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Abstract. Growth curve models (GCMs), with their ability to directly
investigate within-subject change over time and between-subject differ-
ences in change for longitudinal data, are widely used in social and be-
havioral sciences. While GCMs are typically studied with the normal
distribution assumption, empirical data often violate the normality as-
sumption in applications. Failure to account for the deviation from nor-
mality in data distribution may lead to unreliable model estimation and
misleading statistical inferences. A robust GCM based on conditional me-
dians was recently proposed and outperformed traditional growth curve
modeling when outliers were present resulting in nonnormality. How-
ever, this robust approach was shown to perform less satisfactorily when
leverage observations existed. In this work, we propose a robust dou-
ble medians growth curve modeling approach (DOME GCM) to thor-
oughly disentangle the influence of data contamination on model estima-
tion and inferences, where two conditional medians are employed for the
distributions of the within-subject measurement errors and of random ef-
fects, respectively. Model estimation and inferences are conducted in the
Bayesian framework, and Laplace distributions are used to convert the
optimization problem of median estimation into a problem of obtaining
the maximum likelihood estimator for a transformed model. A Monte
Carlo simulation study has been conducted to evaluate the numerical
performance of the proposed approach, and showed that the proposed
approach yields more accurate and efficient parameter estimates when
data contain outliers or leverage observations. The application of the
developed robust approach is illustrated using a real dataset from the
Virginia Cognitive Aging Project to study the change of memory ability.

Keywords: Robust methods · Growth curve modeling · Conditional me-
dians · Laplace distribution
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1 Introduction

Longitudinal data track the same subjects across different time points. In con-
trast to cross-sectional data, longitudinal data allow for measuring the within-
subject change over time, capturing the duration of events, and recording the
timing of various events. Growth curve modeling is one of the most frequently
used analytical techniques for longitudinal data analysis (e.g., McArdle & Nes-
selroade, 2014), due to its abilities to examine within-subject change over time,
and to investigate into differences of the change patterns among individuals.

In growth curve modeling, estimation methods that are based on the normal-
ity assumption in data distribution are widely accepted, and have been incorpo-
rated in many statistical software packages. When data all come from a normal
population, those methods are able to provide consistent and efficient param-
eter estimators. However, practical data are often contaminated with outlying
observations in social and behavioral sciences, so that the normality assumption
is violated in real data analysis. For example, Micceri (1989) investigated 440
large-scale data sets in psychology and found that almost all of them were signif-
icantly nonnormal. When the normality assumption does not hold, traditional
growth curve modeling which focuses on conditional means of the outcome vari-
ables may lead to inefficient and even biased model estimation (e.g., Yuan &
Bentler, 2001).

To disentangle the influence of data contamination, the cause of the con-
tamination needs to be understood. Reflected in growth curve modeling, data
contamination may be caused by extreme scores in either random effects or
within-subject measurement errors. The former is referred to as leverage obser-
vations and the latter is called outliers (Tong & Zhang, 2017). It is necessary to
distinguish these two types of outlying observations since their influences on the
estimation of growth curve models (GCMs) are different. Although techniques
to detect leverage observations and outliers have been developed (e.g., Tong &
Zhang, 2017), it has been shown that outlying observation detection in longitu-
dinal data is a challenging problem whose sensitivity and specificity are difficult
to guarantee. Even if the leverage observations and outliers are correctly identi-
fied, simply deleting them could result in decreased statistical efficiency (Lange,
Little, & Taylor, 1989).

To address the issue of data contamination, various robust estimation meth-
ods have been proposed to produce reliable analysis in the presence of data
nonnormality. Some of them rely on making distributional assumptions that are
more reasonable to the dataset, such as using Student’s t distributions or mix-
ture of normal distributions (Lu & Zhang, 2014; Reich, Bondell, & J., 2010;
Tong & Zhang, 2012). However, those methods are sensitive to the choice of the
assumed distribution, which is difficult to specifiy a priori and verify afterwards,
especially for small sized data. Another genre of robust methods assign weights
to observations according to their distances from the center of the majority of
data so that extreme cases are downweighted (e.g., Pendergast & Broffitt, 1985;
Singer & Sen, 1986; Yuan & Bentler, 1998a; Zhong & Yuan, 2010). Those weight-
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ing methods may have limitations under certain conditions, e.g., in general, they
do not take the leverage observations into consideration (Zhong & Yuan, 2011).

Median-based regression and its generalization, quantile regression (Koenker,
2004), have emerged as another genre of robust methods. Such methods are dis-
tribution free, and have been extended to many topics such as penalized regres-
sion and time series models. Although the median-based methods are still not
widely applied to longitudinal research (Geraci, 2014), they are getting more and
more attention (e.g., Cho, Hong, & Kim, 2016; Galvao & Poirier, 2019; Huang,
2016; Smith, Fuentes, Gordon-Larsen, & Reich, 2015; Zhang, Huang, Wang,
Chen, & Langland-Orban, 2019). Recently a robust growth curve modeling ap-
proach using conditional medians was proposed (Tong, Zhang, & Zhou, 2021).
Although this robust approach outperformed traditional conditional mean-based
growth curve modeling in the presence of outliers, it still yielded biased param-
eter estimates when leverage observations exist.

It is crucial to have a robust estimator for growth curve models when data are
contaminated with both outliers and leverage observations in longitudinal stud-
ies. To obtain such an estimator, we develop a DOuble MEdian-based structure
(DOME) to mitigate potential distortion in both distributions of random effects
and of within-subject measurement errors in growth curve modeling. When ran-
dom effects and measurement errors are symmetrically distributed, the estimates
based on the developed method will be very close to the ones obtained by tra-
ditional growth curve modeling estimation method. It is expected that DOME
growth curve modeling is more robust against nonnormal data than traditional
conditional mean-based method, and also outperforms the median-based growth
curve modeling in Tong et al. (2021). Bayesian methods are used for DOME
GCM estimation because they can conveniently infer parameters that do not
have symmetric distributions (e.g., variance parameters), incorporate prior in-
formation to make parameter estimates more efficient, naturally accommodate
missing data without requiring new techniques, and are powerful to deal with
complex model structures.

In sum, the purpose of this work is to develop a robust Bayesian growth
curve modeling approach that is effective to analyze longitudinal data that are
contaminated with both outliers and leverage observations in general. In the fol-
lowing sections, the idea of the proposed robust approach, DOME GCM, will be
introduced, Monte Carlo simulation studies are conducted to evaluate the nu-
merical performance of the developed method and compare its performance with
those of traditional growth curve modeling and the median-based method devel-
oped by Tong et al. (2021), and an empirical example is provided to illustrate
the application of DOME GCM to study the change of memory scores using a
real dataset from the Virginia Cognitive Aging Project (Salthouse, 2014, 2018).
We conclude this article with discussions and suggestions on future research
directions.
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2 DOME Growth Curve Modeling

In longitudinal studies, the same subjects are measured repeatedly over time.
Suppose that a longitudinal study is conducted on a cohort of individuals, in-
dexed by i = 1, ..., N . Let yi = (yi1, ..., yiTi

)⊺ be a Ti × 1 vector, where yit is the
observation on individual i at time t for t = 1, ..., Ti with Ti being the maximum
follow-up time for this individual. A typical form of the unconditional GCMs
can be formulated as

yi = Xibi + ϵi,

bi = β + ui,
(1)

where Xi is a Ti × q factor loading matrix recording the time of measurements.
It can be different across individuals when they are not measured at a common
set of time. The vector bi is a q×1 vector of random effects, and ϵi is a vector of
within-subject measurement errors. The vector of random effects bi varies across
individuals, and β represents the fixed effects for the population. The residual
vector ui represents the random component of bi. Without loss of generality, we
assume the number of measurement occasions to be the same for all individuals,
i.e., Ti ≡ T .

Traditional GCMs typically assume that both ϵi and ui follow multivariate
normal (MN) distributions,

ϵi ∼ MNT (0,Φ),

ui ∼ MNq(0,Σ),

where the subscripts of MN distributions imply the dimensionalities of the
random vectors. The covariance matrix Φ is usually assumed to be diagonal
Φ = σ2

ϵI, indicating that measurement errors have equal variance and are inde-
pendent across different time points.

Traditional GCMs focus on modeling the conditional means of the outcome
variables, E(yi|bi) = Xibi, and estimating the common growth parameters,
E(bi) = β.

However, it is well known that mean is sensitive to outlying observations.
Tong et al. (2021) proposed a median-based GCM where the conditional medi-
ans of the outcome variables Q0.5(yi|bi), are examined instead of the conditional
means E(yi|bi). Their numerical results showed that this approach is only robust
against outliers, but not against leverage observations. This is as expected be-
cause an outlier is caused by an extreme score in ϵi and a leverage observation is
caused by an extreme score in ui. The robust approach in Tong et al. (2021) only
models the conditional medians of the outcome variables at the level-one model.
Although it seems to be a natural extension to model conditional medians of
the level-two model as well to address the influence of leverage observations, the
extension is not straightforward because within-subject measurement errors ϵi
were assumed to be independent across different time points and can be modeled
as univariate random variables, whereas ui has to be specified as a multivariate
variable with dependent components.
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In this paper, we tackle the complicated multivariate problem and propose
a robust method by adopting two median structures as alternatives, Q0.5(yi|bi)
replacing E(yi|bi) and Q0.5(bi) replacing E(bi). We call this new model a double
medians growth curve model (DOME GCM).

2.1 DOME GCM specification

As discussed previously, outlying observations in longitudinal data can be either
outliers as a result of extreme measurement errors, or leverage observations due
to extreme scores in random effects (Tong & Zhang, 2017). The proposed DOME
GCM aims to handle the presence of data nonnormality due to both types of
outlying observations.

DOME growth curve modeling is an extension of traditional mean-based
method,

yi = Xibi + ϵi,

bi = β + ui,

Q0.5(ϵi|ui) = 0,

Q0.5(ui) = 0,

(2)

where medians for vector are taken entry-wise. In this multilevel modeling frame-
work, at the first level, the relationship between Xi and the outcome variable yi

is based on the conditional median function Q0.5(ϵi|ui) = 0. At the second level,
random effect bi varies around the median β, the fixed effects for the population.
The random residuals ui = [ui1, ui2, . . . , uiq]

⊺ are the random components of bi.
Since no distributional assumption is imposed on ϵi or ui, the proposed DOME
growth curve model is distribution-free.

The multilevel structure in Equation (2) can be expressed compactly as

yit = x⊺
itβ + x⊺

itui + ϵit, (3)

where Q0.5(ϵit|ui) = 0 and Q0.5(ui) = 0. Here xit is the transpose of the tth row
of Xi. The population regression coefficient β is the main parameter of interest
in the DOME GCM model.

2.2 Estimation of the DOME GCM

Recall that in traditional regression based on conditional means, we minimize the
sum of squared residuals to estimate model parameters. Similarly, in a median-
based regression,

yi = x⊺
i β + ϵi, Q0.5(ϵ) = 0,

estimation is carried out by minimizing the sum of absolute residuals,

β̂0.5 = argmin
β

N∑
i=1

|yi − x⊺
i β|. (4)
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However, this minimization involves the sum of absolute values, which is not dif-
ferentiable at zero, meaning that explicit solutions to the minimization problem
are unavailable. Moreover, when more than one median constraints are intro-
duced, as in the case of the DOME GCM model in Equations (2), defining
an objective function similar to Equation (4) becomes difficult, for the reason
that the objective function should be marginalized and involves integration. The
computational challenge can be overcome by introducing Laplace distributions
to make a connection between the estimation of DOME GCM in Equations (2)
and the maximum likelihood principle (Geraci, 2014).

The Laplace distribution has a relationship with the l1-norm loss function
described in Koenker and Bassett (1978). This relationship is best demonstrated
by the probability density function for a unidimensional Laplace distribution
X ∼ Laplace(µ, σ),

p(x|µ, σ) = 1

2σ
exp

{
− 1

σ
|x− µ|

}
,

where µ ∈ R is the location parameter and σ ∈ R+ is the scale parameter. The
mean and variance of the distribution are given by

E(X) = µ,

V ar(X) = 2σ2,

respectively. Laplace distribution is also known as the standard double exponen-
tial distribution.

The univariate Laplace distribution can be extended to the multivariate
Laplace distribution (Kozubowski & Podgorski, 2000). The marginal distribu-
tions of a multivariate Laplace distribution variable are unidimensional Laplace
distributions. A multivariate Laplace distribution is parameterized by location µ
and covariance matrix Σ, denoted as Y ∼ Laplace(µ,Σ). For a n-dimensional
Laplace distribution, if µ = 0, the probability density function of the multivari-
ate Laplace distribution is given by

p(y|µ,Σ) =
2

(2π)n/2|Σ|0.5

(
y⊺Σ−1y

2

)v/2

Kv(2

√
y⊺Σ−1y),

where v = 2−n
2 and Kv is the modified Bessel function of the second kind.

We employ Laplace distributions to convert the problem of estimating DOME
GCM into a problem of obtaining the maximum likelihood estimator (MLE) for
a transformed model. For the purpose of demonstration, we focus on a linear
GCM in this paper, so that the random effect is two-dimensional

bi =

[
Li

Si

]
,

where Li is the initial level and Si is the rate of change over time for the ith indi-
vidual, respectively. The transformed model for the DOME GCM in Equations
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(2) is

yit = x⊺
itbi + ϵit,

bi = β + ui,

ϵit ∼ Laplace(0, σϵ),

ui ∼ Laplace(0,Σ).

(5)

Note that the median structures are applied for the measurement errors using
a univariate Laplace distribution, and for the random effects using a bivariate
Laplace distribution. Since the median of a Laplace distribution is the location
parameter µ, it can be verified that

Q0.5(ϵit|ui) = 0 and Q0.5(ui) = 0,

so that parameter estimation of DOME GCM in Equations (2) can be obtained
by estimating the transformed model in Equations (5), for which the likelihood
function for T observations across N subjects is

L(β, σ;y) =

∫
. . .

∫ ( N∏
i=1

p(yi|bi,β, σϵ)× p(bi|β, Σ)

)
db1 . . . dbN

∝
∫

. . .

∫ ( N∏
i=1

exp

{
− 1

σ2
ϵ

T∑
t=1

|yit − x⊺
i bi|

}
p(bi|β, Σ)

)
db1 . . . dbN ,

(6)

where p(yi|bi,β, σϵ) is the conditional probability density function of yi and
p(bi|β, Σ) is the probability density function for multivariate Laplace distribu-
tion.

The solution of the maximum likelihood problem is difficult to derive an-
alytically, or numerically under the frequentist framework, as bi’s need to be
integrated out. Alternatively, the estimation can be carried out naturally under
the Bayesian framework, as Bayesian methods with data augmentation tech-
niques are flexible and computationally more powerful in such settings. Monte
Carlo Markov Chain (MCMC) algorithms can be applied here, using empirical
integration to approximate the exact integration. The basic idea of Bayesian
methods is to obtain the posterior distributions of model parameters based on
the likelihood function and the priors. Since the Laplace distribution can be con-
structed using a normal distribution and an exponential distribution, the data
augmentation technique is used here to simplify the procedure to obtain poste-
rior distributions. Specifically, to simulate a Laplace distribution with location
µ and covariance matrix Σ, we can generate, independently, two augmented
variables W ∼ exp(1) and X ∼ N(0,Σ). As a result, the variable

y =
√
WX +Wµ

follows the Laplace(µ,Σ) distribution. The augmented representation provides
an efficient method to draw MCMC from the posterior distribution. Particularly,
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if conjugate priors are used, we can derive conditional posterior distribution for
the model parameters. Gibbs sampling then can be utilized, where samples of pa-
rameters are drawn iteratively from the conditional posterior distribution. This
way we obtain the empirical marginal distribution of model parameters, with
which model estimation and statistical inference can be performed. Noninforma-
tive conjugate priors are used in our study because of their advantage in easy
Gibbs sampling derivation. Other priors, especially informative priors when pre-
vious information is available, can also be used and may be more advantageous,
on potentially reducing convergence issue or decreasing computation time (e.g.,
Depaoli, Liu, & Marvin, 2021).

3 Performance Evaluation of DOME GCM through a
Simulation Study

In this section, a simulation study is conducted to evaluate the numerical per-
formance of the robust Bayesian DOME growth curve modeling in analyzing
contaminated data with outliers and/or leverage observations, which correspond
to extreme scores in measurement errors and random effects, respectively. Com-
parisons are drawn among the developed DOME GCM, traditional growth curve
modeling based on conditional means, as well as the robust Bayesian method in
Tong et al. (2021) where the median structure is only applied in the first level
of GCM, referred to as the median-based method hereafter.

To directly compare with the study in Tong et al. (2021), we follow their sim-
ulation design and focus on the linear GCM as discussed in the previous section.
The number of measurement occasions is set at 5, the population parameter
values for the fixed effects are set as β = (βL, βS)

⊺ = (6.2, 1.5)⊺, the variance of
latent intercept σ2

L = 0.5, the variance of latent slope σ2
S = 0.1, the covariance

between intercept and slope is 0, and the measurement error variance σ2
ϵ = 0.1.

In the simulation, we vary the sample size (N = 200, 500), the percentage of
outlying observations (10%, 25%), and the types of outlying observations (out-
liers and leverage observations). Given a specific sample size and the percentage
of outlying observations r%, we first generate normally distributed measure-
ment errors ϵi ∼ MN5(0, σ

2
ϵI) and random effects ui ∼ MN2(0, Φ). Then r%

of subjects are randomly selected to be contaminated by outlying observations
in three scenarios; all selected subjects are contaminated by outliers, all selected
subjects are contaminated by leverage observations, and the selected subjects
are randomly contaminated with outliers or leverage observations with equal
probabilities.

To generate outliers, we randomly select 2 out of the 5 observations for one
subject, and replace them by data generated fromN(0, 0.1). To generate leverage
observations, the random slopes of the contaminated subjects are set to follow
the distribution N(−3, 0.1), instead of N(1.5, 0.1) for the population.

For each data condition, a total of 500 datasets are generated. Each dataset
is analyzed using the three methods. Traditional growth curve modeling with
normality assumptions is conducted under the structural equation modeling
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framework, using the ”lavaan” package in R (Rosseel, 2012). The median-based
method and the proposed DOME growth curve modeling are implemented with
the ”rstan” package (Stan Development Team, 2019). The Markov chain length
is set to be 15,000, and the burn-in period is 7,500. A set of commonly used
priors are specified for model parameters. A multivariate normal distribution
prior is assumed for β. The measurement error variance σ2

ϵ is given an inverse
gamma prior, and inverse Wishart distribution is assumed for the covariance of
random effect Σ. More details can be found in the R code for implementation
in the appendix.

3.1 Evaluation criteria

We obtain parameter estimation based on the three methods. Estimation bias,
empirical standard error (ESE), average standard error (ASE), and mean squared
error (MSE) for each parameter are calculated and used to evaluate the numerical
performances of those methods. Let θ denote a parameter and also its population
value, and let θ̂k and SEk denote its estimate and the corresponding estimated
standard error in the kth replication. Then the parameter estimate of θ, θ̂, is
calculated as the average of parameter estimates of 500 simulation replications

θ̂ =
1

500

500∑
k=1

θ̂k.

The bias of θ̂ is bias(θ̂) = θ̂ − θ. The empirical standard error is defined by

ESE(θ̂) =

√√√√ 1

499

500∑
k=1

(θ̂k − θ̂)2.

The average standard error is

ASE(θ̂) =
1

500

500∑
k=1

SEk.

When standard errors are estimated accurately in model estimation by the de-
veloped method, ASE should be very close to ESE. The mean squared error
is calculated by MSE(θ̂) = bias2 + ESE2. A smaller MSE indicates a more
accurate and precise estimator.

When Bayesian methods are applied, Geweke tests (Geweke, 1992) are used
to assess the convergence of Markov chains for all simulation replications. After
the burn-in period, if sample parameter values are drawn from the stationary
distribution of the chain, the means of the first and last parts of the Markov
chain (by convention the first 10% and the last 50 %) should be equal, and
the Geweke statistic asymptotically follows a standard normal distribution. We
report the convergence percentage of the 500 replications by Geweke test, and the
summarized model estimation results are based only on converged replications.
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In practice, if the MCMC procedure does not converge, we may adopt longer
Markov chains, or choose different starting values or prior distributions to yield
convergent Markov chains.

The model estimation time, in the number of seconds, is reported for the
two Bayesian methods. The median estimation time (MET) is the median of the
estimation time for the converged replications.

3.2 Results

When there are no outlying observations, traditional mean-based growth curve
modeling and the two robust median based growth curve modeling approaches
perform equally well.

Tables 1 - 2 summarize the parameter estimation results for the overall la-
tent slopes (βS) and the variance of latent slopes (σ2

S), respectively, with the
sample size N = 200. The overall latent slope and variance of latent slopes are
chosen as the parameters of interest, based on the presumption that substan-
tive researchers using growth curve models are most often interested in assessing
changes over time. Results for other model parameters and for N = 500 have
similar patterns and are given in the supplementary file: https://github.com/
CynthiaXinTong/DOME. When the sample size is 200, Geweke tests suggest that
at least 91% replications converged. We summarize the estimation results based
on those converged Markov chains.

When data contain outliers but no leverage observation exists, our proposed
DOME growth curve modeling yields parameter estimates that are very similar
to those from the conditional median-based method, and are less biased than
those from traditional mean-based method. Both MSEs and standard errors from
the two robust Bayesian methods are smaller than those from the traditional
mean growth curve model, indicating that the proposed method is on par with
conditional median-based method, and is more efficient than traditional growth
curve modeling. This pattern is more salient when the proportion of outliers
increases. Note that for DOME growth curve modeling, standard errors of σ2

S

are underestimated, as ASEs are smaller than ESEs. This may be due to the
autocorrelations of the Markov chains, and could potentially be overcome by
thinning the Markov chains. In sum, the DOME growth curve modeling is more
robust against outliers than traditional mean-based growth curve modeling. It
provides less biased and more efficient parameter estimators. The conditional
median-based method performs similarly as the DOME growth curve modeling
on handling outliers.

When data contain leverage observations but no outliers, the advantage of
the DOME GCM becomes apparent. In this situation, both traditional mean-
based method and the conditional median-based growth curve modeling break
down, yielding similar parameter estimates. But the estimates by DOME GCM
are much less biased. For example, as shown in Table 1, when the proportion of
leverage observations is 10%, the estimation bias for βS is -0.45 for both tradi-
tional mean-based method and the robust median-based method. DOME growth
curve modeling can substantially reduce the bias to -0.06. This is mainly because

https://github.com/CynthiaXinTong/DOME
https://github.com/CynthiaXinTong/DOME
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Table 1. Estimation results for βS under different types of data contamination when
N = 200

Type r% Method Est Bias MSE ASE ESE CR MET

Outlier

10%
Mean 1.33 -0.17 29.5 4.62 3.07 NA
Median 1.48 -0.02 1.21 2.50 2.42 94.2 1149
DOME 1.48 -0.02 1.28 2.77 2.65 96 1551

25%
Mean 1.06 -0.44 194.6 6.30 3.62 NA
Median 1.44 -0.06 4.73 3.19 2.78 94.4 740
DOME 1.43 -0.07 5.17 3.35 3.05 95.8 1362

Leverage

10%
Mean 1.05 -0.45 202 9.82 2.26 NA
Median 1.05 -0.45 204 8.39 2.64 94.6 2583
DOME 1.44 -0.06 5.32 4.21 3.17 93.4 2412

25%
Mean 0.37 -1.13 1269 14.0 2.35 NA
Median 0.37 -1.13 1270 10.8 3.02 95.6 2963
DOME 1.29 -0.21 47.1 7.35 4.09 94.6 2674

50-50 Mix

10%
Mean 1.19 -0.31 98.0 7.80 4.27 NA
Median 1.21 -0.29 86.2 7.05 5.40 95.0 2200
DOME 1.45 -0.05 3.00 3.65 2.92 97.0 2072

25%
Mean 0.72 -0.78 611 11.1 5.67 NA
Median 0.77 -0.73 545 9.69 7.56 94.6 1819
DOME 1.36 -0.14 21.3 2.31 3.37 93.6 1936

Note. Est = Estimate; CR = convergence rate; MET = median estimation time in
seconds; 50-50 Mix: data contain outliers and leverage observations with equal proba-
bilities. MSE was multiplied by 1000 and ASE and ESE were multiplied by 100.

Table 2. Estimation results for σ2
S under different types of data contamination when

N = 200

Type r% Method Est Bias MSE ASE ESE CR MET

Outlier

10%
Mean 0.25 0.15 26.36 4.71 5.60 NA
Median 0.07 -0.03 1.02 1.31 1.26 93.8 982
DOME 0.16 0.06 8.98 3.21 6.92 95.4 1263

25%
Mean 0.39 0.29 88.57 8.74 7.04 NA
Median 0.06 -0.04 1.66 1.53 1.07 94.8 619.28
DOME 0.13 0.03 1.51 4.68 11.97 93.6 1154

Leverage

10%
Mean 1.92 1.82 3326 19.32 6.33 NA
Median 1.93 1.83 3350 19.27 6.68 94.6 2253
DOME 0.96 0.86 750 13.78 4.43 94.0 2087

25%
Mean 3.90 3.80 14440 39.08 9.90 NA
Median 3.91 3.81 14503 38.74 11.46 94.8 2792
DOME 3.64 3.55 12592 51.48 13.78 96.0 2279

50-50 Mix

10%
Mean 1.13 1.13 1098.89 12.30 20.06 NA
Median 0.11 0.01 10.32 34.41 10.13 91.0 2196
DOME 0.18 0.08 41.08 57.74 18.41 93.0 2071

25%
Mean 2.26 2.16 4737.37 216.05 26.35 NA
Median 0.11 0.01 15.65 1.05 12.47 92.6 1819
DOME 0.51 0.41 277.74 41.60 32.35 94.4 1968

Note. Same as Table 1
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the conditional median-based method only applies medians in the first level of
the growth curve model, whereas leverage observations are extreme values in the
second level. Note that standard errors in the DOME growth curve modeling is
overestimated as ASEs are larger than ESEs. However, ASEs estimated by the
DOME GCM method are still closer to their corresponding ESEs than the ASEs
estimated by the other two methods.

When data contain both outliers and leverage observations, DOME growth
curve modeling still performs much better than the mean-based method and
the median-based method in terms of estimation bias and efficiency. In general,
when data are suspected to be contaminated, DOME GCM should be a preferred
method than the traditional GCM and conditional median-based GCM.

It is probably counter-intuitive that the MET is shorter when the proportion
of outliers is higher. This is consistent with the findings in Tong et al. (2021).
In MCMC sampling, Markov chains typically have trouble exploring high curva-
ture regions. A small proportion of outliers (e.g., 10%) creates a steep and high
curvature region for the chain to enter, and thus the computing time tends to
be longer. As the proportion increases, the curvature becomes smoother and the
MCMC procedure is faster.

4 A Real Data Application

To demonstrate its application, we apply the proposed DOME GCM to a sub-
set of data from the Virginia Cognitive Aging Project (VCAP; Salthouse 2014,
2018). VCAP, starting in 2001, is currently one of the largest active longitu-
dinal studies of aging involving comprehensive cognitive assessments in adults
ranging from 18 to 99 years of age. Over 5,000 adults have participated in the
three-session (6-8 hours) assessment at least once, with about 2,500 partici-
pating at least twice, and about 1300 participating three or more times. The
subset we used contains observations on 338 participants, who made 5 visits to
the assessment sessions. The change of memory scores over time is studied in
this illustrative example. Traditional mean-based method and the conditional
median-based method in Tong et al. (2021) are also applied to fit the dataset
for comparison.

The trajectory plot for the memory scores (Figure 1) suggests a linear growth
curve structure for the development of memory abilities. In the Bayesian esti-
mation of DOME GCM, we assign a normal prior for the location vector β,
an inverse-gamma distribution for the measurement error variance σ2

ϵ , and an
inverse-Wishart for the random effect covariance Σ. For both the conditional
median-based GCM and DOME GCM estimation, the total length of Markov
chains is set as 15,000, with the first 7,500 draws being the burn-in period.
Geweke statistics suggest that the Markov chains are stable after the burn-in
period. The trace plots (Figures 2- 3) also suggest the convergence of the Markov
chains.

The parameter estimates using the three methods are summarized in Table
3, and they differ a lot. The estimated rate of change β̂S is 0.021 based on the
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Figure 1. The trajectory plot for memory scores. Each lines is formed by connecting
the consecutive measurements on the same individual.

traditional mean-based method. The estimates coming from the robust meth-
ods are much smaller, 0.003 from the conditional median-based approach, and
0.005 from the DOME growth curve modeling. Also, the 95% credible interval
of β̂S from traditional mean-based method is [0.001, 0.042], suggesting the mem-
ory ability for the investigated population (median age of the group is 55) has
a significant increasing trend. In contrast, the intervals produced by the two
robust methods all cover zero, which is more reasonable and interpretable as
most participants in the dataset are elderly. The parameter estimates from the
two robust methods are similar. Based on our simulation results, when there is
no leverage observation in the dataset, conditional median-based method and
DOME growth curve modeling are expected to give similar results. That is most
likely the case in this illustrative example. The difference between traditional
method and the robust methods is the result of the presence of outliers in the
dataset. As suggested in our simulation study, we should generally trust the re-
sults from DOME. The results from DOME show that the initial median memory
ability is about 0.203. The credible intervals indicate that there are significant
between-subject differences in both initial ability and the change over time. The
covariance between the two random effects is -0.009, and is significantly differ-
ent from 0, meaning that a higher initial level is associated with a slower rate of
change in general.
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Figure 2. MCMC trace plot for the DOME growth curve modeling. Each line is formed
by connecting consecutive draws of the same parameter. Only the draws after burn-in
period of MCMC is used.
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formed by connecting consecutive draws of the same parameter. Only the draws after
burn-in period of MCMC is used.
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Table 3. The estimates of memory ability real data application.

