases in activity space with age.

Table 3. Parameter estimates of the model for PSS from the CoTwins study, 2016-2018

Parameter Estimate SE 95% CI

Fixed effects
Intercept, δ000 0.74 0.08 [0.58, 0.89]
Gender, δ010 0.03 0.08 [-0.12, 0.19]
Baseline age, δ020 -0.30 0.06 [-0.42, -0.18]
Age, δ100 -0.38 0.03 [-0.44, -0.31]
Age*Gender, δ110 -0.04 0.03 [-0.09, 0.01]
DZSS, δ001 -0.29 0.10 [-0.49, -0.09]
DZOS,δ002 -0.49 0.11 [-0.71, -0.27]
DZSS*Gender, δ011 0.04 0.10 [-0.17, 0.24]
DZOS*Gender, δ012 0.08 0.09 [-0.09, 0.25]
DZSS*Baseline age, δ021 -0.13 0.08 [-0.28, 0.02]
DZOS*Baseline age, δ022 -0.04 0.09 [-0.22, 0.13]
Weekend, β2 -0.12 0.01 [-0.13, -0.10]
Summer, β3 -0.31 0.01 [-0.33, -0.29]
Fall, β4 -0.46 0.01 [-0.48, -0.44]
Winter, β5 -0.09 0.01 [-0.11, -0.07]

Level-2 random effects
Intercept standard deviation, τ0 0.34 0.02 [0.30, 0.38]
Age standard deviation, τ1 0.20 0.02 [0.17, 0.24]
Intercept-Age correlation, τ01/(τ0 ∗ τ1) -0.35 0.09 [-0.52, -0.16]

Level-3 random effects
Intercept standard deviation, ϕ0 0.58 0.11 [1.08, 1.50]
Age standard deviation, ϕ3 0.40 0.03 [0.32, 0.42]

Precision parameter, φ 1.91 0.01 [1.89, 1.92]

Note. SE = standard errors estimated by standard deviations of the posterior
samples; CI = credible interval. N = 484 participants (or 242 pairs of twins). The
number of time points for each participant ranged from 3 to 569.

Table 3 shows the parameter estimates for PSS. In terms of the fixed effects,
weekend and seasonal effects were found in the trajectory of PSS. Specifically,
participants shared more activity space on weekdays than on weekends (β2 =



148 S. Zhou et al.

−0.12, 95% CI = [−0.13, 0.10]). This pattern might be due to the restricted
daily routines on weekdays during which twin siblings in this age range tended
to spend most of their time in school and thus, showed greater PSS. Participants
tended to have the largest PSS in spring, followed by winter, summer, and fall.
In addition, older twins tended to share less activity space at baseline (δ020 =
−0.30, 95% CI = [−0.42, −0.18]), and when it comes to within-individual
changes over time, in contrast to the lack of age-related changes in LAS, PSS was
found to decrease as twins grew older (δ100 = −0.38, 95% CI = [−0.44, −0.31]).
Note that a small portion of twins were in the transition from high school to
college, so the reduction in PSS might also reflect some of the inevitable life
transitions that occur with age, such as attending colleges or working at different
geographical locations. In terms of zygosity differences, both DZ twins of the
same sex and opposite sex were found to share less activity space than MZ
twins (δ001 = −0.29, 95% CI = [−0.49, −0.09]; δ002 = −0.49, 95% CI =
[−0.71, −0.27]), indicating that there might be genetically influenced differences
in PSS. Finally, no gender differences were found in the initial levels and growth
rates of PSS.

Results for random effects were similar to those in the LAS model. We found
between-individual and between-family differences in both initial levels and age-
based changes of PSS. We also found negative associations between the initial
levels and growth rates at the individual level, indicating that twins who had
higher initial levels of PSS tended to show more declines in PSS with age. In
other words, the participants’ GPS data suggested that higher physical closeness
at younger ages might not persist as the twins grew older.

Finally, we conducted sensitivity analysis by re-running the analysis with the
full data set (i.e., keeping the records with fewer than 20 valid data points within
a week in the final data set). Results were detailed in Table S1 and Table S2 in
Supplementary Material, which showed only slight differences in the magnitude
of point estimates and standard errors. Both data sets yielded consistent con-
clusions across all parameters in terms of whether they were credibly different
from zero based on their 95% credible intervals.

7 Discussion

The proliferation of real-time and longitudinal GPS data provides excellent op-
portunities to study human behavior (Osorio-Arjona & Garćıa-Palomares, 2019).
At the same time, the GPS data also pose challenges for consolidating, automat-
ing, and analyzing data that are not only massive in their quantities but also con-
tain spatial features that require expertise in GIS. Commercial software packages
make these studies easier but may have license and reproducibility issues, and
analyses with commercial software cannot be readily deployed to HPC platforms
to facilitate research procedures. In this article, we reviewed and compared ex-
isting commonly used Python libraries for spatial analysis with GPS2space, our
newly developed open-source Python library. GPS2space can build spatial data
from GPS data with latitude and longitude coordinate pairs, construct buffer-
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and convex hull-based activity space and shared space, and perform the nearest
distance query from user-specified locations. We demonstrated how to process
spatial data and calculate buffer- and convex hull-based activity space and shared
space, as well as the nearest distance, with code examples. We also discussed the
pros and cons of buffer- and convex hull-based approaches and illustrated differ-
ent scenarios when the two approaches could be appropriately applied. Lastly,
using data from the CoTwins study, we explored intra-individual changes and
between-individual differences in daily activity space and shared space with twin
siblings; and gender, zygosity and baseline age-related differences in their initial
levels and/or changes, using growth curve modeling techniques. We found differ-
ent patterns of seasonal effects in the trajectories of LAS and PSS, less activity
space shared between DZ twins compared with MZ twins, and a decrease of PSS
with increasing age.

There are several limitations to the current data analysis. First, we did not
allow for individual differences in the seasonal effects, so our results only pro-
vided a general description of seasonal patterns of LAS and PSS. In practice,
the seasonal effects might vary across individuals and need to be considered in
model specifications. Second, some other factors might affect individuals’ activ-
ity space, such as time of the year (e.g., school days versus holidays) and weather
(e.g., snow). Similarly, the magnitude of shared space between twin siblings de-
pends on whether they live together or not. These factors need to be included in
the models to better explain the temporal pattern of LAS and PSS as well as in-
dividual differences in these patterns. Finally, in our example, some participants
were assessed for fewer than three years, while typically at least three repeated
measures per individual are required in the growth curve analysis. Therefore,
participants need to be followed for several more years to better investigate age-
related changes at the year level. We may also assess changes of finer granularity
(e.g., at the month level) based on the current data.

Although we illustrated usage of GPS2space with data from a twin study,
the functions available in this package are applicable to a broad range of studies
that rely on GPS data or geolocation data with latitude and longitude coordi-
nate pairs. For example, GPS2space can be used to quantify individuals’ mobility
patterns using data from social media platforms. Health studies investigating the
spread of contagious diseases can examine individuals’ physical movements and
interaction patterns with other individuals using activity space and shared space
measures as derived from GPS2space. From demographic and sociological per-
spectives, activity space and shared space obtained using GPS2space can provide
important information regarding people’s sense of place, social segregation, and
their impacts on a series of socioeconomic outcomes such as educational attain-
ment and occupational status. In addition, the nearest distance measure from
GPS2space can also be used to examine the effects of accessibility to food and
healthcare providers. Meanwhile, researchers have shown disagreements in mo-
bility or trajectory measures between self-reported data and GPS/Sensor data
(Fillekes, Kim, et al., 2019; Fillekes, Röcke, Katana, & Weibel, 2019). GPS2space
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can provide information for researchers to validate and compare mobility or tra-
jectory measures from different data sources.

Many other extensions are possible within GPS2space to circumvent some
of its current limitations. For example, constructing activity space and shared
space involves topological structuring, which can take other forms besides con-
vex hull and buffer, the two methods currently available in GPS2space. Some
researchers use hexagon methods to measure territorial control based on road
data (Tao, Strandow, Findley, Thill, & Walsh, 2016); others also use the concave
hull method to estimate crown volumes of trees from remote sensing data (Yan et
al., 2019). Those approaches are useful and beneficial for certain research ques-
tions but are currently unavailable in GPS2space. To extend the GPS2space, one
could include concave hull, hexagon, and network-based methods in constructing
activity space and parameterize the column name variables for the spatial mea-
sures in GPS2space so that users have control of naming their desired outcomes.

With rapid developments of spatial economics, readily available spatial data
sets, and the computational power of personal computer and cloud computing,
spatial analyses have gained popularity in areas such as social, behavioral, and
environmental studies. We provided a timely open-source solution to work with
GPS data and extract spatial measures with code snippets and empirical exam-
ples using GPS2space. Overall, we have demonstrated that GPS2space can be a
versatile, handy, and extendable tool for researchers to harness the spatialities
of GPS data to investigate a wide array of research questions regarding spatial-
temporal variations of human behavioral changes and environment-population
linkages.
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Abstract. For inference involving a covariance matrix, inverse Wishart
priors are often used in Bayesian analysis. To help researchers better
understand the influence of inverse Wishart priors, we provide a con-
crete example based on the analysis of a two by two covariance matrix.
Recommendations are provided on how to specify an inverse Wishart
prior.
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In Bayesian analysis, an inverse Wishart (IW) distribution is often used as
a prior for the variance-covariance parameter matrix (e.g., Barnard, McCulloch,
& Meng, 2000; Gelman et al., 2014; Leonard, Hsu, et al., 1992). The IW prior
is very popular because it is conjugate to normal data. For best illustration,
consider a multivariate normal (MN) variable. Let X = (X1, X2, . . . , Xp) denote
a vector of p variables

X|Σ ∼MN(0,Σ)

with the mean vector µ = 0 and the variance-covariance matrix Σ. The density
function is

p(x|Σ) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
xTΣ−1x

)
.

Given a sample D = (x1, . . . ,xn) with n being the sample size, the likelihood
function for Σ is

L(Σ|D) ∝ p(D|Σ) ∝ |Σ|−n/2 exp

(
−1

2

n∑
i=1

xT
i Σ−1xi

)

= |Σ|−n/2 exp

[
−1

2
tr

(
n∑

i=1

xix
T
i Σ−1

)]
= |Σ|−n/2 exp

[
−n

2
tr(SΣ−1)

]
,

where S =
∑n

i xix
T
i /n is the biased sample covariance matrix (the sample is

centered at 0). Note that this is also the maximum likelihood estimate of Σ. To
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get the posterior distribution of Σ for Bayesian inference, one needs to specify a
prior distribution p(Σ) for it. With the prior, the posterior distribution can be
obtained through the Bayes’ Theorem:

p(Σ|D) =
p(D|Σ)p(Σ)

p(D)
.

1 The Inverse Wishart Prior

The most commonly used prior for Σ is probably the inverse Wishart conjugate
prior. The density function of an inverse Wishart distribution IW (V,m) with
the scale matrix V and the degrees of freedom m for a p× p variance-covariance
matrix Σ is

p(Σ) =
|V|m/2|Σ|−(m+p+1)/2 exp

[
−tr(VΣ−1)/2

]
2mp/2Γ (m/2)

.

The inverse Wishart distribution is a multivariate generalization of the inverse
Gamma distribution. The mean of it is

E(Σ) =
V

m− p− 1
(1)

and the variance of each element of Σ = (σij) is

V ar(σij) =
(m− p+ 1)v2ij + (m− p− 1)viivjj

(m− p)(m− p− 1)2(m− p− 3)
.

Especially,

V ar(σii) =
2v2ii

(m− p− 1)2(m− p− 3)
. (2)

With an inverse Wishart prior IW (V0,m0) based on known V0 and m0, the
posterior distribution of Σ is

p(Σ|D) ∝ p(D|Σ)p(Σ)

= |Σ|−n/2 exp
[
−n

2
tr(SΣ−1)

]
|Σ|−(m0+p+1)/2 exp

[
−tr(V0Σ

−1)/2
]

= |Σ|−(n+m0+p+1)/2 exp

{
−1

2
tr
[
(nS + V0) Σ−1

]}
.

From it, we can get the posterior distribution for Σ, also an inverse Wishart
distribution:

Σ|D ∼IW (nS + V0, n+m0) = IW (V1,m1) (3)

with the updated scale matrix and degrees of freedom.
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1.1 Information in an inverse Wishart prior

The posterior mean of Σ is

E(Σ|D) =
nS + V0

n+m0 − p− 1

=
n

n+m0 − p− 1
S +

(
1− n

n+m0 − p− 1

)
V0

m0 − p− 1
. (4)

Therefore, the posterior mean is a weighted average of the sample covariance
matrix S and the prior mean V0/(m0 − p − 1). When the sample size n → ∞,
the posterior mean approaches the sample mean given fixed m0 and p.

The information in a prior can be connected to data. For example, if we
specify the prior IW (V0,m0) as V0 = n0S and m0 = n0, then the informative
in the prior is equivalent to n0 participants in the sample. Note that if we set
V0 = (m0−p−1)S, then E(Σ|D) = S, meaning the posterior mean is the same
as the sample covariance matrix.

2 Precision Matrix and the Wishart Prior

In practice, the BUGS program is probably the most widely used software for
Bayesian analysis (e.g., Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012;
Ntzoufras, 2009). BUGS uses the precision matrix, defined as the inverse of the
covariance matrix, to specify the multivariate normal distribution. Let P = Σ−1,
then the normal density function can be written as

p(x|P) = (2π)−p/2|P|1/2 exp

(
−1

2
xTPx

)
.

The use of the precision matrix has the computational advantage by avoiding
the inverse of matrix in the density calculation in certain situations.

For the precision matrix P, a Wishart prior W (U0, w0) with the scale matrix
U0 and degrees of freedom w0 is used (e.g., Lunn et al., 2012). The density
function of the prior is

p(P) =
|P|(w0−p−1)/2 exp

[
−tr(U−1

0 P)/2
]

2w0p/2Γ (w0/2)|U0|w0/2
.