Estimate SE CI Geweke Statistic

Mean GCM

βL 0.186 0.037 [0.114, 0.258]
βS 0.021 0.011 [0.001, 0.042]
σ2
L 0.374 0.036 [0.304, 0.444]

σLS -0.014 0.008 [-0.031, 0.002]
σ2
S 0.016 0.004 [0.001, 0.023]

Median GCM

βL 0.217 0.039 [0.139, 0.289] -0.337
βS 0.003 0.007 [-0.010, 0.017] 0.709
σ2
L 0.089 0.023 [0.052, 0.140] -0.707

σLS -0.009 0.003 [-0.016, -0.003] 1.001
σ2
S 0.003 0.001 [0.002, 0.005] -0.603

Double Median GCM

βL 0.203 0.038 [0.127, 0.278] 0.108
βS 0.005 0.007 [-0.008, 0.018] 0.465
σ2
L 0.093 0.028 [0.050, 0.158] -0.790

σLS -0.009 0.004 [-0.019, -0.003] 0.287
σ2
S 0.004 0.001 [0.002, 0.006] -0.573

5 Discussion

Growth curve modeling based on conditional medians has been developed to
disentangle the influence of data contamination. In this paper, we developed
a DOME GCM, a double medians based structure, to handle both outliers
and leverage observations in longitudinal data. A simulation study was con-
ducted to compare the numerical performances of traditional mean-based growth
curve modeling, a median-based growth curve modeling, as well as the proposed
DOME growth curve modeling. Results showed that when data were normally
distributed, the three methods performed equally well. When data contain out-
liers but not leverage observations, the median-based method and DOME growth
curve modeling yielded similar parameter estimates, which were less biased and
more efficient than those from traditional growth curve modeling. When lever-
age observations existed, DOME growth curve modeling outperformed the other
two approaches, providing much less biased parameter estimates. We therefore
recommend to use DOME growth curve modeling in general as it can effectively
handle both leverage observations and outliers.

As pointed out in Tong and Zhang (2017), outliers and leverage observations
are equally likely to exist in samples in practice, but they affect model estimation
differently. Although various methods have been developed to identify outliers
and leverage observations separately, the accuracy and effectiveness of those
methods were not guaranteed, especially in longitudinal studies. Tong and Zhang
(2017) suggested that a final detection decision should rely on a combination
of multiple methods. Our work in this paper indirectly provided an approach
to imply whether data contain leverage observations or not, by comparing the
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estimation results from the median-based growth curve modeling and the DOME
growth curve modeling. If their results greatly deviate from each other, we can
conclude that leverage observations exist.

Note that estimations of the random effects parameters (e.g., σ2
S) are not as

good as those for the fixed effects (e.g., βS) in general. This is consistent with the
literature; namely, although the median has a higher breakdown point of 50%,
it can be less efficient than the mean under some conditions. Thus, we need to
carefully examine the estimated random effects parameters to determine whether
there are significant between-subject variations in the within-subject change.
One alternative approach is to extend the current approach based on conditional
medians to approaches based on conditional quantiles. Such extension is natural
with the assistance of asymmetric Laplace distributions, and we would be able
to investigate the change pattern at different quantile levels inferring between-
subject differences without investigating the random effects parameters.

In this study, we evaluated the performance of DOME growth curve modeling
when data were contaminated. We want to point out that the data distribution
nonnormality may be due to data contamination or nonnormal population dis-
tributions. Although we expect that the developed DOME GCM should still
perform well when population distributions are nonnormal, it worths systemat-
ically assessing the effectiveness of DOME GCM and compare it with existing
robust methods in future research.

Missing data in longitudinal data are inevitable, yet the conditional median
based approaches have not been applied to analyze data with missing values.
Since Bayesian methods were used for the DOME GCM estimation, multiple
imputations can be automatically implemented and missing values can be ac-
commodated relatively easily. We will extend the developed method to handle
ignorable and non-ignorable missing data in future research.
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Appendix: Implementation

The “rstan” package (Stan Development Team, 2019) is used in our study. Below
we provide the annotated R code for the real data analysis.

DOME<-"

data{

int<lower=0> N;

int<lower=0> T;

vector[N*T] X;

vector[N*T] y;

// fixed inv_gamma parameter, prior of epsilon variance

real shape;

real inv_scale;

// beta prior information, the global slope&intercept

vector[2] beta_0;

cov_matrix[2] Var_beta0;

// hyper parameter’s value for Var_b

cov_matrix[2] Var_b0;

}

transformed data{

int len;

len = N*T;

}

parameters{

real<lower=0> sigma; //epsilon variance

vector<lower=0>[len] v; // data augmentation, represent

// Laplace epsilon in expo

vector<lower=0>[N] vb; // data augmentation, MLD b

vector[2] beta;

vector[2] b_star[N];

cov_matrix[2] Var_b;

cov_matrix[2] Var_beta;

}

transformed parameters{

vector[len] mu;

vector[len] sigma_y;

vector[N] vb_root;
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vb_root = sqrt(vb);

for(i in 1:N){

for(j in 1:T){

mu[T*(i-1)+j] = beta[1] + b_star[i,1]*vb_root[i] +

(beta[2] + b_star[i, 2]*vb_root[i]) * X[T*(i-1)+j];

}

}

sigma_y = sqrt(sigma*v);

}

model{

// model

y ~ normal(mu, sigma_y);

// data augmentation

sigma ~ inv_gamma(shape, inv_scale);

v ~ exponential(1);

vb ~ exponential(1);

// priors

beta ~ multi_normal(beta_0, Var_beta);

// b_star * sqrt(vb) is b, written this way to vectorize

b_star ~ multi_normal([0, 0], Var_b);

Var_beta ~ inv_wishart(3, Var_beta0);

Var_b ~ inv_wishart(3, Var_b0);

}

"

#load VCAP data and prepare intial values for MCMC

y<-as.vector(y)

X<-as.vector(time)

N<-length(y)/5

lm_est<-lm(y~X)

beta_0<-c(lm_est$coefficients[1],lm_est$coefficients[2])

Var_beta0<-matrix(c(0.5,0,0,0.1),ncol = 2)

Var_b0<-matrix(c(0.5,0,0,0.1),ncol = 2)

dat<-list(N=N, T=T, y=y, X=X, beta_0=beta_0, shape=0.1,

inv_scale=0.1, Var_beta0=Var_beta0, Var_b0=Var_b0)

v_initial<-rep(1,N*T)

vb_initial<-rep(1,N)

b_initial<-matrix(rep(0, N*2), N, 2)

intial<-list(list(sigma=runif(1,0.5,2), beta=beta_0,

b=b_initial, v=v_initial, vb=vb_initial,
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Var_beta=Var_beta0, Var_b=Var_b0))

#fit the DOME model using rstan package

fit_DOME<-stan(model_code=double_quantile, model_name="DOME",

init=intial, pars=c("beta","Var_b"), data=dat, iter=15000,

chains=1)

summary(fit_DOME)$summary

//check convergence via geweke test

content<-extract(fit_double_median)

geweke.diag(content$beta[,1])$z

geweke.diag(content$beta[,2])$z

geweke.diag(content$Var_b[, 1, 1])$z

geweke.diag(content$Var_b[, 1, 2])$z

geweke.diag(content$Var_b[, 2, 2])$z

#draw traceplot for MCMC, serving as reference for convergence

color_scheme_set(’mix-blue-red’)

mcmc_trace(fit_DOME,

pars = c("beta[1]","beta[2]", "Var_b[1,1]", "Var_b[1,2]",

"Var_b[2,2]"), facet_args = list(ncol = 1,

strip.position = "left"), iter1 = 7500)
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Abstract. Bayesian inference for structural equation models (SEMs) is
increasingly popular in social and psychological sciences owing to its flex-
ibility to adapt to more complex models and the ability to include prior
information if available. However, there are two major hurdles in using
the traditional Bayesian SEM in practice: (1) the information nested in
the prior distributions is hard to control, and (2) the MCMC iterative
procedures naturally lead to Markov chains with serial dependence and
the diagnostics of their convergence are often difficult. In this study, we
present an alternative procedure for Bayesian SEM aiming to address the
two challenges. In the new Bayesian SEM procedure, we specify a prior
distribution on the population covariance matrix parameter Σ and ob-
tain its posterior distribution p(Σ|data). We then construct a posterior
distribution of model parameters θ in the hypothetical SEM model by
transforming the posterior distribution of Σ to a distribution of model
parameter θ. The new procedure eases the practice of Bayesian SEM
significantly and has a better control over the information nested in the
prior distribution. We evaluated its performance through a simulation
study and demonstrate its application through an empirical example.

Keywords: Structural equation modeling · Bayesian analysis · Inverse
Wishart prior · Informative prior · Convergence diagnostics

1 Introduction

Structural equation modeling (SEM) is widely used to analyze multivariate data
with complex structures in behavioral and social sciences, due to its ability
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to identify relationships among unobserved latent variables using the observed
data (e.g., P. Bentler & Dudgeon, 1996; Bollen, 1989; Jöreskog, 1978; Lee, 2007;
MacCallum & Austin, 2000). In a typical SEM model, manifest variables, latent
variables, and measurement error can be analyzed simultaneously (e.g., Anderson
& Gerbing, 1988; Yuan, Kouros, & Kelley, 2008). The family of SEMs contains
a large variety of well-known models such as path analysis models (e.g., Boker
& McArdle, 2005; Yuan et al., 2008), confirmatory factor models (e.g., Jöreskog,
1969), and growth curve models (e.g., Grimm, Steele, Ram, & Nesselroade, 2013;
McArdle & Nesselroade, 2003). One primary purpose of fitting an SEM model
is to explain the covariance structure among variables, either latent or manifest.
Such a covariance structure is depicted by parameters in the hypothetical model
such as factor loadings, path coefficients, factor covariance matrices, and residual
variances.

Bayesian methods are increasingly used in estimating SEMs (e.g. Lee, 2007;
Palomo, Dunson, & Bollen, 2007; Van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2017). The seminal work by Lee (2007) laid the ground
for Bayesian SEM. Guo, Zhu, Chow, and Ibrahim (2012) used Bayesian Lasso
for model regularization. Zhang, Lai, Lu, and Tong (2013) introduced a ro-
bust Bayesian method to estimate growth curve models. Wang, Feng, and Song
(2016) employed the Bayesian method in estimating quantile SEMs. Muthen
and Asparouhov (2012) proposed to use small variance priors to approximate
parameters typically specified to be 0 in the frequentist framework. The increas-
ing popularity of Bayesian methods first benefits from the computer hardware
development that renders sampling techniques such as Markov Chain Monte
Carlo (MCMC) samplers (Gelfand & Smith, 1990). It is also because of the
many beneficial features of Bayesian statistics (Van de Schoot et al., 2017). For
example, it is possible to incorporate prior information into the estimation pro-
cess in data analysis, which has the analogous contribution of extra data and
is particularly useful when the sample size is small where the maximum like-
lihood (ML) method meets troubles to converge (e.g., P. M. Bentler & Yuan,
1999). It can also be computationally tractable even for very complex models
(e.g., Muthen & Asparouhov, 2012). In addition, it is especially flexible to han-
dle missing data and latent variables using data augmentation techniques (e.g.,
Z. Lu, Zhang, & Lubke, 2011; Van Dyk & Meng, 2001; Zhang & Wang, 2012).
Moreover, it treats model parameters as random variables with a more intuitive
interpretation (Van de Schoot et al., 2017). Because of the increasing popularity
of Bayesian statistical inference, the software has also been developed to facili-
tate the use of Bayesian SEM such as the R package blavaan (Merkle & Rosseel,
2015) and Mplus (Muthen & Asparouhov, 2012).

Despite the many advantages, the burden of using Bayesian SEM is also
discussed (e.g., MacCallum, Edwards, & Cai, 2012). A common criticism on
Bayesian statistics is the use of priors. First, it can be difficult to specify pri-
ors and risky to use default priors in software (Liu, Depaoli, & Marvin, 2022;
Smid, McNeish, Miočević, & van de Schoot, 2019). In an SEM, there are many
parameters including factor loadings, factor covariance matrix, unique factor
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variances, regression paths, and other parameters. Selecting priors for all those
parameters can be tedious. Although default priors are provided in most ex-
isting software, their influences are still not well understood by many applied
researchers, especially for complex models and/or small sample size studies (De-
paoli, Liu, & Marvin, 2021; Smid et al., 2019). Second, the use of informative
priors can significantly affect parameter estimates and Bayesian inference. In
order to reduce the influence of priors and obtain objective inference, Jeffreys
prior has been developed (Jeffreys, 1961). However, the derivation of Jeffreys
prior is not straightforward and therefore convenient priors such as univariate
and multivariate normal, Gamma, and Wishart priors are often used in practice
(e.g., Lee & Song, 2012; Song & Lu, 2010; Zhang, Hamagami, Lijuan Wang,
Nesselroade, & Grimm, 2007; Zhang et al., 2013). Third, some researchers have
argued that informative priors should be used to fully take advantage of Bayesian
inference (e.g., Z.-H. Lu, Chow, & Loken, 2016; Muthen & Asparouhov, 2012).
However, the specification of such priors is even more delicate. Another concern
is the use of Markov chain Monte Carlo (MCMC) techniques. The convergence
diagnostics of the Markov chains are required and can be very challenging. The
dependence among the Markov samples often suggests a long chain to provide
reliable inferences. Therefore, the specification of priors and the diagnostics of
convergence have become two major obstacles for the adoption of Bayesian SEM
in practice. Although some existing software has implemented Bayesian MCMC
techniques, it might not work well with the default settings for all models.

The objective of this paper is to present an alternative Bayesian approach to
SEM that specifies prior distributions under a unified framework for all covari-
ance structures. Rather than specifying priors on individual model parameters θ,
this approach specifies a multivariate prior distribution directly on the saturated
population covariance matrix Σ. Random draws from the posterior distribution
of the population covariance matrix are then fitted to the covariance structure
to obtain posterior distributions of model parameters.

Compared to the existing procedures for Bayesian SEM, the newly proposed
procedure has two distinct features. First, priors are only required for the pop-
ulation covariance matrix and there is no need to specify a prior for each in-
dividual model parameter such as factor loadings and residual variances. This
substantially reduces the work for researchers, especially novel users of Bayesian
methods, conducting a Bayesian SEM analysis. Inverse-Wishart priors have been
adopted for the covariance matrix parameter in most of the existing Bayesian
analyses (e.g., Grimm, Kuhl, & Zhang, 2013; Liu, Zhang, & Grimm, 2016; Pan,
Song, Lee, & Kwok, 2008; Zhang, 2021; Zhang et al., 2007, 2013). In the current
study, we also use Inverse-Wishart priors becasue it is not only computationally
convenient but also practically meaningful. The prior information conveyed by
an Inverse Wishart prior IW(m,V) is the same as “additional” data with the
sample size m and the sum of squares V. As a result, we are able to control the
amount of prior information nested in the prior by adjusting the values of hyper-
parameters of an Inverse-Wishart distribution. Second, the posterior samples of
model parameters θ are independently and identically distributed. This is be-
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cause the posterior distribution of the population covariance matrix is a marginal
distribution and has a closed form. Thus, independent covariance matrices can
be sampled from the posterior distribution directly. And so are the θ′s mapped
from them. Because every obtained sample is from its posterior distribution, it
is not necessary to have a burn-in period and conduct convergence diagnostics.
Because of the independence of samples, relatively fewer samples are needed to
obtain reliable inferences compared to the conventional MCMC procedures.

The rest of this paper is organized as follows. We first provide a brief introduc-
tion to both structural equation modeling and Bayesian statistical inference.We
then present our new approach to Bayesian SEM. The use of prior distributions,
types of points estimates, and credible intervals are described. After that, we
evaluate the performance and illustrate the application of the new procedure us-
ing a confirmatory factor model. Finally, we conclude the paper with discussions
and future directions.

2 Introduction to SEM and Bayesian Inference

In this section, we provide a brief review of SEM and Bayesian inference in the
aim to explain some notations used in the rest of the paper. More details can be
found in the seminal works such as Gelman et al. (2013), Kruschke (2011), Lee
(2007) and Lee and Song (2012).

2.1 SEM

A classical SEM contains two components: a measurement model and a struc-
ture model. Using the LISREL (Jöreskog & Sörbom, 1993) notations, it can be
represented as follows,

x =Λ

[
η
ξ

]
+ ε

η =Bη + Γξ + δ

(1)

where η and ξ are latent dependent (endogenous) and independent (exogenous)
variables; x is a vector of their indicators; Λ is a factor loading matrix; B and
Γ are two coefficient matrices to represent the relationship among latent depen-
dent variables and between latent independent and latent dependent variables,
respectively; and ϵ a vector of unique factors and δ represents the residuals of
the structure model. The elements of ε are independent of the elements in δ, but
the elements in δ are allowed to be correlated with each other as in the original
LISREL model. For convenience, let Ψ be the covariance matrix of ε , Φ be the
covariance matrix of various latent independent variables so that cov(ξ) = Φ,
and Θ = cov(δ). We denote all the unknown parameters as θ that consists of
factor loadings Λ, path coefficients B and Γ , as well as Φ and Θ. The model
implied covariance matrix Σ(θ) is a function of the unknown parameters θ. In
order to estimate the parameter θ, both maximum likelihood (ML) estimation
and Bayesian estimation methods can be used.
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2.2 Maximum likelihood estimation of SEM

Following the tradition in structural equation modeling, the observed variable
X is assumed to follow a multivariate normal distribution. When the covariance
structure is of primary interests, the following discrepancy function is usually
minimized to obtain the maximum likelihood estimates of θ

FML = log |Σ(θ)|+ tr(SΣ−1(θ))− log |S| − p (2)

where p is the number of manifest variables and S is the sample covariance
matrix as defined previously. Newton-types of algorithms are often employed to
get ML estimates, which we refer to as θ̂ML in this study.

2.3 Bayesian estimation of SEM

In Bayesian statistical inference, the model parameter θ is not a fixed number,
but a random variable following a probability distribution. The joint distribution
of data X and model parameters θ is

P (X,θ) = P (X|θ)P (θ),

from which we can obtain the posterior distribution of θ conditional on n inde-
pendent observations on X : x1,x2, · · · ,xn,

P (θ|x1, · · · ,xn) =
Πn

i=1P (xi|θ)P (θ)

Πn
i=1

∫
θ
P (xi,θ)dθ

. (3)

Here, P (θ|x1, · · · ,xn) is called the posterior distribution of θ given data, and
Πn

i=1P (xi|θ) is the likelihood function, which is a function of θ. The term P (θ)
represents the prior distribution of θ, which summarizes the information on the
model parameters based on the prior knowledge. Because the denominator of
the above equation is the marginal distribution of data and it is a constant with
respect to model parameters θ, we use P (X) to represent it for convenience. The
posterior distribution is then

P (θ|x1,x2, · · · ,xn) =
1

P (X)
Πn

i=1P (xi|θ)P (θ)

∝ Πn
i=1P (xi|θ)P (θ) (4)

where the symbol ∝ means that a constant for scaling is removed. The posterior
distribution itself is the combination of the likelihood function and the prior.

In SEM, there are latent variables involved. To obtain Bayesian inference,
the data augmentation technique is usually adopted (Rubin, 1987; Tanner &
Wong, 1987). Instead of working on the posterior marginal distribution of the
unknown parameters, one could choose to work on the joint posterior distribution
of unknown parameters and latent variables. For instance in a LISREL model,
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the joint posterior distribution is as follows

P (Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ|x1,x2, · · · ,xn)

∝P (x1,x2, · · · ,xn|Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ)

× P (Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ)

=P (x1,x2, · · · ,xn|Λ, σ2
k,η, ξ)P (η|ξ,B,Γ ,Θ)

× P (ξ|Φ)P (Λ,B,Γ ,Φ,Θ, σ2
k, k = 1, · · · , p)

with P (Λ,B,Γ ,Φ,Θ, σ2
k) being the joint prior distribution of unknown param-

eters. The adoption of such a technique does not only make the inference on
model parameters easier analytically, but also provides Bayesian inference on
latent variables directly.

In most existing Bayesian SEM studies, independent priors are used (e.g.,
Lee, 2007; Muthen & Asparouhov, 2012; Zhang et al., 2013) such that

P (Λ,B,Γ ,Φ,Θ, σ2
k) = P (Λ)P (B)P (Γ )P (Φ)P (Θ)P (σ2

k, k = 1, · · · , p) (5)

For example, the following are the types of priors used as the default priors in
the existing software such as Mplus and blavaan,

σ2
k ∼ Inverse Gamma(α0k, β0k)

Λk ∼ N(Λ0k, H0k)

Bk ∼ N(B0k, J0k)

Γ k ∼ N(γ0k,K0k)

Φ ∼ IW(T0, β0)

Θ ∼ IW(R0, ρ0)

in which σ2
k is the error variance of the kth observed variable;Λk,Bk,Γ k

are the kth row of the factor loadings and path coefficients matrices, respec-
tively; and α0k, β0k, Λ0k, H0k, B0k, J0k, γ0k,K0k, T0, β0, R0, and ρ0 are the hyper-
parameters of the prior distributions, whose values are designated based on the
prior information.

To obtain samples from the posterior distribution, Markov Chain Monte
Carlo (MCMC) iterative procedures such as Gibbs samplers are used in existing
Bayesian SEM. With the given starting values Λ0,B0,Γ 0,Φ0,Θ0, (σ2

k)
0,(η0, ξ0),

at jth iteration, sample

1. Φj from P (Φ|ξj−1,Λj−1, (σ2
k)

j−1,ηj−1,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)
2. ξj from P (ξ|Φj ,Λj−1, (σ2

k)
j−1,ηj−1,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)

3. ηj from P (η|Φj ,Λj−1, (σ2
k)

j−1, ξj ,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)
4. Bj from P (B|Φj ,Λj−1, (σ2

k)
j−1,ηj , ξj ,Γ j−1,Θj−1, z1, z2, · · · , zn)

5. Γ j from P (Γ |Φj ,Λj−1, (σ2
k)

j−1,ηj , ξj ,Bj ,Θj−1, z1, z2, · · · , zn)
6. Λj from P (Λ|Φj ,Γ j , (σ2

k)
j−1,ηj , ξj ,Bj ,Θj−1, z1, z2, · · · , zn)

7. Θj from P (Θ|Φj ,Γ j , (σ2
k)

j−1,ηj , ξj ,Bj ,Λj , z1, z2, · · · , zn)
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8. (σ2
k)

j from P (σ2
k|Φ

j ,Γ j ,Λj ,ηj , ξj ,Bj ,Θj , z1, z2, · · · , zn), for k = 1, 2, · · · , p.

In SEM, the above conditional posterior distributions very often do not have
analytically closed forms. Obtaining samples from the conditional distributions
can be very complex and sampling schemes, such as the Metropolis–Hastings al-
gorithms, are usually used within each step to draw samples from the conditional
posterior distributions. Let θ be the vector of all model parameters; by repeating
the above Gibbs procedure B times, where B is usually a large number, we will
obtain a chain of posterior samples θ1,θ2, · · · ,θt, · · · ,θB .

Convergence diagnostics of the Markov chains are required in Bayesian anal-
ysis (e.g., Brooks & Roberts, 1998). This is because only the part of chains
that has reached the stationary status would be representative of the posterior
distribution. However, the diagnostics logically cannot guarantee representative-
ness. In addition, the successive draws by MCMC are correlated. Although the
existence of auto-correlations does not necessarily mean bad point estimates,
but correlated samples provide much less information than the same amount of
uncorrelated ones. Higher auto-correlations usually suggest that longer chains
are needed to have reliable inferences.

To summarize, in conventional Bayesian SEM, priors are specified on individ-
ual unknown parameters. MCMC procedures are used to obtain samples from
the posterior distributions of model parameters. Convergence diagnostics of the
Markov chains are required. Athough these can be done by software through
default settings, it might lead to serious problems if researchers are not familiar
with Bayesian methods. Hence, it is still not easy to conduct Bayesian SEM in
general.

3 Proposed Bayeian SEM Approach: Prior on the
Covariance Matrix Parameter

3.1 The general framework

In this work we propose a different framework for Bayesian SEM. In this ap-
proach, a prior distribution is imposed on the space of saturated covariance
matrices:

Σ ∼ π(Σ)

The choice of prior distribution π will be discussed shortly. As usual, the obser-
vations are assumed to independently follow a multivariate normal distribution.
This implies

S|Σ ∼ W(Σ/(n− 1), (n− 1))

where n is sample size and S is the usual unbiased estimator of Σ.
It should be noted that the parameters in the covariance structure are not

explicit in the formulation above; rather, they are considered implicit functions
of variances and covariances in Σ:

θ∗ = argmin FML(Σ,Σ(θ))
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In addition, the discrepancy between the true population covariance matrix Σ
and the model implied covariance matrix Σ∗ = Σ(θ∗) is also a function of Σ:

F ∗ = min
θ

FML(Σ,Σ(θ)) = FML(Σ,Σ(θ∗))

3.2 Prior and posterior distributions of Σ

The Wishart likelihood function of Σ is given by

L(Σ|S) ∝ |Σ|−n/2 exp[−1

2
tr(nSΣ−1)]

The posterior distribution is therefore

π(Σ|S) ∝ |Σ|−n/2 exp[−1

2
tr(nSΣ−1)]π(Σ). (6)

Many different priors can be used for Σ, this study focuses on the use of Jeffreys
prior and the inverse Wishart prior.

Jeffreys prior Jeffreys prior (e.g., Gelman et al., 2013; Jeffreys, 1946) is a type
of noninformative prior, for it does not incorporate extra information other than
that from the data to the posterior distribution. For a model with a vector of
parameters ζ, its Jeffreys prior is defined through

πJ(ζ) ∝
√
det(I(ζ)) (7)

where I(ζ) is the Fisher-information matrix. A Wishart likelihood is thus

πJ(Σ) = |Σ|−(p+1)/2 (8)

where p is the number of variables. This prior distribution was firstly developed
by Jeffreys (1961) for p = 1, 2, and later was generalized to arbitrary p (e.g.,
Geisser, 1965; Geisser & Cornfield, 1963; Villegas, 1969).

With the Jeffreys prior, the posterior distribution of Σ is

π(Σ|S) ∝ |Σ|−(n+p+1)/2 exp[−1

2
tr(nSΣ−1)], (9)

which is an Inverse Wishart (IW) distribution with degrees of freedom n and
scale matrix nS, denoted as IW(n,nS) in this study.

Inverse Wishart prior The Inverse Wishart prior is a conjugate prior and is
widely used in practice. The Inverse Wishart prior IW(m,V) has the following
probability density function,

P (Σ|V,m) =
|V|m/2

2mp/2Γp(
m
2 )

|Σ|−
m+p+1

2 exp[−1

2
tr(VΣ−1)]. (10)
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Note that with Jeffreys prior, the posterior distribution of the population covari-
ance matrix is an Inverse Wishart distribution with the degrees of freedom being
the sample size n and the scale matrix being the sums of squares nS. Comparing
the form in Eqn (10) to that in Eqn (9), we notice the use of an Inverse Wishart
prior IW(m, V) in an analysis is theoretically equivalent to provide m additional
observations with sums of squares V to the estimation of Σ.

With the Inverse Wishart prior IW(m,V), the posterior distribution is also
an Inverse Wishart distribution with the following kernel,

P (Σ|S) ∝ |Σ|−n/2 exp[
1

2
tr(nSΣ−1)]|Σ|−

m+p+1
2 exp[−1

2
tr(VΣ−1)]

= |Σ|−
n+m+p+1

2 exp(−1

2
tr[(nS+V)Σ−1)]. (11)

Thus it is the Inverse Wishart distribution IW(n+m,nS+V) with the degrees
of freedom n+m and the scale matrix nS+V. Note that if we set V = mS, then
the prior represents 100m

n % of information of the data. Therefore, the amount of
information in the prior can be easily quantified.

The posterior mean and mode are nS+V
n+m−p−1 and nS+V

n+m+p+1 , respectively. For a
fixed m, both the posterior mean and mode as well as the sample covariance ma-
trix S will converge to the population covariance matrix Σ asymptotically. Thus,
when the sample size is large, all three estimates S, nS+V

n+m−p−1 , and
nS+V

n+m+p+1 are
similar. For a given n, a larger m indicates that the prior influences the posterior
distribution more.

In the existing Bayesian SEMs using an Inverse Wishart prior, the scale
matrix V is often chosen to be an identical matrix I. However, we could change
the Inverse Wishart prior to an informative prior by using a specific scale matrix
V. For instance, if we know the estimated sums of squares from another study,
we can use it as our scale matrix in the Inverse Wishart prior. In addition, if
one does not want to use prior information, one can set m = 0 and V = 0.
Note that the density function is not proper any more but the prior becomes
the Jeffreys prior. In this sense, the Jefferys prior can be regarded as a special
case of Inverse Wishart prior. Hence, in the rest of the paper, we only focus
on the Inverse Wishart prior. Thus, the posterior distribution of the population
covariance parameter is an inverse-Wishart distribution IW(n+m,nS+V).

3.3 Posterior distribution of θ

With the posterior distribution of Σ, i.e., IW(n + m,nS + V), we can further
get a posterior distribution of model parameters. Let g be a function that maps
a Σ to a θΣ . Among the so many possible candidates, we define g(Σ) as the θ
that minimizes the distance between Σ(θ) and Σ,

θΣ = g(Σ) = argmin(log |Σ(θ)|+ tr(ΣΣ−1(θ))− log |Σ|) (12)

This step is analogous to the maximum likelihood (ML) estimation of SEM
models, in which the sample covariance matrix S is used as the estimate of
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the population covariance matrix Σ. However, in Bayesian SEM, the population
covariance matrix Σ is a random variable and can take values from the space
ΩΣ . We therefore obtain a θΣ for a covariance matrix from the space ΩΣ .

By aplplying the mapping function g(·) to the posterior distribution P (Σ|S),
we could get a posterior distribution of θ called P (θ|S). Although we do not
know the exact form of P (θ|S),we could draw samples from it. To do so, we first
drawn B independent samples of Σ denoted by Σ1, Σ2, · · · , ΣB from P (Σ|S).
We then map each of such Σbs to θbs using the function g defined in (12).

θ-mean estimate With B samples θ1,θ2, · · · ,θB obtained using the procedure
described above, an estimate of posterior mean, called θ-mean, is defined as the
average of samples of θ,

θ̂mean =
1

B

B∑
b=1

θb. (13)

In addition to the θ−mean estimate, there are some other parameter esti-
mates of practical interest. Depending on how the estimates of the population
covariance matrix is constructed from its posterior distribution, we can have
different forms of estimates as discussed below.

Σ-mode estimate and Σ-mean estimate In Bayesian inference, the maxi-
mum a posteriori (MAP) estimate is of great interest, because it is the mode of
a posterior distribution. With an Inverse Wishart prior IW(m,V), the posterior
mode of Σ is Σmode=

nS+V
m+n+p+1 . We then find its corresponding θ using Equation

(12). The resulted θ is an estimate for the parameter θ and is called Σ-mode
estimate in this study.

Similarly, we can also get the posterior mean of Σ, Σmean = ns+V
m+n−p−1 and

then finds out its corresponding θ.We will call it the Σ-mean estimate in the
rest of this study. It is interesting to note that when the IW(V = 0,m = p+1),
the Σmean is the same as the sample covariance matrix and Σ−mean estimate
will concide the ML estimates of the model parameters.

Highest posterior density (HPD) credible intervals Besides the point
estimates, the posterior credible intervals can also be formed using the posterior
samples θb, b = 1, . . . B. For each element θ in the vector of parameters θ and
a desired level α between 0 and 1, the 100α% HPD credible interval is denoted
by [Lα, Uα] as the one with smallest width among all the intervals containing α
proportion of samples.

So far, we have explained how to specify priors on the population covariance
parameter, how to obtain posterior samples for model parameters θ. To obtain
posterior statistics, we introduced three point estimates and the HPD credible
intervals. Since the proposed approach specifies prior on the population covari-
ance matrix, we call it “Covariance matrix prior Bayesian SEM (CP-BSEM)” in
contrast to the traditional Bayesian SEM approaches (T-BSEM)
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4 Comparison of CP-BSEM and T-BSEM

The CP-BSEM approach has several distinct features from the T-BSEMmethod.
The first one is the prior specification. While using the CP-BSEM approach, we
specify a prior on the population covariance matrix parameter Σ. The posterior
distributions of model parameters are transformed from the posterior distribu-
tion of the population covariance matrix P (Σ|data). We can notice that the
CP-BSEM approach reduces the burden of specifying priors and posterior diag-
nostics.

However, an essential question that arises is whether the CP-BSEM approach
can lead to comparable posterior inference on θ as to a T-BSEM approach. While
using a T-BSEM approach, an implict assumption is that the model is a correct
model and there is no model misfit. In the following, we will show that the
CP-BSEM is coupling to a T-BSEM approach with a certain prior specification
when the model is a true model.

Let PIW(Σ) be the density function of the Inverse Wishart prior IW(m,V)
for the population covariance matrix parameter Σ and g(·) be a function that
maps a Σ to a θ as defined by Equation (12). When applying the g function to
the entire space of Σ, i.e., ΩΣ ,with the probability density function PIW(Σ), we
could get a probability distribution function on θ. Specifically,

g :
(
ΩΣ , PIW

)
→

(
Ωθ, PIW(Σ(θ))

)
where PIW(Σ(θ)) is the probability distribution on model parameters θ that is
transformed from PIW by the mappling function g(·).

Let P (Σ|data) be the posterior distribution and it is still an Inverse Wishart
distribution IW(m + n, nS + V). We can transform it to a distribution on θ,
named as PΣ(θ|data), using the mapping function g(·),

PΣ(θ|data) = P (g−1(θ)|data)
= P (Σ|data)
= P (data|g(Σ))PIW(Σ)

= P (data|Σ(θ))PIW(Σ(θ))

(14)

where P (data|Σ(θ)) is the likehood for given θ and PIW(Σ(θ)) is a prior dis-
tribution on model parameter θ. Therefore, the distribution on θ transformed
from the posterior distribution of Σ is actually a posterior distribution of θ with
the given prior distribution PIW(Σ(θ)) using the T-BSEM approach.

As discussed above, the proposed CP-BSEM approach can be coupled to
a T-BSEM, therefore it can achieve comparable inference with the T-BSEM
approach. Moreover, it eases up the burden of prior specification and has better
interpretation of the prior information, and it does not need posterior diagnosis.

5 Empirical Study

To show how to use the newly proposed CP-BSEM approach, we analyzed the
data from Holzinger and Swineford (1939), which includes measures on 19 tests
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from 145 eighth grade students in the Grant-White School and 156 students from
the Pasteur School. As an illustration, we focus on the analysis of the data from
the Grant-White School. The 19 tests were intended to measure four attributes:
spatial ability, verbal ability, process speed, and working memory. Therefore, we
fitted a four-factor confirmatory factor model shown in Figure 1. In identifying
the model, we fixed one factor loading for each factor to be 1 and freely estimated
the factor variances and covariances as shown in the path diagram.

Figure 1. Path diagram of the CFA model fitted to the Holzinger data. The factor
loading of each factor to its first indicator is fixed to be 1 and the factor variances are
freely estimated.

For the purpose of illustration, we analyzed the data using two different
priors. The first one is a noninformative prior IW(19, I). The second prior was an
informative prior formed based on the data from the Pasteur school. With the
noninformative prior, the posterior distribution for the population covariance
matrix is IW(145 + 19, 145SGW + I), with SGW being the sample covariance
matrix of the data from Grant-White School.

The informative prior distribution was specified as the posterior distribution
obtained based on the data from the Pasteur School with 156 participants. In
the analysis of the Pasterur School data, suppose the same noninformative prior
IW(19, I) was used, which led to the posterior distribution IW(156+19,156SP +
I), with SP being the sample covariance matrix of the data from Pasteur School.
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Using it as the prior distribution for the Grant-White school data analysis, we
redid the analysis of the Grant-White School data and the resulting posterior
distribution is IW(145 + 156 + 19, 145SGW + 156SP + I). Note that in practical
data analysis, the raw data to form the prior are often not available. Therefore,
the current way for incorporating prior information is even more practical to
substantive researchers.

The model parameter estimates using the two priors based on Σ-mean to-
gether with the 95% HPD credible intervals and the width of the intervals are
summarized in Table 1. Note that the unique factor variances are not reported to
save space. Clearly, all the 95% HPD intervals excluded 0 and, therefore, one may
conclude all the parameters were statistically significant from 0 in the frequentist
hypothesis testing sense. The parameter estimates obtained using noninforma-
tive and informative priors were quite different. In addition, the HPD intervals
using the informative prior were narrower consistently than those from using the
noninformative prior. According to our simulation, when the IW(19, I) was used,
the estimates should be close to MLE. Therefore, the difference was because of
the use of prior information in the Bayesian estimation process. The choice be-
tween the two sets of estimates depends on whether we wanted to use the prior
information or not. If the inference was supposed to be based on only the data
from the Grant-White School, the noninformative prior should be used. If the
inference was designed to also combine the information from the Pasteur School,
the informative prior should be adopted. This empirical example illustrated that
it is possible either to use or not to use prior information.

6 Simulation Study

The purpose of the simulation study are twofold. First, we would like to evaluate
the performance of the CP-BSEM approach. We will compare the three types
of point estimates in terms of how well they could recover the true parameter
values. We will also evaluate the HPD credible intervals to see whether it has
good coverage rates. Second, we will compare the CP-BSEM approach with two
other competing approaches: The ML approach and the T-BSEM approach.
Therefore, we will also report the results of the ML method and the C-BSEM
approach with default settings, which are implemented in R packages lavaan
(Rosseel, Oberski, Byrnes, Vanbrabant, & Savalei, 2013) and blavaan (Merkle &
Rosseel, 2015).

6.1 Simulation design

The simulation study is designed based on the 4-factor confirmatory factor model
with 19 normally distributed indicators as used in the empirical data analysis
presented later. Let Z be the normally distributed random vectors of 19 variables
with mean 0 and the four latent factors be f = (f1, f2, f3, f4)

′. The factor model
is

Z = Λf + ε (15)
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where Λ is a 19 by 4 factor loading matrix, and ε = (ε1, ε2, · · · , ε19)′ is the
unique factor score. The factor loading matrix has the following form,

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


with λ1 = (1, .693, .785, .978)′ , λ2 = (1, 1.015, 1.036, 0.861, 1.043)′, λ3 = (1, 1.069,
1.075, 1.149)′, λ4 = (1, 1.004, 1.156, 1.218, 1.259, 0.936)′. The covariance matrix
of the latent factors is

Φ =


.473 .328 .260 .224
.328 .646 .243 .205
.260 .243 .420 .201
.224 .205 .201 .264

 ,

and the uniqueness factor covariance matrixΨ is a diagonal matrix with diagonal
elements (0.517, 0.763, 0.699, 0.537, 0.344, 0.325, 0.297, 0.511, 0.287, 0.570, 0.511,
0.505, 0.436, 0.726, 0.724, 0.637, 0.598, 0.572, 0.759). All parameter values are
chosen to reflect the parameter estimates in the empirical data analysis.

Based on the population model, we generate 1000 data sets for each of the
following sample sizes: 100, 150, 250, 300 and 500. Then, we fit the model to the
generated data using ML, two-stage Bayesian, and traditional Bayesian meth-
ods. In the two-stage Bayesian method, the “noninformative” prior IW(19, I)
is used since we want to evaluate the parameter bias and estimation efficiency.
In addition, 10000 covariance matrices are sampled independently from the pos-
terior distribution of Σ to form the credible intervals. For traditional Bayesian
estimates, the R package blavaan is used and the following default priors are
adopted in the estimation:

factor loadings λj,k
iid∼ N(0, 104)

factor covariance matrix Φ ∼ IW(5, I)

unique factor variances σ2
k

iid∼ IG(1, 0.5)

where λj,k represents the factor loading from the jth factor to the kth indicator;
σ2
k is the unique factor variance of the kth indicator. Finally, MLE is obtained

using the R package lavaan.

6.2 Evaluation criteria

To evaluate the performance of each method, we report the relative bias, coverage
rates of the HPD credible intervals/confidence intervals, and mean squared errors
for the model parameters.
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Relative bias Let θ represent a parameter or its true value. The relative bias
is defined as the percent ratio of the discrepancy between the estimate and the
true value with respect to the true value of a parameter:

relative biasθ =

{
θ̄−θ
|θ| × 100% if θ ̸= 0

(θ̄ − θ)× 100% otherwise
, (16)

where θ̄ is the average of the estimates in R, which is 1000 successful replications
in our simulation,

θ̄ =
1

R

R∑
r=1

θ̂r.

with θ̂r denoting the parameter estimate in the rth replication.

Mean squared error (MSE) The mean squared errors (MSE) are calculated
as,

MSEθ =
1

R

R∑
r=1

(θ̂r − θ)2

=
1

R

R∑
r=1

(θ̂r − θ̄)2 +
1

R

R∑
r=1

(θ̄ − θ)2

(17)

which is the sum of the variance and squared biases of the parameter estimates.

Coverage rate (CR) The coverage rate of the 95% HPD credible interval
for Bayesian and confidence interval for MLE represents the proportion of the
intervals covering the true parameter value. Mathematically, if [Lr

0.95, U
r
0.95] is

the interval in the rth replication, the coverage rate (CR) is calculated as

CRθ =
1

R

R∑
r=1

I(θ ∈ [Lr
0.95, U

r
0.95]).

where I(·) is the index function with value 1 if the interval covers the true
value and 0, otherwise. A CR around 0.95 implies that the defined 95% interval
performs well.

6.3 Simulation results

We now present the results on relative biases, coverage rates, and mean squared
errors from our simulation. There are 44 parameters grouped into three types –
15 factor loadings, 19 unique factor variances, and 10 factor covariances. Since
we found that the influence of estimation methods on each type of parameters
is similar, we only report the average relative biases, coverage rates, and mean
squared errors for the three types of parameters to save space. For relative bias,
we calculate the average based on the absolute values because bias can be positive
or negative.
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Average absolute relative bias The average absolute relative biases for factor
loadings, factor covariance matrix and unique factor variances are provided in
Table 2. For the two-stage Bayesian, the three types of parameter estimates
are presented. For the traditional Bayesian, the posterior mean and median are
obtained using blavaan.

Overall, the bias decreased as the sample size increased for parameter esti-
mates. For the factor loadings, the bias for Σ-mean estimates was small even
when the sample size was 100 and was almost the same as the ML estimates.
θ-mean had larger bias than Σ-mean estimates but overall was better than the
traditional method. Although Σ-mode estimates had small bias for factor load-
ings but had large bias for factor covariance and unique factor variances. This
indicates that in using the two-stage Bayesian for parameter estimates, either
Σ-mean or θ-mean estimates should be preferred.

Comparing the two-stage method with the traditional Bayesian method, it
was clear that the two-stage method provided less biased parameter estimates
using the chosen prior. This is because we had better control of the prior infor-
mation in the two-stage method.

Table 2. Absolute relative biases for factor loadings, factor covariances, and unique
factor variances

CP-BSEM T-BSEM

N ML Σ-mode Σ-mean θ-mean Mean Median

Factor loading
100 2.421 2.419 2.419 8.300 8.691 6.87
150 1.357 1.357 1.357 3.329 6.246 4.969
200 0.926 0.926 0.926 2.306 4.941 3.949
250 0.958 0.958 0.958 1.992 4.295 3.483
300 0.748 0.748 0.748 1.579 3.626 2.940
500 0.461 0.461 0.461 0.924 2.354 1.933

Factor covariance
100 1.263 28.694 0.733 1.853 9.706 12.613
150 1.101 20.181 1.366 1.885 6.37 8.393
200 0.99 16.882 0.690 1.142 6.228 7.752
250 0.698 13.764 0.598 0.891 4.969 6.199
300 0.441 11.575 0.435 0.712 4.086 5.118
500 0.342 7.115 0.403 0.535 2.502 3.124

Unique factor variance
100 2.352 28.294 0.915 1.069 2.292 1.242
150 1.573 20.813 0.607 0.858 1.535 0.968
200 1.165 16.447 0.542 0.621 1.199 0.774
250 0.993 13.655 0.329 0.439 0.921 0.57
300 0.703 11.53 0.378 0.321 0.896 0.493
500 0.49 7.315 0.228 0.258 0.503 0.364

Note. A bold numbers means an average absolute relative bias larger than 10% and an
Italic number represents an average absolute relative bias larger than 5% but smaller
than 10%.
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Mean squared error The mean squared errors for the parameters are pro-
vided in Table 3. Similar to the bias, the MSE also decreased as the sample size
increased for all parameters regardless of the estimation methods. The mean
squared errors were mostly comparable with two notable observations. First, the
MSE for MLE and Σ-mean were almost identical. This again suggested the con-
trol of prior information. Second, the MSE from the traditional Bayesian method
was smaller than MLE. This is because the use of the prior information. There-
fore, in terms of both bias and MSE, the two-stage method has better control of
the influence of the prior information.

Table 3. Mean squared errors for factor loadings, factor covariances, and unique factor
variances

MSE×100 CP-BSEM T-BSEM

N ML Σ-mode Σ-mean θ-mean Mean Median

Factor loading
100 5.742 5.737 5.737 20.775 5.271 4.765
150 3.555 3.553 3.553 4.377 3.415 3.147
200 2.466 2.466 2.466 2.792 2.517 2.343
250 2.027 2.027 2.027 2.220 2.078 1.951
300 1.636 1.635 1.635 1.763 1.687 1.592
500 0.941 0.941 0.941 0.979 0.984 0.942

Factor covariance
100 0.953 1.517 0.972 0.970 0.816 0.859
150 0.672 0.940 0.679 0.682 0.593 0.613
200 0.497 0.698 0.500 0.501 0.463 0.477
250 0.388 0.528 0.391 0.392 0.362 0.372
300 0.332 0.426 0.335 0.336 0.313 0.319
500 0.197 0.236 0.198 0.198 0.190 0.194

Unique factor variance
100 0.935 3.061 0.935 0.910 0.924 0.891
150 0.608 1.783 0.608 0.602 0.605 0.590
200 0.459 1.196 0.459 0.453 0.456 0.449
250 0.367 0.874 0.366 0.364 0.365 0.360
300 0.306 0.667 0.307 0.304 0.306 0.303
500 0.179 0.328 0.180 0.179 0.179 0.179

Note .The reported numbers are the average MSEs multiplied by 100.

Coverage rate The coverage rates for model parameters are displayed in Table
4. Overall, the coverage rates were close to the nominal level 0.95 except for the
factor covariances when the traditional Bayesian method was used.

In summary, our two-stage Bayesian method can obtain results similar to
ML method by controlling the prior information. Comparing to the T-BSEM
method, it also offers better control of prior information.
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Table 4. Average coverage rates for factor loadings, factor covariance parameters, and
unique factor variances

N ML CP-BSEM T-BSEM

100 94.29 95.21 94.43
150 94.43 95.03 94.48

Factor loading 200 94.85 95.03 94.54
250 94.61 94.98 94.60
300 94.86 94.90 94.57
500 95.41 95.18 95.01

100 92.70 94.71 90.34
150 93.36 94.47 91.27

Factor covariance 200 93.41 94.33 91.30
250 94.35 95.21 92.68
300 93.82 94.39 92.28
500 94.73 94.93 93.61

100 92.22 94.53 95.30
150 93.31 94.72 95.35

Unique factor variance 200 93.65 94.70 95.35
250 93.87 94.52 94.97
300 94.10 94.67 95.08
500 94.46 94.86 95.18

Note. A bold number represents an average coverage rate smaller than 92.5%.

7 Discussion and Conclusion

In traditional Bayesian SEM, a prior needs to be specified for each individual
or individual set of model parameters. Due to the complexity of SEM models
and the diverse features of different types of model parameters, specifying priors
is not an easy task, especially if one would like to control or utilize prior infor-
mation. To get parameter estimates, MCMC procedures are often used and the
convergence diagnostics of MCMC samples are always required, which is usually
hard for researchers conducting applied researches.

In the present study, an alternative Bayesian procedure, i.e., CP-BSEM, is
proposed to assist researchers conducting Bayesian statistical inference of SEMs.
It has several distinct benefits over the traditional Bayesian procedures. First, the
prior information is only required for the population covariance matrix parameter
Σ. Using the Inverse Wishart prior, we can control the prior information ranging
from noninformative to very informative. The information can be conveniently
controlled by varying its degrees of freedom and scale matrix. For instance, when
both the degrees of freedom and scale matrix are set at 0, it becomes the Jeffreys
prior for covariance matrix analysis with normal data. Increasing the degrees of
freedom and/or using a special scale matrix, we could make the Inverse Wishart
prior informative. The amount of information can also be directly compared to
the data at hand.

Unlike the traditional Bayesian SEM, the CP-BSEM procedure does not re-
quire convergence diagnostics. With the use of the Inverse Wishart prior, the
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posterior of the population covariance matrix still follows an Inverse Wishart
distribution. Therefore, independently and identically distributed samples of co-
variance matrix can be drawn from the posterior distribution directly. The corre-
sponding samples of parameter estimates are thus independently and identically
distributed, too. Since the samples are identically distributed, convergence diag-
nostics are not needed any more. The independence among the samples enables
us to use relatively fewer samples to get reliable inferences than the traditional
Bayesian SEM.

Results from our simulation study show that the CP-BSEM procedure works
well in estimating structural equation models in general. Among the three point
estimates, the Σ-mean estimates, obtained by fitting the SEM model to the
posterior mean of the covariance matrix, is recommended. They have ignoble
relative biases (< 5%) with results close to MLE. In addition, the credible inter-
val has good coverage rates. We also notice that the traditional Bayesian SEM
had slightly smaller MSEs than our two-stage procedure and MLE. This is due
to more prior information involved in their prior distributions. By changing the
prior distribution, traditional Bayesian SEM can also reduce the influence of
prior distributions. However, as we have pointed out, controlling the prior in-
formation in traditional Bayesian analysis can be difficult, especially for applied
researchers.

Compared to the traditional Bayesian method, the performance of the CP-
BSEM procedure is less affected by the model complexity. Because the prior
information is put on the population covariance matrix, it is independent to the
model structure. Therefore, we could extend our results to a more general SEM
model.

The CP-BSEM procedure is flexible to control prior information. In our em-
pirical example, we demonstrated the use of informative prior, which was the
posterior distribution of the covariance matrix from another study, also an In-
verse Wishart distribution. Hence, the CP-BSEM approach can be used to con-
duct meta-analysis by combining several related studies in the SEM framework.
Instead of combing model parameter estimates of every single study, one could
combine the covariance matrices of different studies, in which the posterior dis-
tribution of the previous study will work as the prior distribution in the new
study. One immediate benefit is that the inference will focus on the overall co-
variance matrix, but not the individual model parameters in each study. As a
result, it has special advantages in combining studies without a common model
structure.

The CP-BSEM approach is closely related to the parametric bootstrap tech-
nique for SEM. Covariance matrices are drawn from its posterior distribution
repeatedly, and samples of parameter estimates are obtained by minimizing the
descrepancy between the model implied covariance matrix to the sampled co-
variance matrices. The HPD credible intervals formed based on the samples of
model parameters are, therefore, have the similar meaning to the bootstrap con-
fidence intervals. However, in bootstrap, no prior information is allowed but the
CP-BSEM approach can easily utilize prior information. Therefore, it could be
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particularly useful, when the original data set has a small sample size and the
actual model parameters estimates are hard to obtain.

Even with the advantages, we want to note that the CP-BSEM approach can
still not replace the traditional Bayesian SEM. For example, currently, missing
data and non-normal data cannot be handled yet. Therefore, to increase the
impact of the CP-BSEM and to help the adoption of the Bayesian methods,
the CP-BSEM approach can be expanded in the following aspects. First, the
present version of CP-BSEM procedure focuses on SEMs without mean struc-
tures. Extending the method to include the mean structure can make it possible
to conduct growth curve analysis and multiple group analysis. Second, how to
handle missing data in the CP-BSEM procedure should be investigated. Third,
ways should be evaluated to handle non-normal data in the CP-BSEM proce-
dure. Fourth, in traditional Bayesian SEM, deviance information criterion and
posterior predictive p-values have been used for model fit evaluation. They can
also be incorporated in the CP-BSEM approach.
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Abstract. Bayesian statistics have been widely used given the develop-
ment of Markov chain Monte Carlo sampling techniques and the growth
of computational power. A major challenge of Bayesian methods that
has not yet been fully addressed is how we can appropriately evaluate
the convergence of the random samples to the target posterior distribu-
tions. In this paper, we focus on Gelman and Rubin’s diagnostic (PSRF),
Brooks and Gleman’s diagnostic (MPSRF), and Geweke’s diagnostics,
and compare the Type I error rate and Type II error rate of seven con-
vergence criteria: MPSRF > 1.1, any upper bound of PSRF is larger
than 1.1, more than 5% of the upper bounds of PSRFs are larger than
1.1, any PSRF is larger than 1.1, more than 5% of PSRFs are larger
than 1.1, any Geweke test statistic is larger than 1.96 or smaller than
-1.96, and more than 5% of Geweke test statistics are larger than 1.96
or smaller than -1.96. Based on the simulation results, we recommend
the upper bound of PSRF if we only can choose one diagnostic. When
the number of estimated parameters is large, between the diagnostic per
parameter (i.e., PSRF) or the multivariate diagnostic (i.e., MPSRF), we
recommend the upper bound of PSRF over MPSRF. Additionally, we
do not suggest claiming convergence at the analysis level while allow-
ing a small proportion of the parameters to have significant convergence
diagnosis results.

Keywords: Convergence diagnostics · Bayesian analysis · Gelman-Rubin
diagnostic · Geweke diagnostic

In recent decades, Bayesian statistics have been widely used given the de-
velopment of Markov chain Monte Carlo (MCMC) sampling techniques and the
growth of computational power (e.g., Van de Schoot et al., 2017). They have been
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used in cognitive psychology (e.g., Lee, 2008), developmental psychology (e.g.,
Van de Schoot et al., 2014; Walker et al., 2007), social psychology (e.g., Mars-
man et al., 2017), and many other areas. In the Bayesian framework, parameters
are treated as random variables. Thus, we need to specify prior distributions
for unknown parameters and obtain their posterior distributions. A major chal-
lenge of Bayesian methods that has not yet been fully addressed is how we can
appropriately evaluate the convergence of the random samples to the target pos-
terior distributions and the convergence of posterior means to the target mean.
With nonconverged results, researchers may obtain severely biased parameter es-
timates and misleading statistical inferences. Therefore, there is a critical need
to develop keen diagnostic methods for appropriately assessing convergence.

In the Bayesian framework, an MCMC algorithm converges when it samples
thoroughly and stably from a density. More specifically, a converged Markov
chain should have two properties: stationarity and mixing. To claim convergence,
Markov chains need to move around in the posterior density in an appropriate
manner and to mix well throughout the support of the density. In other words,
when there are multiple Markov chains supporting the same estimation, they
should trace out a common distribution (Gelman et al., 2014).

Practically, the convergence of MCMC algorithms can be assessed by visual
inspection (i.e., trace plots) as well as quantitative evaluation. Various quanti-
tative methods have been proposed for assessing convergence. To name a few,
there are Garren and Smith (2000), Gelman and Rubin (1992), Geweke (1992),
Heidelberger and Welch (1983), Johnson (1996), Liu, Liu, and Rubin (1992), and
Raftery and Lewis (1992). Among them, the Gelman and Rubin’s method and
Geweke ’s method currently are the most commonly used diagnostics and are
implemented in popular software and R packages. For example, Mplus (Muthén
and Muthén, 2017), CODA (Plummer et al., 2015), and BUGS (Spiegelhalter
et al., 1996) can implement the Gelman and Rubin’s diagnostic, and CODA can
implement the Geweke ’s diagnostic. The Gelman and Rubin’s diagnostic re-
quires multiple MCMC chains with different starting values, and potential scale
reduction factor (PSRF) is used for assessing the convergence of chains for indi-
vidual parameters. Brooks and Gelman (1998) further generalized the univariate
PSRF to a multivariate scale reduction factor (MPSRF), which tests all the pa-
rameters’ convergences as a group. The Geweke’s diagnostic only requires one
MCMC chain, therefore it is generally less time-consuming in calculation.

Several papers (Brooks and Roberts, 1998; Cowles and Carlin, 1996; El Ad-
louni et al., 2006) reviewed and/or compared different convergence diagnostics
with hypothetical examples. The common conclusion from these papers is that
no method can perform well in all cases, therefore they recommended a joint use
of all diagnostics. The recommendation is constructive in ensuring convergence,
but it may be overly conservative and infeasible in practice. First, there are more
than 10 convergence diagnostics, not to mention that those diagnostics require
the analyses in multiple software. Researchers rarely perform all diagnostics in
one real data analysis. Second, the statistical performance (i.e., Type I error rate
which is the probability of rejecting a true null hypothesis that assumes conver-
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gence, and Type II error rate which is the probability of not rejecting a false
null hypothesis that assumes convergence) of the Gelman and Rubin’s and the
Geweke’s methods has not yet been evaluated in simulation studies. Addition-
ally, the performances of Gelman and Rubin’s and Geweke’s diagnostics were
examined in relatively complex models, such as bimodal mixture of trivariate
normals (Cowles and Carlin, 1996) and shifting level model (El Adlouni et al.,
2006), in which the analytical forms were unknown or hard to access. As a conse-
quence, the performance of these diagnostics when convergence is ensured (e.g.,
Type I error rates) is still unknown.

Besides the challenge of having too many convergence diagnostics, another
challenge is that there are usually multiple parameters in one analysis. If we
assess the convergence of Markov chains of each parameter, we face a multiple
testing problem for the entire analysis. If no correction is applied and we claim
that the convergence for the entire analysis is achieved when the convergence
assessment for every parameter is passed, the Type I error rate at analysis level
(i.e., analysis-wise Type I error rate) can be substantially inflated. For example,
suppose that there are 20 independent parameters and we use the Geweke’s di-
agnostic where the Type I error rate per parameter is supposed to be 5%. The
analysis-wise Type I error rate is then 1 − 0.9520 = 0.642, which is far above
the intended level (i.e., 0.05) and implies that it is too easy to obtain a non-
convergence conclusion using the Geweke’s diagnostic. Applying conventional
multiple testing corrections such as the Bonferroni correction might help reduce
the inflated Type I error rates. However, parameters usually are not indepen-
dent, and as illustrated later, the cutoff value for the Geweke’s diagnostic is
approximated, therefore the actual performance of multiple testing corrections
remains an open question. In terms of the Gelman and Rubin’s diagnostic, its
cutoff comes from researchers’ recommendation. The Type I error rate of the
Gelman and Rubin’s method at the parameter level or the analysis level in the
literature remains largely unknown.

Given the above-mentioned unanswered questions, we focus on Gelman and
Rubin’s diagnostic, Brooks and Gleman’s multivariate diagnostic, and Geweke’s
diagnostic, and aim to answer the following three questions in this paper:

(1) If we only choose one diagnostic, which one should we adopt? Even if
no method performs well in all conditions, we would like to select the relatively
better one. Type I error rate and Type II error rate are the two frequently used
criteria for evaluating the performance of an analytic method. We therefore
investigate this question based on these two criteria.

(2) In high dimension cases (i.e., the number of parameters is large), should
we rely on the diagnostic at the parameter level (i.e., PSRF) or at the analysis
level (i.e., MPSRF)? Complex models with large numbers of parameters are
not uncommon in real psychological studies. For example, structural equation
modeling and latent space modeling can easily estimate 20, 50, or even more
than 100 parameters.
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(3) If we rely on the diagnostic at the parameter level, should we allow a
small proportion of the parameters (e.g., 5%) to have significant convergence
test results but still claim convergence at the analysis level?

The outline of this paper is as follows. In the “Convergence Diagnostics” sec-
tion, an overview of Gelman and Rubin’s diagnostic, Brooks and Gleman’s mul-
tivariate diagnostic, and Geweke’s diagnostic is given. In the “Simulation Study”
section, we evaluate and compare the performance of seven convergence crite-
ria from the three diagnostics in conditions with converged and nonconverged
MCMC chains. In this way, the Type I error rates (when converged Markov
chains are used) and the Type II error rates (when nonconverged Markov chains
are used) of the seven criteria are evaluated. We end the paper with some con-
cluding remarks in the “Conclusion” section.

1 Convergence Diagnostics

1.1 Gelman and Rubin’s Diagnostic

Gelman and Rubin (1992) proposed a general approach that utilizes multi-
ple Markov chains with different starting values to monitor the convergence
of MCMC samples. This method compares variance within and across chains,
which is similar to Analysis of Variance (ANOVA). Let θij denote the ith itera-
tion of parameter θ from the jth chain. First, we estimate the averaged within
chain variance by

W =
1

m (n− 1)

[

j= 1]m
∑ [

i= 1]n
∑(

θij − θ̄j
)2

,

where n is the number of iterations within each chain, m is the number of

chains, and θ̄j = 1
n

[

i= 1]n
∑

θij is the within chain mean. Second, we estimate
the between chain variance as

B =
n

m− 1

[

j= 1]m
∑(

θ̄j − θ̄
)2

.

where θ̄ = 1
m

[

j= 1]m
∑

θ̄j is the grand mean over all iterations and all chains.

Then, we compute the pooled variance estimate (V̂ ), which is constructed as a
weighted average of the between (B) and within chain variance estimates (W ),

V̂ =
(n− 1)

n
W +

(
1 +

1

m

)
B

n
. (1)

The ratio of the pooled and within-chain estimators is

R̂ =
V̂

W
.
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If the m chains mix well and stay stationary, the pooled variance estimate and
within-chain variance estimate should be close to each other, and R̂ should be
close to 1.

Since there exists a sampling error in the variance estimate V̂ , one can adjust
R̂ by multiplying R̂ with a correction term. Brooks and Gelman (1998) calculated
the correction term as d/ (d− 2), where d is the estimated degrees of freedom
for a student t distribution approximation to the sample distribution of V̂ /V .
The corrected ratio is

R̂c =
d

d− 2

V̂

W
.