Given the sample D = (x1, . . . ,xn), the posterior distribution of P is

p(P|D) ∝
n∏

i=1

[
|P|1/2 exp

(
−1

2
xT
i Pxi

)]
|P|(w0−p−1)/2 exp

[
−tr(U−1

0 P)/2
]

= |P|(n+w0−p−1)/2 exp

{
−1

2
tr
[
(nS + U−1

0 )P
]}

.
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Therefore, the posterior is also a Wishart distribution W (U1, w1) with U1 =(
nS + U−1

0

)−1
and w1 = n+ w0. The posterior mean of P is

E(P|D) = w1U1 = (n+ w0)
(
nS + U−1

0

)−1
.

Based on the relationship between Wishart and inverse Wishart distributions
(Mardia, Bibby, & Kent, 1982),

Σ|D =P−1|D ∼ IW (U−1
1 , w1) = IW (nS + U−1

0 , n+ w0). (5)

The posterior mean of Σ is

E(Σ|D) =
U−1

1

w1 − p− 1
=

nS + U−1
0

n+ w0 − p− 1
. (6)

Comparing the posterior distributions in Equation (3) and (5), giving an
inverse Wishart distribution IW (V0,m0) prior to the covariance matrix Σ is
the same as giving a Wishart distribution W (V−1

0 ,m0) prior to the precision
matrix P = Σ−1. However, note that

[E(P|D)]
−1

=
nS + U−1

0

n+ w0
6= E(Σ|D) =

nS + U−1
0

n+ w0 − p− 1
.

Therefore, one cannot simply invert the posterior mean of the precision matrix
to get the posterior mean of the covariance matrix.

3 Numerical Examples

For illustration, we look at a concrete experiment. Suppose we have a sample of
size n = 100 with the sample covariance matrix (p = 2)

S =

(
5 2
2 10

)
.

The aim is to estimate Σ through Bayesian method. We now consider the use
of different priors and evaluate their influence. Given the connection between
the Wishart and inverse Wishart distributions, we focus our discussion on the
specification of an inverse Wishart prior for the covariance matrix Σ .

3.1 Priors based on an identity scale matrix

For an inverse Wishart prior IW (V0,m0), we need to specify its scale matrix
and degrees of freedom. In practice, an identity matrix has been frequently used
as the scale matrix. Therefore, we first set V0 = I and vary the degrees of
freedom by letting m0 = 2, 5, 10, 50, 100. Note that when m0 = 2, the prior is
not a proper distribution but the posterior is still a proper distribution. The
mean and variance of the posterior distribution are given in Table 1. First, when
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m0 = 2 or 5, the posterior means are close to the sample covariance matrix.
With the increase of m0, the posterior means become smaller and the posterior
variances also become smaller. This can be easily explained by Equation (4)
– the posterior mean is a weighted average between the sample mean and the
prior mean. Take the element Σ11 as an example. From the data, S11 = 5.
The mean of the inverse Wishart prior is V0,11/(m0 − 3) = 1/(m0 − 3). When
m0 = 5, the prior mean is 0.5 and when m0 = 100, the prior mean is about 0.01.
Furthermore, when m0 = 5, the weight for the prior mean is about 0.05 but
when m0 = 100, the weight increases to about 0.5. Therefore, with the increase
of m0, the posterior mean is pulled towards the prior mean since the prior mean
has a greater weight.

Table 1. Posterior inference of the covariance matrix parameter based on the inverse
Wishart prior with the scale matrix specified based on an identity matrix.

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

IW (I,m0)

Σ11 5 5.06 4.91 4.68 3.41 2.54 0.528 0.483 0.418 0.160 0.066
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.516 0.516 0.447 0.172 0.071
Σ22 10 10.11 9.81 9.36 6.81 5.08 2.108 1.926 1.667 0.640 0.265

IW [(m0 − p− 1)I,m0]

Σ11 5 5.04 4.92 4.74 3.72 3.03 0.524 0.484 0.428 0.191 0.094
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.518 0.518 0.454 0.194 0.091
Σ22 10 10.09 9.82 9.41 7.12 5.57 2.100 1.930 1.687 0.700 0.318

In the above specification, since V0 ≡ I, the prior mean also changes along
the change of m0. In practice, e.g., in sensitivity analysis, it can be helpful to
fix the prior mean. To achieve this, one can set V0 = (m0 − p− 1)I. Therefore,
when m0 = 5, the scale matrix will be 2I, and when m0 = 100, the scale matrix
will be m0 = 97I. With such specification, the prior mean is always I.

3.2 Priors with the scale matrix formed from data

Another way to specify the prior is to construct the scale matrix for the inverse
Wishart distribution based on the sample data. Intuitively, we can set V0 = S
and change m0. From the top of Table 2, with the increase of m0, the posterior
mean deviates from the sample covariance matrix. This is again because that
the prior mean becomes smaller with the increase of m0 since the prior mean is
equal to S/m0. To maintain the same prior mean while changing the information
in the prior, we set V0 = (m0−p−1)S. With such specification, the prior mean
is always S and the posterior mean is also S as we can see from the bottom
part of Table 2. With the increase of the degrees of freedom, more information
is supplied through the prior and we can observe the decrease in the posterior
variance.
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Table 2. Posterior inference of the covariance matrix parameter based on the priors
with the scale matrix constructed from data.

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

IW (S,m0)

Σ11 5 5.10 4.95 4.72 3.44 2.56 0.537 0.490 0.424 0.163 0.067
Σ12 2 1.98 1.98 1.89 1.37 1.03 0.525 0.525 0.455 0.175 0.072
Σ22 10 10.20 9.90 9.44 6.87 5.13 2.146 1.961 1.697 0.651 0.270

IW [(m0 − p− 1)S,m0]

Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 2.00 2.00 2.00 2.00 2.00 0.536 0.536 0.510 0.370 0.276
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

3.3 Other types of specifications

We now consider several other types of specifications of the scale matrix to
illustrate the influence of the prior. In all the the specifications, we maintain the
same prior mean by setting the prior in the form of IW [(m0−p−1)V0,m0]. The
priors considered and the associated posterior mean and variance are summarized
in Table 3.

For prior P1, it assumes that Σ11 is 10 times of Σ22, which is not con-
sistent with the sample data. As expected, the posterior mean is pulled to-
wards prior mean with the increase of m0. Notably, the variance of Σ11 does not
monotonously decrease with the increase of m0 as one might incorrectly assume
that the use of prior information will lead to more precise results. This is because
the variance of the inverse Wishart distribution is related to its mean as shown
in Equation (2), and the prior is not consistent with data.

For Priors P2, P3, P4, and the one at the bottom of Figure 2, the scale
matrices have the same diagonal values and different off-diagonal values. Note
that changing the values on the off-diagonals influences neither the posterior
means nor variances on the diagonals, which can also be seen in Equations
(1) and (2). As expected, changing the off-diagonal values influences both the
posterior means and variances. However, the posterior variances are relatively
stable.

3.4 Using priors for a precision matrix P

The influence of the priors on the precision matrix is the same as for the covari-
ance matrix because of the connection of Wishart and inverse Wishart distribu-
tion – if Σ ∼ IW (V0,m0), P = Σ−1 ∼ W (V−1

0 ,m0). If the prior IW (I,m0)
is specified for the covariance matrix, it is equivalent to use W (I,m0) for the
precision matrix. As discussed earlier, to maintain the same prior mean, we can
use IW [(m0 − p− 1)I,m0] for Σ. In this case, the prior for the precision matrix
should be W [I/(m0 − p− 1),m0]. Similarly, if we specify a prior for Σ based on
the data using IW [(m0 − p − 1)S,m0], then the prior for the precision matrix
would be W [S−1/(m0 − p− 1),m0].
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Table 3. Posterior inference of the covariance matrix parameter with additional spec-
ifications of inverse Wishart priors IW [(m0 − p− 1)V0,m0].

Mean Variance
S 2 5 10 50 100 2 5 10 50 100

P1: V0 =

(
10 0
0 1

)
Σ11 5 4.95 5.10 5.33 6.60 7.46 0.505 0.520 0.541 0.601 0.571
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.535 0.535 0.507 0.335 0.217
Σ22 10 10.09 9.82 9.41 7.12 5.57 2.100 1.930 1.687 0.700 0.318

P2: V0 =

(
5 −2
−2 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.92 1.92 1.74 0.72 0.03 0.532 0.532 0.501 0.346 0.255
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

P3: V0 =

(
5 0
0 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.96 1.96 1.87 1.36 1.02 0.534 0.534 0.505 0.355 0.260
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

P4: V0 =

(
5 −5
−5 10

)
Σ11 5 5.00 5.00 5.00 5.00 5.00 0.515 0.500 0.476 0.345 0.256
Σ12 2 1.86 1.86 1.54 -0.24 -1.45 0.530 0.530 0.495 0.343 0.266
Σ22 10 10.00 10.00 10.00 10.00 10.00 2.062 2.000 1.905 1.379 1.026

4 Discussion

Although not without issues, Wishart and inverse Wishart distributions are still
commonly used prior distributions for Bayesian analysis involving a covariance
matrix (Alvarez, Niemi, & Simpson, 2014; Liu, Zhang, & Grimm, 2016). As we
have shown, the use of the inverse Wishart prior has the advantage of conjugate,
which simplifies the posterior distribution. By using an inverse Wishart prior,
the posterior distribution is also an inverse Wishart distribution given normally
distributed data. The posterior mean can be conveniently expressed as a weighted
average of the prior mean and the sample covariance matrix. The influence of
the prior can also be clearly quantified.

When reliable information is available, an informative inverse Wishart prior
can be constructed. For example, previous estimates on the covariance matrix
could be available. In this situation, such covariance matrix estimates can be
used to construct the scale matrix. If the variance estimates of the covariance
matrix is also available, one can determine the degrees of freedom for the inverse
Wishart prior based on the variance expression in Equation (2), which can be
done using the R package discussed in the Appendix. The degrees of freedom
based on each individual element may vary. The overall degrees of freedom for the
inverse Wishart distribution can be determined based on the practical research
question.
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When no reliable information is available, an identity matrix has often been
suggested to use as the scale matrix for the inverse Wishart distribution for
the covariance matrix and Wishart distribution for the precision matrix (e.g.,
Congdon, 2014). But as one can see from the numerical example, how much
information such a prior has is related to the covariance matrix. We believe a
better way to specify an uninformative prior is to determine the scale matrix
based on the sample covariance matrix. Therefore, we recommend the prior
IW [(m0 − p− 1)S,m0]. As for the precision matrix, one can use W [S−1/(m0 −
p− 1),m0].

Appendix

The R package wishartprior is developed and made available on GitHub to help
understand the Wishart and inverse Wishart priors. The URL to the package is
https://github.com/johnnyzhz/wishartprior. The package can be used to
generate random numbers from an inverse Wishart distribution. It can calculate
the mean and variance of Wishart and inverse Wishart distributions. Using the
package, one can investigate the influence of priors.
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Abstract. Multilevel modeling is often used to analyze survey data col-
lected with a multi-stage sampling design. When the selection is informa-
tive, sampling weights need to be incorporated into the estimation. We
propose a weighted residual bootstrap method as an alternative to the
multilevel pseudo-maximum likelihood (MPML) estimators. In a Monte
Carlo simulation using two-level linear mixed-effects models, the boot-
strap method showed advantages over MPML for the estimates and the
statistical inferences of the intercept, the slope of the level-2 predictor,
and the variance components at level-2. The impact of sample size, selec-
tion mechanism, intraclass correlation (ICC), and distributional assump-
tions on the performance of the methods was examined. The performance
of MPML was suboptimal when sample size and ICC were small and
when the normality assumption was violated. The bootstrap estimates
generally performed well across all the simulation conditions but had no-
tably suboptimal performance in estimating the covariance component
in a random slopes model when sample size and ICCs were large. As an
illustration, the bootstrap method is applied to the American data of the
OECD’s Program for International Students Assessment (PISA) survey
on math achievement using the R package bootmlm.

Keywords: Bootstrap · Informative Selection · Multilevel Modeling · Sam-
pling Weights · Pseudo-maximum Likelihood

1 Introduction

Multi-stage sampling design is often used in survey data collection. For exam-
ple, in order to obtain a nationally representative sample of kindergartners, a
two-stage sample design may be used in which a representative set of schools
are sampled in the first stage and students within schools are sampled in the
second stage. Besides the advantage of cost-effectiveness and convenience, data
obtained by multi-stage sampling allow researchers to answer multilevel research
questions. For example, researchers could examine how students’ achievement is
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related to individual student socioeconomic status (SES) on average, how this
association varies across schools, how school socioeconomic composition (i.e.,
school SES) affects student achievement, and how school SES affects the asso-
ciation between student achievement and their SES. One challenge in analyzing
complex survey data is the non-independence of observations (or clustering ef-
fect) because individuals in the same cluster usually share the same environment
and tend to be more alike. Another challenge arises when there are unequal se-
lection probabilities at one or more stages of the sampling process, which is often
the case due to the necessity of oversampling certain underrepresented groups
or accounting for non-response.

To answer multilevel research questions and to handle the nested data struc-
tures, multilevel modeling (MLM) is frequently used. MLM allows researchers
to decompose the variance into the between-cluster and within-cluster compo-
nents and investigate the variability of within-cluster effects across clusters. For
example, using MLM researchers could examine not only the average association
between individual student achievement and their SES, but also how this associ-
ation may vary across schools. Established estimation methods for MLM include
maximum likelihood (ML) and iterative generalized least squares (IGLS), which
are equivalent under normality (Goldstein, 1986). When there are unequal selec-
tion probabilities in the stage of selecting schools and/or the stage of selecting
students within schools, in order to obtain accurate estimate of the mean out-
come and/or the average association between a predictor and the outcome in the
population of students, methods were developed to incorporate sampling weights
in estimation, such as multilevel pseudo-maximum-likelihood (MPML)(e.g., As-
parouhov, 2006; Rabe-Hesketh & Skrondal, 2006) and probability-weighted IGLS
(PWIGLS; Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998). It has
been shown that PWIGLS could result in biased standard error estimates for
weighted multilevel data (Asparouhov, 2005). Hence we only considered MPML
in our study.

MPML has two crucial underlying assumptions. First, it assumes that the
sample size is sufficiently large at both the within-cluster (e.g., number of stu-
dents per school) and the between-cluster level (e.g., number of schools), espe-
cially the latter. In practical research, even if it is possible to obtain a large
number of clusters, the sample size within each cluster is often small. To reduce
bias in the estimates of the standard errors of fixed effects and the estimates of
variance components due to small cluster sizes, scaling of level-1 weights has been
used as the major tool. However, the performances of the various scaling methods
depend on a host of factors such as cluster size, intraclass correlation (ICC), the
degree of informativeness of the selection mechanism, and so forth (Asparouhov,
2006). Applied researchers should select the appropriate scaling method based
on the specific sampling design of a study, which could be challenging due to the
lack of information. Second, MPML assumes that the error term and random
effects follow a distribution of a specified class. In multilevel models, each level
has its own error term and random effects; therefore the distributional assump-
tions should be met at each level. For example, in a two-level linear model, the
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level-1 errors are assumed to follow a univariate normal distribution, and the
level-2 random effects are assumed to follow a multivariate normal distribution.
It has been documented that although ML estimators for fixed effects and vari-
ance components are consistent even when the random-effects distribution is not
normal, the standard error estimated by the inverse Fisher information matrix
may be biased, especially for variance components (Verbeke & Lesaffre, 1997).
The more sophisticated Huber-White robust standard errors are more accurate
for the variance component estimates, but require at least 100 clusters (Maas &
Hox, 2004). To our knowledge, the performance of MPML with robust standard
errors under distributional misspecification has not been studied yet.

Bootstrap resampling methods for multilevel data have been developed as
an alternative to ML estimation in the case where the general assumptions
mentioned above are violated. In general, there are three main approaches to
bootstrap: (1) the parametric bootstrap, (2) the nonparametric residual boot-
strap, and (3) the case bootstrap. The parametric bootstrap has the strongest
assumptions, which require that the specifications of the functional form and
the distributions of the residuals are both correct. The residual bootstrap only
requires the correct specification of the functional form. Finally, the case boot-
strap has minimum assumptions and only requires the hierarchical structure to
be correctly specified. Van der Leeden, Meijer, and Busing (2008) provided a de-
tailed discussion of the systematic development of bootstrap resampling methods
for multilevel models. It has been shown that bootstrap methods could provide
accurate confidence intervals for fixed effect estimates when the distribution of
the residuals are highly skewed at all levels (Carpenter, Goldstein, & Rasbash,
2003). In addition, applications to small area estimation showed that the boot-
strap method could produce sensible estimates for standard errors for shrinkage
estimates of small area means based on generalized linear mixed models (e.g.,
Booth, 1995; Hall & Maiti, 2006; Lahiri, 2003).

Given the advantages of multilevel bootstrap resampling under conditions
with distributional assumption violation and small sample sizes, it is useful
to extend the method to accommodate multilevel data with sampling weights.
Research in this area is limited and existing methods only use the case boot-
strap approach (Grilli & Pratesi, 2004; Kovacevic, Huang, & You, 2006; Wang
& Thompson, 2012) . Although the case bootstrap is more robust to assumption
violations than residual bootstrap, it is typically less efficient. Some studies have
shown that case bootstrap performed worse than residual bootstrap even when
the assumptions were violated (Efron & Tibshirani, 1993; Van der Leeden et al.,
2008). Hence the purpose of this paper is to propose a weighted nonparamet-
ric residual bootstrap procedure for multilevel modeling with sampling weights.
The proposed procedure is an extension of the nonparametric residual bootstrap
procedure developed by Carpenter et al. (2003). With a Monte Carlo simula-
tion, we examined the performance of the proposed bootstrap method in terms
of parameter estimates and statistical inferences under a variety of conditions.

The outline of the paper is as follows. First, we briefly discuss sampling
weights for multilevel models, followed by a review of existing bootstrap methods
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for multilevel data. Next, we provide details of the proposed procedure followed
by a demonstration of the method using real data. Then we present the sim-
ulation study to examine the performance of the proposed bootstrap method.
Finally, the findings are summarized and discussed.

2 Sampling Weights and Pseudo-Maximum-Likelihood
Estimation for Multilevel Models

Multilevel data are often collected using a multi-stage sampling design which
involves sampling clusters in the first stage and then sampling units within se-
lected clusters in the subsequent stages. Due to the clustering, observations in
multilevel data often have some degree of dependence among them, which makes
the traditional methods based on a simple random sample design inappropriate.
Therefore, MLM is often used to account for the dependency among the ob-
servations. More importantly, MLM not only allows researchers to examine the
average association between a predictor and an outcome, but also to address
questions on how the associations among variables within clusters vary across
clusters, such as how the association between individual student achievement
and their SES varies across schools. In this section, we consider a two-level
model with students nested within schools to provide a background for sampling
weights in multilevel models.

Let Yij be the achievement scores, Xij be the scores on the level-1 predic-
tors (e.g., individual student SES, gender, etc.) associated with student i(i =
1, . . . , nj) within school j(j = 1, . . . , J), and Xj be the scores on the level-2 pre-
dictors (e.g., school SES, school sector, etc.) associated with school j. A two-level
model can be specified as

Yij = β1Xij + β2Xj + µjZij + εij (1)

where β1 and β2 are row vectors of regression coefficients associated with student-
level and school-level predictors respectively, which represent the average effects
of the predictors in the population of students. The row vector µj contains ran-
dom effects associated with school j, which could be a random intercept, or a
random slope of a student-level predictor, or both. The design vector Zij usu-
ally includes the constant 1 (for the random intercept) and the student-level
predictors that have random slopes across schools. Finally, εij is the level-1
error. The main parameters of interest in MLM are usually the fixed effects
(i.e., β1 and β2 ) and the variance and covariance components (i.e., the vari-
ances and covariances of the random effects µj). The conventional maximum
likelihood estimates of the parameters are obtained by maximizing the likeli-
hood function L (θ) =

∏J
j=1[

∫ ∏nj
i=1 f(Yij |Xij ,µj ,β1)q(µj |Xj ,β2)dµj ] where

f
(
Yij |Xij ,µj ,β1

)
is the density function of Yij and q(µj |Xj ,β2) is the density

function of µj .
Suppose that schools and students within schools are selected with unequal

probabilities. Let the probability of selecting school j be pj and the probabil-
ity of selecting student i given that school j is sampled be pi|j . The sampling
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weight for school j is wj = 1/pj . The conditional sampling weight for student
i within school j is wi|j = 1/pi|j . The unconditional sampling weight for an
individual student is wij = wj ×wi|j . If the sampling weights are related to the
dependent variable after conditioning on the covariates in the model, they are
called informative weights (Pfeffermann, 1993). For example, if students with
lower achievement have a higher probability of being sampled controlling for the
predictors Xij and Xj , then the sampling weights are informative. Informative
sampling weights should be incorporated in statistical inferences to avoid bias
in estimates or poor performance of test statistics and confidence intervals. For
multilevel models, the sampling weights at each level need to be taken into ac-
count when they are informative, to ensure that the average association between
the predictors and the outcome in the population of students as well as the
variance and covariance components of school random effects can be accurately
estimated. One approach to incorporate the sampling weights is to use multilevel
pseudo maximum likelihood estimation (MPML), which defines the likelihood

function as l (θ) =
∏J

j=1(
∫ ∏nj

i=1 f
(
Yij |Xij ,µj ,β1

)wi|j q(µj |Xj ,β2)dµj)
wj .

Extant literature has shown that the level-1 weights should be scaled in
order to reduce the bias of variance component estimates and standard error
estimates of fixed effects when cluster sizes are not large (e.g., Pfeffermann et
al., 1998; Potthoff, Woodbury, & Manton, 1992; Stapleton, 2002). There are two
commonly used scaling methods: relative vs. effective sample size scaling. In
relative sample size rescaling, the level-1 weights wi|j are multiplied by a scaling
factor s1j =

nj∑nj
i=1 wi|j

so that the sum of the rescaled level-1 weights within

a cluster equals the actual cluster size. In effective sample size rescaling, the

scaling factor s1j =
∑nj
i=1 wi|j∑nj
i=1 w2

i|j
is used such that the sum of the rescaled level-

1 weights within a cluster equals the effective cluster size which is defined as
(
∑nj
i=1 wi|j)

2∑nj
i=1 w2

i|j
. Some simulation studies showed that relative sample size rescaling

works better for informative weights, whereas effective sample size rescaling is
more appropriate for non-informative weights (Pfeffermann et al., 1998). Some
researchers argue that non-informative weights should not be used in multilevel
analyses because they tend to result in a loss of efficiency and even bias in
parameter estimates under some conditions. For example, Asparouhov (2006)
found bias in the estimation of multilevel models when cluster sample size is
small and non-informative within-cluster weights are used.

However, in practical applications, choosing the right scaling method may
be challenging. Pfeffermann (1993) described a general method for testing the
informativeness of the weights. Asparouhov (2006) proposed a simpler method
based on the informative index, and recommended to consider both the value of
the informative index and Pfeffermann’s test, the invariance of selection mech-
anism across clusters, and the average cluster size when determining weighting
in multilevel modeling.
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3 Bootstrap for Multilevel Data

Depending on whether and what parametric assumptions are involved, there are
multiple approaches to do bootstrapping (Davison & Hinkley, 1997), and addi-
tional care is needed to address the dependencies in the data when resampling
with multilevel data (Van der Leeden et al., 2008). Below we first provide a
brief summary of the common bootstrap procedures for multilevel data in gen-
eral (i.e., the parametric bootstrap, the residual bootstrap, and the case boot-
strap) and then focus on the bootstrap method for multilevel data with sampling
weights. Readers should consult Davison and Hinkley (1997), Goldstein (2011),
and Van der Leeden et al. (2008) for more detailed reviews of the statistical
theory of multilevel bootstrapping methods.

3.1 Parametric Bootstrap

As described in Goldstein (2011), with parametric bootstrap, researchers first
fit a multilevel model to obtain fixed effect estimates, and the random effect
variance estimates, τ̂ and σ̂. Then, for each bootstrap sample, a new set of N
level-1 errors, ε∗ij , and a new set of J level-2 random effects, µ∗j , are drawn from
independent N(0, τ̂ ) and N(0, σ̂) distributions to form a new set of responses,
y∗ij . The multilevel model is then refitted to the new bootstrap data, and the
target statistics (e.g., fixed effects) are computed. The resampling process is
repeated for a large number of B bootstrap samples (e.g., B = 1, 999) to obtain
bootstrap sampling distributions of the target statistics.

3.2 Non-parametric Residual Bootstrap

The (nonparametric) residual bootstrap is similar to the parametric bootstrap
except that, when forming new responses, the new errors and random effects
were obtained by sampling with replacement the residuals of the multilevel fitted
model. In this paper, the resampled residuals were denoted as µ̃j and ε̃ij to
distinguish them from the counterparts in the parametric bootstrap. In addition,
because the sampling variance of µ̃j is generally smaller than τ̂ , and so is the
sampling variance of ε̃ij smaller than σ̂ (albeit to a lesser extent). Carpenter
et al. (2003) and Goldstein (2011) recommended to first “reflate” the residuals
so that the sample variances of the reflated residuals were exactly τ̂ and σ̂,
respectively. Finally, as in parametric bootstrap, a new set of response ỹij is
formed, and the target statistics are computed, and then the process is repeated
B times to obtain a bootstrap sampling distribution of the target statistics.

3.3 Case Bootstrap

With the case bootstrap, each bootstrap sample consisted of observations (i.e.,
“cases”) sampled with replacement from the original data. When there are two
levels in the data so that a case can mean a cluster or a unit within a cluster,
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there are two variants of the case bootstrap (Davison & Hinkley, 1997): (a) to
resample with replacement intact clusters but no resampling within a cluster,
and (b) to first resample the clusters, and within each cluster resample with
replacement the units. Both Davison and Hinkley (1997) and Goldstein (2011)
recommended (a) over (b).

A few previous studies have examined these three bootstrap methods for
multilevel analyses. Seco, Garćıa, Garćıa, and Rojas (2013) showed that the
residual bootstrap produced more precise estimates, in terms of smaller root
mean squared errors, for fixed effects than restricted maximum likelihood. On
the other hand, because the case bootstrap makes fewer assumptions than the
parametric and the residual bootstraps, it requires more information from the
data. As such, previous literature found that its performance was poor compared
to the other two methods, even when the assumptions for the latter two meth-
ods were violated (Efron & Tibshirani, 1993; Van der Leeden et al., 2008). On
the other hand, Thai, Mentré, Holford, Veyrat-Follet, and Comets (2014) found
that in longitudinal linear-mixed models where cluster size is constant, residual
bootstrap and case bootstrap performed similarly when there were at least 100
individuals (i.e., J = 100).

3.4 Bootstrap for Multilevel Data with Sampling Weights

For multilevel data with sampling weights, the extant literature documents two
types of bootstrap methods, both of which can be viewed as modifications to
case bootstrap. One type involves generating a pseudo (or artificial) population
that mimics the population from which the original sample is selected, and then
selecting bootstrap samples from the pseudo population based on the sampling
weights in the original sample (Grilli & Pratesi, 2004; Wang & Thompson, 2012).
As described in Grilli and Pratesi (2004), when generating the pseudo popula-
tion, the ith unit (i = 1, . . . , nj) in the j th cluster (j = 1, . . . , J) is duplicated
wi|j times, rounding the weight to the nearest integer to form J artificial clus-
ters. Then each of the J artificial clusters is replicated wj times, rounding the
weight to the nearest integer, to obtain the artificial population. From the ar-
tificial population, bootstrap samples are obtained by first selecting J clusters
with probability proportional to 1/wj and then selecting nj units with probabil-
ity proportional to 1/wi|j from the j th resampled cluster. Wang and Thompson
(2012)’s procedure is similar except that they added an additional step to ac-
count for the potential biases caused by rounding the weights when generating
the pseudo population.