Gelman and Rubin (1992) named the corrected ratio as potential scale reduction
factor (PSRF). When the PSRF is large, Gelman and Rubin (1992) suggested
that one can reduce the V̂ or increase W by running longer Markov chains
to better fully explore the target distribution. From the algorithm, it is clear
that Gelman and Rubin’s diagnostic focuses on testing mixing rather than not
stationary.

We need a criterion to define how close PSRF to 1 is acceptable. Gelman
and Rubin (1992) and Cowles and Carlin (1996) looked at the 97.5% quantiles
(i.e., upper bound) of PSRF. In practice, researchers usually treat the upper
bound of PSRF less than 1.1 as an indicator of convergence. Gelman and Rubin
(1992) found that R̂ is overestimated, therefore either PSRF or the upper bound
of PSRF should be conservative. To the best of our knowledge, there is no
mathematical investigation about whether PSRF or the upper bound of PSRF
should be used and whether the cutoff should be 1.1. Using the upper bound
of PSRF and a cutoff of 1.1 are practical guidelines established by researchers’
experience. Some software provides the upper bound of PSRF and PSRF (e.g.,
Mplus, Muthén and Muthén, 2017; CODA, (Plummer et al., 2015); and BUGS,
Spiegelhalter et al., 1996) and some software only provide PSRF (e.g., Stan,
Carpenter et al., 2017).

There are three major criticisms of the Gelman and Rubin’s diagnostic. First,
the test relies on over-dispersed starting values. If the starting values are too
close to each other in the target distribution, the multiple chains may perform
similarly and mix well even when the model is impossible to converge (i.e.,
the model is not identified). Second, the Gelman and Rubin’s diagnostic only
considers the first two moments, mean and variance. When the posterior distri-
bution is non-normal, the higher order moments (e.g., skewness and kurtosis)
also provide information in summarizing the distribution, but these moments
are ignored in the Gelman and Rubin’s diagnostic. Third, Gelman and Rubin
(1992) and Brooks and Gelman (1998) emphasized that they do not suggest only
monitoring the parameters of interest, but suggested simultaneously monitoring
the convergence of all the parameters in a model. When the number of param-
eters is large, it is more challenging for all parameters to pass the PSRF cutoff
simultaneously. It is also difficult to interpret the results when some parameters
converge but some do not.
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1.2 Brooks and Gleman’s Multivariate Diagnostic

Brooks and Gelman (1998) generalized the Gelman and Rubin’s diagnostic to
consider multiple parameters simultaneously. We denote θij as a vector of pa-
rameters in the ith iteration of from the jth chain. The within chain and between
chain variances of all parameters are quantified by a variance-covariance matrix.
More specifically, the within chain variance-covariance matrix is

W =
1

m (n− 1)

[

j= 1]m
∑ [

i= 1]n
∑(

θij − θ̄j
) (

θij − θ̄j
)′
, (2)

where θ̄j is the mean of vectors within the jth chain. The between chain variance-
covariance matrix is calculated as

B =
n

m− 1

[

j= 1]m
∑(

θ̄j − θ̄
) (

θ̄j − θ̄
)′
.

where θ̄ is the grand mean vector. Similar to the univariate case, the pooled
variance-covariance matrix V̂ is

V̂ =
(n− 1)

n
W +

(
1 +

1

m

)
B

n
.

The distance between V̂ and W is quantified as

R̂p =
(n− 1)

n
+

(
1 +

1

m

)
λ1,

where λ1 is the largest eigenvalue of W−1B/n. Brooks and Gelman (1998)
called R̂p the multivariate PSRF (or MPSRF). MPSRF should approach 1 when
convergence is achieved. Brooks and Gelman (1998) proved that MPSRF was an
upper bound of the largest PSRF of all parameters.

The primary advantage of Brooks and Gleman’s multivariate diagnostic is
that MPSRF summarizes the PSRF sequences as a single value therefore it
is easier to interpret than PSRF. Additionally, it is more computationally effi-
cient than the computing all the PSRF sequences. However, Brooks and Gelman
(1998) suggested reporting both MPSRF and PSRFs for all parameters, which
largely diminishes the advantages of the multivariate diagnostic. Additionally,
unlike PSRF, consensus has not yet been reached on the appropriate cut-offs
for MPSRF. It is also unclear how the upper bound of MPSRF can be analyti-
cally calculated. To the best of our knowledge, no statistical software currently
provides the estimates of the upper bound. As a consequence, in practice, it is
difficult for researchers to conclude convergence using the multivariate approach,
given that there is no clear guideline.

1.3 Geweke’s Diagnostic

MCMC processes are special cases of stationary time series. Hence, based on
the spectral density for time series, Geweke (1992) proposed a spectral density
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convergence diagnostic. The idea of Geweke’s diagnostic is that in a convergent
chain, the measures of two subsequences should be the equal. Assume there are
two subsequences for one parameter, {θA} and {θB}. The Geweke’s statistic is a
Z-score: the difference between the two sample means from the two subsequences
divided by its estimated standard error. Geweke (1992) proposed that when
the chain is stationary, the means of two subsequences are equal and Geweke’s
statistic has an asymptotically standard normal distribution,

Z =
θ̄A − θ̄B√

1
nA

ŜA + 1
nB

ŜB

d→ N(0, 1)

where θ̄A and θ̄B are the means of the two subsequences, ŜA and ŜB are the
variances of the two subsequences, and nA and nB are the numbers of iterations
of the two subsequences. The null hypothesis of equal location which indicates
convergence is rejected when Z is large (i.e., |Z| > 1.96). From the algorithm,
we can see that the Geweke’s diagnostic focuses on testing stationary rather
than mixing. One assumption underlying Geweke’s diagnostic is that the two
subsequences are asymptotically independent. Hence, Geweke (1992) suggested
taking the first 10% and the last 50%. Brooks and Gelman (1998) stated that
the choice of two subsequences was arbitrary, and no general guidelines were
available. Same as PSRF, the Geweke’s diagnostic is for each parameter, and
there is no multivariate version of Geweke’s diagnostic. Hence, with Geweke’s
diagnostic, it is challenging to ensure all parameters converge and it is difficult
to interpret the results when only part of the parameters converge.

2 Simulation Study

To answer the three questions raised in the introduction section, we conducted
five simulation studies to explore the performances of Gelman and Rubin’s di-
agnostic (PSRF), Brooks and Gleman’s Multivariate diagnostic (MPSRF), and
Geweke’s diagnostic when (1) convergence should not be an issue (the null hy-
pothesis is true) and (2) the chains should not converge (the null hypothesis
is false). In the first condition, to ensure that the null hypothesis was true,
we drew parameters from their analytically derived marginal posterior distribu-
tions to ensure convergence. In this way, convergence could be guaranteed. More
specifically, a regression model and a multivariate normal model were considered
and the Type I error rates of the studied diagnostic methods were evaluated. In
the second condition, to ensure that the null hypothesis was false and the gen-
erated Markov chains would not converge, we used unidentified models, given
that unidentified models were not estimable and estimation algorithms to these
models generally would not converge. We considered a factor analysis model
and investigated Type II error rates in this condition. The simulation code is
available at https://github.com/hduquant/Convergence-Diagnostics.git.

We considered seven criteria in checking convergence based on the three
diagnostics: (1) whether MPSRF was larger than 1.1 (MPSRF > 1.1), (2)

https://github.com/hduquant/Convergence-Diagnostics.git
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whether any upper bound of PSRF was larger than 1.1 (PSRFupper > 1.1),
(3) whether more than 5% of all parameters’ the upper bounds of PSRFs were
larger than 1.1 (PSRFupper,5% > 1.1), (4) whether any PSRF was larger than
1.1 (PSRF > 1.1), (5) whether more than 5% of all parameters’ PSRFs were
larger than 1.1 (PSRF5% > 1.1), (6) whether any Geweke test statistic was
larger than 1.96 or smaller than -1.96 (|Geweke| > 1.96), (7) whether more
than 5% of Geweke test statistics were larger than 1.96 or smaller than -1.96
(|Geweke|5% > 1.96). If the answer was yes, we concluded that the MCMC
chains failed to converge. We used 1.1 as the cutoff for MPSRF because there
was no specific guideline in the literature. To mimic the cutoff for the upper
bound of PSRF, we adopted 1.1.

We considered PSRFupper,5% > 1.1, PSRF5% > 1.1, and |Geweke|5% > 1.96
because when there are a large amount of parameters to be estimated, we
may increase our tolerance for “significant” results per analysis. Specifically,
we claimed nonconvergence at the analysis level if more than 5% of the con-
vergence assessments based on the PSRFs, the upper bounds of PSRFs, or the
Geweke’s diagnostic were found to yield “significant” results (i.e., PSRF5% >
1.1, PSRFupper,5% > 1.1, and |Geweke|5% > 1.96). For PSRFupper > 1.1,
PSRF > 1.1, and |Geweke| > 1.96, we concluded non-convergence as any upper
bound of PSRF, any PSRF, or any Geweke’s value was above its corresponding
cutoff.

An ideal diagnostic method was expected to yield a rejection rate of 5%
across replications when the null hypothesis was true. When the null hypothe-
sis was false, the ideal diagnostic method was expected to correctly reject the
null hypothesis as frequently as possible. That is, the Type II error rates were
expected to be as small as possible. We used two MCMC chains with different
starting values to calculate PSRF and MPSRF. Based on one of the chains, we
calculated Geweke’s diagnostic values.

2.1 Type I Error Rates: Regression

We considered a multiple regression model with N individuals and p predictors,

y = Xβ + e,

where e ∼ N
(
0, Iσ2

)
and X ∼ N (0, I). In the simulation, σ2 = 0.25. The

population intercept and slopes (β) were all 1. We used the Jeffreys priors for
the residual variance and each regression coefficient,

f(β) ∝ 1,

f(σ2) ∝
(
σ2
)−1

.

Denote β̂ = (X ′X)
−1

X ′y and σ̂2 = 1
N−p−1

(
y −Xβ̂

)′ (
y −Xβ̂

)
. The marginal

posterior distribution of σ2 is an inverse-Gamma distribution,

f(σ2|X,y) = IG

(
N − p− 1

2
,
(N − p− 1) σ̂2

2

)
.
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The marginal posterior distribution of β is a multivariate student-t distribution,

f(β|X,y) = tN−p−1

(
β̂, σ̂2 (X ′X)

−1
)
.

The number of parameters to be estimated was p+2 (p slopes, 1 intercept, and
1 residual variance). We varied the sample size N (N = 100, 200, 500, and 1000)
and the number of predictors p (p = 5, 10, 50, 80, 90, and 100). The conditions
of N were nested within p because N should be larger than p to ensure model
identification. We calculated the seven criteria when the number of iterations (n)
was 100, 500, 103, 3×103, 5×103, 104, 5×104, and 105. We report the proportions
of rejecting the convergence (false rejection rates or empirical Type I Error rates)
across 1000 replications of PSRFupper > 1.1 and PSRFupper,5% > 1.1 in Table
1, the rejection rates of PSRF > 1.1 , PSRF5% > 1.1, and MPSRF > 1.1 in
Table 2, and the rejection rates of |Geweke|5% > 1.96 and |Geweke| > 1.96 in
Table 3. We omit the columns of the number of iterations where all rejection
rates are 0.

We summarized our findings as below and in Table 4. First, more iterations
(i.e., larger n) helped reach convergence conclusions for all seven indices (see
Tables 1-3). The rejection rates (empirical Type I error rates) generally decreased
as the number of iterations increased. When the number of iterations was 100
and the number of predictors was 100, MPSRF even could not be calculated
because W in Equation (2) was not positive definite. The rejection rates from
the five indices based on PSRF and MPSRF went down to 0% instead of 5%
as the number of iterations became larger. It is consistent with the conclusion
from Gelman and Rubin (1992) that using the upper bound of PSRF or PSRF
should be too conservative.

Second, whether allowing the upper bound of PSRF, PSRF, or Geweke’s di-
agnostic to reject convergence by 5% of the parameters (PSRFupper,5% > 1.1,
PSRF5% > 1.1, and |Geweke|5% > 1.96) in each analysis depended on the num-
ber of parameters. When the number of parameters (p) was smaller than 20, it
was impossible to reject 5% of the parameters’ convergences since 20× 5% = 1
and we could not reject < 1 number of parameters. Hence, when p ≤ 20, there
is no need to distinguish PSRFupper,5% > 1.1 vs. PSRFupper > 1.1, PSRF5% >
1.1 vs. PSRF > 1.1, |Geweke|5% > 1.96 vs. |Geweke| > 1.96. In other words,
PSRFupper,5% > 1.1 is equivalent to PSRFupper > 1.1, PSRF5% > 1.1 is equiv-
alent to PSRF > 1.1, |Geweke|5% > 1.96 is equivalent to |Geweke| > 1.96
(see Tables 1-3). When p ≥ 50, as expected, allowing 5% significant results
per dataset had lower rejection rates than not allowing any significant results
per dataset. But this difference only appeared when the number of iterations
was small. When the number of iterations was 1000, both the rejection rates
from PSRFupper,5% > 1.1 and PSRFupper > 1.1 were below 5% (see Table
1), and when the number of iterations was 500, both the rejection rates from
PSRF5% > 1.1 and PSRF > 1.1 were all below 5% (see Table 2). Additionally,
with PSRFupper > 1.1, PSRF > 1.1, MPSRF > 1.1, and |Geweke| > 1.96,
it was more difficult to reach the convergence conclusion with more parame-
ters since we held a strict criteria by not allowing any significant results. But
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Table 1: Empirical Type I Error Rates for PSRFupper,5% > 1.1 and
PSRFupper > 1.1 in the Regression Study

N p PSRFupper,5% > 1.1 PSRFupper > 1.1

100 500 103 100 500 103 3× 103 5× 103

100 5 0.885 0.061 0 0.885 0.061 0 0 0
200 5 0.875 0.076 0.002 0.875 0.076 0.002 0 0
500 5 0.862 0.061 0.003 0.862 0.061 0.003 0 0
1000 5 0.867 0.066 0.002 0.867 0.066 0.002 0 0
100 10 0.966 0.104 0.003 0.966 0.104 0.003 0 0
200 10 0.965 0.099 0.005 0.965 0.099 0.005 0 0
500 10 0.973 0.116 0.006 0.973 0.116 0.006 0 0
1000 10 0.978 0.119 0.006 0.978 0.119 0.006 0 0
100 50 1 0.027 0 1.000 0.357 0.010 0 0
200 50 1 0.017 0 1.000 0.396 0.022 0 0
500 50 1 0.013 0 1.000 0.361 0.012 0 0
1000 50 1 0.011 0 1.000 0.368 0.009 0 0
100 80 0.999 0.024 0 1.000 0.453 0.023 0 0
200 80 1 0.004 0 1.000 0.540 0.023 0 0
500 80 1 0.003 0 1.000 0.526 0.023 0 0
1000 80 1 0 0 1.000 0.531 0.014 0 0
100 90 0.998 0.045 0.001 1.000 0.442 0.040 0.005 0.003
200 90 1 0.005 0 1.000 0.578 0.022 0 0
500 90 1 0.003 0 1.000 0.574 0.014 0 0
1000 90 1 0.005 0 1.000 0.581 0.026 0 0
200 100 - 0.006 0 - 0.595 0.030 0 0
500 100 - 0 0 - 0.610 0.021 0 0
1000 100 - 0.001 0 - 0.613 0.028 0 0

Note. “-” indicates that only few replications had results in that condition, therefore
the Type I error rates were not reliable and thus not reported.

for PSRFupper,5% > 1.1 and PSRF5% > 1.1, it could be easier to reach the
convergence conclusion with more parameters.

Third, not surprisingly, using PSRF to assess convergence was more con-
servative than using the upper bound of PSRF. With the same number of it-
erations, the rejection rates from PSRFs were lower than those from the up-
per bounds of PSRFs (see Tables 1 and 2). Fourth, MPSRF was sensitive to
the number of estimated parameters. When p ≥ 80, the rejection rates from
MPSRF > 1.1 were high (e.g., 0.706) and 3000 iterations were needed to re-
duce the rejection rates below 5% (see Table 2). Fifth, the Geweke’s convergence
diagnostic, |Geweke|5% > 1.96 and |Geweke| > 1.96, tended to overestimate
non-convergence. Even 105 iterations failed to reduce the rejection rates below
5%.
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Table 2: Empirical Type I Error Rates for PSRF5% > 1.1, PSRF > 1.1, and
MPSRF > 1.1 in the Regression Study
N p PSRF5% > 1.1 PSRF > 1.1 MPSRF > 1.1

100 100 500 103 3× 103 5× 103 100 500 103

100 5 0.167 0.167 0 0 0 0 0.262 0 0
200 5 0.143 0.143 0 0 0 0 0.218 0 0
500 5 0.148 0.148 0 0 0 0 0.243 0 0
1000 5 0.130 0.13 0 0 0 0 0.222 0 0
100 10 0.261 0.261 0 0 0 0 0.674 0 0
200 10 0.237 0.237 0 0 0 0 0.699 0 0
500 10 0.232 0.232 0 0 0 0 0.64 0 0
1000 10 0.217 0.217 0 0 0 0 0.655 0 0
100 50 0.124 0.604 0 0 0 0 1 0.638 0
200 50 0.111 0.649 0 0 0 0 1 0.654 0
500 50 0.123 0.664 0 0 0 0 1 0.647 0
1000 50 0.120 0.659 0 0 0 0 1 0.674 0
100 80 0.103 0.701 0 0 0 0 1 0.999 0.144
200 80 0.041 0.802 0 0 0 0 1 1 0.158
500 80 0.041 0.824 0 0 0 0 1 0.998 0.152
1000 80 0.037 0.844 0 0 0 0 1 1.000 0.133
100 90 0.187 0.781 0.038 0.009 0.003 0.003 1 1.000 0.372
200 90 0.070 0.845 0 0 0 0 1 1.000 0.413
500 90 0.058 0.852 0 0 0 0 1 1.000 0.375
1000 90 0.056 0.861 0 0 0 0 1 1.000 0.408
200 100 - - 0 0 0 0 - 1.000 0.692
500 100 - - 0 0 0 0 - 1.000 0.661
1000 100 - - 0 0 0 0 - 1.000 0.706
Note. Same as Table 1.
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2.2 Type I Error Rates: Multivariate Normal

We considered a multivariate normal model with N individuals and p variables
(x ∼ N (µ,Σ)). The population mean (µ) was a vector of 0 and the population
covariance matrix (Σ) had variances of 1 and covariances of 0.3. We used the
Jeffreys priors for the mean and covariance matrix,

f (µ,Σ) ∝ |Σ|−(p+1)/2.

The marginal posterior distribution of Σ was an inverse-Wishart distribution,

f (Σ|x) ∼ IW (n− 1,S) ,

where S =
∑n

i=1 (xi − x̄) (xi − x̄)
′
and x̄ was the sample mean. The marginal

posterior distribution of µ is a multivariate student-t distribution,

f (µ|x) ∼ tn−p (x̄,S/ (n (n− p))) .

The number of parameters to be estimated was p (p+ 1) /2 + p (i.e., p mean
structure components and p (p+ 1) /2 variance-covariance structure components).
We varied the sample size N (N = 100, 200, 500, and 1000) and the number of
variables p (p = 5, 10, 12, and 20). Similar to the multiple regression case, the
conditions of N were nested within p because N should be larger than p to en-
sure convergence. We calculated the seven criteria when the number of iterations
(n) ranged from 100 to 105.

We report the proportions of rejecting the convergence (empirical Type I
error rates ) across 1000 replications of seven criteria in Table 5 and omit the
columns of n where all rejection rates are 0. All findings were consistent with the
findings in the regression case. We summarized the findings in Table 4. Since the
number of parameters was relatively high in the multivariate normal case (e.g.,
when p = 5, the number of parameters was 20), the difference of the rejection
rates between indices allowing 5% significant results in an analysis and indices
not allowing any significant results was larger than the regression case. But again
this difference only appeared when the number of iterations was small.

2.3 Type II Error Rates: Factor Analysis

We considered a confirmatory factor analysis model with one factor (also called
latent variable) and five manifest variables. x was simulated from a confirmatory
factor analysis (CFA) model

x = µ+Λξ + ε, (3)

where µ was a vector of 0, Λ was a 5 × 1 vector of factor loadings, ξ was a
scalar of factor scores, and ε was a 5 × 1 vector of independent measurement
errors for 5 manifest variables. Let Φ = cov (ξ) and Ψ = cov (ε), then the
corresponding population covariance matrix of x was Σ = ΛΦΛ′ + Ψ. In the
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Table 5: Empirical Type I Error Rates for PSRFupper,5% > 1.1, PSRFupper >
1.1, PSRF5% > 1.1, PSRF > 1.1, MPSRF > 1.1, |Geweke|5% > 1.96, and
|Geweke| > 1.96 in the Multivariate Normal Study
N p PSRFupper,5% PSRFupper > 1.1 PSRF5% PSRF MPSRF > 1.1

> 1.1 > 1.1 > 1.1

100 500 100 500 103 100 100 100 500 103 3× 103

100 5 0.957 0.033 0.992 0.16 0 0.104 0.319 0.985 0 0 0
200 5 0.965 0.029 0.998 0.146 0.003 0.097 0.334 0.982 0.001 0 0
500 5 0.940 0.034 0.988 0.149 0.003 0.095 0.331 0.971 0 0 0
1000 5 0.948 0.027 0.991 0.150 0.007 0.084 0.338 0.976 0 0 0
100 10 0.998 0.036 1.000 0.411 0.008 0.134 0.682 1 0.954 0.007 0
200 10 1.000 0.018 1.000 0.374 0.015 0.108 0.683 1 0.961 0.011 0
500 10 0.998 0.028 1.000 0.396 0.015 0.102 0.676 1 0.955 0.012 0
1000 10 1.000 0.022 1.000 0.384 0.006 0.103 0.637 1 0.965 0.002 0
200 12 1.000 0.028 1.000 0.506 0.020 0.092 0.77 1 1 0.36 0
500 12 1.000 0.019 1.000 0.443 0.016 0.103 0.752 1 1 0.344 0
1000 12 1.000 0.026 1.000 0.461 0.013 0.095 0.764 1 1 0.32 0
500 20 - 0.012 - 0.745 0.044 - - - 1 1 0.009
1000 20 - 0.015 - 0.733 0.051 - - - 1 1 0.005

|Geweke|5% > 1.96

100 500 103 3× 103 5× 103 104 5× 104 105

100 5 0.514 0.359 0.314 0.269 0.279 0.291 0.245 0.246
200 5 0.560 0.376 0.327 0.291 0.275 0.242 0.250 0.230
500 5 0.543 0.346 0.334 0.280 0.280 0.273 0.264 0.255
1000 5 0.538 0.369 0.310 0.281 0.251 0.258 0.259 0.254
100 10 0.764 0.544 0.453 0.402 0.393 0.359 0.395 0.356
200 10 0.760 0.499 0.464 0.384 0.385 0.391 0.367 0.402
500 10 0.787 0.536 0.495 0.412 0.407 0.387 0.358 0.384
1000 10 0.777 0.555 0.476 0.391 0.390 0.348 0.370 0.363
200 12 0.820 0.567 0.499 0.424 0.466 0.405 0.408 0.384
500 12 0.819 0.613 0.527 0.440 0.394 0.411 0.417 0.411
1000 12 0.835 0.620 0.523 0.454 0.448 0.395 0.372 0.381
500 20 0.905 0.631 0.500 0.453 0.393 0.410 0.383 0.376
1000 20 0.911 0.642 0.528 0.460 0.420 0.410 0.381 0.352

|Geweke| > 1.96

100 500 103 3× 103 5× 103 104 5× 104 105

100 5 0.808 0.693 0.620 0.588 0.606 0.592 0.555 0.566
200 5 0.834 0.693 0.658 0.629 0.593 0.578 0.532 0.564
500 5 0.818 0.682 0.652 0.600 0.586 0.599 0.574 0.566
1000 5 0.814 0.691 0.635 0.592 0.577 0.579 0.561 0.554
100 10 0.991 0.963 0.936 0.913 0.898 0.892 0.903 0.893
200 10 0.991 0.959 0.937 0.895 0.893 0.908 0.893 0.885
500 10 0.988 0.956 0.944 0.904 0.913 0.896 0.899 0.902
1000 10 0.992 0.968 0.947 0.918 0.896 0.888 0.891 0.901
200 12 0.996 0.984 0.978 0.951 0.951 0.951 0.949 0.951
500 12 0.999 0.989 0.981 0.967 0.948 0.950 0.967 0.956
1000 12 0.997 0.989 0.984 0.965 0.953 0.966 0.938 0.950
500 20 1.000 0.998 0.999 0.999 0.998 0.999 0.999 1.000
1000 20 1.000 0.999 1.000 1.000 1.000 0.998 0.997 0.998
Note. Same as Table 1.
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simulation, Λ = (0.75, 0.75, 0.8, 0.85, 0.95)
′
and ξ ∼ N(0, 1). Ψ was calculated

to ensure that the diagonal elements of Σ were 1.
Because latent variables are unobserved, their measurement units must be

specified by researchers. There are two ways to fix the measurement units of
latent variables. The first way is that for each latent variable, one of the corre-
sponding manifest variables should have a factor loading of 1. The alternative
option is that the variances of all latent variables are fixed at 1. We aimed to
create a condition where the model is not identified and thus the MCMC chains
should not converge, and thus we did not put any constraints. We freely esti-
mated all of the 5 factor loadings and the factor variance. Hence, there were
11 parameters to be estimated (5 factor loadings, 5 residual variances, and 1
factor variance). Besides non-identification issue due to freely estimating all pa-
rameters, sign reflection invariance can also cause non-identification. Sign reflec-
tion invariance refers to a phenomenon where the signs of factor loadings and
their associated factors change simultaneously while the model fit remains the
same (Erosheva and Curtis, 2017). In the Bayesian framework, sign reflection
invariance may result in multimodality in posterior distributions and cause non-
convergence. A typical solution is to place positivity constraints on the priors of
loadings to ensure that a loading per factor is positive. We considered both the
positivity constraint case which could avoid sign reflection invariance and the
case without a positivity constraint where non-identification was due to both
freely estimating all parameters and sign reflection invariance.

We considered several widely used noninformative priors:Φ ∼ IG (0.001, 0.001),
each diagonal element in Ψ followed IG (0.001, 0.001), and each element in Λ
followed N

(
0, 106

)
without a positivity constraint or followed Uniform

(
0, 106

)
with a positivity constraint. There were no analytical forms for the posterior
distribution. Hence, we used the Gibbs sampling algorithm to estimate the vari-
ables one at a time in a sequence (Gelfand and Smith, 1990) and the Metropolis-
Hastings algorithm (Gilks et al., 1996; Hastings, 1970) to empirically construct
the posterior distributions. In Gibbs sampling and Metropolis-Hastings algo-
rithm, a number of early iterations before convergence should be discarded (i.e.,
burn-in period) since they are not representative samples of the target distri-
bution (Gelman et al., 2014; Lynch, 2007). Although in our case the MCMC
chains should not converge regardless of the length of burn-in period, we still
discarded the first 1000 iterations and used the first half of the left chain as a
second burn-in period. The sample size N varied as 100, 200, 500, or 1000. With
11 parameters, it was impossible to reject the null that assumed convergence
for 5% of the parameters, because 11 ∗ 5% < 1. Therefore, we did not consider
PSRFupper,5% > 1.1, PSRF5% > 1.1, and |Geweke|5% > 1.96 in this condi-
tion. When any upper bound of PSRF was larger than 1.1 (PSRFupper > 1.1),
any PSRF was larger than 1.1 (PSRF > 1.1), or any absolute value of the
Geweke’s diagnostic was larger than 1.96 (|Geweke| > 1.96), we concluded
non-convergence. We calculated the Type II error rates of PSRFupper > 1.1,
PSRF > 1.1, MPSRF > 1.1, and |Geweke| > 1.96 when the number of iter-
ations after the two burn-in periods was from 250 to 5 × 104. Note that even
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un-identified model can still generate converged results by coincidence. Hence,
the Type II error rates indeed are generally underestimated.

Positivity Constraint We first focus on the case with positivity constraints
on factor loadings. We report the false acceptance rates (the empirical Type II
error rates) across 1000 replications of the four indices in Table 6. As shown
in Table 6, as the sample size (N) decreased, the Type II error rates increased
in all four indices. This is because as the sample size decreased, the amount of
information in the data became smaller compared to that in the prior. Conse-
quently, Bayesian methods increasingly relied on the prior, which was stationary
per se. The stationary prior would make the resulting Markov chains appear to
be stationary when prior was heavily weighted.

Table 6: Empirical Type II Error Rates for PSRFupper > 1.1 , PSRF > 1.1,
MPSRF > 1.1, and |Geweke| > 1.96 in the Factor Analysis Study with a
Positivity Constraint

PSRFupper > 1.1

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.001 0.003 0.011 0.023 0.037 0.129 0.223
100 0.003 0.002 0.003 0.006 0.011 0.037 0.082
200 0 0.001 0.002 0.003 0.002 0.018 0.019
500 0 0 0.002 0.001 0.001 0.001 0.003
1000 0 0 0.001 0.001 0 0 0

PSRF > 1.1

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.010 0.015 0.048 0.074 0.091 0.258 0.374
100 0.008 0.014 0.023 0.020 0.039 0.099 0.192
200 0.001 0.003 0.009 0.011 0.014 0.038 0.043
500 0.002 0.002 0.005 0.005 0.004 0.011 0.014
1000 0 0 0.003 0.001 0.001 0.002 0.001

MPSRF > 1.1
N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.011 0.021 0.075 0.143 0.210 0.583 0.730
100 0.005 0.013 0.043 0.039 0.077 0.269 0.498
200 0.001 0.006 0.012 0.015 0.024 0.077 0.131
500 0 0.003 0.006 0.008 0.01 0.017 0.029
1000 0 0.001 0.005 0.003 0.001 0.003 0.002

|Geweke| > 1.96

N n 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.059 0.116 0.095 0.096 0.188 0.260 0.343
100 0.068 0.105 0.071 0.136 0.112 0.190 0.174
200 0.066 0.091 0.119 0.082 0.046 0.063 0.096
500 0.117 0.094 0.134 0.128 0.136 0.098 0.053
1000 0.107 0.142 0.167 0.152 0.156 0.117 0.094
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Besides quantitative diagnostic methods, the trace plot method could pro-
vide another piece of information. Figure 1 presents the trace plots of the 11
parameters when N = 50 with 105 iterations after the initial burn-in period. In
this replication, different indices gave inconsistent conclusion: the upper bound of
RSPF of the factor variance was 1.32, but the MRSPF was 1.07 and the absolute
values of Geweke of all parameters were within 1.15. The trace plots for the fac-
tor variance and the 5th residual variance in Figure 1 showed several high peaks
and were somewhat truncated at 0. This pattern is suspicious, which may be the
signal of non-convergence, although MRSPF and Geweke’s diagnostic indicated
convergence in this case. Thus, we suggest using both quantitative diagnostics
and visual inspection in practice. When the sample size N became large, the
prior information could not bound the posterior distributions. As shown in Fig-
ure 2, when N = 1000, the posterior samples of factor loadings kept going up
and the two chains did not mix, and the posterior samples of factor variances
were almost fixed at 0. In this case, the PSRFs (and their upper bounds) for
factor loadings and factor variance and MPSRF were above 1.1, and the several
absolute values of the Geweke’s diagnostic (especially for the factor loadings and
factor variance) were larger than 1.96.