The other type of bootstrap for multilevel data with sampling weights in-
volves a two-stage resampling and rescaling of weights at each level. As described
in Kovacevic et al. (2006), J−1 clusters are first drawn from the original sample
using simple random sampling with replacement (SRSWR). Then wj is rescaled
to obtain the cluster bootstrap weights w∗j = wj

J
J−1 tj where tj is the number of

times that cluster j is included in the bootstrap sample. From each resampled
cluster, nj − 1 units are drawn using SRSWR and the unadjusted conditional
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bootstrap weights are calculated for level-1 units as b∗i|j = wi|j

(
nj

nj−1

)(
ti|j
tj

)
where ti|j is the total number of times that the ith unit is resampled. Based
on the rescaled cluster bootstrap weights and the unadjusted conditional boot-
strap weights, the unadjusted unconditional bootstrap weights are computed as
b∗ij = b∗i|jw

∗
j . The adjusted unconditional bootstrap weights (w∗ij) are obtained af-

ter applying all the same adjustments done in the process of calculating the orig-
inal full sample unconditional weights. If no adjustment is made, then w∗ij = b∗ij .
Finally, the within-cluster conditional weights are calculated as w∗i|j = w∗ij/w

∗
j .

Both Grilli and Pratesi (2004) and Kovacevic et al. (2006) noted that the
steps concerning the level-1 units in their procedures can be omitted when the
sampling fraction is low at the cluster level. Kovacevic et al. (2006) also showed
that the accuracy and stability of variance estimation improved when using the
relative within-cluster weights (i.e., the sum of the rescaled level-1 weights within
a cluster equals the actual cluster size) as compared to the original unscaled
within-cluster weights. However, to the best of our knowledge, these methods
have not been developed into statistical packages that can be easily accessed by
applied researchers.

4 The Proposed Weighted Residual Bootstrap

4.1 Algorithm

The weighted residual bootstrap method was developed based on an idea simi-
lar to the one outlined in Goldstein, Carpenter, and Kenward (2018). Without
loss of generality, we present the weighted nonparametric residual bootstrap
algorithm for a two-level model. An extension to a model with more levels is
straightforward.

Step 1: Obtain parameter estimates for model 1 (i.e., β̂1 and β̂2) based
on sample data using unweighted maximum likelihood and restricted maximum
likelihood, and compute level-1 residuals εij and level-2 residuals µj .

Step 2: Obtain reflated level-1 and level-2 residuals (ε
′

ijand µ
′

j) using Car-
penter et al. (2003)’s procedure.

Step 3: Sample independently with replacement from the set of reflated level-1
residuals using level-1 unconditional weights and from the set of reflated level-
2 residuals using level-2 weights, obtaining two new sets of residuals ε

′b
ij and

µ
′b
j , where b is the index of bootstrap samples. It is noted that the level-1

unconditional weights are used instead of the conditional weights to resample
level-1 residuals, because the new set of level-1 residuals are selected from the
entire sample across clusters rather than within clusters. This approach makes
it unnecessary to scale the within-cluster weights.

Step 4: The new response of the bth bootstrap sample is then obtained by
Y

′b
ij = β̂1Xij + β̂2Xj + µ

′b
j Zij + ε

′b
ij .

Step 5: Refit the model to the bootstrap sample to obtain one set of bootstrap
parameter estimates using either unweighted maximum likelihood or restricted
maximum likelihood.



Weighted Residual Bootstrap Method for Multilevel Models 97

Step 6: Repeat steps 2-5 to obtain B set sets of bootstrap parameter esti-
mates.

4.2 Illustration

As a demonstration, we applied the proposed procedure to examine the as-
sociations between student math achievement and student gender and school
SES among 15-year-old students in the United States using the 2000 PISA
data Organization for Economic Co-operation and Development (2000) . PISA
used a cluster sampling design with unequal selection probabilities. Specifically,
schools with more than 15% of minority students were oversampled, and minor-
ity students were oversampled within those schools. The data include weights at
the school level (named WNRSCHBW) and unconditional weights at the stu-
dent level (named W FSTUWT). We used a two-level random intercept model
with students’ math test scores (Yij) as the dependent variable, student gender
(Genderij = 0 for females and 1 for males) and school mean ISEI (ISEI m) as
the school-level predictor (Equation 2),

Yij = β0 + β1Genderij + β2ISEI mj + u0j + eij (2)

where i indexes students and j indexes schools, u0j represents random effects
associated with the intercept. The main parameters of interest are the average
effects of gender (β1) and school SES (β2) on students’ math achievement in
the population of 15-year-old students in the United States. Although we used a
random intercept model in this demonstration, researchers could further examine
whether the association between student gender and achievement varies across
schools by adding a random effect associated with the slope of gender that varies
across schools (i.e., a random slope model).

The US sample consists of 2135 students from 145 schools. 74% students had
complete data on both ISEI and Math while 26% had at least one missing value
on the two variables. After removing cases with missing data, the final sample
of analysis consists of 1578 students from 145 schools. The cluster size ranged
from 1 to 20, with the first quartile of 8, median of 12, and the third quartile of
14. To determine the degree to which the weights were informative, we followed
the recommendation by Asparouhov (2006) and computed the informative index
by |µ̂w − µ̂0| /

√
υ0 where µ̂w is the weighted mean of the dependent variable, µ̂0

is the unweighted mean, and υ0 is the unweighted variance. The informative
index for math was 0.03, indicating that the sampling weights were very slightly
informative.

The bootstrap estimates were obtained using researcher developed R package
bootmlm (see Appendix for the R code). As a comparison, the model was also
estimated using unweighted ML, and MPML with relative and effective weights
respectively. The MPML estimates were obtained using Mplus 8.2 Muthén and
Muthén (1998, see Appendix B for the Mplus code). The ML estimates were
obtained using the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2015).
Percentile confidence intervals were computed in the bootstrap method (i.e., α/2
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and 1−α/2 quantiles of the bootstrap distribution), profile likelihood confidence
intervals were computed in lme4 for the ML estimates, and the delta method3

was used to construct approximate confidence intervals for the MPML variance
component estimates. The MPML results based on relative weights were almost
identical to those based on effective weights, thus we only reported the latter.

Table 1. ML, MPML, and Bootstrap Results Based on the PISA Data

Estimate SE 95% CI

Unweighted ML

Intercept 74.33 2.49 [69.45, 79.20]
Gender -1.6 0.66 [-2.88, -0.31]
ISEI m 0.16 0.05 [0.06, 0.26]
Variance
School 9.43 3.02 [4.35, 16.48]
Residual 162.4 6.06 [151.07, 174.87]
Conditional ICC 0.06

MPML Effective Weights

Intercept 80.42 5.52 [69.59, 91.24]
Gender -2.43 1.16 [-4.70, -0.16]
ISEI m 0.06 0.12 [-0.17, 0.28]
Variance
School 10.86 9.03 [2.12, 55.41]
Residual 152.47 24.3 [111.56, 208.38]
Conditional ICC 0.07

Bootstrap

Intercept 74.94 2.51 [70.17, 80.18]
Gender -1.56 0.67 [-2.85, -0.17]
ISEI m 0.16 0.05 [0.05, 0.26]
Variance
School 7.42 2.68 [2.23, 13.02]
Residual 162.51 9.95 [144.5, 184.0]
Conditional ICC 0.04

Before looking at the parameter estimates, we examined the distribution of
the residuals. The level-1 residuals based on the ML estimates were slightly
non-normal with skewness of -1.45 and kurtosis of 6.77. The distribution of
the level-2 residuals was close to normal with skewness of -0.46 and kurtosis
of 3.39. Table 1 shows the parameter estimates, standard error estimates, 95%
confidence intervals, and conditional ICCs. There was little difference between
the ML estimates and the bootstrap estimates. However, the MPML results
showed different point estimates and standard error estimates, especially for
the slope of school mean ISEI (i.e., ISEI m). As a result, the statistical inference
also reached different conclusions regarding the slope of school mean ISEI, which

3 The 1- α confidence interval of a variance component θ is given by

exp

[
ln

(
θ̂
)
± z1−α

2

√
V ar(θ̂)
θ̂

]
where θ̂ is the MPML estimate of θ, V ar

(
θ̂
)

is the

asymptotic variance of θ̂.
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was statistically significant based on the ML and the bootstrap results, but non-
significant based on MPML.

From this particular sample and model, we obtained inconsistent results from
the bootstrap and the MPML methods. We suspected that the MPML results
might not be trustworthy because the specific condition of this sample (i.e.,
small cluster size, low ICC, and very slight informativeness) has been shown
to be unfavorable to MPML (e.g., Asparouhov, 2006). However, it is unknown
whether the performance of the bootstrap method is acceptable, thus a Monte
Carlo simulation is needed to assess the performance of these methods under
various conditions.

5 Simulation

5.1 Data Generation

To evaluate the performance of the weighted bootstrap procedure in accounting
for nonrandom sampling, we used R 3.5.0 (R Core Team, 2018) to simulate
two-level data mimicking the data structure of students nested in schools. The
population models were either (a) a random intercept model or (b) a random
slopes model. The models include one level-1 predictor such as student SES
(denoted as X1ij) and one level-2 predictor such as school SES (denoted as X2j).
Because multilevel modeling is a model-based technique usually justified by a
superpopulation model (Cochran, 1977; Lohr, 2010), the data generating model
is treated as the superpopulation, and in each replication, we first generated a
finite population with Jpop = 500 clusters and npop = 100 observations for each
cluster.

When generating a finite population based on the random intercept model
(see Equation 2), we simulated X2j from N (0, 1) distributions and the cluster-
level random intercept effect u0j from either normal distributions or scaled χ2(df
= 2) distributions with mean 0 and variance τ , depending on the simulation
condition described in the next section. We then simulated npop × Jpop values
of X1ij from N (0, 1) distributions and eij from either normal distributions or
scaled χ2(df = 2) distributions with mean 0 and variance σ, depending on the
simulation condition. For all simulation conditions, we set β0= 0.5, β1 = β2 = 1,
and the total variance τ+σ = 2.5. The outcome was computed based on Equation
(2).

When generating a finite population based on the random slopes model, the
following equation was used

Yij = β0 + β1X1ij + β2X2j + u0j + u1jX1ij + eij (3)

where u0j and u1j represent the random effects associated with the intercept and
the slope of X1ij respectively. We simulated u0j and u1j from a bivariate normal

distribution with mean of 0 and variance-covariance of

[
τ00
τ01 τ11

]
in which τ00

represents the variance of the random intercept, τ11 the variance of the random
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slope of X1ij , and τ01 the covariance between the random intercept and the
random slope. The magnitude of τ00 depends on the simulation condition, and
the magnitude of τ11 is half of τ00 because the variance of random slopes is
typically smaller than the variance of random intercepts. The covariance τ01
is computed as ρ

√
τ00τ11 where ρ denotes the correlation between the random

intercepts and the random slopes and was set at 0.5 to represent a moderate
correlation.

After simulating the finite populations, we first sampled J clusters with a
sampling fraction f according to a certain selection mechanism depending on the
simulation condition. Then in each cluster we randomly sampled n observations
with the same sampling fraction f according to a certain selection mechanism
depending on the simulation condition.

5.2 Design Factors

We considered 5 design factors to generate a variety of experimental conditions.
First, the variance of the random intercepts: 0.125, 0.5, and 1.25. They corre-
spond to small, medium, and large conditional ICCs (i.e., ICC = 0.05, 0.2, and
0.5) commonly seen in multilevel data. Second, sampling fraction (f): 0.1 and
0.5. Similar levels were used in previous simulations such as 0.12 in Grilli and
Pratesi (2004) and 0.6 in Rabe-Hesketh and Skrondal (2006). Under the 0.1 sam-
pling fraction condition, the cluster size was 10 and the number of clusters was
50. This was considered a small sample size condition. Under the 0.5 sampling
fraction condition, the cluster size was 50 and the number of clusters was 250,
which was considered a large sample size. Third, normality of random effects.
For the random intercept model, we considered the normal distribution vs. the
scaled χ2(df = 2) distribution for the random effects and the level-1 errors. The
χ2(df = 2) distribution has skewness =

√
8/2 = 2 and kurtosis = 12/2 = 6. For

the random slopes model, we only considered normal distribution.
Fourth, between-cluster selection mechanism: non-informative vs. informa-

tive. For non-informative selection, simple random sampling (SRS) was used.
For the random intercept model with informative sampling, we first divided the
clusters into two strata: µ0j > 0 (stratum 1) and µ0j < 0 (stratum 2), and then
sampled without replacement in each stratum such that the sampling probabil-
ity of each cluster is 1.4f for stratum 1 and 0.6f for stratum 2. In other words,
it was expected that for each replication, 70% of the sampled units came from
stratum 1, and 30% of the sampled units came from stratum 2. For the random
slopes model with informative sampling, we divided the clusters into four strata:
µ0j > 0 and µ1j > 0 (stratum 1), µ0j > 0 and µ1j < 0 (stratum 2), µ0j < 0
and µ1j > 0 (stratum 3), and µ0j < 0 and µ1j < 0 (stratum 4), with sampling
probabilities of 1.96f, 0.84f, 0.84f, and 0.36f, respectively. It was expected that
for each replication, 49% of the sampled units came from stratum 1, 21% from
stratum 2, 21% from stratum 3, and 9% from stratum 4.

Finally, within-cluster selection mechanism: non-informative vs. informative.
For non-informative selection, within-cluster units were sampled using SRS. For
informative selection, units in each cluster were first divided into two strata: eij >
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0 (stratum 1) and eij < 0 (stratum 2), and then sampled without replacement
according to the 7:3 ratio of sampling probability. The informative index was
about 0.17 when informative selection occurred at level-1 only, 0.09 when at level-
2 only, and 0.27 when at both levels based on the random intercept models. These
values represent slight to moderate informativeness according to Asparouhov
(2006).

Combining the five design factors, there are a total of 48 data conditions
(3 ICCs × 2 sampling fractions × 2 distributions × 2 between-cluster selection
mechanisms × 2 within-cluster selection mechanisms) for the random intercept
models and 24 conditions (3 ICCs × 2 sampling fractions × 2 between-cluster
selection mechanisms × 2 within-cluster selection mechanisms) for the random
slopes models. We conducted 500 replications for each simulation condition. For
each generated data set, three estimators were applied: the proposed bootstrap
method (using the R package bootmlm), MPML with effective weights (using
Mplus 8.2 for the random intercept models and Stata 16 for the random slopes
models), and unweighted maximum likelihood (using the R package lme4 ).

5.3 Analysis

For each parameter in the models (including both fixed effects and variance com-
ponents), we examined the relative bias of the point estimate and the coverage
rate of the 95% confidence intervals. For the bootstrap method, we used the 2.5
and 97.5 percentile of the empirical sampling distribution as the lower and upper
boundaries of the 95% confidence interval. Following Hoogland and Boomsma
(1998), relative biases of point estimates are considered acceptable if their mag-
nitudes are less than 0.05. The coverage rate of a 95% confidence interval should
be approximately equal to 95%, with a margin of error of 1.9% based on 500
replications. Hence coverage rates between 93% and 97% are acceptable.

5.4 Results

5.4.1 Random intercept models Tables 2 to 5 show the relative bias and
coverage rate for parameter estimates under all conditions based on the random
intercept models. The relative biases for the slope of the level-1 predictor X1
and the slope of the level-2 predictor X2 are not shown in the tables because
they were close to zero for all conditions. In addition, the coverage rate for the
slope of X1 was close to 95% under all conditions, therefore it was not included
in the tables.

Intercept. As shown by the relative biases of the ML estimates, ignoring
sampling weights when the selection mechanism was informative caused moder-
ate to large relative biases, ranging from 0.14 to 1.38 (see Table 2 and 3). As a
result of biased point estimate, the coverage rates of the confidence intervals for
the ML estimates were also poor under those conditions ranging from 0.00 to
0.85 (see Table 4 and 5).

MPML successfully reduced the relative biases to an acceptable level under
the majority of conditions, however, there were still small to moderate relative
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biases under 11 conditions where the sample size was small and the selection
mechanism was informative at level 1 or both levels (relative bias ranging from
0.07 to 0.13). As a result, there was slight under-coverage (ranging from 0.88
to 0.92) in about half of those conditions (6 out of 11), mainly when there was
informative selection at both levels.

The bootstrap method performed the best in terms of relative biases because
they were below 0.05 under all conditions. However, the advantage of the boot-
strap method over MPML was less obvious in terms of the coverage rate because
the bootstrap method also had slightly low coverage rate (ranging from 0.88 to
0.92) under similar conditions.

Slope of X2 . The relative bias of the estimated slope of X2 was acceptable
for all methods under all conditions. However, the MPML confidence intervals
suffered from slight under-coverage (89%-92%) in 18 conditions, mainly when
sample size was small and selection was informative at level 2 or both levels.

Variance component of the random intercepts (τ). ML estimates had
small relative biases under 18 conditions when there was informative sampling
at level-2 or at both levels. The biases were negative ranging from -0.07 to -0.11
when the distribution was normal, and were positive ranging from 0.10 to 0.12
when the distribution was skewed. MPML suffered from small to moderate biases
(-0.10 to 0.27) under 10 conditions when small sample size was combined with
small to moderate ICCs. It was noted that the two moderately large relative
biases (i.e., 0.25 and 0.27) both occurred when there was informative selection
at level-1 or at both levels. The bootstrap method performed better with only
small positive biases (0.08 to 0.11) under 5 conditions where both ICC and
sample size were small. It was noted that out of the 5 conditions where relative
biases were obvious, one was under the normal distribution and four under the
skewed distribution, indicating that the performance of the bootstrap method
might be sensitive to skewed distributions.

In general, all three methods tended to have under-coverage, with ML being
the worst and bootstrap being the best. Where the distribution was normal, 15
conditions had under-coverage ranging from 0.87 to 0.92 for ML, 14 conditions
ranging from 0.86 to 0.92 for MPML, and 11 conditions ranging from 0.89 to
0.92 for bootstrap. When data were skewed, 23 conditions had under-coverage
ranging from 0.67 to 0.92 for ML, 22 conditions ranging from 0.76 to 0.92 for
MPML, and 15 conditions ranging from 0.81 to 0.92 for bootstrap. For both
MPML and bootstrap, the coverage rate tended to worsen as the sample size
decreased. In addition, when data were skewed, larger ICCs led to lower coverage
rate for MPML.

Level-1 residual variance (σ). Only ML estimates had small negative
relative biases when there was informative selection at level-1 or at both levels.
As a result, ML estimates had severe under-coverage under those conditions,
especially when sample size was large. The performance of ML deteriorated
when the distribution was skewed as there were severe under-coverage across all
conditions.
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Although MPML and bootstrap estimates had minimum relative biases, both
had slight under-coverage under certain conditions. Specifically, when the distri-
bution was normal, under-coverage mainly occurred when sample size was small
combined with informative selection at both levels. When the distribution was
skewed, under-coverage mainly occurred when sample size was small and when
the selection was non-informative or only informative at level-2.

Table 2. Relative Bias for the Random Intercept Model Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept TAU SIGMA

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 -0.01 -0.01 -0.01 0.03 0.07 -0.07 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.93 0.01 0.10 -0.04 0.00 0.25 -0.08 0.00 -0.02
0.5 0.70 0.00 0.01 0.01 0.01 0.02 -0.05 0.00 0.00

Informative
at level-2

0.1 0.22 -0.04 0.01 -0.07 0.00 -0.10 0.01 0.01 0.00
0.5 0.16 -0.02 0.00 -0.05 -0.01 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.15 -0.02 0.12 -0.10 -0.03 0.27 -0.09 0.00 -0.02
0.5 0.86 -0.02 0.01 -0.05 -0.01 0.01 -0.05 0.00 0.00

0.2

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 0.01 -0.05 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.85 0.02 0.09 -0.01 -0.01 0.02 -0.08 0.00 -0.02
0.5 0.63 -0.01 0.00 0.00 0.00 0.00 -0.05 0.00 0.00

Informative
at level-2

0.1 0.44 -0.04 0.03 -0.09 -0.02 -0.06 0.01 0.01 0.00
0.5 0.32 -0.01 0.00 -0.05 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.30 -0.01 0.13 -0.11 -0.04 0.01 -0.09 0.00 -0.02
0.5 0.97 -0.01 0.01 -0.05 -0.01 -0.01 -0.05 0.00 0.00

0.5

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 0.01 -0.04 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.67 0.02 0.07 0.00 0.00 -0.03 -0.08 0.00 -0.02
0.5 0.49 -0.01 -0.01 0.00 0.00 0.00 -0.05 0.00 0.00

Informative
at level-2

0.1 0.70 0.00 0.05 -0.09 -0.01 -0.05 0.01 0.01 0.00
0.5 0.51 0.00 0.00 -0.05 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.38 0.03 0.13 -0.10 -0.02 -0.04 -0.09 -0.01 -0.02
0.5 1.02 0.00 0.01 -0.05 0.00 -0.01 -0.05 0.00 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)

5.4.2 Random slopes models Tables 6 to 9 show the relative biases and
coverage rates for parameter estimates under all conditions based on the ran-
dom slopes models. Notably, while convergence was not an issue for ML and
the bootstrap method, MPML estimation suffered from a low convergence rate
(ranging between 0.59 and 0.76) when both ICC and sample size were small.

Intercept. Similar to the pattern under the random intercept models, ML
estimates of the intercept suffered from moderate to large relative biases (ranging
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Table 3. Relative Bias for the Random Intercept Model Under χ2(2) Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept TAU SIGMA

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 .00 .00 .00 0.03 0.07 -0.07 0.00 0.00 0.00
0.5 .00 .00 .00 0.00 0.00 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.81 0.01 0.08 0.04 0.09 -0.05 0.12 0.01 0.02
0.5 0.60 0.00 0.00 0.00 0.00 -0.04 0.10 0.00 0.00

Informative
at level-2

0.1 0.18 -0.04 0.01 0.12 0.11 -0.09 -0.01 -0.01 -0.01
0.5 0.14 -0.02 0.00 0.10 0.02 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.00 -0.02 0.10 0.11 0.10 -0.08 0.11 0.00 0.01
0.5 0.75 -0.02 0.01 0.10 0.03 -0.04 0.10 0.00 0.00

0.2

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 -0.01 -0.06 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 -0.01 0.01 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.74 0.01 0.07 0.01 0.01 -0.05 0.12 0.01 0.02
0.5 0.55 -0.01 0.00 -0.01 -0.01 -0.02 0.10 0.00 0.00

Informative
at level-2

0.1 0.37 -0.04 0.01 0.11 0.03 -0.06 -0.01 -0.01 -0.01
0.5 0.28 -0.01 0.00 0.10 0.01 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.12 -0.02 0.10 0.10 0.03 -0.05 0.11 0.00 0.01
0.5 0.83 -0.01 0.01 0.10 0.01 -0.04 0.10 0.00 0.00

0.5

Non-
informative

0.1 -0.01 -0.01 -0.01 -0.01 0.00 -0.05 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.57 0.01 0.05 0.00 0.00 -0.04 0.12 0.01 0.02
0.5 0.43 -0.01 0.00 -0.01 -0.01 -0.02 0.10 0.00 0.00

Informative
at level-2

0.1 0.58 -0.02 0.02 0.11 0.01 -0.04 -0.01 -0.01 -0.01
0.5 0.44 0.00 0.00 0.10 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.17 0.00 0.09 0.11 0.02 -0.04 0.11 0.01 0.01
0.5 0.88 -0.01 0.01 0.10 0.00 -0.01 0.10 0.00 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)
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from 0.23 to 1.64) when the selection mechanism was informative (see Table
6). The relative biases based on MPML estimates were acceptable under the
majority of conditions, except for 6 conditions where the sample size was small
and the selection mechanism was informative at level 1 or both levels (relative
bias ranging from 0.12 to 0.14). The bootstrap method performed the best in
terms of relative biases because there were only 3 conditions where small biases
were found (ranging from -0.06 to -0.10).

Table 6. Relative Bias for Fixed Effects Estimates from the Random Slopes Model
Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept X1

ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 0.01 0.01 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.93 0.04 0.12 0.00 0.00 0.01
0.5 0.70 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.30 -0.06 0.00 0.11 0.06 0.00
0.5 0.23 -0.03 0.00 0.08 0.02 0.00

Informative
at both levels

0.1 1.23 -0.03 0.13 0.11 0.06 0.01
0.5 0.92 -0.03 0.01 0.08 0.02 0.00

0.2

Non-
informative

0.1 0.00 0.01 0.00 0.00 0.00 0.00
0.5 -0.01 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.85 0.04 0.13 0.00 0.00 0.01
0.5 0.64 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.61 -0.10 0.00 0.22 0.06 0.00
0.5 0.45 -0.02 0.00 0.16 0.01 0.00

Informative
at both levels

0.1 1.46 -0.07 0.14 0.22 0.06 0.01
0.5 1.09 -0.02 0.01 0.16 0.01 0.00

0.5

Non-
informative

0.1 0.00 0.01 0.01 0.00 0.00 0.00
0.5 -0.01 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.66 0.03 0.13 0.00 0.00 0.01
0.5 0.50 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.96 -0.07 0.00 0.35 0.04 0.00
0.5 0.71 -0.01 0.00 0.25 0.01 0.00

Informative
at both levels

0.1 1.64 -0.04 0.14 0.35 0.04 0.01
0.5 1.22 -0.01 0.01 0.25 0.01 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)

As a result of the biased point estimate based on ML, the coverage rates of
the confidence intervals for the ML estimates were also poor (ranging from 0.00
to 0.61) under informative selection mechanisms (see Table 6). On the other
hand, both MPML and the bootstrap method had the issue of over-coverage
(coverage rate above 0.98) in the majority of the conditions, indicating that the
estimated confidence intervals were wider than expected.
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Table 7. Coverage Rate for Fixed Effects Estimates from the Random Slopes Model
Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept X1 X2

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 0.96 0.99 0.98 0.96 0.96 0.96 0.95 0.95 0.93
0.5 0.96 1.00 1.00 0.97 0.99 0.99 0.95 0.95 0.96

Informative
at level-1

0.1 0.00 0.97 0.89 0.96 0.97 0.95 0.94 0.95 0.91
0.5 0.00 1.00 1.00 0.96 0.99 0.98 0.95 0.95 0.94

Informative
at level-2

0.1 0.61 0.95 0.98 0.72 0.85 0.95 0.95 0.95 0.86
0.5 0.01 0.97 0.99 0.02 0.86 0.98 0.96 0.96 0.95

Informative
at both levels

0.1 0.00 0.90 0.89 0.70 0.84 0.96 0.95 0.96 0.89
0.5 0.00 0.97 0.99 0.02 0.88 0.99 0.96 0.96 0.95

0.2

Non-
informative

0.1 0.95 0.99 0.99 0.96 0.97 0.97 0.94 0.94 0.92
0.5 0.96 1.00 1.00 0.97 1.00 1.00 0.96 0.96 0.95

Informative
at level-1

0.1 0.06 0.99 0.96 0.95 0.99 0.98 0.94 0.94 0.91
0.5 0.00 1.00 1.00 0.96 1.00 1.00 0.95 0.95 0.95

Informative
at level-2

0.1 0.23 0.97 0.99 0.36 0.88 0.96 0.94 0.95 0.88
0.5 0.00 1.00 1.00 0.00 0.98 1.00 0.97 0.97 0.95

Informative
at both levels

0.1 0.00 0.94 0.93 0.33 0.86 0.96 0.94 0.96 0.88
0.5 0.00 1.00 0.99 0.00 0.98 1.00 0.96 0.96 0.95

0.5

Non-
informative

0.1 0.94 0.99 0.99 0.97 1.00 1.00 0.94 0.94 0.91
0.5 0.95 1.00 1.00 0.96 1.00 1.00 0.96 0.96 0.95

Informative
at level-1

0.1 0.49 1.00 0.99 0.94 1.00 1.00 0.94 0.94 0.91
0.5 0.07 1.00 1.00 0.96 1.00 1.00 0.95 0.97 0.95

Informative
at level-2

0.1 0.14 0.98 0.99 0.17 0.96 0.98 0.94 0.94 0.87
0.5 0.00 1.00 1.00 0.00 1.00 1.00 0.96 0.97 0.95

Informative
at both levels

0.1 0.00 0.96 0.97 0.18 0.95 0.98 0.95 0.96 0.88
0.5 0.00 1.00 1.00 0.00 1.00 1.00 0.97 0.97 0.96

Note. Values in bold represent under-coverage or over-coverage (i.e., coverage rate <
0.93 or > 0.97)
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Slope of X1 . As expected, the ML estimates of the slope of X1 were biased
when the selection mechanism was informative at level 2 or both levels (relative
bias ranging between 0.08 and 0.35). The magnitude of the biases increased as
ICC increased. On the other hand, both the MPML and the bootstrap estima-
tion methods successfully reduced the biases to an acceptable level, although
the MPML method performed slightly better than the bootstrap method when
sample size was small and the selection mechanism was informative at level 2 or
both levels.