We summarize other conclusions as below. First, for PSRFupper > 1.1,
PSRF > 1.1, and MPSRF > 1.1, more iterations made reaching conver-
gence conclusions easier and thus increased the Type II error rates. More itera-
tions increased the Type II error rates for |Geweke| > 1.96 when N was small.
Second, because using PSRF is less conservative than using the upper bound,
PSRF > 1.1 had larger Type II error rates compared to PSRFupper > 1.1.
MPSRF > 1.1 also had larger Type II error rates than PSRFupper > 1.1.
Third, with the positivity constraint, |Geweke| > 1.96 had similar Type II error
rates as PSRF > 1.1.

No Positivity Constraint Now we move to the case without a positivity
constraint on factor loadings where sign reflection invariance could cause non-
convergence. We report the Type II error rates without a positivity constraint
across 1000 replications of the four indices in Table 7. To better illustrate the
posterior samples, Figure 3 presents the trace plots of the 11 parameters when
N = 1000 without a positivity constraint. The two chains of factor loadings did
not mix well. PSRF and MPSRF can test whether multiple chains mix well,
whereas Geweke’s test cannot test this feature of the posterior samples. As a
consequence, the Type II error rates of |Geweke| > 1.96 were much larger than
PSRFupper > 1.1 , PSRF > 1.1, and MPSRF > 1.1, which was different from
the positivity constraint case. Similar to the positivity constraint case, PSRF >
1.1 and MPSRF > 1.1 had larger Type II error rates than PSRFupper > 1.1.

3 Conclusion

Bayesian statistics has grown vastly and has been widely used in psychologi-
cal studies in recent decades given the surge in computational power. Conver-
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Figure 1: Trace Plots when N = 50 with a Positivity Constraint in Factor Anal-
ysis
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Figure 2: Trace Plots when N = 1000 with a Positivity Constraint in Factor
Analysis
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Figure 3: Trace Plots when N = 1000 without a Positivity Constraint in Factor
Analysis
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Table 7: Empirical Type II Error rates for PSRFupper > 1.1 , PSRF > 1.1,
MPSRF > 1.1, and |Geweke| > 1.96 in the Factor Analysis Study without a
Positivity Constraint

PSRFupper > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0 0 0.002 0.044 0.043 0.165 0.207
100 0 0 0.008 0.019 0.03 0.07 0.243
200 0 0.002 0.004 0.013 0.073 0.163 0.243
500 0 0 0 0.001 0.006 0.022 0.051
1000 0 0 0 0.001 0.006 0.047 0.059

PSRF > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.004 0 0.005 0.142 0.12 0.241 0.302
100 0.006 0.002 0.038 0.05 0.11 0.182 0.371
200 0 0.006 0.025 0.031 0.187 0.342 0.436
500 0 0 0.003 0.004 0.015 0.056 0.104
1000 0 0 0.001 0.001 0.021 0.115 0.125

MPSRF > 1.1

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.003 0.001 0.011 0.268 0.271 0.431 0.438
100 0.009 0.002 0.05 0.112 0.206 0.478 0.54
200 0.001 0.007 0.037 0.069 0.347 0.645 0.728
500 0 0 0.003 0.006 0.031 0.109 0.21
1000 0 0 0.001 0.003 0.028 0.261 0.276

|Geweke| > 1.96

N T 250 5× 102 1.5× 103 2.5× 103 5× 103 2.5× 104 5× 104

50 0.28 0.022 0.159 0.176 0.14 0.76 0.698
100 0.128 0.011 0.374 0.623 0.379 0.592 0.454
200 0.037 0.193 0.018 0.281 0.303 0.402 0.836
500 0.207 0.464 0.195 0.371 0.044 0.555 0.873
1000 0.041 0.088 0.228 0.012 0.101 0.378 0.135
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gence assessment is critical to Markov chain Monte Carlo (MCMC) algorithms.
Without appropriate convergence assessment, we cannot make reliable statisti-
cal inferences from the MCMC samples. Various quantitative diagnostic methods
have been proposed for assessing convergence. The general recommendation is
to use all the possible diagnostics because no method outperforms the others
consistently. We endorse this recommendation if applying all diagnostic meth-
ods is feasible. However, there are situations where we cannot perform multiple
convergence diagnostics. For example, in simulation studies, researchers rarely
use multiple diagnostics to check convergence for all replications because it is
time-consuming. Additionally, some software only provides one convergence di-
agnostic (e.g., BUGS and Mplus) and has created barriers for applied researchers
to perform all convergence assessments. We do not object to the use of multiple
or all convergence diagnostics simultaneously, but we would like to provide a
guideline for applied researchers when resources are limited and it is not possi-
ble to perform multiple diagnostics. In the current paper, we focused on Gelman
and Rubin’s diagnostic (PSRF), Brooks and Gleman’s multivariate diagnostic
(MPSRF), and Geweke’s diagnostic.

Previous studies that reviewed and/or compared different convergence di-
agnostics using hypothetical examples did not study their statistical properties
such as Type I error rates and Type II error rates (Brooks and Roberts, 1998;
Cowles and Carlin, 1996; El Adlouni et al., 2006). In this study, we evaluated
these two statistical properties of the seven diagnostic criteria via simulation
studies. Based on the results of simulation studies, we obtained a better under-
standing of the answers to the three unsolved questions listed in the introduction
section. For the first question, if we only can choose one diagnostic, which one
should we used? We recommend the upper bound of PSRF for three reasons.
First, in terms of the Type I error rates, the upper bound of PSRF and PSRF
required fewer iterations to achieve an acceptable Type I error rate (≤ 5%),
compared to MPSRF the Geweke’s diagnostic (see Table 4). Second, in terms of
the Type II error rates, PSRF led to higher Type II error rates than the upper
bound of PSRF when the model was unidentified and the MCMC chains could
not converge. PSRFupper > 1.1 had the smallest Type II error rates among
PSRFupper > 1.1 , PSRF > 1.1 , MPSRF > 1.1, and |Geweke| > 1.96. Over-
all, balancing both the Type I error rate and Type II error rate, we recommend
using the upper bound of PSRF. Third, PSRF and its upper bound could de-
tect non-convergence due to bad mixing (e.g., the sign reflection invariance case)
whereas Geweke’s diagnostic could not. But we also need to note that PSRF is
criticized for relying on over-dispersed starting values.

For the second question, when the number of estimated parameters is large,
should we rely on the diagnostic per parameter (i.e., PSRF) or the multivariate
diagnostic (i.e., MPSRF)? MPSRF yielded higher Type I and Type II error
rates than PSRF and the upper bound of PSRF. Therefore, we still recommend
the upper bound of PSRF over MPSRF.

For the third question, should we allow a small proportion of the parameters
(e.g., 5%) to have significant convergence test results but still claim convergence
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as a whole? Comparing PSRFupper,5% > 1.1 and PSRFupper > 1.1, the minimal
number of iterations to control the analysis-wise Type I error rates below 5% did
not differ dramatically. As the number of iterations increased, their Type I error
rates were the same (0%). It is also difficult to define how small the proportion
of the parameters should be in a widely acceptable way. In this paper, we used
5%, but one may would like to use 1% or 10%. Hence, we do not suggest allowing
a small proportion of the parameters to have significant convergence diagnosis
results but still claim convergence at the analysis level.

We echo the recommendation from previous studies, which advocate the use
of all possible diagnostics when software and computational source are available.
But when one has to choose one diagnostic, we recommend the upper bound of
PSRF (PSRFupper > 1.1). Even with a large number of parameters, we think it
is better not to allow a 5% Type I error rate within each analysis. Additionally,
we suggest using both quantitative diagnostics and visual inspection (e.g., trace
plot) because trace plots provide extra information. For example, in simulation
studies, one can randomly select several replications to check the trace plots,
combined with the convergence rates from quantitative diagnostics.

Note

The simulation code is available at https://github.com/hduquant/Convergence-
Diagno
stics.git. Correspondence should be addressed to Han Du, Pritzker Hall, 502
Portola Plaza, Los Angeles, CA 90095. Email: hdu@psych.ucla.edu.
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Abstract. Ordinal variables, such as those measured on a five-point Lik-
ert scale, are ubiquitous in the behavioral sciences. However, machine
learning methods for modeling ordinal outcome variables (i.e., ordinal
classification) are not as well-developed or widely utilized, compared to
classification and regression methods for modeling nominal and contin-
uous outcomes, respectively. Consequently, ordinal outcomes are often
treated “naively” as nominal or continuous outcomes in practice. This
study builds upon previous literature that has examined the predictive
performance of such näıve approaches of treating ordinal outcome vari-
ables compared to ordinal classification methods in machine learning.
We conducted a Monte Carlo simulation study to systematically assess
the relative predictive performance of an ordinal classification approach
proposed by Frank and Hall (2001) against näıve approaches according
to two key factors that have received limited attention in previous liter-
ature: (1) the machine learning algorithm being used to implement the
approaches and (2) the class distribution of the ordinal outcome vari-
able. The consideration of these important, practical factors expands
our knowledge on the consequences of näıve treatments of ordinal out-
comes, which are shown in this study to vary substantially according to
these factors. Given the ubiquity of ordinal measures coupled with the
growing presence of machine learning applications in the behavioral sci-
ences, these are important considerations for building high-performing
predictive models in the field.

Keywords: Ordinal classification · Machine learning · Predictive perfor-
mance · Class imbalance · Measurement scale

1 Introduction

In supervised learning, ordinal classification or equivalently ordinal regression,
refers to a classification task where classes of the categorical outcome variable
have an inherent ordering. This distinguishes it from nominal multi-class clas-
sification, where the classes are unordered. Ordinal classification is also distinct
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from regression where the outcome variable is continuous, because the numeric
labels of the ordinal classes do not indicate equal spacing between adjacent
classes. Ordinal measures are ubiquitous in a variety of disciplines, including
the behavioral sciences. For example, human response data are often captured
in Likert-type scales, such as those with response levels ranging from strongly
disagree to strongly agree or poor to excellent.

Although not as well-developed and well-studied compared to nominal clas-
sification and regression (Ben-David, Sterling, & Tran, 2009; Gutierrez, Perez-
Ortiz, Sanchez-Monedero, Fernandez-Navarro, & Hervas-Martinez, 2016), ma-
chine learning methods for ordinal classification have been developed by many
researchers. Some of these methods are modified versions of specific algorithms
developed to handle ordinal outcome variables. This has been particularly pop-
ular with support vector machines (Chu & Keerthi, 2007; Crammer & Singer,
2005; Gu, Sheng, Tay, Romano, & Li, 2015; Herbrich, Graepel, & Obermayer,
2000) and neutral networks (Cheng, Wang, & Pollastri, 2008; Deng, Zheng, Lian,
Chen, & Wang, 2010; Fernandez-Navarro, Riccardi, & Carloni, 2014). Rather
than modifying specific algorithms, researchers have also developed ordinal clas-
sification methods that can be implemented with multiple algorithms (Cardoso
& da Costa, 2007; Frank & Hall, 2001; Lin & Li, 2012). For example, Frank and
Hall (2001) proposed an approach to decompose an ordinal classification task
into multiple binary classification tasks while retaining the ordinal information
among classes, where any algorithm can be used as the base binary classifier,
making it an algorithm-independent approach.

However, in practice, without strong familiarity with ordinal classification
methods, machine learning researchers and practitioners may choose to imple-
ment a more “näıve” and easier approach to modeling ordinal outcome variables
(Gutierrez et al., 2016). This involves casting the ordinal outcome variable as
a nominal variable, in which case the task at hand reduces to nominal multi-
class classification. Similarly, the ordinal outcome variable may be cast as a
continuous variable, in which case the task at hand becomes regression. To ob-
tain integer-valued predictions in this case, some form of post-processing of the
real-valued predictions, such as rounding, may be required (Kramer, Widmer,
Pfahringer, & de Groeve, 2000). We refer to these näıve treatments of ordinal
outcome variables as näıve classification and näıve regression, respectively.

Despite the developments in the ordinal classification literature, there are sev-
eral possible reasons why researchers and practitioners may choose to implement
a näıve approach. Bürkner and Vuorre (2019) discuss how it is common practice
to treat ordinal measures as if continuous in the context of traditional statistical
methods (e.g., t-tests, ANOVA, ordinary least squares regression). They pro-
vide several reasons for this, including hesitation due to perceived complexity
in implementation or interpretation of ordinal approaches, difficulty in deciding
which ordinal model to choose, or skepticism from journal editors and reviewers
for using a “non-standard” approach (Bürkner & Vuorre, 2019). Although their
discussion was in the context of traditional statistical methods, these reasons
conceivably apply to machine learning contexts as well. Other factors may also
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include unfamiliarity or unavailability of accessible software to readily implement
ordinal classification methods.

Given that näıve treatments of ordinal outcome variables are not uncommon,
it is important to understand the consequences of implementing such näıve ap-
proaches. In the statistical literature, the consequences of treating ordinal mea-
sures as if continuous, rather than nominal, has specifically received attention.
Liddell and Kruschke (2018) found this practice to be particularly common in
psychological research, after surveying articles published in several highly ranked
psychology journals. Motivated by this finding, the authors showed how system-
atic errors in analyses can arise from treating ordinal measures as continuous,
including inflated Type I and Type II errors and misleading effect size esti-
mates, and they suggest using models that allow for a proper treatment of or-
dinal variables (Liddell & Kruschke, 2018) . In the machine learning literature,
the analogous investigation of the consequences of using näıve approaches are
perhaps studies that compare ordinal classification methods against näıve clas-
sification or näıve regression in terms of predictive performance (Ben-David et
al., 2009; Cardoso & da Costa, 2007; Chu & Keerthi, 2007; Frank & Hall, 2001;
Herbrich et al., 2000; Kramer et al., 2000). In such studies, the näıve approaches
are typically, although not always, shown to have lower predictive performance
compared to an ordinal classification method, given that näıve approaches give
a less than ideal treatment of ordinal variables by discarding the ordinal infor-
mation (näıve classification) or assuming equal spacing between adjacent classes
(näıve regression).

The present study builds upon this literature by investigating how ordinal
classification methods perform relative to näıve classification and näıve regres-
sion according to key factors, including the machine learning algorithm being
used to implement the approaches, the number of classes, and the degree of class
imbalance present in the ordinal outcome variable. We do so by conducting a
Monte Carlo simulation study to systematically evaluate predictive performance
across different treatments of ordinal outcome variables, each implemented with
multiple machine learning algorithms and crossing different levels of class im-
balance with different numbers of classes in the ordinal outcome variable. This
investigation is related to, but extends in important ways, previous studies in
this line of research. For example, Gutierrez et al. (2016) examined the perfor-
mance of näıve approaches and various ordinal classification methods on several
datasets with varying numbers of ordinal classes. However, näıve approaches were
only implemented using support vector machines, and varying degrees of class
imbalance in the ordinal outcome variable were not varied or examined system-
atically with the number of classes. Cardoso and da Costa (2007) examined the
performance of their data reduction method for ordinal classification compared
to näıve approaches, implemented with support vector machines and neural net-
works. However, their study also did not systematically examine the impact of
class distributions in the ordinal outcome variable. Similarly, Ben-David et al.
(2009) used logistic regression and support vector machines to compare the per-
formance of ordinal classification methods based on these algorithms compared
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to näıve classification. However, they did not examine class distributions or the
performance of näıve regression using these same algorithms.

Researchers and practitioners routinely work with multiple algorithms in a
given task, and many ordinal variables in real data tend to exhibit class imbal-
ance (Baccianella, Esuli, & Sebastiani, 2009). As such, investigating how predic-
tive performance compares across different treatments of the ordinal outcome
variables in light of these practical considerations would expand our knowledge
on the consequences of resorting to a näıve approach under various conditions
and encourage more informed choices around the treatment of ordinal variables
in practice.

2 Methods

We compared the predictive performance of three treatments of ordinal out-
come variables: as a nominal variable in näıve classification, as a continuous
variable in näıve regression, and as an ordinal variable in an ordinal classifi-
cation method. For the ordinal classification method, we chose to employ the
algorithm-independent approach proposed by Frank and Hall (2001). We chose
this approach because it can be implemented with multiple algorithms, which
allows for more intuitive comparisons in the relative predictive performance of
the ordinal classification method across algorithms. Moreover, the approach is
simple and intuitive. Given the practical barriers to employing ordinal classifi-
cation methods discussed above, it may be most useful to examine the relative
performance of an ordinal classification method that practitioners are most re-
alistically likely to implement and that does not require much heavy lifting from
näıve approaches.

2.1 Frank and Hall (2001) Approach

Given an ordinal classification task with k ordinal classes, the Frank and Hall
(2001) approach (“FH approach” hereafter) involves training k − 1 binary clas-
sifiers on k − 1 modified copies of the original dataset. The jth binary classifier
is trained on a modified outcome variable that is a binary indicator for whether
or not the original outcome is greater than the jth ordered class. The predictors
remain unchanged. For example, with k = 3 (class 1 < class 2 < class 3), two
binary classifiers are trained, where the first classifier predicts whether or not
the outcome is greater than class 1 (i.e., class 2 or 3), and the second classifier
predicts whether or not the outcome is greater than class 2 (i.e., class 3). Using
the predicted probabilities from the k − 1 binary classifiers, the predicted prob-
ability that an observation belongs to each of the k classes is obtained in the
following manner:

P (Y = Class 1|X) = 1− P (Y > Class 1|X)
P (Y = Class k|X) = P (Y > Class k|X)

P (Y = Class j|X) = P (Y > Class j − 1|X)− P (Y > Class j|X),
j = 2, . . . , k − 1
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Once the k predicted probabilities are calculated per observation, an observation
is assigned to the class with the greatest predicted probability.

In their study, Frank and Hall (2001) demonstrated this approach on many
benchmark regression datasets by discretizing the continuous outcomes into k
balanced ordinal classes. They used C4.5 as the base algorithm and evaluated
predictive performance with accuracy (1 minus misclassification rate). Using k
= 3, 5, and 10, they found higher accuracy associated with the FH approach
across most datasets, compared to näıve classification (i.e., C4.5 treating the
outcome as a nominal variable). They also found this performance gap between
the FH approach and näıve classification to increase with k. The present study
extends these evaluations by implementing the FH approach with more algo-
rithms besides C4.5, considering imbalanced ordinal classes, comparing the pre-
dictive performance of the FH approach against näıve regression in addition to
näıve classification, and considering additional performance metrics besides the
misclassification rate.

2.2 Algorithms Used

We implemented each of the three approaches (näıve classification, näıve re-
gression, and FH approach) with two machine learning algorithms: classification
and regression trees (CART; Breiman, Friedman, Olshen, & Stone, 2017) and
random forests (Breiman, 2001). These tree-based algorithms have become in-
creasingly popular among researchers in many disciplines including psychology,
due to their desirable qualities such as ease of application and interpretability
(Strobl, Malley, & Tutz, 2009). Despite their popularity, these algorithms’ per-
formance across näıve and ordinal classification methods has not been examined
as extensively compared to other algorithms, such as support vector machines
and neural networks.

2.3 Performance Metrics

Although the misclassification rate is a popular performance metric for classifi-
cation tasks, it is not ideal for ordinal classification tasks because it gives equal
penalty to all types of misclassifications (Gaudette & Japkowicz, 2009). For ex-
ample, misclassifying a strongly disagree response as disagree is not as detrimen-
tal of an error as misclassifying a strongly disagree response as strongly agree. As
such, we used two additional performance metrics besides the misclassification
rate to evaluate the approaches: mean absolute error (MAE) and Spearman’s
correlation coefficient. With observed numeric class labels y and predicted nu-
meric class labels ŷ, mean absolute error is calculated as N−1

∑N
i=1 |yi − ŷi|.

Spearman’s correlation coefficient is calculated as 1− 6
∑N

i=1 Di
2/[N(N2 − 1)],

where Di refers to the difference between the rank order of yi and that of ŷi.
These measures better account for the severity of error based on the ordinal
information by using the numeric labels of the ordinal classes. These metrics
have also been used in several studies that have examined the performance of
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ordinal classification approaches (Cardoso & da Costa, 2007; Gutierrez et al.,
2016; Kramer et al., 2000).

In addition to evaluating overall predictive performance of each approach,
we also evaluated the predictive performance of each approach at the class-level.
For class-level performance, we examined the F1 score per class. The F1 score
captures a balance of precision (proportion of true positives out of predicted
positives) and recall (proportion of true positives out of actual positives) and
can be calculated as 2∗Precision ∗Recall/(Precision+Recall). A “positive”
case in this context refers to an observation belonging to a given class, and a
“negative” case refers to an observation belonging to all other classes.

2.4 Simulation Design and Analysis Plan

To investigate our research question, we conducted Monte Carlo simulations
using the R statistical software (R Core Team, 2022). There were two simulation
factors: the number of ordinal classes in the outcome variable (k = 3, 5, 7)
and the degree of class imbalance present in the ordinal outcome variable (we
termed them balanced, slightly imbalanced, imbalanced class distributions). This
gave a total of nine conditions, and each condition contained 500 replications.
For each replication, we simulated a dataset of 2,000 observations using the
mlbench.friedman1 function from the mlbench package (Leisch & Dimitriadou,
2021). This generates a benchmark regression dataset with ten predictors (x1

through x10) from a uniform distribution bounded by 0 and 1 and an error term
from the standard normal distribution. Then, a subset of these predictors is used
to generate a continuous outcome variable y, where

y = 10 sin(x1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e

which we discretized into k balanced, slightly imbalanced, or imbalanced classes,
depending on the condition. For the balanced condition, each class contained 1/k
of the observations. For the slightly imbalanced condition, the jth class contained
1/k + [j − 0.5(k + 1)]/k2 of the observations. For the imbalanced condition, the
jth class contained

2−(k−1), j = 1
2−(k−j+1), j = 2, . . . , k

of the observations. To better visualize these proportions, Figure 1 presents the
class distributions that result from the above rules for k = 3, 5, and 7, along with
measures of skewness and kurtosis for each distribution. Note that these rules
can be used to generate imbalanced and slightly imbalanced class distributions
for any value of k.

In each dataset, we implemented the two algorithms, CART and random
forest, using naive classification, näıve regression, and the FH approach, for a
total of six models per replication. Models were built using the caret package
(Kuhn, 2022), by calling the rpart (Therneau & Atkinson, 2022) and rf (Liaw &
Wiener, 2002) methods for CART and random forest, respectively. We trained
these models and tuned hyperparameters with five-fold cross validation using
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(a) Slightly imbalanced condition

(b) Imbalanced condition

Figure 1: Class distributions for the slightly imbalanced (Panel a) and imbalanced
(Panel b) conditions
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50% (N = 1,000) of the dataset and evaluated their predictive performance on
the remaining 50% (N = 1,000) of the dataset. Note that for näıve regression,
real-valued predictions were rounded to the nearest class. For CART, we tuned
the complexity parameter, which is the factor by which any additional split
attempted in the tree must decrease the prediction error. For random forests, we
tuned the number of predictors that are randomly selected as split candidates at
each split in a tree. For each of the six models per replication, we recorded the
misclassification rate, MAE, and Spearman’s correlation as measures of overall
predictive performance, and we recorded the F1 score for each of k classes as a
measure of class-level performance.

Within each algorithm in each condition, we examined the mean difference in
overall predictive performance (for each of the three overall performance metrics)
between the FH approach and näıve classification and between the FH approach
and näıve regression. We first qualitatively examined the patterns by plotting the
distributions of the performance metrics via boxplots. We then conducted paired
samples t-tests and calculated effect sizes of the paired differences in performance
across the approaches for each algorithm and condition to quantitatively exam-
ine patterns. We similarly calculated effect sizes for the paired differences in
class-level performance between the FH approach and näıve approaches for each
algorithm and condition.

In addition to the simulation study, we demonstrate the practical implemen-
tation of the FH approach in Appendix A, which contains step-by-step R code
to carry out the FH approach using CART and random forests (but can easily
be adapted to use any other algorithm) with an empirical example, as well as
the resulting overall and class-level performance of the FH and näıve approaches
on this empirical dataset.

3 Results

The overall performance results using Spearman’s correlation and MAE led to
largely the same conclusions. For brevity, we focus our discussion on the results
using Spearman’s correlation. There were a few differences in results when eval-
uating overall performance using the misclassification rate, which we summarize
towards the end of this section. Results based on MAE and the misclassification
rate can be found in Appendix B.

3.1 CART Implementation

The CART implementation produced results that extend Frank and Hall’s (2001)
findings well. Figure 2 presents the distribution of the six models’ predictive per-
formance in terms of Spearman’s correlation across the 500 replications. Each
square subplot represents a condition defined by the number of classes k and the
degree of class imbalance. Qualitatively, Figure 2 shows that with CART, the FH
approach outperformed (i.e., higher Spearman’s correlations) both näıve classi-
fication and näıve regression across all nine conditions, including the imbalanced
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and slightly imbalanced conditions. Further, the performance gaps between the
FH and näıve approaches generally appear to grow with a larger k within each
level of class imbalance.

To examine these observations quantitatively, we conducted paired samples
t-tests within each set of 500 replications (i.e., within each of the nine conditions)
per algorithm to compare the overall performance of the FH approach to each of
the naive approaches. The mean paired difference (and standard deviation of the
difference) in Spearman’s correlation for each algorithm in each condition are
presented in Table 1, as well as the effect sizes in Cohen’s d for those differences
(Cohen, 1988). Differences were calculated as Spearman’s correlation of the FH
approach minus Spearman’s correlation of the näıve approaches. Thus, a positive
mean difference and effect size indicate the FH approach performing better, and
a negative mean difference and effect size indicate the FH approach performing
worse compared to the näıve approaches. Effect sizes are also visualized in Figure
3.

Table 1: Mean paired differences (and standard deviations) in overall predictive
performance in terms of Spearman’s correlation between the FH approach and
naive approaches for each algorithm in each simulation condition; effect sizes of
the paired differences
k Degree of class balance CART

Näıve Classification Näıve Regression
Balanced .015 (.023)*; .674 .035 (.025)*; 1.388

3 Slightly Imbalanced .021 (.024)*; .850 .037 (.027)*; 1.384
Imbalanced .023 (.028)*; .797 .038 (.027)*; 1.425

Balanced .047 (.023)*; 2.079 .061 (.022)*; 2.788
5 Slightly Imbalanced .049 (.022)*; 2.209 .048 (.019)*; 2.534

Imbalanced .033 (.028)*; 1.170 .058 (.025)*; 2.267

Balanced .066 (.026)*; 2.527 .059 (.015)*; 3.836
7 Slightly Imbalanced .069 (.026)*; 2.681 .063 (.018)*; 3.547

Imbalanced .036 (.029)*; 1.212 .065 (.027)*; 2.386

Random Forest
Näıve Classification Näıve Regression

Balanced -.003 (.010)*; -.315 -.001 (.012); -.068
3 Slightly Imbalanced -.002 (.010)*; -.179 .003 (.011)*; .297

Imbalanced .002 (.011)*; .218 .006 (.014)*; .426

Balanced -.001 (.008)*; -.167 -.027 (.008)*; -3.234
5 Slightly Imbalanced .000 (.008); -.014 -.023 (.008)*; -2.737

Imbalanced -.002 (.013); -.127 -.018 (.015)*; -1.211

Balanced -.001 (.008); -.082 -.038 (.007)*; -5.149
7 Slightly Imbalanced .001 (.009); .130 -.036 (.008)*; -4.343

Imbalanced -.003 (.014)*; -.178 -.024 (.017)*; -1.471

Note. *p < .05
36

(Bonferroni-corrected); bold indicates moderate or large effect size
(|d| > 0.5). Positive mean differences and effect sizes indicate the FH approach per-
forming better than the näıve approach.
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Table 1 shows that for the CART implementation, as qualitatively observed
in Figure 2, the FH approach had significantly better performance than both
näıve approaches. This is indicated by the mean differences in predictive perfor-
mance being positive and significant (p < .05

36 ; Bonferroni-corrected alpha level
for multiple testing) for both näıve classification and näıve regression in all nine
conditions. Further, effect sizes were all at least in the moderate range (d > .5),
and effect sizes grew more positive with a larger k, as illustrated in Figure 3.
Overall, we observed comparable effect sizes between balanced and slightly im-
balanced classes, while imbalanced classes tended to have smaller effect sizes.
These results indicate that with CART, the FH approach resulted in improved
predictive performance over both näıve approaches, and that this performance
boost was most prevalent in conditions with more classes and more class balance.

Figure 2: Distribution of overall predictive performance (Spearman’s correlation)
of the six models across replications in each simulation condition

Figure 4(a) plots the effect sizes of the paired differences in class-level F1
scores between the FH and näıve approaches for the CART implementation in
each condition. It is interesting to note that in all conditions, not all class-level
effect sizes were positive and at least moderate (d > .5), meaning class-level
performance was only higher for the FH approach in some classes, even though
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overall performance was higher. For example, there appeared to be a pattern
in nearly all conditions, where there was a negligible difference in performance
between the FH approach and näıve classification for the “end” classes (i.e.,
classes 1 and k), as indicated by near-zero effect sizes, but the FH approach out-
performed näıve classification for the “middle” classes (i.e., classes 2, . . . , k− 1),
as indicated by positive effect sizes. There were no such apparent patterns for
näıve regression, but there were similarly some classes where the FH approach
outperformed näıve regression and other classes where there were negligible dif-
ferences. These class-level effect sizes indicate that the improvement in overall
predictive performance associated with the FH approach in a given condition
did not necessarily come from a uniform improvement in performance across all
classes, but only in some.