Similarly, due to the biased point estimates, the coverage rates of the con-
fidence intervals for the ML estimates were also poor (ranging from 0.00 to
0.72) under informative selection mechanisms. The MPML confidence intervals
demonstrated over-coverage, especially when sample size and ICC were large.
The bootstrap confidence intervals demonstrated slight under-coverage (ranging
between 0.84 and 0.88) when informative selection occurred at level 2 or both
levels, but showed a similar over-coverage pattern as the MPML confidence in-
tervals in the other conditions.

Slope of X2 . The relative bias of the estimated slope of X2 was acceptable
for all methods under all conditions. However, the MPML confidence intervals
suffered from slight under-coverage (0.86 to 0.92) in about half of the condi-
tions, mainly when sample size was small. The performance of the ML and the
bootstrap confidence intervals was acceptable under all conditions.

Variance of the random intercepts (τ00). ML estimates had small rela-
tive bias (-0.09 to -0.18), mainly when there was informative sampling at level-2
or at both levels. MPML suffered from moderate to large biases (-0.34 to -0.87)
when ICC was small. The magnitude of the relative biases decreased as ICC or
sample size increased, but was still more than 0.12 when ICC and sample size
were large. The bootstrap method showed small negative biases (-0.08 to -0.13)
across all conditions consistently and had the greatest advantages over MPML
when ICC was small.

The coverage rates of the confidence intervals based on the three methods
showed similar patterns. The ML-based confidence intervals had slight under-
coverage (0.79 to 0.85) when there was informative sampling at level-2 or at
both levels. The MPML-based confidence intervals suffered from severe under-
coverage (0.09 to 0.20) under conditions where small ICCs were combined with
large sample sizes. The bootstrap confidence intervals had slight under-coverage
(0.75 to 0.90) in the majority of the conditions. It is noted that when ICC was
large, MPML and bootstrap confidence intervals performed similarly.

Variance of the random slopes (τ11). Similar to τ00, ML estimate of
τ11 showed small to moderate relative bias (-0.16 to 0.17), mainly when there
was informative sampling at level-2 or at both levels. The MPML estimates had
large positive biases (0.55 to 1.61) when ICC and sample size were both small,
and mostly small negative biases (-0.08 to -0.10) under the other conditions.
The bootstrap estimates had small positive biases (0.19 to 0.26) when ICC and
sample size were both small, and moderate negative biases (-0.23 to -0.40) when
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ICC was moderate and large. Comparing the three methods, ML showed the
least amount of bias across all conditions.

In terms of the confidence intervals, MPML had the worst performance be-
cause of the severe under-coverage (0.10-0.46) when sample size was large. The
bootstrap confidence intervals had somewhat under-coverage (0.77-0.92) across
the conditions. The ML confidence intervals had the best performance, show-
ing slight under-coverage (0.81 to 0.91) when there was informative sampling at
level-2 or at both levels.

Covariance of the random intercepts and the random slopes (τ01).
The ML estimate of τ01 showed small to moderate negative biases (-0.09 to -0.36)
when there was informative sampling at level-2 or at both levels. The MPML
estimates showed moderate negative biases across all conditions, ranging from -
0.37 to -0.61. The bootstrap estimates showed small to moderate negative biases,
with the magnitude decreasing from -0.34 to -0.09 as ICC increased from 0.05
to 0.5.

The ML confidence intervals had slight under-coverage (0.77 to 0.92) when
there was informative sampling at level-2 or at both levels. Despite the moderate
negative biases in the point estimates, MPML confidence intervals only showed
slight under-coverage in most of the conditions (0.66 to 0.92). In general, the
bootstrap confidence intervals suffered from under-coverage (0.17 to 0.92), and
the degree of under-coverage was severe (0.17 to 0.31) when sample sizes were
large and ICCs were moderate to large.

Level-1 residual variance (σ2). ML estimates had small negative relative
biases (-0.09) when there was informative selection at level-1 or at both levels.
The bootstrap estimates showed small positive relative biases (0.07 to 0.12) when
sample size was small and ICC was moderate to large. MPML estimates had the
best performance with little bias across all conditions.

The ML-based confidence intervals showed under-coverage when there was
informative selection at level-1 or at both levels. The degree of under-coverage
was severe (0.02 to 0.03) when sample size was large. The bootstrap confidence
interval had moderate under-coverage across all conditions, ranging from 0.50
to 0.88. The MPML confidence intervals had slight under-coverage across all
conditions, ranging from 0.84 to 0.91.

6 Discussion and Conclusion

We proposed a weighted residual bootstrap method for multilevel modeling
of data from complex sampling designs. Unlike previously proposed bootstrap
methods (e.g., Grilli & Pratesi, 2004; Kovacevic et al., 2006; Wang & Thompson,
2012), our method does not require generating a pseudo population or rescaling
weights. The performance of the proposed bootstrap method for linear two-level
models was investigated under various conditions, and compared with the mul-
tilevel pseudo maximum likelihood (MPML) approach and the unweighted ML
approach using Monte Carlo simulations.
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In general, the proposed weighted bootstrap method performed similar to
or better than the MPML method in random intercept models and had mixed
results in random slopes models. As expected, for the random intercept model,
unweighted ML resulted in biased intercept estimate when there were informa-
tive selections. Both the bootstrap and the MPML estimates of the slopes for the
level-1 and level-2 predictors (X1 and X2 ) had acceptable performance. How-
ever, the bootstrap showed advantages over MPML for the estimate of the level-2
variance component when sample size is small (i.e., 50 clusters and 10 units per
cluster), selection mechanism is informative, and ICC is low (i.e., 0.05). As a
result, the confidence interval of the slope of the level-2 predictor (X2 ) based
on the bootstrap method also had a better coverage rate compared to MPML
under those conditions. It has been demonstrated in the literature that MPML
estimates have increased biases as ICC decreases (Asparouhov, 2006; Kovacevic
& Rai, 2003). As Asparouhov (2006) explained, the weakness of MPML is in
the estimation on the individual level, therefore as ICC decreases the individual
level becomes more influential, which exacerbates the problem.

For the random slopes model, the ML estimates of both the intercept and the
slope of the level-1 predictor (X1 ) showed moderate to severe biases when there
are informative selections. The bootstrap and the MPML approaches performed
similarly in terms of the estimates of the fixed effects, with the bootstrap method
slightly better for the estimate of the intercept and the slope of the level-2 pre-
dictor, while the MPML slightly better for the slope of the level-1 predictor.
While convergence was not an issue for the bootstrap method, MPML suffered
from a high rate of non-convergence when ICC is low. As a result, MPML had se-
vere biases in the estimates of the level-2 variance components when ICC is low.
The performance of the bootstrap estimate of the variance components was not
ideal either as small to moderate biases existed across the conditions. However,
the bootstrap confidence intervals performed much better than the MPML ap-
proach, especially when sample size is large. The only drawback of the bootstrap
method is in the estimation of the covariance between the random intercept and
the random slope, which showed severe under-coverage when sample size is large.

Another advantage of the bootstrap method is that it is more robust to
the distributional violation. Previous simulation studies on MPML for linear
models only considered normally distributed random effects and residuals. Our
findings showed that when the normality assumption was violated, the coverage
rate of the MPML confidence interval for the level-2 variance component in a
random intercept model became much worse with 8 more conditions showing
under-coverage. The bootstrap method was also affected by the distributional
violation, but to a lesser degree because only 4 more conditions showed under-
coverage when the distributions were skewed.

As a demonstration, the weighted residual bootstrap method was applied to
the American 2000 PISA data on math achievement. Based on the random in-
tercept model, the bootstrap and the MPML results showed some inconsistency,
especially for the slope of the level-2 predictor. We believe that the bootstrap
results were more trustworthy in this case because conditions in the simulation



114 W. Luo & H. C. Lai

study that were similar to the specific condition of this sample (i.e., small cluster
size, low ICC, very slightly informative, and slight distributional violation) have
shown favorable results in the bootstrap than the MPML method.

6.1 Implications

The weighted residual bootstrap method provides a robust alternative to MPML.
Applied researchers can use the bootstrap approach when the traditional MPML
estimation fails to converge or when there is severe violation of the normal-
ity assumption. In analyses of random intercept models, the weighted residual
bootstrap method is preferred to MPML when the effect of level-2 predictors
(e.g., school SES), or the variance of the random intercept (e.g., variance of
school mean achievement) are of interest and when both sample sizes and ICCs
are small. In random slopes models, the bootstrap method has advantages over
MPML in the point estimates and the confidence interval estiamtes of the slopes
of level-2 predictors, as well as the variance component estimates associated with
the random intercept and the random slopes (e.g., variance of the association
of student SES and student achievement across schools). However, the statisti-
cal inferences for the covariance component (e.g., the covariance between school
mean achievement and the slope of student SES and student achievement) based
on the bootstrap method might not be trustworthy.

It is recommended that researchers conduct sensitivity analyses using differ-
ent methods. Discrepancies among the results may indicate that the conditions
for MPML to work properly are not satisfied. The weighted residual bootstrap
method is implemented in the developmental version of the R package bootmlm,
which has the capacity to analyze two-level linear random intercept and random
coefficients models with sampling weights.

6.2 Limitations and Future Directions

The findings of the study should be interpreted in light of the limitations. First,
there is still room for improvement in terms of the bootstrap confidence interval
for level-2 variance and covariance components. We used percentile confidence in-
terval for its simplicity. Future research may be conducted to investigate whether
more sophisticated methods such as bias-corrected and accelerated confidence in-
tervals and studentized intervals could further improve the performance. Second,
the proposed bootstrap method was only applied to multilevel linear models. Al-
though it is possible to extend it to generalized multilevel models (Goldstein et
al., 2018), Monte Carlo experiments should be conducted to examine the perfor-
mance of the method for generalized multilevel models such as multilevel ordinal
and binary models. Third, this study only compared the performance of the pro-
posed method with MPML. Future studies could compare the proposed method
with other bootstrap methods for multilevel data with sampling weights.
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Appendix A. R Code for the Analysis of PISA Data using
Weighted Residual Bootstrap

# Check if devtools were installed

if (! require (" devtools ")) {

install.packages (" devtools ")

}

# Install developmental version of the bootmlm package

devtools :: install_github (" marklhc/bootmlm",

ref = "weighted_boot ")

# Load required packages

library(bootmlm)

library(boot)

library(lme4)

# Unweighted ML

m1 <- lmer(SC17Q01 ~ ISEI_m + male + (1 | Sch_ID),

data = PISA , REML = FALSE)

# Weighted semi -parameteric bootstrap

boo <- bootstrap_mer(

m1 ,

FUN = function(x) {

c(x@beta ,

c(x@theta ^ 2, 1) * sigma(x) ^ 2)

},

nsim = 999L,

type = "residual_cgr",

w1 = PISA$ W_FSTUWT ,

https://doi.org/10.1016/s0167-9473(96)00047-3
https://doi.org/10.1016/s0167-9473(96)00047-3
https://doi.org/10.1002/cjs.10136


118 W. Luo & H. C. Lai

w2 = unique(PISA[c(" Sch_ID", "WNRSCHBW ")]) $WNRSCHBW
)

# Print the output

boo # bootstrap results

colMeans(boo$t) # parameter estimates

apply(boo$t , 2, sd) # bootstrap SE

# Percentile intervals for the six parameters

boot.ci(boo , type = "perc", index = 1L)

boot.ci(boo , type = "perc", index = 2L)

boot.ci(boo , type = "perc", index = 3L)

boot.ci(boo , type = "perc", index = 4L)

boot.ci(boo , type = "perc", index = 5L)

boot.ci(boo , type = "perc", index = 6L)

Appendix B. Mplus Code for the Analysis of PISA Data
using MPML

Data: File=pisa.csv;

Variable: Names are math ISEI_m male Sch_ID

W_FSTUWT WNRSCHBW lv1_con_wt;

Usevariables are math ISEI_m male;

Between = ISEI_m;

Within = male;

Cluster = Sch_ID;

Weight = lv1_con_wt; !lv1_con_wt=

W_FSTUWT/WNRSCHBW;

Bweight = WNRSCHBW;

Analysis: Type = twolevel;

Model: %within%

math on male;

%between%

math on ISEI_m;

Output: Cinterval;
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Abstract. In this tutorial, you will learn how to fit structural equation
models (SEM) using Stata software. SEMs can be fit in Stata using the
sem command for standard linear SEMs, the gsem command for general-
ized linear SEMs, or by drawing their path diagrams in the SEM Builder.
After a brief introduction to Stata, the sem command will be demon-
strated through a confirmatory factor analysis model, mediation model,
group analysis, and a growth curve model, and the gsem command will
be demonstrated through a random-slope model and a logistic ordinal
regression. Materials and datasets are provided online, allowing anyone
with Stata to follow along.

Keywords: Structural Equation Modeling · Growth Curve Modeling ·
Mediation · Software.

1 Introduction

Structural equation modeling (SEM) is a multivariate statistical analysis frame-
work that allows simultaneous estimation of a system of equations. SEM can
be used to fit a wide range of models, including those involving measurement
error and latent constructs. This tutorial will demonstrate how to fit a variety
of SEMs using Stata statistical software (StataCorp, 2021). Specifically, we will
fit models in Stata with both measurement and structural components, as well
as those with random effects and generalized responses. We will assess model fit,
compute modification indices, estimate mediation effects, conduct group analy-
sis, and more. First, however, we will begin with an introduction to Stata itself.
Familiarity with SEM theory and concepts is assumed.

Stata is a complete, integrated software package that provides tools for data
manipulation, visualization, statistics, and automated reporting. The Data Ed-
itor, Variables window, and Properties window can be used to view and edit
your dataset and to manage variables, including their names, labels, value la-
bels, notes, formats, and storage types. Commands can be typed into the Com-
mand window, or generated through the point-and-click interface. Log files keep
a record of every command issued in a session, while do-files save selected com-
mands to allow users to replicate their work. To learn more about a command,
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you can type help followed by the command name in the Command window and
the Viewer window will open with the help file and provide links to further doc-
umentation. Stata’s documentation consists of over 17,000 pages detailing each
feature in Stata including the methods and formulas and fully worked examples.

Figure 1. SEM Builder

There are three ways to fit SEMs in Stata: the sem command, the gsem com-
mand, and through the SEM Builder. The sem command is for fitting standard
linear SEMs. It is quicker and has more features for testing and interpreting
results than gsem. The gsem command is for fitting models with generalized
responses, such as binary, count, or categorical responses, models with random
effects, and mixture models. Both sem and gsem models can be fit via path dia-
grams using the SEM Builder. You can open the SEM Builder window by typing
sembuilder into the Command window. See the interface in Figure 1; click the
tools you need on the left, or type their shortcuts shown in the parentheses. To fit
gsem models, the GSEM button must first be selected. Estimation and diagram
settings can be changed using the menus at the top. The Estimate button fits the
model. Path diagrams can be saved as .stsem files to be modified later, or can be
exported to a variety of image formats (for example see Figure 2). Although this
tutorial will focus on the sem and gsem commands, the Builder shares the same
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functionality. You can watch a demonstration with the SEM Builder on the Stat-
aCorp YouTube Channel: https://www.youtube.com/watch?v=Xj0gBlqwYHI

To download the datasets, do-file, and path diagrams, you can type the fol-
lowing into Stata’s Command window:

. net from http://www.stata.com/users/mcain/JBDS_SEM

Clicking on the SEMtutorial link will download the materials to your current
working directory. To open the do-file with the commands we’ll be using, you
can type

. doedit SEMtutorial

Commands can either be executed from the do-file or typed into the Com-
mand window. We’ll start by loading and exploring our first dataset. These
data contain observations on four indicators for socioeconomic status of high
school students as well as their math scores, school types (private or public),
and the student-teacher ratio of their school. Alternatively, we could have used
a summary statistics dataset containing means, variances, and correlations of
the variables rather than observations.

. use math

. codebook, compact

Variable Obs Unique Mean Min Max Label

schtype 519 2 .61079 0 1 School type
ratio 519 14 16.75723 10 28 Student-Teacher ratio
math 519 42 51.72254 30 71 Math score
ses1 519 5 1.982659 0 4 SES item 1
ses2 519 5 2.003854 0 4 SES item 2
ses3 519 5 2.003854 0 4 SES item 3
ses4 519 5 2.003854 0 4 SES item 4

2 Fitting models with the sem command

2.1 Path Analysis

Let’s start our analysis by fitting the one-factor confirmatory factor analysis
(CFA) model shown in Figure 2. Using the sem command, paths are specified in
parentheses and the direction of the relationships are specified using arrows, i.e.
(x->y). Arrows can point in either direction, (x->y) or (y<-x). Paths can be
specified individually, or multiple paths can be specified within a single set of
parentheses, (x1 x2 x3 -> y). By default, Stata assumes that all lower-case
variables are observed and uppercase variables are latent. You can change these
settings using the nocapslatent and the latent() options. In Stata, options
are always added after a comma. We’ll see plenty of examples of this later.

https://www.youtube.com/watch?v=Xj0gBlqwYHI
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Figure 2. One-factor CFA measuring socioeconomic status (SES)

. sem (SES -> ses1-ses4)

Endogenous variables
Measurement: ses1 ses2 ses3 ses4

Exogenous variables
Latent: SES

Fitting target model:
Iteration 0: log likelihood = -3621.9572
Iteration 1: log likelihood = -3621.5801
Iteration 2: log likelihood = -3621.5573
Iteration 3: log likelihood = -3621.557

Structural equation model Number of obs = 519
Estimation method: ml

Log likelihood = -3621.557

( 1) [ses1]SES = 1

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
ses1

SES 1 (constrained)
_cons 1.982659 .0620424 31.96 0.000 1.861058 2.10426

ses2
SES .8481035 .1962358 4.32 0.000 .4634884 1.232719

_cons 2.003854 .0620169 32.31 0.000 1.882303 2.125404

ses3
SES .416385 .1331306 3.13 0.002 .1554539 .6773161

_cons 2.003854 .062017 32.31 0.000 1.882302 2.125405

ses4
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SES .5315065 .1517342 3.50 0.000 .234113 .8289001
_cons 2.003854 .062017 32.31 0.000 1.882302 2.125405

var(e.ses1) 1.317579 .1855509 .9997798 1.736397
var(e.ses2) 1.506881 .1493285 1.240872 1.829916
var(e.ses3) 1.878203 .1257611 1.647204 2.141595
var(e.ses4) 1.803979 .1287389 1.568507 2.074801

var(SES) .6801844 .1908617 .3924434 1.178898

LR test of model vs. saturated: chi2(2) = 11.03 Prob > chi2 = 0.0040

Viewing the results, we see that by default Stata constrained the first factor
loading to be 1 and estimated the variance of the latent variable. If, instead,
we would like to constrain the variance and estimate all four factor loadings, we
could use the var() option. Constraints in any part of the model can be specified
using the @ symbol. To save room, syntax and results for this and the remaining
models will be shown on their path diagrams; see Figure 3.

SES
1

ses1
2

ε1 1.3

ses2
2

ε2 1.5

ses3
2

ε3 1.9

ses4
2

ε4 1.8

0.82 0.70
0.34

0.44

. sem (SES -> ses1-ses4), var(SES@1)

Figure 3. One-factor CFA with constrained variance.

Specifying structural paths is no different from specifying measurement paths.
We can add math score to our model and hypothesize that socioeconomic status
influences expected math performance. This model is shown in Figure 4; we’ve
added the standardized option to get standardized coefficients. With every in-
crease of one standard deviation in SES, math score is expected to increase by
0.45 standard deviations.
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4.8
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0.50 0.46
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0.39
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. sem (SES -> ses1-ses4 math), standardized

Figure 4. SES influences math scores.

To get fit indices for our model, we can use the postestimation command
estat gof after any sem model. Add the stats(all) option to see all fit indices.

. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio
chi2_ms(5) 17.689 model vs. saturated
p > chi2 0.003

chi2_bs(10) 150.126 baseline vs. saturated
p > chi2 0.000

Population error
RMSEA 0.070 Root mean squared error of approximation

90% CI, lower bound 0.037
upper bound 0.107

pclose 0.147 Probability RMSEA <= 0.05

Information criteria
AIC 11157.441 Akaike´s information criterion
BIC 11221.219 Bayesian information criterion

Baseline comparison
CFI 0.909 Comparative fit index
TLI 0.819 Tucker-Lewis index

Size of residuals
SRMR 0.040 Standardized root mean squared residual
CD 0.532 Coefficient of determination

Satorra-Bentler adjusted model fit indices can be obtained by adding the
vce(sbentler) option to our model statement and recalculating the model fit
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indices. This option still uses maximum likelihood estimation, the default, but
adjusts the standard errors and the fit indices. Alternatively, estimation can be
changed to asymptotic distribution-free or full-information maximum likelihood
for missing values using the method(adf) or method(mlmv) options, respectively.
For this example, we’ll use the Satorra-Bentler adjustment (Satorra & Bentler,
1994). First, we’ll store the current model to use again later.

. estimates store m1

. sem (SES -> ses1-ses4 math), vce(sbentler)

Endogenous variables
Measurement: ses1 ses2 ses3 ses4 math

Exogenous variables
Latent: SES

Fitting target model:
Iteration 0: log pseudolikelihood = -5564.2324
Iteration 1: log pseudolikelihood = -5563.7459
Iteration 2: log pseudolikelihood = -5563.7204
Iteration 3: log pseudolikelihood = -5563.7204

Structural equation model Number of obs = 519
Estimation method: ml

Log pseudolikelihood = -5563.7204

( 1) [ses1]SES = 1

Satorra-Bentler
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
ses1

SES 1 (constrained)
_cons 1.982659 .0621024 31.93 0.000 1.860941 2.104377

ses2
SES .9278593 .169484 5.47 0.000 .5956767 1.260042

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

ses3
SES .620192 .1438296 4.31 0.000 .3382912 .9020928

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

ses4
SES .7954927 .1580751 5.03 0.000 .4856712 1.105314

_cons 2.003854 .0620769 32.28 0.000 1.882185 2.125522

math
SES 6.858402 1.335695 5.13 0.000 4.240488 9.476315

_cons 51.72254 .4700825 110.03 0.000 50.8012 52.64389

var(e.ses1) 1.506551 .1203549 1.2882 1.761913
var(e.ses2) 1.573228 .1228219 1.350014 1.833348
var(e.ses3) 1.807189 .0933725 1.633143 1.999783
var(e.ses4) 1.685282 .1047979 1.491906 1.903724
var(e.math) 91.36045 6.594622 79.3079 105.2447

var(SES) .4912213 .1193158 .3051572 .7907347

LR test of model vs. saturated: chi2(5) = 17.69 Prob > chi2 = 0.0034
Satorra-Bentler scaled test: chi2(5) = 17.80 Prob > chi2 = 0.0032
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. estat gof, stats(all)

Fit statistic Value Description

Likelihood ratio
chi2_ms(5) 17.689 model vs. saturated
p > chi2 0.003

chi2_bs(10) 150.126 baseline vs. saturated
p > chi2 0.000

Satorra-Bentler
chi2sb_ms(5) 17.804

p > chi2 0.003
chi2sb_bs(10) 153.258

p > chi2 0.000

Population error
RMSEA 0.070 Root mean squared error of approximation

90% CI, lower bound 0.037
upper bound 0.107

pclose 0.147 Probability RMSEA <= 0.05

Satorra-Bentler
RMSEA_SB 0.070 Root mean squared error of approximation

Information criteria
AIC 11157.441 Akaike´s information criterion
BIC 11221.219 Bayesian information criterion

Baseline comparison
CFI 0.909 Comparative fit index
TLI 0.819 Tucker-Lewis index

Satorra-Bentler
CFI_SB 0.911 Comparative fit index
TLI_SB 0.821 Tucker-Lewis index

Size of residuals
SRMR 0.040 Standardized root mean squared residual
CD 0.532 Coefficient of determination

The SB-adjusted CFI is still rather low, 0.91, indicating poor fit. We can use
estat mindices to compute modification indices that can be used to check for
paths and covariances that could be added to the model to improve fit. First,
we’ll need to restore our original model.

. estimates restore m1
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. estat mindices

Modification indices

Standard
MI df P>MI EPC EPC

cov(e.ses1,e.ses2) 16.565 1 0.00 .4818524 .312987
cov(e.ses2,e.ses3) 5.404 1 0.02 -.2203899 -.1307056
cov(e.ses3,e.ses4) 4.956 1 0.03 .2033998 .11655

EPC is expected parameter change.

The MI, df, and P>MI are the estimated chi-squared test statistic, degrees
of freedom, and p value of the score test testing the statistical significance of
the constrained parameter. By default, only parameters that would significantly
(p < 0.05) improve the model are reported. The EPC is the amount that the
parameter is expected to change if the constraint is relaxed. According to these
results, we see that there is a stronger relationship between the first and second
indicator for SES than would be expected given our model, MI = 16.57, p < 0.001.
We could consider adding a residual covariance between these two indicators to
our model using the cov() option. We use the e. prefix to refer to a residual
variance of an endogenous variable; see Figure 5.

SES
.26

ses1
2

ε1 1.7

ses2
2

ε2 1.8

ses3
2

ε3 1.7

ses4
2

ε4 1.6

math
52

ε5 85

1.00 0.89

.39

1.01
1.28

10.76

. sem (SES -> ses1-ses4 math), cov(e.ses1*e.ses2)

Figure 5. CFA with residual covariance.

One potential explanation of the effect that SES has on math score is that
students of higher SES attend schools with smaller student to teacher ratios.
We can test this hypothesis using the mediation model shown in Figure 6. Here,
we get estimates of the direct effects between each of our variables, but what
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we would really like to test is the indirect effect between SES and math through
ratio. We can get direct effects, indirect effects, and total effects of mediation
models with the postestimation command estat teffects.

SES
.46

ses1
2

ε1 1.5

ses2
2

ε2 1.6

ses3
2

ε3 1.8

ses4
2

ε4 1.7

math
56

ε5 90

ratio
17

ε6 23

1.00 0.95
0.66

0.86

6.91

−0.23
−1.37

. sem (SES -> ses1-ses4 ratio math) (ratio -> math)

Figure 6. Student-teacher ratio mediates the effect of SES on math score.

. estat teffects

Direct effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES -1.367306 .5562429 -2.46 0.014 -2.457522 -.2770903

math
ratio -.2256084 .1026128 -2.20 0.028 -.4267257 -.024491
SES 6.908564 1.583778 4.36 0.000 3.804417 10.01271

Measurement
ses1

SES 1 (constrained)

ses2
SES .9450302 .1643867 5.75 0.000 .6228382 1.267222

ses3
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SES .6632608 .1725434 3.84 0.000 .3250819 1.00144

ses4
SES .8574695 .2012317 4.26 0.000 .4630625 1.251876

Indirect effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES 0 (no path)

math
ratio 0 (no path)
SES .3084758 .1451257 2.13 0.034 .0240346 .5929169

Measurement
ses1

SES 0 (no path)

ses2
SES 0 (no path)

ses3
SES 0 (no path)

ses4
SES 0 (no path)

Total effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
ratio

SES -1.367306 .5562429 -2.46 0.014 -2.457522 -.2770903

math
ratio -.2256084 .1026128 -2.20 0.028 -.4267257 -.024491
SES 7.217039 1.599953 4.51 0.000 4.081189 10.35289

Measurement
ses1

SES 1 (constrained)

ses2
SES .9450302 .1643867 5.75 0.000 .6228382 1.267222

ses3
SES .6632608 .1725434 3.84 0.000 .3250819 1.00144

ses4
SES .8574695 .2012317 4.26 0.000 .4630625 1.251876
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In the second group of the output, we see that the mediation effect is not
statistically significant, z = 1.48, p = 0.138. We may consider bootstrapping
this effect to get a more powerful test. We can do this with the bootstrap

command. First, we need to get labels for the effects we would like to test. We
can get these by replaying our model results with the coeflegend option. We
can use these labels to construct an expression for the mediation effect that
we’re calling indirect. We put this expression in parentheses after bootstrap

and put any bootstrapping options after a comma; then, we put the model and
its options after a colon. Multiple expressions can be included using multiple
parentheses sets.