Figure 3: Effect sizes for the paired difference in overall predictive performance
(Spearman’s correlation) between the FH approach and näıve approaches for
each algorithm in each simulation condition. Dashed lines appear at |d| = 0.5.
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3.2 Random Forest Implementation

The random forest implementation produced less intuitive results compared to
the CART implementation. First, Figure 2 shows that when comparing the FH
approach to näıve classification, there were virtually no differences in overall
predictive performance between these two approaches in all conditions, meaning
that the FH approach did not perform any better than näıve classification. Sec-
ond, Figure 2 shows that when comparing the FH approach to näıve regression,
in conditions with k = 3, these two approaches also performed similarly, mean-
ing the FH approach did not perform any better than näıve regression, either.
However, in conditions with a larger k, näıve regression outperformed the FH
approach. The mean differences and effect sizes in Table 1 corroborate these
observations. While we did observe some significant mean differences (p < .05

36 )
in certain conditions for näıve classification, all effect sizes were small (|d| < .5).
For näıve regression, we observed negative and significant mean differences with
large effect sizes in conditions with k = 5 and 7. Figure 3 also illustrates these
patterns. The green (näıve classification) effect sizes hovered around zero in all
conditions, indicating no difference in overall performance between the FH ap-
proach and näıve classification. The orange (näıve regression) effect sizes, under
k = 3, also hovered around zero, but with a larger k, they were negative. These
effect sizes grew more negative with more class balance, indicating that näıve
regression increasingly outperformed the FH approach with more class balance.

Figure 4(b) plots the effect sizes for the paired differences in class-level F1
scores between the FH approach and näıve approaches for the random forest
implementation in each condition. For näıve classification, effect sizes generally
hovered around zero in most conditions, indicating no difference in class-level
performance between the FH approach and näıve classification. For näıve regres-
sion, there appeared to be a pattern in nearly all conditions where the “end”
classes (i.e., classes 1 and k) had positive effect sizes, indicating that the FH
approach outperformed näıve regression, but the “middle” classes (i.e., classes
2, . . . , k−1) had negative effect sizes, indicating that the FH approach performed
worse than näıve regression. These class-level effect sizes show that the relative
class-level performance of these approaches can differ according to class and may
not all be in the same direction as the overall relative performance.

3.3 Summary of Results

With the CART implementation, the FH approach had significantly better over-
all performance than both näıve classification and näıve regression across all nine
conditions, including those with imbalanced and slightly imbalanced class dis-
tributions. The overall performance gap between the FH approach and näıve
approaches grew with k. With the random forest implementation, the FH ap-
proach did not perform differently from näıve classification in any meaningful
way across all nine conditions. However, the FH approach performed significantly
worse compared to näıve regression in conditions with a larger k, and the perfor-
mance gap increased with more class balance. In both CART and random forest
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(a) CART

(b) Random forest

Figure 4: Effect sizes for the paired difference in class-level predictive perfor-
mance (F1 score) between the FH approach and näıve approaches for CART
(Panel a) and random forests (Panel b) in each simulation condition. Dashed
lines appear at |d| = 0.5.
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implementations, we found that in a given condition, class-level performance was
not uniformly better or worse for the FH approach across classes according to
the overall performance results. For example, even when overall performance was
substantially higher for the FH approach than a näıve approach in a given condi-
tion, this did not mean that the FH approach had accordingly higher class-level
performance in each class for that condition.

Using the misclassification rate as the overall performance metric led to
largely the same findings as Spearman’s correlation throughout the CART and
random forest implementations. The exception was that in the random forest
implementation, the FH approach had comparable overall performance to both
näıve classification and näıve regression across all conditions, rather than näıve
regression outperforming the FH approach in some conditions. Given that the
misclassification rate is an unsuitable performance metric for ordinal classifica-
tion tasks, we do not expand on these findings. However, this does reveal that
different conclusions can be made from using different overall performance met-
rics, highlighting the importance of using a metric that is most suited to the
task at hand.

4 Discussion

Ordinal measures are ubiquitous, but given limitations in familiarity or availabil-
ity of machine learning methods for ordinal classification, they may not always
be treated as an ordinal variable in practice. In this study, we aimed to expand
our understanding of the impacts of treatments of ordinal outcome variables on
predictive performance across various conditions. Specifically, we used Monte
Carlo simulations to examine the relative predictive performance of an ordinal
classification method, namely the FH approach, against näıve classification and
näıve regression according to the machine learning algorithm being implemented,
the number of classes in the ordinal outcome variable, and the degree of class
imbalance in the ordinal outcome variable.

Our results differed substantially across algorithms. With the CART im-
plementation, results aligned well with and extended Frank and Hall’s (2001)
findings. The FH approach was associated with a higher overall predictive per-
formance compared to both näıve classification and näıve regression, and this
pattern held across all conditions, even in the presence of class imbalance. The
overall performance gap increased with the number of classes and was largest
among balanced classes, indicating that the benefit of treating the outcome as
an ordinal variable by implementing the FH approach is greatest when there are
many, balanced classes.

On the other hand, we found some divergent results with the random forest
implementation. The FH approach had comparable overall performance to naive
classification in all conditions, and the FH approach performed worse than naive
regression in conditions with more classes and more class balance. One possible
explanation for this could be tied to the fact that random forests are ensemble
learners that, in general, tend to have better predictive performance than weak



Treatments of Ordinal Outcome Variables 87

learners like CART and C4.5. Thus, it is possible that the näıve approaches im-
plemented with random forests already provided decent predictive performance
that there may not have been as much to be gained from the implementation
of the FH approach. Further, with a larger number of classes, the ordinal out-
come variable might become better approximated as a continuous outcome, and
perhaps that is why we observed näıve regression to perform particularly well
in those conditions. In a similar study that examined the performance of vari-
ous algorithm-independent ordinal classification methods, Hühn and Hüllermeier
(2008) theorized that algorithms with more complex and flexible decision bound-
aries benefit less from incorporating the ordinal information among the classes
of the outcome variable. This is consistent with findings from our study, as the
random forest implementation of the FH approach, treating the outcome as an
ordinal variable, did not result in increased predictive performance over the näıve
approaches, whereas the CART implementation did.

In sum, these findings illustrate that the relative predictive performance of
the different treatments of ordinal outcome variables varies across algorithms
and conditions. In other words, the gain in overall predictive performance from
treating an ordinal outcome properly as an ordinal variable by implementing the
FH approach can depend on the number of classes, the degree of class imbalance
present, and the algorithm being used. There is not always an improvement in
overall predictive performance associated with the FH approach, and sometimes,
näıve approaches may perform better than the FH approach. As such, there is
no one approach that is always best, suggesting a need for careful and deliber-
ate choices in the treatment of ordinal outcomes to achieve optimal predictive
performance in machine learning.

4.1 Limitations and Future Directions

There are several limitations associated with this study. First, the ordinal out-
come variable in our simulated datasets were not “real” ordinal data, as the
outcome variable was originally a continuous variable which was discretized. As
such, the ordinal class structure may have been artificially accentuated compared
to what is conceivable in naturally occurring ordinal data (Hühn & Hüllermeier,
2008). We used such simulated outcomes in order to be able to systematically
manipulate and examine the influence of the number of classes and the degree
of class imbalance in the ordinal outcome variable, which was a main goal of
the study. Second, our findings are limited to the two specific algorithms, CART
and random forest, that we implemented in this study. We chose these two algo-
rithms as they have not received as much attention in the ordinal classification
literature. However, there are many other binary classifiers that can be imple-
mented with the FH approach, as this is an algorithm-independent approach.
Given the surprising results we found with the random forest implementation, it
would be interesting to study whether the same holds for other related methods,
such as boosted trees (Hastie, Tibshirani, & Friedman, 2009). Similarly, we only
examined one ordinal classification method to compare against näıve classifica-
tion and näıve regression. Future studies should examine how other algorithm-
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independent ordinal classification methods provide similar or divergent results.
Another direction for future study is to examine different shapes of class dis-
tributions. In this study, we only examined three levels of class imbalance, and
the skewness of the imbalanced and slightly imbalanced distributions were in
the same direction (i.e., all upwards sloping, where the most frequent class was
class k). It would thus be interesting to examine how results may change with
different shapes (e.g., downwards sloping with class 1 being the most frequent
class, or a random pattern where class frequencies do not increase or decrease
uniformly with class labels) and how this may impact class-level performance.
Lastly, while Spearman’s correlation and MAE provide more suitable overall per-
formance metrics for ordinal classification tasks than the misclassification rate,
they are not the only metrics available, nor are they free of flaws themselves.
A major limitation of MAE and Spearman’s correlation as performance met-
rics of ordinal classification tasks is that they are influenced by the choice of
the numeric label given to the ordinal classes (Cardoso & Sousa, 2011). Other
measures have been suggested that are not influenced by the numeric label of
ordinal classes (Cardoso & Sousa, 2011), but we have maintained the use of these
metrics for this study for ease of computation and readers’ familiarity.

4.2 Conclusions

This simulation study highlighted the variability in relative predictive perfor-
mance of common treatments of ordinal outcome variables in machine learning
according to key factors, including the algorithm being used to implement the
approaches and the degree of class imbalance in the ordinal outcome. The con-
sideration of these important, practical factors extends the previous literature
on ordinal classification and provides further knowledge on the consequences of
näıve treatments of ordinal outcomes, which are shown to vary substantially
according to these factors. Given the ubiquity of ordinal measures in the behav-
ioral sciences coupled with the growing use of machine learning in the behavioral
sciences, these are important considerations for building high-performing models
in the field.
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Appendix A Sample R Code

Below, we provide sample R code to demonstrate the implementation of the FH
approach using CART and random forests on an applied dataset. The dataset (N
= 1,014) contains predictors of maternal health risk among pregnant patients,
including age, systolic and diastolic blood pressure, blood glucose levels, body
temperature, and heart rate. The task is to predict maternal mortality risk
level, an ordinal outcome variable with k = 3 classes of low, mid, and high risk.
These classes are distributed in the following manner: low risk (40.0%), mid risk
(33.1%), and high risk (26.8%). The dataset is publicly available from the UCI
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Maternal+Health+Risk+Data+Set). Note that the code can easily be adapted to
implement the FH approach using other algorithms besides CART and random
forests and on datasets with different values of k. The models are trained using
the caret package, which streamlines the model training and hyperparameter
tuning processes and provides a unified syntax for fitting different algorithms.

The dataset is saved in a data.frame object called data. The outcome vari-
able is a column in data called RiskLevel.

First, we code the outcome variable as an ordinal variable. We save the
class labels and the number of classes into respective objects to be referenced
throughout the rest of the program.

data$RiskLevel = factor(data$RiskLevel ,
levels = c("low risk",

"mid risk", "high risk"),

ordered = TRUE)

classes = levels(data$RiskLevel)
k = length(classes)

Next, we split the dataset into a training (50%) and test (50%) set.

set.seed (12345)

train = sample(seq_len(nrow(data)),

size = floor(nrow(data )/2), replace = FALSE)

dtrain = data[train , ]

dtest = data[-train , ]

To implement the FH approach, we generate k – 1 modified copies of the
training set and save each one into a list called dtrain modified. The jth train-
ing set has a modified outcome variable that is a binary indicator for whether the
original outcome is greater than the jth class. The predictors remain unchanged.

dtrain_modified = list()

for (j in 1:(k -1)){

dt = dtrain

dt$RiskLevel = as.factor(ifelse(dtrain$RiskLevel >

classes[j], 1, 0))

https://archive.ics.uci.edu/ml/datasets/Maternal+Health+Risk+Data+Set
https://archive.ics.uci.edu/ml/datasets/Maternal+Health+Risk+Data+Set
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dtrain_modified [[j]] = dt

}

We initialize two Ntestset by (k – 1) matrices, one for each algorithm, to store
the predicted probabilities from the k – 1 binary classifiers.

probsCART = probsRF = matrix(ncol = k-1,

nrow = nrow(dtest ))

We are using the caret package to train the CART and random forest models.
Below, we set up a control parameter for conducting 5-fold cross validation
during training for hyperparameter tuning.

library(caret)

trnCntrl = trainControl(method =’cv’, number = 5)

Below is the for-loop where we train the k – 1 binary classifiers per algorithm.
In the jth iteration (there are k – 1 iterations) of the loop, we train a CARTmodel
and a random forest model on the jth modified training set. After training each
model per iteration, we obtain predicted probabilities on the test set and save
them into the jth column of the matrix we initialized above. To use a different
algorithm, simply change the method argument inside of the train function.

for (j in 1:(k -1)){

# CART

modCART_j = train(RiskLevel ~ .,

data = dtrain_modified [[j]],

method = ’rpart ’,

tuneLength = 10,

trControl = trnCntrl)

pred = predict(modCART_j$finalModel , dtest ,

type = "prob ")[ ,"1"]

probsCART[,j] = pred

# random forest

modRF_j = train(RiskLevel ~ .,

data = dtrain_modified [[j]],

method = ’rf ’,

tuneLength = 5,

trControl = trnCntrl)

pred = predict(modRF_j$finalModel , dtest ,

type = "prob ")[ ,"1"]

probsRF[,j] = pred

}
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Next, we combine the k – 1 predicted probabilities from the k – 1 binary
classifiers to obtain predicted probabilities for each of the k classes. We initialize
two Ntestset by k matrices, one for each algorithm, to store these probabilities.

probsCART_k = probsRF_k = data.frame(matrix(ncol = k,

nrow = nrow(dtest )))

colnames(probsCART_k) = colnames(probsRF_k) = classes

The k – 1 predicted probabilities are combined according to the rules de-
scribed in the Methods section of the study to obtain the k predicted probabili-
ties.

probsCART_k [,1] = 1 - probsCART[, 1]

probsCART_k[,k] = probsCART[, (k-1)]

probsRF_k [,1] = 1 - probsRF[, 1]

probsRF_k[,k] = probsRF[, (k-1)]

for (i in 2:(k -1)){

probsCART_k[,i] = probsCART[, (i-1)] - probsCART[, i]

probsRF_k[,i] = probsRF[, (i-1)] - probsRF[, i]

}

Finally, each test set observation is assigned to the ordinal class with the
largest predicted probability. We store the predicted class labels into a vector
for each algorithm, which can be used to compute overall performance metrics,
such as the mean absolute error and Spearman’s correlation.

predclassCART = colnames(probsCART_k )[max.col(probsCART_k ,

ties.method = "random ")]

predclassCART = factor(predclassCART , levels = classes)

predclassRF = colnames(probsRF_k )[max.col(probsRF_k ,

ties.method = "random ")]

predclassRF = factor(predclassRF , levels = classes)

# Mean absolute error

mean(abs(as.integer(predclassCART)

- as.integer(dtest$RiskLevel )))
mean(abs(as.integer(predclassRF)

- as.integer(dtest$RiskLevel )))

# Spearman

cor(as.integer(predclassCART), as.integer(dtest$RiskLevel),
method = "spearman ")

cor(as.integer(predclassRF), as.integer(dtest$RiskLevel),
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method = "spearman ")

Class-level performance can conveniently be obtained using the confusionMatrix
function of the caret package.

# class -level performance

cmCART = confusionMatrix(predclassCART , dtest$RiskLevel)
cmRF = confusionMatrix(predclassRF , dtest$RiskLevel)

cmCART$byClass
cmRF$byClass

In the table below, we summarize the empirical performance results of the
FH approach using CART and random forests on this applied dataset, along
with the performance of the näıve classification and näıve regression approaches.
Näıve classification and näıve regression can be implemented by simply convert-
ing data$RiskLevel into an unordered factor and into an integer, respectively.
These results show that the FH approach generally outperformed both näıve ap-
proaches, although the improvement is minimal, especially for the random forest
implementation.

CART

Performance metric FH Näıve classification Näıve regression

Overall performance
Spearman’s correlation .73 .67 .69
Mean absolute error .30 .35 .33
Misclassification rate .29 .32 .33

Class-level performance (F1)
Low risk class .73 .70 .68
Mid risk class .57 .53 .58
High risk class .85 .83 .80

Random forest

FH Näıve classification Näıve regression

Overall performance
Spearman’s correlation .80 .80 .78
Mean absolute error .20 .22 .24
Misclassification rate .19 .20 .23

Class-level performance (F1)
Low risk class .82 .81 .76
Mid risk class .75 .71 .70
High risk class .90 .89 .88
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Appendix B Additional Results

FigureB.1: Distribution of misclassification rate of the six models across repli-
cations in each simulation condition
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FigureB.2: Effect sizes for the paired difference in misclassification rate between
the FH approach and näıve approaches for each algorithm for each simulation
condition
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FigureB.3: Distribution of mean absolute error of the six models across replica-
tions in each simulation condition



98 H. Suzuki and O. Gonzalez

FigureB.4: Effect sizes for the paired difference in mean absolute error between
the FH approach and näıve approaches for each algorithm for each simulation
condition
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Abstract. With the prevalence of missing data in social science re-
search, it is necessary to use methods for handling missing data. One
framework in which data with missing value can still be used for param-
eter estimation is the Bayesian framework. In this tutorial, different miss-
ing data mechanisms including Missing Completely at Random, Missing
at Random, and Missing Not at Random are introduced. Methods for
estimating models with missing values under the Bayesian framework
for both ignorable and non-ignorable missingness are also discussed. A
structural equation model on data from the Advanced Cognitive Train-
ing for Independent and Vital Elderly study is used as an illustration on
how to fit missing data models in JAGS.

Keywords: Missing data · Bayesian analysis· Structural equation model

1 Introduction

The problem of missing data is prevalent in research, and the social sciences
are particularly influenced by this problem because surveys are commonly used
to collect information. As pointed out by Berchtold (2019), item-level missing
data were found in 69.5% of papers published in selected social science journals,
suggesting that the issue of missing data is quite omnipresent. Missing data may
lead to various problems including biases in estimations and lowered identifia-
bility of models (e.g., Zhang & Wang, 2012). To address missing data issues,
procedures including listwise deletion, full-information maximum likelihood es-
timation, and multiple imputation have been proposed (e.g., Zhang & Wang,
2013). One emerging context where models can be fitted with the presence of
missing data is the Bayesian framework (Ma & Chen, 2018). With Bayesian in-
ference, missing data can be handled quite naturally. The purpose of this paper
is to demonstrate the procedure of fitting a structural equation model with miss-
ing data under the Bayesian framework using the software JAGS (Plummer et
al., 2003).
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1.1 Missing Data Mechanisms

Three missing data mechanisms, Missing Completely at Random (MCAR), Miss-
ing at Random (MAR), and Missing Not at Random (MNAR), have been dis-
cussed in the literature (Rubin, 1976). To distinguish these mechanisms, we can
use a vector Y to denote the outcome variable, a matrix X to denote the co-
variates, and a vector R to denote the missing data indicator for the outcome
Y , with R = 1 if a Y is missing, otherwise 0. We can also assume a model with
parameter γ that governs the generation process of R. Further, we can assume
that the purpose of data analysis is to obtain the parameter θ that explains Y
using X. To illustrate the different missing data mechanisms, we use missingness
in the outcome Y as an example.

– If the missing data in the outcome Y are MCAR, the missing data do not
depend on any data collected. Thus, P (R|γ, Y,X) = P (R|γ).

– If the missing data in the outcome Y are MAR, the missingness depends
on the data collected, thus, P (R|γ, Y,X) = P (R|γ, Yobs, Xobs) where Xobs

denotes covariates that are observed and used in the modeling processes to
obtain θ, and Yobs denotes the observed part of the outcome.

– If the missing data in the outcome Y are MNAR, the missingness depends
on the unobserved data, thus, P (R|γ, Y,X) = P (R|γ, Ymis, Xmis, Yobs, Xobs)
where Xmis denotes predictors or covariates that are not observed and Ymis

denotes the missing outcome data.

1.2 Bayesian Methods for Handling Missing Outcome Data

Ignorable Missing Data Under the Bayesian framework, when the missing
outcome data mechanism is ignorable (MCAR or MAR), meaning that the miss-
ingness can be viewed as random after accounting for observed data, the pa-
rameter θ of interest in the statistical analysis model can be estimated based
on the observed part of data Yobs. For simplicity, we assume covariates X are
fully observed for now. Thus, for ignorable missing outcome data, we can derive
P (θ|Yobs, X) ∝ P (Yobs|θ,X)π(θ) as the posterior of θ based on the observed
part of data P (Yobs|θ,X) and the prior π(θ). Any suitable model for the out-
come variable can be used under the above scheme to obtain posterior samples
of the parameter when missing data are present (Ma & Chen, 2018).

Non-ignorable Missing Data When the missing outcome data are non-
ignorable (MNAR), meaning that the missingness mechanism cannot be fully
explained by observed data, models such as the selection model and the pattern-
mixture model can be used. Again, we assume that the covariates X are fully
observed for now. When missing data are non-ignorable, the target parameter
of estimation is not only θ, but both θ and γ.
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Selection Model. The selection model partitions the joint conditional proba-
bility of the outcome variable Y and missing data indicator R into two parts:
P (Y,R|θ, γ,X) = P (Y |θ,X)·P (R|γ, Y,X) (Heckman, 1979). The part P (Y |θ,X)
denotes the probability of the outcome Y based on covariates X and parameters
θ not accounting for missingness. The part P (R|γ, Y,X) denotes the missing-
ness mechanism based on both the covariates and the outcome data. While the
selection model assumes the same analysis model for observed and missing data,
it also assumes that the missingness indicator can be viewed as a function of the
data. To incorporate the selection model into the Bayesian estimation process,
we can write the posterior as P (θ, γ|Y,X,R) ∝ P (Y |θ,X)P (R|γ,X, Y )π(θ, γ)
so that in addition to the the model parameter θ, the missing data parameter γ
is also estimated.

Pattern-Mixture Model. The pattern-mixture model factors the joint conditional
probability of the outcome Y and the missingness indicator R in a different way:
P (Y,R|θ, γ,X) = P (Y |θ,X,R) · P (R|γ,X) (Little, 1994). In this model , the
part P (Y |θ,X,R) indicates that the outcome Y depends on missingness (i.e.,
the outcome model could be different for observed and missing data resembling
a mixture model), and the part P (R|γ,X) denotes the missingness mechanisms
that only depend on the covariates and not on the outcome. To incorporate the
pattern-mixture model into the Bayesian estimation process, we can express the
posterior as P (θ, γ|Y,X,R) ∝ P (Y |θ,X,R)P (R|γ,X)π(θ, γ).

1.3 Bayesian Methods for Handling of Missing Covariates Data

In Section 1.2, Bayesian schemes for handing missing data in the outcome vari-
able are discussed assuming that the covariates are complete. However, covariates
often contain missing data as well in real life. Thus, the estimation procedures
need further adaptations. When the missing data mechanism for the covariates
are ignorable (MCAR or MAR), distributions of the covariates can be specified
in addition to the models in Section 1.2 such that each covariate can have its
own conditional distribution (Ibrahim, Chen, & Lipsitz, 2002). When the miss-
ing covariates are non-ignorable (MNAR), models similar to the non-ignorable
missing outcome model can also be applied to the covariates such as the selection
model for both outcome and covariates implemented by Lee and Tang (2006).

2 Data and Models

2.1 Data

A subset of data from the The Advanced Cognitive Training for Independent and
Vital Elderly (ACTIVE) study will be used to illustrate how to handle missing
data under the Bayesian framework. n = 500 records for 5 variables, including 3
items measuring reasoning ability (i.e., WS, LS, and LT ), AGE, and EPT will
be used. Here, WS is the word series test result, LS is the letter series test result,
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LT is the letter sets test result, AGE is the age of participants, and EPT is the
Everyday Problems Test result. The respective scores are the integer number of
correct answers in each test.

The subset of data selected contains no missing values. For the purpose of
this tutorial, missing values are generated according to the MAR and MNAR
mechanisms. For the ignorable missingness model, 14.8% of missing data in EPT
are simulated such that logit(P (Ri = 1)) = −0.6 + 0.01 ∗ Agei where the Ri is
the missingness indicator for the i-th record on EPT. For the selection model on
handling non-ignorable missingness, 16.2% of missing data in EPT are simulated
such that logit(P (Ri = 1)) = 0.01 ∗ EPTi. Lastly, for the pattern mixture
model on handing non-ignorable missingness, 17.6% of missing data in EPT are
simulated by viewing EPT values between 24 and 26 as missing. Because EPT
consists of integer values only, this means that only the EPT values of 24, 25 and
26 are missing. Thus, when viewing EPT as a linear function of other variables,
which is what we will use in the analysis, the slopes for predictors will be small for
missing EPT since there is very low variance in missing EPT compared to other
variables; whereas for observed EPT, we can expect larger slopes. Additionally,
because EPT values are mostly below 24, we can also expect the intercept for
missing EPT to be larger than that of observed EPT.

2.2 Analysis Model

The analysis model will be a structural equation model using the three reasoning
ability items (i.e.,WS, LS, and LT ) and AGE to predict EPT as shown in Figure
1. The measurement model can be written as in Equation 1:

Xm = µ+ ηΛ+ ϵ. (1)

We denote the three manifest variables that are the reasoning ability items in-
volved in the measurement model using the matrix Xm with dimension n × 3
as formatted in Equation 2. In addition, the latent variable REASON is rep-
resented by the second column in ηn×1, the factor loadings are represented by
Λ1×3, the intercepts are represented by µ1×3, and the error terms are repre-
sented by ϵn×3. In the measurement model, it is assumed that ϵi1 ∼ N (0, σ2

WS),
ϵi2 ∼ N (0, σ2

LT ), and ϵi3 ∼ N (0, σ2
LS) for i ∈ (1, ..., n). Further, we assume the

latent variable REASONi ∼ N (0, σ2
REASON ).
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Xm =

WS1 LT1 LS1

... ... ...
WSn LTn LSn


µ =

[
k1 k2 k3

]
η =

REASON1

...
REASONn


Λ =

[
1 λLT λLS

]
ϵ =

ϵ11 ϵ12 ϵ13
... ... ...
ϵn1 ϵn2 ϵn3



. (2)
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Figure 1. Analysis model for the ACTIVE data.

The structural model follows Equation 3. Since the outcome is one-dimensional,
we write the structural model with respect to the outcome EPT directly. In the
structural model, the latent variable REASON and the observed variable AGE
are used to predict EPT with an intercept. Similar to the assumptions of the
measurement model, it is assumed that ϵEPT

i ∼ N (0, σ2
EPT ).

EPTi = b0 + b1REASONi + b2AGEi + ϵEPT
i . (3)

Together, the measurement and structural models can also be written with
respect to each item as in Equation 4:
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WSi = kWS +REASONi + ϵi1

LTi = kLT + λLTREASONi + ϵi2

LSi = kLS + λLSREASONi + ϵi3

EPTi = b0 + b1REASONi + b2AGEi + ϵEPT
i

. (4)

Combining the measurement model and the structural model, the probabil-
ity distribution function form of the analysis model used can be written as in
Equation 5:

REASONi ∼ N (0, σ2
REASON )

WSi ∼ N (kWS +REASONi, σ
2
WS)

LTi ∼ N (kLT + λLTREASONi, σ
2
LT )

LSi ∼ N (kLS + λLSREASONi, σ
2
LS)

EPTi ∼ N (b0 + b1REASONi + b2AGEi, σ
2
EPT )

. (5)

2.3 Software

JAGS will be used to conduct Bayesian inference in this paper. JAGS can be
installed via https://mcmc-jags.sourceforge.io/ (Plummer et al., 2003). In
this paper, JAGS will be used in the R environment (R Core Team, 2021) through
the software RStudio (RStudio Team, 2022) and the package runjags (Denwood,
2016). Other packages such as rjags (Plummer, Stukalov, & Denwood, 2022) that
provide similar functionalities to runjags are available as well. JAGS can also be
executed from the command line without using another interface.

In R, the package runjags can be installed using install.packages("runjags")
and loaded using library(runjags).

3 Ignorable Missingness Model

3.1 Model Specification

In Bayesian inference with JAGS, the two crucial components to a model are
the likelihood and the priors.

Likelihood If the missingness in the outcome of EPT is ignorable in the data,
then missing data can be addressed by sampling from the analysis model using
observed data. Thus, the model in Equation 4 can be used as the ignorable
missingness model. Further, the likelihood can be specified using the probability
densities in Equation 5. In this example, we do not have missing data in the
covariates. However, when missing data are present in the covariates, additional
distributions will need to be specified for them.

https://mcmc-jags.sourceforge.io/
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Priors We also need to specify the priors for the ignorable missingness model.
Since we are using the assumption that the observed and latent variables all fol-
low normal distributions, which is common in the practice of structural equation
modeling, we can choose the priors in Equation 6 for the model parameters. In
particular, the regression coefficients, factor loadings, and intercepts will have
normal priors, and the variance components will have inverse gamma priors.
Because there is only one latent factor in the model used, the inverse gamma
distribution could satisfy as the prior for the factor variance. However, when
more than one factors are involved in a structural equation model, and when the
factors are allowed to correlate, the inverse wishart distribution can be used as
the prior for the factor covariance matrix.

b0, b1, b2 ∼ N (µb, σ
2
b )

σ2
EPT ∼ IG(hEPT , θEPT )

λLT , λLS ∼ N (µλ, σ
2
λ)

σ2
WS , σ

2
LT , σ

2
LS ∼ IG(hm, θm)

kWS , kLT , kLS ∼ N (µk, σ
2
k)

σ2
REASON ∼ IG(hREASON , θREASON )

. (6)

In this tutorial, we will choose rather uninformative priors. But more infor-
mative priors can also be adopted. For example, the power priors can be used
which constructs priors based on likelihood in historical data (Ibrahim & Chen,
2000). Hierarchical priors is another option which can be used when a range
of values for the priors are available, so different levels of priors can be spec-
ified (Berger & Strawderman, 1996). These methods can be utilized for more
theory-informed specification of priors.

3.2 Implementation in JAGS

Implementing a model in JAGS involves the following steps.

Model Specification in JAGS Using runjags, the model specification can
be stored as a string. For example, the code below specifies a model named
ignorable.

ignorable <- "

#likelihood

...

#prior

...

"

The likelihood as specified in Section 3.1 can be implemented inside the model
string as the following. In JAGS, distributions can be specified using the sym-
bol ~ . As an illustration, in the code EPT[i] ~ dnorm(mu.EPT[i], pre.EPT),
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dnorm indicates that EPT is expected to follow a normal distribution with the
mean of mu.EPT and the precision (i.e., inverse of variance) of pre.EPT. Further,
mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i] shows that EPT is predicted
by the latent variable REASON and the observed variable AGE. The two lines
of code together correspond to Equation 3. Note that while ~ is used to specify
a distribution, <- is used to assign values. Similar to how the distribution of
EPT is specified, the measurement model for the 3 reasoning ability items can
be specified.

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

As mentioned in Section 3.1, historical data and previous research conclusions
are not used to construct the priors here; instead, the priors used are rather
uninformative. For example, the prior for means the error terms in the factor
model of REASON has precision of 0.001 or variance of 1000.

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

Additionally, to monitor the variances of various variables instead of the
precision, we can use the following to convert precisions to variances.
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# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

Data Statement and Initial Values To estimate the ignorable missingness
model, we define the data to be used as follows.

data <- list(N = 500,

EPT = data_500_mar$EPT ,
AGE = data_500_mar$AGE ,
WS = data_500_mar$WS ,
LT = data_500_mar$LT ,
LS = data_500_mar$LS)

We also define initial values for the two MCMC chains that will be used.
Slightly different starting values for the two chains are specified to ensure that
the two chains will not converge to the same local optimum, if happening, for
better convergence diagnostic.