. sem, coeflegend

Structural equation model Number of obs = 519
Estimation method: ml

Log likelihood = -7117.1959

( 1) [ses1]SES = 1

Coefficient Legend

Structural
ratio

SES -1.367306 _b[ratio:SES]
_cons 16.75723 _b[ratio:_cons]

math
ratio -.2256084 _b[math:ratio]
SES 6.908564 _b[math:SES]

_cons 55.50311 _b[math:_cons]

Measurement
ses1

SES 1 _b[ses1:SES]
_cons 1.982659 _b[ses1:_cons]

ses2
SES .9450302 _b[ses2:SES]

_cons 2.003854 _b[ses2:_cons]

ses3
SES .6632608 _b[ses3:SES]

_cons 2.003854 _b[ses3:_cons]

ses4
SES .8574695 _b[ses4:SES]

_cons 2.003854 _b[ses4:_cons]

var(e.ses1) 1.541523 _b[/var(e.ses1)]
var(e.ses2) 1.588663 _b[/var(e.ses2)]
var(e.ses3) 1.795421 _b[/var(e.ses3)]
var(e.ses4) 1.660672 _b[/var(e.ses4)]
var(e.ratio) 23.41179 _b[/var(e.ratio)]
var(e.math) 89.51067 _b[/var(e.math)]

var(SES) .4562495 _b[/var(SES)]

LR test of model vs. saturated: chi2(8) = 21.72 Prob > chi2 = 0.0055
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. bootstrap indirect=(_b[ratio:SES]*_b[math:ratio]), reps(1000) nodots: ///
> sem (SES -> ses1-ses4 ratio math) (ratio -> math)

Bootstrap results Number of obs = 519
Replications = 1,000

Command: sem (SES -> ses1-ses4 ratio math) (ratio -> math)
indirect: _b[ratio:SES]*_b[math:ratio]

Observed Bootstrap Normal-based
coefficient std. err. z P>|z| [95% conf. interval]

indirect .3084758 .1932632 1.60 0.110 -.070313 .6872646

We’ve added the reps(1000) option to compute 1,000 bootstrap replications
and the nodots option to suppress displaying a dot for each replication. To get
95 percentile confidence intervals based on our bootstrap sampling distribution,
we can follow with the postestimation command estat bootstrap using the
percentile option. The resulting confidence interval contains zero so we cannot
reject the null hypothesis.

. estat bootstrap, percentile

Bootstrap results Number of obs = 519
Replications = 1000

Command: sem (SES -> ses1-ses4 ratio math) (ratio -> math)
indirect: _b[ratio:SES]*_b[math:ratio]

Observed Bootstrap
coefficient Bias std. err. [95% conf. interval]

indirect .30847577 -.0307326 .19326315 -.0707015 .6837121 (P)

Key: P: Percentile

2.2 Group Analysis

Finally, we may consider comparing our mediation across groups. Group analysis
can be done in Stata by adding the group() option. We would like to compare
students in public schools versus private schools so we will specify schtype as
our grouping variable. Then, we can use ginvariant() to specify the types of
parameters we would like to constrain across groups. All other variables will be
estimated separately for each group. The ginvariant() options are listed in
Table 1. If we don’t specify any ginvariant option, by default Stata will con-
strain measurement coefficients and measurement intercepts, ginvariant(mcoef
mcons). See the model in Figure 7. Now when we run estat teffects, we will
get a separate estimated mediation effect for each group.
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. sem (SES -> ses1-ses4 math) (ratio -> math), group(schtype)

Figure 7. Group analysis.
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. estat teffects, nodirect nototal compact

Indirect effects

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Structural
math

SES
Private .7043843 .4184641 1.68 0.092 -.1157902 1.524559
Public .2035724 .1710134 1.19 0.234 -.1316076 .5387525

ratio

ses1

ses2

Measurement
ses3

ses4

Table 1. ginvariant() suboptions

Option Description

mcoef measurement coefficients
mcons measurement intercepts
merrvar covariances of measurement errors
scoef structural coefficients
scons structural intercepts
serrvar covariances of structural errors
smerrcov covariances between structural and measurement errors
meanex means of exogenous variables
covex covariances of exogenous variables
all all the above
none none of the above

To test whether these mediation effects significantly differ, we can conduct a
Wald test with the test or testnl postestimation commands, again using the
labels from the coeflegend option. Because mediation effects are nonlinear, we
will use testnl. The mediation effects do not significantly differ between groups,
χ2(1) = 1.27, p = 0.260.

. testnl _b[ratio:0bn.schtype#c.SES]*_b[math:0bn.schtype#c.ratio]= ///
> _b[ratio:1.schtype#c.SES]*_b[math:1.schtype#c.ratio]

(1) _b[ratio:0bn.schtype#c.SES]*_b[math:0bn.schtype#c.ratio]
> _b[ratio:1.schtype#c.SES]*_b[math:1.schtype#c.ratio]

chi2(1) = 1.27
Prob > chi2 = 0.2599
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. estat ginvariant

Tests for group invariance of parameters

Wald test Score test
chi2 df P>chi2 chi2 df P>chi2

Structural
math

ratio 0.001 1 0.9709 . . .
SES 0.005 1 0.9441 . . .

_cons 1.314 1 0.2516 . . .

ratio
SES 1.825 1 0.1768 . . .

_cons 0.011 1 0.9147 . . .

Measurement
ses1

SES . . . 1.832 1 0.1759
_cons . . . 5.997 1 0.0143

ses2
SES . . . 0.072 1 0.7882

_cons . . . 0.341 1 0.5592

ses3
SES . . . 0.049 1 0.8253

_cons . . . 0.634 1 0.4259

ses4
SES . . . 1.945 1 0.1632

_cons . . . 1.149 1 0.2838

var(e.ses1) 0.189 1 0.6640 . . .
var(e.ses2) 0.063 1 0.8023 . . .
var(e.ses3) 1.011 1 0.3146 . . .
var(e.ses4) 0.090 1 0.7641 . . .
var(e.math) 0.065 1 0.7982 . . .
var(e.ratio) 36.627 1 0.0000 . . .

var(SES) 0.042 1 0.8383 . . .

To test group differences in each direct path, we can use the postestimation
command estat ginvariant. These results show us Wald tests evaluating con-
straining parameters that were allowed to vary across groups and score tests
evaluating relaxing constraints. Both are testing whether individual paths sig-
nificantly differ across groups.

2.3 Growth Curve Modeling

The last model we will fit using sem is a growth curve model. This will require
a new dataset.

. use crime
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. describe

Contains data from crime.dta
Observations: 359

Variables: 4 4 Oct 2012 16:22
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

lncrime0 float %9.0g ln(crime rate) in Jan & Feb
lncrime1 float %9.0g ln(crime rate) in Mar & Apr
lncrime2 float %9.0g ln(crime rate) in May & Jun
lncrime3 float %9.0g ln(crime rate) in Jul & Aug

Sorted by:

These data are from Bollen and Curran (2006); they contain crime rates
collected in two-month intervals for the first eight months of 1995 for 359 com-
munities in New York state. We would like to fit a linear growth curve to these
data to model how crime rate changed over time. In our model, we can set con-
straints using the @ symbol as we did before. To constrain all intercepts to 0, we
can add the nocons option. We will also need the means() option. By default,
Stata constrains the means of latent variables to 0. For this model, we would like
to estimate them so we need to specify the latent variable names inside means().
We may also consider constraining all the residual variances to equality by con-
straining each of them to the same arbitrary letter or word, in this case eps. See
the model in Figure 8.

The estimated mean log crime rate at the beginning of the study was 5.33
and it increased by an average of 0.14 every two months. We could have fit this
same model using gsem. One way we can do this is to simply replace sem with
gsem in the command in Figure 8. Alternatively, we can can think of this as a
multilevel model, and fit it using gsem’s notation for random effects. Let’s do
that next.



SEM using Stata 173
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. sem (Intercept@1 -> lncrime0-lncrime3) (Slope -> lncrime0@0 lncrime1@1

lncrime2@2 lncrime3@3), nocons means(Intercept Slope)

var(e.lncrime0-lncrime3@eps)

Figure 8. Growth curve model on crime rate.

3 Fitting models with the gsem command

3.1 Models with Random Effects

The gsem command implements generalizations to the standard linear structural
equation model implemented in sem, such as models with generalized-linear re-
sponse variables, random effects, and categorical latent variables (latent classes).
Its syntax is the same as sem, with some different options and postestimation
commands. We will start by fitting a random-slope model to the crimes dataset,
reproducing the results we obtained with the growth curve model using sem.
First, we need to create an observation identification variable and reshape the
data into long format.

. gen id = _n

. reshape long lncrime, i(id) j(time)
(j = 0 1 2 3)

Data Wide -> Long

Number of observations 359 -> 1,436
Number of variables 5 -> 3
j variable (4 values) -> time
xij variables:

lncrime0 lncrime1 ... lncrime3 -> lncrime
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. summarize

Variable Obs Mean Std. dev. Min Max

id 1,436 180 103.6701 1 359
time 1,436 1.5 1.118423 0 3

lncrime 1,436 5.551958 .7856259 2.415164 9.575166

We now have long-format data in which we have several rows of observations
for each individual; we’re ready to fit our random-slope model. We specify ran-
dom effects in gsem by adding brackets enclosing the clustering variable to the
latent variable, i.e. Intercept[id]. This tells Stata to include a latent variable
in the model called Intercept that has variability at the id level. As with other
latent variables, it will have a mean of 0 and an initial factor loading of 1, so
the only parameter this term introduces is a level-2 variance. Random coeffi-
cients can be added to any term by interacting a latent random effect with that
variable, i.e. c.time#Slope[id].

Interactions in Stata are specified using #; interaction terms are assumed to
be factor variables unless prefixed by c. to indicate that they are continuous
variables. Contrarily, main-effect terms are assumed to be continuous unless
prefixed by i. to indicate that they are factor variables. We’ll see this in the
next example. This factor variable notation is not available using sem.

See the syntax and results of the random slope model in Figure 9; these results
replicate those by sem. In the SEM Builder, random effects are represented as
double-bordered ovals labeled with the clustering variable to indicate that they
represent variability at the cluster level.

lncrime
5.3

ε1 0.10time

id
.47

id
.015

0.14

1

1

. gsem (Intercept[id] time c.time#Slope[id] -> lncrime)

Figure 9. Random-slope model on crime rate.
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3.2 Models with Generalized Responses

The gsem command can also be used to fit generalized linear SEMs; that is, SEMs
in which an endogenous variable is distributed according to some distribution
family and is related to the linear prediction of the model through a link function.
See Table 2 for a list of available distribution families and links. Either the
family and link can be specified, i.e. family(bernoulli) link(logit), or some
combinations have shortcuts that you can specify instead, i.e. logit. For this
example, we will return to the first dataset.

Table 2. gsem distribution families and link functions

family() options link() options
identity log logit probit cloglog

gaussian X X
bernoulli logit probit cloglog

beta X X X
binomial X X X
ordinal ologit oprobit ocloglog

multinomial mlogit

Poisson poisson

negative binomial nbreg

exponential exponential

Weibull weibull

gamma gamma

loglogistic loglogistic

lognormal lognormal

Note: X indicates possible combinations. Where applicable, regression names that
imply that family/link combination are shown. If no family/link are provided,
family(gaussian) link(identity) is assumed.

. use math

. codebook, compact

Variable Obs Unique Mean Min Max Label

schtype 519 2 .61079 0 1 School type
ratio 519 14 16.75723 10 28 Student-Teacher ratio
math 519 42 51.72254 30 71 Math score
ses1 519 5 1.982659 0 4 SES item 1
ses2 519 5 2.003854 0 4 SES item 2
ses3 519 5 2.003854 0 4 SES item 3
ses4 519 5 2.003854 0 4 SES item 4

In our previous analysis, we had treated each socioeconomic status Likert
item as continuous. Now, we will treat them as ordinal using gsem. Adding the
ologit option will fit the measurement model using the ordinal family with
a logistic link. We will also use factor variable notation to include indicator
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variables for school type in our analysis. See figure Figure 10. By adding schtype

as a factor variable, a dummy variable for each level of schtype is included in the
model. The path coefficient for the base level, by default the lowest, is constrained
to zero. To get exponentiated coefficients, we can follow with the postestimation
command estat eform.

math
56

ε1 91

0b.schtype1.schtype

SES
1.8

ses1

ordinal

logit

ses2

ordinal

logit

ses3

ordinal

logit

ses4

ordinal

logit

0.00
−6.56

2.30

1.00 0.84
0.37

0.49

. sem (SES -> ses1-ses4, ologit) (SES i.schtype -> math)

Figure 10. Ordinal logistic regression model.

. estat eform ses1 ses2 ses3 ses4

exp(b) Std. err. z P>|z| [95% conf. interval]

ses1
SES 2.718282 (constrained)

ses2
SES 2.311549 .483485 4.01 0.000 1.534141 3.482899

ses3
SES 1.449492 .180061 2.99 0.003 1.136257 1.849077

ses4
SES 1.628133 .2474222 3.21 0.001 1.208748 2.193029
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4 Conclusion

In this tutorial, we’ve shown the basics of fitting SEMs in Stata using the sem

and gsem commands, and have provided example datasets and syntax online to
follow along. We demonstrated confirmatory factor analysis, mediation, group
analysis, growth curve modeling, and models with random effects and general-
ized responses. However, there are many possibilities and options not included in
this tutorial, such as latent class analysis models, nonrecursive models, reliabil-
ity models, mediation models with generalized responses, multivariate random-
effects models, and much more. Visit Stata’s documentation to see all the avail-
able options for these commands, their methods and formulas, and many more
examples online at https://www.stata.com/manuals/sem.pdf.
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