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

Running JAGS for Analysis Finally, the posteriors can be sampled using the
run.jags command. The model=ignorable argument specifies that the model
named m1 will be used. The monitor argument specifies which parameters or
variables we want to sample. The data=data, n.chains=2, inits=inits ar-
guments specify the data, number of chains, and initial values to be used, respec-
tively. The arguments adapt=1000, burnin = 3000, and sample=100000 specify
the number of adaptation, burn-in, and sampling iterations, respectively. Only
the sampling iterations will be recorded. The argument keep.jags.files=FALSE
instructs JAGS to not save any files produced in the sampling process. If the ar-
gument is set to keep.jags.files=FALSE, then additional files will be saved in
a folder named runjagsfiles. The argument thin=1 sets the intervals of recorded
samples to be 1, meaning that every iteration will be saved. The argument
method="simple" indicates that the simple method would be used to compile
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the model. The argument tempdir=TRUE asks JAGS to create a temporary di-
rectory to store files instead of saving files in the working directory.

out1 <- run.jags(model=ignorable ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

3.3 Convergence Diagnostics

The summary(out1) command in runjags gives the summary statistics of the
JAGS output which can be used for convergence diagnostics. We will mainly
rely on the Gelman-Rubin test for diagnosing convergence (Gelman & Rubin,
1992). The Gelman-Rubin test statistics, or the potential scale reduction factor,
is readily provided by the summary function and is suitable when multiple chains
are used. As shown in Table 1, the potential scale reduction factors (psrf) for all
parameters are below 1.1 and very close to 1, suggesting that the chains have
converged. Monte Carlo SEs of most parameters (MCerr) are quite low as well
(< 0.05). The effective sample sizes (SSeff) are also acceptable (> 400).

Table 1. Output from the ignorable data model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0 10.546 16.071 21.450 16.045 0.041 4515 1
b1 0.855 0.960 1.062 0.960 0.000 16217 1
b2 -0.038 0.034 0.110 0.034 0.001 4485 1
l.LT 0.402 0.445 0.489 0.445 0.000 20000 1
l.LS 1.066 1.142 1.222 1.142 0.000 20000 1
k.WS 9.266 9.700 10.129 9.701 0.002 20000 1
k.LT 5.439 5.684 5.926 5.683 0.001 20000 1
k.LS 9.744 10.225 10.726 10.226 0.002 20483 1
var.WS 3.294 4.247 5.265 4.260 0.004 20000 1
var.LT 3.025 3.487 3.995 3.497 0.002 20000 1
var.LS 3.717 4.981 6.230 4.994 0.005 19548 1
var.EPT 12.649 14.831 17.112 14.884 0.008 20000 1
var.REASON 17.037 19.849 23.122 19.903 0.011 20000 1
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The plot(out1) command can be used to generate trace plots and his-
tograms of the MCMC chains which can further help diagnose the convergence
of the target parameters. For example, Figure 2 shows the MCMC plots of the
parameter b1, and the trace plot and histogram both indicate that the parame-
ter converged. The histogram is centered at one mode, and the trace plot looks
stable.
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Figure 2. MCMC plots for the parameter b1 in the ignorable missingness model.

There are other approaches for diagnosing convergence which will not be
discussed in depth here. For example, the Geweke test can be conducted using
the coda package (Plummer, Best, Cowles, & Vines, 2006). This test takes two
proportions of a Markov chain and applies a z-test to see if the two proportions
are different. The Herdelberger and Welch test can also be used with coda which
tests if the samples come from a stable distribution.

3.4 Interpretation

Using the Highest Posterior Density (HPD) intervals which are indicated by the
Lower95 and Upper95 values in Table 1, we can see that the factor loadings and
intercepts in the measurement model are likely non-zero as the HPD intervals
for them excludes 0. Thus, the items WS, LT and LS do have commonalities
explained by the construct of reasoning ability. In the structural model, the
intercept term and the slope for REASON have their HPD intervals excluding
0, suggesting that we can conclude that the latent variable of REASON explains
the variance in EPT, whereas AGE does not.
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4 Selection Model

4.1 Model Specification

Likelihood When the missingness in the outcome is MNAR or non-ignorable,
the selection model can be applied. For non-ignorable missing outcome, we also
make the same assumption that the missing covariates are ignorable so that we
can specify conditional distributions for them. We also assume that the miss-
ingness is dependent on the outcome of EPT scores themselves in the selection
model. Using a missing data indicator Ri where Ri = 1 denotes a missing record
of EPT and Ri = 0 denotes an observed record of EPT, the selection model
translates to Equation 7, which can be used in addition to the model specifica-
tion in Equation 4:

logit(P (Ri = 1)) = a0 + a1EPTi. (7)

The corresponding probability density distribution form of the selection model
incorporates Equation 8 in addition to Equation 5:

Ri ∼ B(sigmoid(a0 + a1EPTi)). (8)

The missing data indicator Ri is deemed as a function of the outcome value
EPTi and an intercept. The intercept a0 here is used to adjust the threshold for
1 and 0 in the missing data indicator of Ri.

Priors The priors can be constructed similarly to the ignorable missingness
model. Priors for the parameters a0 and a1 are needed for the selection model
as indicated by Equation 9, which can be combined with the priors in Equation
6 to be used in JAGS.

a0, a1 ∼ N (µa, σ
2
a) (9)

4.2 Implementation in JAGS

Model Specification in JAGS In JAGS, the likelihood for the ignorable
data model can be modified to incorporate the selection model by including the
following.

R[i] ~ dbern(p[i])

logit(p[i]) = a0 + a1*EPT[i]

The priors also need to be modified based on the the function of missingness
on EPT.

a0 ~ dnorm(0, pre.a)

a1 ~ dnorm(0, pre.a)

pre.a ~ dgamma (.001 ,.001)
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Data Statement and Initial Values Since the model has now changed,
the initial values and data supplied should be modified accordingly. A miss-
ing data indicator for the outcome is also needed as shown below in the variable
R = is.na(data_500_mnar$EPT)*1.

data <- list(N = 500,

EPT = data_500_mnar$EPT ,
AGE = data_500_mnar$AGE ,
WS = data_500_mnar$WS ,
LT = data_500_mnar$LT ,
LS = data_500_mnar$LS ,
R = is.na(data_500_mnar$EPT )*1)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1,

a0=0.1, a1=0.1),

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2,

a0=0.2, a1 =0.2))

Running JAGS for Analysis The model can then be estimated using the
following statement. Again, 1000 adaptation iterations, 3000 burn-in iterations,
and 100000 sampling iterations are specified.

out1 <- run.jags(model=selection ,

monitor=c("b0", "b1", "b2",

"a0", "a1",

"l.LT", "l.LS", "k.WS",

"k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)
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4.3 Convergence Diagnostics

As show in Table 2, the potential scale reduction factors (psrf) are all below
1.1, and the Monte Carlo SEs (MCerr) are satisfactory (< 0.05). The effective
sample sizes (SSeff) for all parameters are also above 400. The trace plots are
satisfactory as well. As an example, MCMC plots for the parameter a1 is shown
in Figure 3.

Table 2. Output from the selection model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0 13.170 18.649 24.029 18.623 0.043 4048 1
b1 0.865 0.968 1.077 0.968 0.000 15546 1
b2 -0.074 -0.002 0.072 -0.002 0.001 4064 1
a0 -4.276 -2.752 -1.374 -2.788 0.006 13872 1
a1 -0.010 0.059 0.132 0.059 0.000 13990 1
l.LT 0.402 0.446 0.491 0.446 0.000 20000 1
l.LS 1.076 1.153 1.233 1.154 0.000 20551 1
k.WS 9.266 9.702 10.133 9.702 0.002 20000 1
k.LT 5.445 5.685 5.926 5.685 0.001 19607 1
k.LS 9.747 10.230 10.720 10.228 0.002 19719 1
var.WS 3.436 4.448 5.453 4.459 0.004 20000 1
var.LT 3.048 3.502 4.014 3.513 0.002 21125 1
var.LS 3.443 4.699 5.955 4.711 0.005 20000 1
var.EPT 12.945 15.249 17.670 15.308 0.009 19667 1
var.REASON 16.618 19.644 22.728 19.701 0.011 20000 1

4.4 Interpretation

Using the HPD intervals, the factor loadings and factor intercepts in the mea-
surement model are again non-zero, indicating that the three items measuring
REASON do have overlaps. In the structural part of the selection model, the in-
tercept and the slope for the latent variable REASON both have HPD intervals
excluding 0, suggesting that REASON do explain significant variance in EPT
after accounting for the missingness mechanism. However, the HPD interval for
the slope of AGE still contains 0, suggesting that AGE may not be a useful
predictor of EPT here.

The slope for EPT in explaining the missingness mechanism has HPD in-
tervals containing 0, suggesting that EPT ’s effect on explaining missingness is
small. Whereas the intercept for predicting missingness has its HPD interval ex-
cluding 0. This deviates from the data generation model because the coefficients
used in missing data generation are quite small.

Although the selection model is most commonly used when missing data
are non-ignorable, it can be applied to MCAR and MAR data as well. In
the ACTIVE example, missingness predictors can be changed to, for instance,
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logit(p[i]) = a0 for MCARmissingness and logit(p[i]) = a0 + a1*AGE[i]

for MAR missingness, for example.

Iteration
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Figure 3. MCMC plots for the parameter a1 in the selection model.

5 Pattern-Mixture Model

5.1 Model Specification

Likelihood A pattern-mixture model can also be used to handle non-ignorable
missing data in the outcome of EPT. In this case, the intercept b0 and the slope
b1 for the outcome regressed on the latent variable of REASON are deemed
different for missing and observed data, whereas in practice, theories should
be used to guide the decision on the missing data model. The pattern-mixture
property is shown as the subscripts Ri on b0 and b1 in Equation 10, which can
be used in addition to the model specification in Equation 4 as the specification
for the pattern-mixture model:

EPTi = bRi
0 + bRi

1 REASONi + b2AGEi + ϵEPT
i . (10)

Also, Equation 11 can be used in addition to Equation 5 as the probability
density function form of the pattern-mixture model:

EPTi ∼ N(bRi
0 + bRi

1 REASONi + b2AGEi, σ
2
y). (11)

Assuming Ri = 1 for a missing record on EPT and Ri = 0 for an observed
record on EPT, then there are two sets of distinct b0 and b1 values for Ri = 1 and
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Ri = 0, respectively. It should be noted that this is merely one possible pattern-
mixture model that can be fitted onto the data, and that other pattern-mixture
models can be used based on specific theories.

Priors Priors for the pattern-mixture model can be specified using Equation 12
to replace the corresponding regression coefficients priors in Equation 6. Different
from the priors for the ignorable missingness model, here, priors for b0 and b1
are differentiated for missing data (b10, b

1
1) and for observed data (b00, b

0
1).

b00, b
1
0, b

0
1, b

1
1 ∼ N (µb, σ

2
b ) (12)

5.2 Implementation in JAGS

Model Specification in JAGS Different from the ignorable missingness model,
we need to specify the mean of EPT to be different for missing and observed data
such as mu.EPT[i] <- b0[R[i]+1] + b1[R[i]+1] *REASON[i] + b2*AGE[i]

in JAGS. Since JAGS uses 1-based indexes instead of 0-based indexes, we need
to use R[i]+1 instead of R[i] in the code to transform the 0 and 1 values in the
missing value indicator to 1 and 2. We also need to modify the priors of b0 and
b1 as the following which is based on the assumption that while the intercept is
larger for missing EPT, the slope is smaller for missing EPT. This assumption
is based on how missing data is generated.

b0[1] ~ dnorm(0, pre.b) # non -missing

b0[2] ~ dnorm(b0[1]+05 , pre.b) #missing

b1[1] ~ dnorm(0, pre.b) # non -missing

b1[2] ~ dnorm(b1[1]-0.5, pre.b) #missing

Data Statement and Initial Values Similar to the case in the selection
model, an indicator for missing or observed data is required for estimating the
pattern-mixture model, and the data statement can take the form of the follow-
ing:

data <- list(N = 500,

EPT = data_500_mnar_2$EPT ,
AGE = data_500_mnar_2$AGE ,
WS = data_500_mnar_2$WS ,
LT = data_500_mnar_2$LT ,
LS = data_500_mnar_2$LS ,
R = is.na(data_500_mnar_2$EPT )*1)

The initial values can be specified based on the pattern-mixture model. Com-
pared to the ignorable missingness model, initial values for b0 and b1 are changed
to incorporate two cases for missing and observed data. For example, in the first
chain, initial values for b0 and b1 are b0=c(0,1), b1=c(1,0). This is consis-
tent with our expectation that the intercept and slope for missing data would
be greater and lower, respectively, than those of the observed data.
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inits <- list(list(b0=c(0,1), b1=c(1,0), b2=0,

l.LT=0, l.LS=0, k.WS=0,

k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=c(1,2), b1=c(2,1), b2=1,

l.LT=1, l.LS=1, k.WS=1,

k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

Running JAGS for Analysis Finally, the model can be estimated using the
statement below.

out1 <- run.jags(model=pmm ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS", "var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

5.3 Convergence Diagnostics

In Table 3 which contains the output from this model, the potential scale reduc-
tion factors (psrf) are lower than 1.1, suggesting that the chains have converged.
The effective sample sizes (SSeff) are acceptable (> 400), and the Monte Carlo
SEs (MCerr) are mostly below 0.05.

The MCMC plots in Figure 4 can also be used to diagnose convergence. Here,
the plot for b1 when data are observed is used as an example. All parameters,
similar to b1, present satisfactory trace plots suggesting that convergence is
reached and the estimates are stable.

5.4 Interpretation

As shown by the HPD intervals in Table 3, the factor loadings and intercepts
in the measurement model again exhibit HPD intervals that exclude 0. In the
structural model, AGE ’s HPD interval contains 0, whereas the intercept and
the slope for REASON have HPD intervals excluding 0 for observed data and
including 0 for missing data. Consequently, for observed data, REASON can
predict EPT whereas for missing data it is not the case.
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Table 3. Output from the pattern-mixture model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0[1] 11.522 16.352 21.157 16.361 0.034 5190 1.00
b0[2] -7.595 21.045 52.908 21.498 0.113 20000 1.00
b1[1] 0.847 0.950 1.053 0.951 0.000 17588 1.00
b1[2] -30.761 0.527 29.239 0.586 0.119 20000 1.01
b2 -0.046 0.020 0.084 0.020 0.000 5211 1.00
l.LT 0.399 0.443 0.486 0.443 0.000 20000 1.00
l.LS 1.066 1.141 1.222 1.142 0.000 19925 1.00
k.WS 9.288 9.705 10.149 9.705 0.002 20328 1.00
k.LT 5.450 5.686 5.925 5.686 0.001 19697 1.00
k.LS 9.741 10.232 10.716 10.231 0.002 20291 1.00
var.WS 3.254 4.204 5.240 4.218 0.004 20000 1.00
var.LT 3.070 3.524 4.036 3.533 0.002 20000 1.00
var.LS 3.711 4.955 6.239 4.968 0.005 20000 1.00
var.EPT 11.269 13.222 15.379 13.268 0.007 20000 1.00
var.REASON 16.956 19.852 23.114 19.932 0.011 20000 1.00

Iteration
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Figure 4. MCMC plots for the parameter b1 for observed EPT data in the pattern-
mixture model.
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6 Discussion

Data with missing values can still be used for parameter estimation in different
models under the Bayesian framework. In this paper, a structural equation model
is used as an example on the ACTIVE study data to illustrate how models
with missing data can be fitted using JAGS in R under different missing data
mechanisms including MCAR, MAR, and MNAR. Specifically, two models, the
selection model and the pattern-mixture model, are introduced for non-ignorable
(i.e., MNAR) missing data.

While this paper mainly focuses on obtaining parameter estimates when miss-
ing data are present, other aspects of missing data are not covered here. Although
not discussed in this paper, other models for handling non-ignorable missingness
exist such as the shared-parameter model (Albert & Follmann, 2008). In addi-
tion, there are model selection methods for deciding which of many potential
missing data models would suit the data best. For example, in sensitivity anal-
ysis which is often used to validate missing data handling processes by assessing
robustness of imputations under different conditions, Bayesian model compar-
ison criteria such as the deviation information criterion (DIC) can be used to
choose the best model (Ma & Chen, 2018; Van Buuren, 2018). Further, there
are ways to diagnose missing data mechanisms in a dataset such as discussed in
Little (1988). These topics can be further explored.

There are also different analysis models tailored toward specific types of data
that can be incorporated in Bayesian missing data handling processes, which
we did not discuss in this paper. While this paper uses a structural equation
model as an example, other models can be similarly constructed in JAGS to
accommodate missing data. For example, longitudinal data can be analyzed
using a multilevel model (Gelman & Hill, 2006). If the response data are of
mixed types from mixed populations, then mixture models may be appropriate
(Rasmussen, 1999). Social network data can also be used with methods such as
the exponential random graph model and the latent space model (Hoff, Raftery,
& Handcock, 2002; Robins, Pattison, Kalish, & Lusher, 2007). These models have
Bayesian variants that can be applied to estimate parameters when missing data
are present (Bürkner, 2017; Koskinen, Robins, Wang, & Pattison, 2013; Neal,
1992).
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data = read.csv(" active.csv")

data = data[, c(" WS_COR", "LS_COR", "LT_COR", "AGE", "EPT ")]

data = na.omit(data)

data_500 <- data[sample(nrow(data),500), ]

colnames(data_500) <- c("WS", "LS", "LT", "AGE", "EPT")

# MAR

miss <- rep(NA, nrow(data_500 ))

for (i in 1:nrow(data_500 )){

miss[i] <- rbinom(1, 1, data_500$AGE[i]*0.01 -60*0.01)
}

data_500_mar <- data_500

data_500_mar [,"EPT "][ miss ==1] <- NA

summary(data_500_mar)

# MNAR selection

miss2 <- rep(NA, nrow(data_500 ))

for (i in 1:nrow(data_500 )){

miss2[i] <- rbinom(1, 1, data_500$EPT[i]*0.01)
}

data_500_mnar <- data_500

data_500_mnar [,"EPT"][ miss2 ==1] <- NA

summary(data_500_mnar)

# MNAR pattern -mixture

miss3 <- rep(0, nrow(data_500 ))

miss3 [( data_500$EPT >23) & (data_500$EPT <27)] <- 1

data_500_mnar_2 <- data_500

data_500_mnar_2 [,"EPT"][ miss3 ==1] <- NA

summary(data_500_mnar_2)

Appendix A.2 Ignorable Missingness Model

library(runjags)

ignorable <- "

model{

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)
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mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mar$EPT ,
AGE = data_500_mar$AGE ,
WS = data_500_mar$WS ,
LT = data_500_mar$LT ,
LS = data_500_mar$LS)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,
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list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

out1 <- run.jags(model=ignorable ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)

Appendix A.3 Selection Model

selection <- "

model{

# likelihood

for (i in 1:N){

R[i] ~ dbern(p[i])

logit(p[i]) = a0 + a1*EPT[i]

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)
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b2 ~ dnorm(0, pre.b)

a0 ~ dnorm(0, pre.a)

a1 ~ dnorm(0, pre.a)

pre.a ~ dgamma (.001 ,.001)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mnar$EPT ,
AGE = data_500_mnar$AGE ,
WS = data_500_mnar$WS ,
LT = data_500_mnar$LT ,
LS = data_500_mnar$LS ,
R = is.na(data_500_mnar$EPT )*1)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1,

a0=0.1, a1=0.1),

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2,

a0=0.2, a1 =0.2))
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out1 <- run.jags(model=selection ,

monitor=c("b0", "b1", "b2",

"a0", "a1",

"l.LT", "l.LS", "k.WS",

"k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)

Appendix A.4 Pattern-Mixture Model

pmm <- "

model{

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0[R[i]+1] + b1[R[i]+1]* REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0[1] ~ dnorm(0, pre.b) # non -missing

b0[2] ~ dnorm(b0[1]+05 , pre.b) #missing

b1[1] ~ dnorm(0, pre.b) # non -missing

b1[2] ~ dnorm(b1[1]-0.5, pre.b) #missing

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)
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# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mnar_2$EPT ,
AGE = data_500_mnar_2$AGE ,
WS = data_500_mnar_2$WS ,
LT = data_500_mnar_2$LT ,
LS = data_500_mnar_2$LS ,
R = is.na(data_500_mnar_2$EPT )*1)

inits <- list(list(b0=c(0,1), b1=c(1,0), b2=0,

l.LT=0, l.LS=0, k.WS=0,

k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=c(1,2), b1=c(2,1), b2=1,

l.LT=1, l.LS=1, k.WS=1,

k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

out1 <- run.jags(model=pmm ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",
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"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)
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Abstract. This tutorial introduces readers to latent class analysis (LCA)
as a model-based approach to understand the unobserved heterogeneity
in a population. Given the growing popularity of LCA, we aim to equip
readers with theoretical fundamentals as well as computational tools.
We outline some potential pitfalls of LCA and suggest related solutions.
Moreover, we demonstrate how to conduct frequentist and Bayesian LCA
in R with real and simulated data. To ease learning, the analysis is bro-
ken down into a series of simple steps. Beyond the simple LCA, two
extensions including mixed-model LCA and growth curve LCA are pro-
vided to aid readers’ transition to more advanced models. The complete
R code and data set are provided.
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1 Introduction

Latent class analysis (LCA) is a powerful mixture model that can be used to
group individuals into homogeneous classes, types, or categories based on the
responses to a set of observed variables or items. An important usage of LCA is
to develop typologies based on the characteristics of the identified classes. LCA
has been applied in a variety of substantive fields, such as profiles of personality
(Merz & Roesch, 2011), differential diagnosis among mental disorders (Cloitre,
Garvert, Weiss, Carlson, & Bryant, 2014), and dietary patterns among older
adults (Harrington, Dahly, Fitzgerald, Gilthorpe, & Perry, 2014). Overviews of
LCA can be found in Collins and Lanza (2010) and Depaoli (2021). Related and
more complex models are discussed in Hancock, Harring, and Macready (2019).

In this tutorial, readers will learn how to perform LCA and two of its ex-
tensions using Bayesian methods. Real and simulated examples are adopted for
illustration. The platform that will be used is R with the JAGS program in-
stalled. The reminder of the tutorial includes the following main sections. In
Section 2, we provide a more formal introduction to LCA, where the LCA for
binary items will be described in particular. Three fundamental issues associated
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with LCA are covered in Section 3. In Section 4, a real dataset used for illustra-
tion will be briefly introduced. The conventional LCA process is introduced in
Section 5, which is followed by its Bayesian counterpart in Section 6. Section 7
provides readers with two related extensions. Section 8 displays a guidance for
wrapping up the LCA results. The tutorial ends with a brief discussion.

2 Model and Notation

The LCA models are under the umbrella of finite mixture models (McLachlan
& Peel, 2000), where observations are assumed to have arisen from one of the
components, each being modeled by a density function from a parametric family
(e.g., exponential). A K-component mixture density of a J-dimensional random
vector yi can be expressed as

f (yi;θ) =

K∑
k=1

P (ci = k) f (yi | ci = k) =

K∑
k=1

wkf (yi;λk) ,

where wk indicates the mixing proportion1 of the k-th component with
∑

k wk =
1, λk the vector of unknown parameters of the k-th component, and f (yi;λk)
the k-th component density. Also, we introduce a latent classification variable,
ci, to represent the i-th individual’s class membership, where ci takes on discrete
values 1, ...,K, so that ci = k indicates that the i-th observation belongs to the
k-th class.

Although not realistic, there is one primary assumption, local independence,
that needs to be met in the traditional LCA. This assumption implies that
the items are independent of each other given latent class, meaning that latent
class membership explains all of the shared variance among the items. The
advantage of making the assumption is that it simplifies the component-level
density function to a product of item-level probability densities as follows

f (yi | ci = k) =

J∏
j=1

f (yij | ci = k) .

With the estimates, the posterior probability that an individual belongs to class
k can be calculated using Bayes’ rule

f̂ (ci = k | yi) =
ŵkf

(
yi; θ̂k

)
∑K

v=1 ŵvf
(
yi; θ̂v

) .
Now, let’s consider an LCA for binary items. Suppose we observe J dichoto-

mous variables, each of which contains {0, 1} possible outcomes, for individ-
uals i = 1, . . . , N . We denote as w1, . . . , wK the K mixing proportions with

1 The terms mixing proportions, weights, and class sizes are used interchangeably in
this tutorial.
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k=1 wk = 1. Let yij be the observed value of the j-th variable such that

yij = 1 if individual i endorses the j-th item, and yij = 0 otherwise. Let πjk

denote the item response probability (IRP) representing how likely an individual
in class k endorses the j-th item. Then the probability that an individual i in
class k produces a particular set of J outcomes on the items, assuming local
independence, is the product

f (yi | ci = k) =

J∏
j=1

π
yij

jk (1− πjk)
1−yij .

Therefore, the overall likelihood function across the K classes for yi is the
weighted sum

f (yi) =

K∑
k=1

wk

J∏
j=1

π
yij

jk (1− πjk)
1−yij ,

and the posterior classification probability can be written as

p̂ (ci = k | yi) =
ŵk

∏J
j=1 π̂

yij

jk (1− π̂jk)
1−yij∑K

v=1 ŵv

∏J
j=1 π̂

yij

jv (1− π̂jv)
1−yij

.

3 Fundamental Issues in LCA

3.1 Local Maxima

The basic idea of parameter estimation is to find the parameter estimates that
maximize the log-likelihood function; i.e., find those that yield the greatest like-
lihood of having generated the observed data. Therefore, we are usually looking
for the global maxima. However, finding the global maximum can be particularly
challenging for a gradient ascent algorithm (e.g., EM) when the log-likelihood
function of a LCA model is non-concave and has multiple local maxima.

To avoid arriving at a local maximum, it is always preferable to estimate the
model a couple of times with different sets of random initial values. The solution
that the majority of the sets converge to can then be considered the maximum
likelihood solution (McLachlan & Peel, 2000). Many software packages, such as
the poLCA R package, have implemented the use of multiple sets of random
initial values.

3.2 Boundary Parameter Estimates

It frequently occurs that one or more maximum likelihood (ML) estimates of
LCA models lie on the boundary of the parameter space, i.e., the estimates are
0 or 1. This issue not only results in numerical problems in the computation
of the variance-covariance matrix, but renders the provided confidence intervals
and significance tests for the parameters meaningless. Nonetheless, boundary
estimates can be readily avoided by imposing priors in Bayesian inference.
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3.3 Label Switching

For a mixture model with K components, there are K! possible permutations of
the labels. Label switching refers to the phenomenon where the likelihood of a
mixture model is invariant for any permutations of its component labels.

Let PK be the set of K! permutations of {1, . . . ,K}. If for some ρ ∈ PK ,
define θρ := (wρ(1), . . . , wρ(K),λρ(1), . . . ,λρ(K)), then for any ρ, ν ∈ PK ,

p(yi | θ
ρ) =

K∑
k=1

wρ(k)f
(
yi | λ

ρ(k)
)

=

K∑
k=1

wν(k)f
(
yi | λ

ν(k)
)

= p(yi | θ
ν).

In frequentist mixture models, label switching arises when working with resam-
pling methods (e.g., bootstrap) and simulation studies. Label switching is a well-
known and fundamental issue in Bayesian mixture analysis as well. In Bayesian
inference, if there is no prior information that distinguishes between the mix-
ture components, and the prior distribution is the same for the permutations of
θ, then the posterior distribution will be symmetric. When such information is
available, we can use a prior that imposes a constraint that makes the compo-
nents unique. However, such a prior might no longer be conjugate, and the Gibbs
sampler could lose its simplicity. In addition, the fact that label switching occurs
both within and between Markov chains further complicates label switching.

Fortunately, ample relabeling approaches are available for correcting the label
switching problem in different scenarios. Approaches proposed for frequentist
inference can be found in Yao (2015) and O’Hagan et al. (2019). For Bayesian
inference, Papastamoulis (2016) provides ad-hoc procedures relabeling MCMC
samples.

In the following example, we demonstrate the issue in a Markov chain. Plotted
are MCMC traces for the class weights of a four-class solution using a simulated
dataset. In the plot, one color indicates one parameter. The left-hand panel
displays the trace plot of the class weights before relabeling, where signs of label
switching are presented by the iterations drifted to different classes; whereas
the right-hand panel represents the trace plot after relabeling, where no drifted
iterations are found. Illustrative R code for solving label switching is available
in the supplementary materials.
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Figure 1. Illustration of the label switching issue based on a simulated dataset.

4 Real Data: National Youth Risk Behavior Survey 2019
(YRBS2019)

The National Youth Risk Behavior Survey (YRBS) is a school-based cross-
sectional survey that has been conducted biennially by the Centers for Disease
Control and Prevention (CDC) since 1991 to collect data on health habits and
experiences among high school students across the United States.

To discover the unobserved types of health behaviors, we follow a previous
study (Xiao, Romanelli, & Lindsey, 2019) and conduct an LCA on 13 health-
behavior items in YRBS2019 that encompass four domains including: 1) diet
(consumption of breakfast, fruits, juices, vegetables, milk, water, and soda), 2)
physical activities (moderate and vigorous physical activity [MVPA], muscle-
strengthening exercise [MSEs], and sports team participation [STP]), 3) sleeping
time, and 4) media use (television [TV], computer/video games).

The items are dichotomized to 0 and 1, in which three items are reverse
coded including television, computer/video games, and consumption of soda. A
sample of 1,000 complete cases will be used for the analysis.

5 The Conventional LCA

5.1 Class Enumeration

Determining the number of classes is always a challenging task in practice. The
decision of how many classes to retain in LCA is conventionally made through
the so-called class enumeration process. Class enumeration includes fitting a
series of LCA models with increment of one in K and selecting the “best” model
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via certain criterion (e.g., information criteria) or a set of criteria. To compare
the criteria across the fittings, we often tabulate or plot the fit information for
each model fitting, and study patterns to pick the optimal K. This process will
be illustrated in Section 5.4. For a more detailed introduction to model fit and
model selection in LCA, interested readers can refer to Section 4.3 of Collins and
Lanza (2010).

5.2 Classification Uncertainty

A popular approach to summarizing uncertainty in posterior classification is
entropy. In LCA, the entropy can be expressed as

EN(α) = −
n∑

i=1

K∑
k=1

αik logαik,

where αik represents the posterior classification probability of individual i de-
fined as

α̂ik =
ŵkfk

(
yi; θ̂k

)
∑K

v=1 ŵvfv

(
yi; θ̂v

) .
A normalized version of EN , called relative entropy (RE), that scales EN to
the interval [0, 1] has been commonly used in LCA and is defined as

RE = 1− EN/(N logK),

with RE closer to 1 indicating less classification uncertainty and clearer as-
signment of individuals to latent classes. A RE greater than 0.6 is generally
considered to be satisfactory class separation (Asparouhov & Muthen, 2014).

5.3 Interpretation of Latent Classes

The last step of an LCA analysis is the interpretation of the retained solution,
which involves more human judgement. The researchers need to examine the
class-specific parameter estimates and then label each of the individual classes.
Such labels should be related to the included items. It is beneficial to display
the estimates in a plot (e.g., line plot). However, if a large number of classes is
identified, it is more sensible to number the classes instead of assigning labels
that cannot be easily distinguished verbally anymore. Another issue that may
merit consideration is when the emergent classes differ merely quantitatively.
In other words, the plotted lines are generally parallel. This phenomenon could
indicate that a single sample was coerced into K levels, such as low, medium,
and high severity. When confronted with such classes, the solution should be
interpreted cautiously.



Bayesian Latent Class Analysis 133

5.4 Software

LCA can be performed using a variety of commercial statistical packages, in-
cluding Mplus (Muthen & Muthen, 1998-2017), SAS (SAS, 2016), STATA
(STATA, 1985-2019), and Latent GOLD (Vermunt & Magidson, 2016). These
commercial packages are user-friendly, can handle a wide range of mixture mod-
els, and offer cutting-edge approaches to handling missing data, covariates, and
distal outcomes.

Various free R packages pertinent to mixture modeling are listed on the Cran
Task Views: Psychometric Models and Methods and Clusters (https://cran.r
-project.org/web/views), such as poLCA (Linzer & Lewis, 2011),MCLUST
(Scrucca, Fop, Murphy, & Raftery, 2016), and tidyLPA (Rosenberg, Beymer,
Anderson, van Lissa, & Schmidt, 2018). Haughton et al. (2009) provides a review
of three packages, namely, Latent GOLD, MCLUST, and poLCA.

In this tutorial, we demonstrate the implementation of the frequentist LCA
with poLCA, and the Bayesian LCA with JAGS.

5.5 Demonstration of LCA on YRBS2019 Using poLCA Package

The following chunk of code loads required packages for the entire tutorial.

library("poLCA") # To use poLCA function

library("label.switching") # To address label switching

library("runjags") # To use JAGS via R

library("glue") # To insert R code within strings

library("gt") # For pretty tables

library("knitr") # To use the "kable" function

library("kableExtra") # For more about kable

library("cowplot") # For pretty plots

library("scatterplot3d") # For 3-D plot

library("ggpubr") # To use the "ggarrange" function

library("coda") # To use Geweke’s diagnostic test

library("MASS") # To use the "mvrnorm" function

library("tidyverse") # For everything else...

This chunk of code loads saved datasets and outputs for the following sections
to reduce knitting time.

load("C:/Users/Chris/Desktop/LCA/objects.RData")

Step 1: Conduct class enumeration To use the poLCA() function, the items
must be coded as integer values starting at one for the first outcome category, and
increasing to the maximum number of outcomes for each variable. Consequently,
we add one to all the responses resulting in binary outcomes of {1, 2}.

dat <- dat.yrbs + 1 # poLCA only allows positive integers

https://cran.r-project.org/web/views
https://cran.r-project.org/web/views


134 M. Qiu

Notice that a specific R function lca re() is created for computing relative
entropy. The reason is that poLCA defines entropy as a measure of dispersion
(or concentration) in a probability mass function, which is different from the
widely used definition (e.g., in Mplus). For computational details, readers can
refer to the help document of poLCA.entropy() function.

# Function for computing relative entropy

lca_re <- function(x) {

nom <- (sum(-x$posterior*log(x$posterior)))

denom <- (nrow(x$posterior)*log(ncol(x$posterior)))

re <- 1 - (nom/denom)

if (is.nan(re) == TRUE) re <- NA

return(re)

}

To specify an LCA model, poLCA() requires users to provide a model formula.
For the basic LCA model without covariates, the formula takes the following
form:

f <- cbind(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13)

~ 1

where the observed variables or items are bound together within cbind(Y1,

Y2, Y3, ...), and the 1 indicates the LCA model without covariates. For LCA
with covariates, one must substitute the 1 with a function of covariates as follows:

f <- cbind(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13)

~ X1 + X2 + X3

When there are a large amount of items, as in our example, we can define
the formula with the following code to save line space and typing time:

J <- ncol(dat) # number of items

f <- as.formula(paste("cbind(",paste(paste0("Y",1:J),collapse=","),

")","~1"))

# This is equivalent to: f <- cbind(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,

# Y11,Y12,Y13) ~ 1

To estimate the desired LCA model via the poLCA() function, users need to
pass the model formula, the dataset stored as a data frame, and the number of
classes to the formula, data, and nclass arguments, respectively. Information
about the remaining optional arguments of the function can be obtained by
entering the command help(poLCA) or simply ?poLCA at the R console window.
Nevertheless, we would like to place an emphasis on the nrep argument, which
specifies the number of times to estimate the model using different sets of random
starting values. As discussed in Section 3.1, this is desirable to prevent solutions
from converging to local instead of global maxima of the likelihood function. For
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example, we set nrep to 20 in the following code. Complex models often require
more replications, especially in high-stakes applications.

In addition, it should be noted that poLCA() only provides two fit indices,
AIC and BIC, by default. Other fit indices (e.g., aBIC) can be calculated man-
ually based on the model results as shown in the code below.

# Class enumeration from K=1 to K=6

out_lca <- list() # container of model fittings

npar <- ll <- bic <- abic <- caic <- awe <- re <- c() # containers

# of other information

set.seed(123)

for(k in 1:6){

fit <- poLCA(formula=f, data=dat, nclass=k, maxiter=10000,

tol=1e-5, nrep=20, verbose=F, calc.se=T)

out_lca[[k]] <- fit

npar[k] <- fit$npar

ll[k] <- fit$llik

bic[k] <- fit$bic

abic[k] <- -2*(fit$llik) + fit$npar*log((fit$Nobs+2)/24)

caic[k] <- -2*(fit$llik) + fit$npar*(log(fit$Nobs)+1)

awe[k] <- -2*(fit$llik) + 2*(fit$npar)*(log(fit$Nobs)+1.5)

re[k] <- round(lca_re(fit), 3)

}

class <- paste0("Class-", 1:6)

# Store information in a data frame

poLCA.tab <- data.frame("Class"=class, "Npar"=npar, "LL"=ll,

"BIC"=bic, "aBIC"=abic, "CAIC"=caic, "AWE"=awe, "RE"=re)

Step 2: Model fit summary table See Table 1 for the summary of fit.

Step 3: Elbow plot of information criteria It is useful to plot the values
of the selected information criteria (ICs) for visual inspection. Lower IC values
signify a more optimal balance of model fit and parsimony. Ideally, a minimum
value in the set of fittings indicates the optimal solution. However, it is not
uncommon in practice that ICs continue to decrease as K increases. That is,
there is no global minimum. In such instances, the K at an “elbow” of point of
“diminishing returns” in model fit indices should be selected as the best solution.
For the empirical example, the following elbow plot in Figure 2 suggests that
the 2-class solution fits best based on AWE, whereas the 4-class solution is
supported by CAIC, BIC, and aBIC. Therefore, the 4-class solution appears to be
an appealing candidate. Next, this solution’s relative entropy is 0.748 (see Table
1), which is relatively high (> 0.6) and indicative of satisfactory classification
quality. Considering the current information, we decide on the 4-class solution.
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Table 1. Model fit summary table based on poLCA outputs.

Class Npar LL BIC aBIC CAIC AWE RE

Class-1 13 -7575.656 15241.11 15199.82 15254.11 15369.91 NA

Class-2 27 -7278.148 14742.81 14657.05 14769.81 15010.31 0.666

Class-3 41 -7171.830 14626.88 14496.66 14667.88 15033.10 0.721

Class-4 55 -7103.205 14586.34 14411.65 14641.34 15131.26 0.748

Class-5 69 -7075.080 14626.79 14407.65 14695.79 15310.43 0.764

Class-6 83 -7050.491 14674.33 14410.71 14757.33 15496.67 0.704
1 Npar = number of parameters;
2 LL = log data likelihood;
3 BIC = bayesian information criterion;
4 aBIC = sample size adjusted BIC;
5 CAIC = consistent Akaike information criterion;
6 AWE = approximate weight of evidence criterion;
7 RE = relative entropy.

14400

14700

15000

15300

1 2 3 4 5 6
Number of Classes

In
fo

rm
at

io
n 

C
rit

er
ia

 V
al

ue

AWE CAIC BIC aBIC

Figure 2. Elbow plot of the information criteria for the one-to six-group LCA of health
behaviors.
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Step 4: Plot class profiles The profiles of the latent classes are shown in
Figure 3.
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Figure 3. Conditional probability of endorsing health-behavior items for each class.

Step 5: Interpretation of emergent classes According to the above item
response probability plot, we can assign labels to the emergent classes. The first
class is of medium size (22.44%), and shows low engagement in health diet behav-
ior, high engagement in exercise, and moderately high engagement in computer
use. Hence, it can be characterized as the class of irregular diet, high exercise,
moderately high computer use. The second class is small (7.67%), and charac-
terized by the highest engagement in healthy diet behaviors, low engagement
in exercise, and relatively low computer use. We call this class the healthy diet,
low exercise, relatively low computer use. The third class is the largest (42.16%),
and can be called the lowest engagement in health-promoting behaviors due to
the low engagement in healthy diet behaviors and physical activities and the
highest engagement in computer use. The fourth class, consistent engagement in
health-promoting behaviors, is of medium size (27.73%) and demonstrates moder-
ate probabilities of a healthy dietary pattern, frequently physical activities, high
probability of longer sleeping time, and low probability of playing computer more
than 3 hours per day.
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6 Bayesian LCA Using JAGS

6.1 Specification of Priors

The model parameters of particular interest in LCA with binary items include
mixing proportions w and binary IRPs π. Here, w is assumed to follow a Dirich-
let distribution denoted as

w ∼ D (d1, . . . , dK)

with the hyperparameters d1, . . . , dK which represent the prior proportion of
individuals in each of the K classes. The conjugate prior for IRP is the Beta
distribution denoted as

πjk ∼ B (α, β)

where the hyperparameters α and β represents the prior sample sizes for the
number of individuals answering “Yes” and “No”, respectively.

6.2 Convergence Diagnostic

The convergence diagnostic method adopted in this tutorial is Geweke’s test,
which compares the location of the sampled parameter on two different time
intervals of the chain. If the mean values of the parameter in the two time
intervals are close to each other we then assume that the two parts of the chain
have similar locations in the state space, and it is assumed that the two parts
come from the same distribution. An absolute value of the z-score produced by
Geweke’s test above 2 could be considered as potentially problematic.

6.3 Demonstration of Bayesian LCA on YRBS2019

Step 1: Define JAGS model The following code specifies a JAGS model
and stores the model in an R object called lca bin. In fact, the model can be
specified as a character string within R, or in an external text file. The former
avoids the need for multiple text files, whereas the latter is preferred for more
complex model formulations. In the tutorial, we adopt the former way.

Every model specification must begin with informing JAGS that it is a
model specification using the model{} block. Within the model block, we specify
data likelihood for every single data point using a for loop. Note that, there
are two types of data in a mixture model−unobserved class membership z and
observed data y. Thus, we specify likelihood for z and y, respectively, as shown
in the “likelihood specification” chunk. First, we let z[i] follows a categorical
distribution with the dcat() call where w[1 : K] is a vector of non-negative
mixing proportions of length K. Second, the likelihood for y is specified through
a nested for loop because there are two indices (i.e., i = 1, . . . , N and j =
1, . . . , J) associated with each data point of y, and we let y[i, j] follow a Bernoulli
distribution with the dbern() call where π[j, z[i]] represents the IRP for the j-th
item within the z[i]-th class.
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After specifying the data likelihood, we then impose priors on the model
parameters (see the “prior specification” chunk). As discussed in Section 6.1,
we impose Dirichlet and beta priors on mixing proportions (w) and IRPs (π),
respectively.

# Build model: LCA for binary items

lca_bin <- "

model{

#===========================

# likelihood specification

#===========================

for(i in 1:N) {

Z[i] ~ dcat(w[1:K]) # class membership for the i-th subject

for(j in 1:J) {

Y[i,j] ~ dbern(pi[j,Z[i]]) # Bernoulli density function

}

}

#===========================

# prior specification

#===========================

# --------- w ---------

w[1:K] ~ ddirch(alpha[1:K]) # Dirichlet prior for

# mixing proportions

for(k in 1:K) {alpha[k] <- 1}

# --------- pi ---------

for(k in 1:K) {

for(j in 1:J) {

pi[j,k] ~ dbeta(3,3) # beta prior for conditional

# probabilities

}

}

}"

Step 2: Specify initial values Users of JAGS have the option of supplying
their own initial values or just using those generated by the random number
generators (RNGs). For user-specified initial values, list starting values for each
of the parameters in the model as follows:

# User-specified initial values

inits <- list(list(w=rep(0.25,4), pi=matrix(rbeta(J*K.est,3,3),

nrow=J, ncol=K.est)))
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There are four RNGs provided by the base module in JAGS with the fol-
lowing names:

– “base::Wichmann-Hill”
– “base::Marsaglia-Multicarry”
– “base::Super-Duper”
– “base::Mersenne-Twister”

To set the starting state of the RNG, one can simply supply the name of the
RNG and its seed (e.g., 111) as shown in the following code:

# Automatically generated initial values

inits <- list(".RNG.name"="base::Wichmann-Hill", ".RNG.seed"=111)

Step 3: Fit the model via JAGS We need to bundle the data and constants
used in the JAGS model into a list that JAGS can read (see the Dat object
in the following code). The call to run.jags() reads, complies, executes, and
returns the model information along with MCMC samples and summary statis-
tics. Before a model can be executed, the run.jags() function requires a valid
JAGS model to be passed to the model argument and a character string of
monitored parameters to the monitor argument.

Furthermore, the function allows users to specify additional arguments, in-
cluding but not limited to: 1) the method with which to call JAGS (e.g., rjags);
2) number of Markov chains to run (e.g., n.chain=1); 3) the number of adaptive
iterations used at the start of the chain (e.g., adapt=1000); 4) the number of
burnin iterations (e.g., burnin=1000); 5) number of iterations per chain (e.g.,
sample=10000) in addition to the adaptive and burnin iterations; and 6) thin-
ning interval for monitors (e.g., thin=1).

# Bundle data for JAGS

Dat <- list("Y"=as.matrix(dat.yrbs), "N"=N, "J"=J, "K"=4)

# Run the analysis

set.seed(1234)

out_bin <- run.jags(model=lca_bin, monitor=c(’w’,’pi’),

data=Dat, inits=inits, method="rjags",

n.chains=1, adapt=1000, burnin=1000,

sample=10000, thin=1)

Step 4: Inspect label switching The trace plots of the weight of each class
are displayed in Figure 4 and from it, no signs of label switching are found.
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Figure 4. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in Note that the start argument of the window()
function include the adaption (i.e., na) and burn-in (i.e., nb) phases, so if one has
12,000 iterations with 1,000 adaption and 1,000 burn-in samples, the following
code will retain the iterations from 2,001 to 12,000.

na <- 1000; nb <- 1000

out.burn <- window(out_bin$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic via Geweke’s test

con.diag <- geweke.diag(out.burn)

# |z| > 2 is potentially problematic

flag.cov <- which(abs(con.diag[[1]]$z)>2)

# double check via trace plot

traceplot(out.burn[[1]][ ,flag.cov])
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Figure 5. Trace plot of the parameter flagged by Geweke’s test.

Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

# Note: pi[j,k] is the IRP of the j-th item in the k-th class

round(post.means, digits=3)

## w[1] w[2] w[3] w[4] pi[1,1] pi[2,1] pi[3,1] pi[4,1]

## 0.234 0.277 0.411 0.078 0.792 0.047 0.069 0.179

## pi[5,1] pi[6,1] pi[7,1] pi[8,1] pi[9,1] pi[10,1] pi[11,1] pi[12,1]

## 0.277 0.680 0.797 0.847 0.816 0.760 0.770 0.568

## pi[13,1] pi[1,2] pi[2,2] pi[3,2] pi[4,2] pi[5,2] pi[6,2] pi[7,2]

## 0.747 0.943 0.783 0.310 0.613 0.378 0.963 0.881

## pi[8,2] pi[9,2] pi[10,2] pi[11,2] pi[12,2] pi[13,2] pi[1,3] pi[2,3]

## 0.817 0.799 0.815 0.842 0.663 0.867 0.773 0.136

## pi[3,3] pi[4,3] pi[5,3] pi[6,3] pi[7,3] pi[8,3] pi[9,3] pi[10,3]

## 0.083 0.107 0.211 0.697 0.851 0.127 0.153 0.370

## pi[11,3] pi[12,3] pi[13,3] pi[1,4] pi[2,4] pi[3,4] pi[4,4] pi[5,4]

## 0.696 0.415 0.798 0.677 0.851 0.562 0.770 0.512

## pi[6,4] pi[7,4] pi[8,4] pi[9,4] pi[10,4] pi[11,4] pi[12,4] pi[13,4]

## 0.723 0.663 0.160 0.220 0.289 0.598 0.553 0.730

Step 8: Plot class profiles for interpretation Compared with Figure 3, the
class profiles yielded by the Bayesian LCA (Figure 6) look quite similar to that
provided by the conventional LCA.
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Figure 6. Probability of endorsing health-behavior items for each class.

7 Extensions

7.1 Bayesian Mixed-mode Latent Class Analysis (MMLCA)

Specification of Model This section focuses on MMLCA for which observed
variables are a mix of binary and continuous data. Suppose we observe M vari-
ables consisting of J binary variables and L continuous variables for individuals
i = 1, · · · , N . Let uij be the observed value of the j-th binary item such that
uij = 1 if the i-th individual endorses the item (i.e., answer “Yes”), and uij = 0
otherwise, where j = 1, . . . , J ; let vil be the observed value of the l-th continuous
item.

Assuming local independence, the probability that an individual i in class k
produces a particular set ofM = J+L responses yi = {ui1, ui2, . . . , uiJ ; vi1, vi2, . . . , viL}
is a finite mixture of conditional densities

f (yi) =

K∑
k=1

p (ci = k) f (yi | ci = k) =

K∑
k=1

wkg (ui | k) g (vi | k) ,

where g (ui | k) is the conditional density of the vector of observed binary items
and g (vi | k) is the conditional density of the vector of observed continuous
items for the i-th individual given the k-th class, respectively.

Because of the local independence assumption, the two conditional densi-
ties can be further expanded. The g (ui | k) can be expressed as a product of
Bernoullis

g (ui | k) =
J∏

j=1

π
uij

jk (1− πjk)
1−uij
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where πjk represents the class-specific item response probability (IRP) that ob-
servations in the k-th class endorse the j-th binary variable; the g (vi | k) can
be written as a product of univariate Gaussians

g (vi | k) =
L∏

l=1

1√
2πσ2

lk

exp

{
− 1

2σ2
lk

(vil − µlk)
2

}
,

where µlk and σlk represent the mean and standard deviation of the l-th contin-
uous variable, respectively.

Specification of Priors Following the priors in LCA for binary items, we spec-
ify Dirichlet prior and Beta prior to mixing proportions and IRPs, respectively

w ∼ D (d1, . . . , dK) ,

πjk ∼ B(α, β).

For the parameters associated with the continuous items, we specify normal prior
and Gamma prior to mean and precision (τ = 1/σ2), respectively

µlk ∼ N
(
µ0, σ

2
0

)
,

τjk ∼ G(λ, κ).

7.2 Demonstration of Bayesian MMLCA on Simulated Data

We simulate a dataset of 500 subjects from an MMLCA model with 3 classes
and 8 items (4 binary and 4 continuous). The parameters shown in Table 2 serve
as the population values for the data generating model. Each subject’s class
membership is generated from unequal class sizes (w) of 0.5, 0.3, and 0.2. For
the binary items, the class-specific response probabilities (π) are set to 0.9 in
Class 1, to 0.9 for the first half of the items and 0.1 to the other half in Class
2, and to 0.1 in Class 3. For the continuous items, the class-specific item means
(µ) are set to 1 in class 1, to 0 in Class 2, and to −1 in Class 3, with the item
variances (σ2) fixed at 1 over the three classes.

Table 2. Population values for generating the dataset for MMLCA.

Class w π µ σ2

1 0.5 0.9, 0.9, 0.9, 0.9 1, 1, 1, 1 1, 1, 1, 1

2 0.3 0.9, 0.9, 0.1, 0.1 0, 0, 0, 0 1, 1, 1, 1

3 0.2 0.1, 0.1, 0.1, 0.1 -1, -1, -1, -1 1, 1, 1, 1

Step 1: Define JAGS model
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# Build model: LCA for binary and continuous items

lca_mix <- "

model{

#===========================

# likelihood specification

#===========================

for(i in 1:N) {

Z[i] ~ dcat(w[1:K]) # Class membership for the i-th subject

for(j in 1:J) {

Y[i,j] ~ dbern(pi[j,Z[i]]) # Bernoulli density function

}

for(l in 1:L) {

X[i,l] ~ dnorm(mu[l,Z[i]], tau[l,Z[i]]) # normal density

}

}

#===========================

# prior specification

#===========================

# --------- w ---------

w[1:K] ~ ddirch(alpha[1:K]) # Dirichlet prior for

#mixing proportions

for(k in 1:K) {alpha[k] <- 1}

# --------- pi ---------

for(k in 1:K) {

for(j in 1:J) {

pi[j,k] ~ dbeta(3,3) # beta prior for IRPs

}

}

# --------- mu & tau ---------

for(k in 1:K) {

for(l in 1:L) {

mu[l,k] ~ dnorm(0,1.0E-6) # normal prior for mean

tau[l,k] ~ dgamma(0.01,0.01) # gamma prior for precision

}

}

}"

Step 2: Specify initial values

# Automatically generated initial values

inits <- list(list(".RNG.name"="base::Wichmann-Hill",
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".RNG.seed"=111))

Step 3: Fit the model via JAGS

# Bundle data for JAGS

Dat <- list("Y"=dat.mmlca[,1:J], "X"=dat.mmlca[,(J+1):(J+L)],

"N"=N, "J"=J, "L"=L, "K"=3)

# Run the analysis

set.seed(1234)

out_mix <- run.jags(model=lca_mix, monitor=c(’w’,’pi’,’mu’,’tau’),

data=Dat, inits=inits, method="rjags", n.chains=1,

adapt=1000, burnin=1000, sample=10000, thin=1)

Step 4: Inspect label switching Similarly, no signs of label switching are
found in Figure 7.
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Figure 7. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in

na <- 1000; nb <- 1000

out.burn <- window(out_mix$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic using Geweke’s test

con.diag <- geweke.diag(out.burn)

flag.noncov <- which(abs(con.diag[[1]]$z)>2)
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Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

round(post.means, digits=3)

## w[1] w[2] w[3] pi[1,1] pi[2,1] pi[3,1] pi[4,1] pi[1,2]

## 0.483 0.320 0.197 0.889 0.905 0.912 0.905 0.930

## pi[2,2] pi[3,2] pi[4,2] pi[1,3] pi[2,3] pi[3,3] pi[4,3] mu[1,1]

## 0.835 0.109 0.133 0.138 0.203 0.152 0.178 0.960

## mu[2,1] mu[3,1] mu[4,1] mu[1,2] mu[2,2] mu[3,2] mu[4,2] mu[1,3]

## 0.912 1.051 1.130 0.081 0.119 0.042 -0.043 -1.044

## mu[2,3] mu[3,3] mu[4,3] tau[1,1] tau[2,1] tau[3,1] tau[4,1] tau[1,2]

## -0.865 -0.806 -0.907 1.179 0.849 1.002 1.087 1.062

## tau[2,2] tau[3,2] tau[4,2] tau[1,3] tau[2,3] tau[3,3] tau[4,3]

## 1.100 0.893 1.162 1.061 0.942 0.957 0.706

Step 8: Plot class profiles for interpretation The profiles of the classes are
shown in Figure 8.
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Figure 8. Probability of binary items (left panel) and mean score of continuous items
(right panel) for each class.

7.3 Bayesian Latent Growth Mixture Model (LGMM)

Specification of Model The latent growth curve model (LGCM) characterizes
changes in responses over time and estimate inter-individual variability in those
changes. The LGCM can be decomposed into two components: the measurement
model and the structural model. Suppose that individuals i = 1, . . . , N are
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assessed repeatedly at T time points. The measurement model can be expressed
as

yi = Λbi + ϵi,

where yi = (yi1, . . . , yiJ)
T
is a T × 1 vector of repeated-measures for individual

i, Λ is a matrix of factor loadings with T rows and m (number of latent factors)
columns, and ϵi is a T × 1 vector of measurement errors. The entries of Λ define
the shape of growth trajectories, for instance,

Λ =


1 0
1 1
1 2
1 3


represents a linear growth curve. The structural model is defined as follows

bi = β + ui,

where bi is a m× 1 vector of latent factors, β is a m× 1 vector of latent factor
means, and ui is a m × 1 vector of random effects that are independent of the
measurement errors. Conventional LGCM assumes that

ϵi ∼ N(0,Ω),

ui ∼ N(0,Ψ),

where Ω is a T ×T covariance matrix of measurement errors, and Ψ is a m×m
covariance matrix of latent factors. In this tutorial, we follow the traditional
assumption that Ω = σ2I. Putting the two models together, yi has the following
density function

f (yi | Θ) = Φ
(
µ = Λβ, Σ = ΛΨΛT +Ω

)
,

where Θ and Ψ represent the set of all parameters and the T -dimensional mul-
tivariate normal density function, respectively.

The LGMM is formulated much the same way as the LCA in Section 2. The
difference is that we now substitute the component density in LCA for binary
items (e.g., product of Bernoullis) with the density of LGCM. That is, in a
LGMM, each latent class describes a distinct growth trajectory. Therefore, the
mean and covariance matrix can be written at the latent class level

µk = Λβk,

Σk = ΛΨkΛ
T +Ωk.

Specification of Priors

w ∼ D (d1, . . . , dK) ,

β ∼ N
(
µ0, σ

2
0

)
,

Ψ−1 ∼ W (V ,m) ,

1/σ2 ∼ G (α, β) ,
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where, for the Wishart prior, V and m represent the scale matrix and the degree
of freedom, respectively.

7.4 Demonstration of Bayesian LGMM via Simulated Data

We simulate a dataset of 200 subjects from a LGMM model with 3 classes and
4 time points. The parameters shown in Table 3 serve as the population values
for the data generating model. Each subject’s class membership is generated
from unequal class sizes (w) of 0.5, 0.3, and 0.2. Growth factor means are set to

(βI1, βS1)
T
= (2, 0)T in Class 1, to (βI2, βS2)

T
= (4,−0.3)T in Class 2, and to

(βI3, βS3)
T
= (6, 0.3)T in Class 3. In addition, Ψ =

(
0.3 0
0 0.1

)
and σ2 = 0.5 for

the three classes.

Table 3. Population values for generating the dataset for LGMM.

Class w βI βS Ψ σ2

1 0.5 2 0 0.3, 0, 0, 0.1 0.5

2 0.3 4 -0.3 0.3, 0, 0, 0.1 0.5

3 0.2 6 0.3 0.3, 0, 0, 0.1 0.5

Step 1: Define JAGS model

# Build model: latent growth mixture model

gmm <- "

model {

#===========================

# likelihood specification

#===========================

for (i in 1:N) {

Z[i] ~ dcat(w[1:K])

for(t in 1:Time) {

# model the growth curve

y[i,t] ~ dnorm(muy[i,t], pre_sig2)

muy[i,t] <- LS[i,1]+(t-1)*LS[i,2]

}

LS[i,1:2] ~ dmnorm(muLS[Z[i],1:2], Inv_cov[1:2,1:2])

}

#===========================

# prior specification

#===========================
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# --------- w ---------

w[1:K] ~ ddirich(alpha[1:K])

for(k in 1:K) {alpha[k] <- 1}

# --------- muLS ---------

for(k in 1:K) {

# normal prior for mean of latent intercept

muLS[k,1] ~ dnorm(0,0.001)

# normal prior for mean of latent slope

muLS[k,2] ~ dnorm(0,0.001)

}

# --------- Inv_cov ---------

# Wishart prior for precision matrix

Inv_cov[1:2,1:2] ~ dwish(R[1:2,1:2],2)

Cov_b[1:2,1:2] <- inverse(Inv_cov[1:2,1:2])

R[1,1] <- 1

R[2,2] <- 1

R[2,1] <- R[1,2]

R[1,2] <- 0

# --------- pre_sig2 ---------

pre_sig2 ~ dgamma(0.1,0.1) # gamma prior for precision

sig2 <- 1/pre_sig2

}"

Step 2: Specify initial values

# Automatically generated initial values

inits <- list(".RNG.name"="base::Wichmann-Hill", ".RNG.seed"=111)

Step 3: Fit the model via JAGS

# Bundle data for JAGS

Dat <- list("y"=dat.gmm$y, "Time"=4, "N"=200, "K"=3)

# Run the analysis

set.seed(1234)

out_gmm <- run.jags(model=gmm, monitor=c(’w’,’muLS’,’Cov_b’,’sig2’),

data=Dat, inits=inits, method="rjags", n.chains=1,

adapt=1000, burnin=1000, sample=10000, thin=1)

Step 4: Inspect label switching Similarly, no signs of label switching are
found in Figure 9.



Bayesian Latent Class Analysis 151

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

w

Class 1
Class 2
Class 3

Figure 9. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in

na <- nb <- 1000

out.burn <- window(out_gmm$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic via Geweke’s test

con.diag <- geweke.diag(out.burn)

flag.noncov <- which(abs(con.diag[[1]]$z)>2)

Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

sum.stats[[1]] # display part 1 of the

# summary statistics

## Mean SD Naive SE Time-series SE

## w[1] 0.47670814 0.04073104 0.0004073104 0.0012239491

## w[2] 0.21085352 0.03102677 0.0003102677 0.0004599641

## w[3] 0.31243835 0.03959052 0.0003959052 0.0011664481

## muLS[1,1] 1.93669961 0.08287253 0.0008287253 0.0028227498

## muLS[2,1] 5.97551073 0.12216168 0.0012216168 0.0028493240

## muLS[3,1] 3.94876895 0.12075438 0.0012075438 0.0043165390

## muLS[1,2] 0.03924477 0.04421641 0.0004421641 0.0012517566

## muLS[2,2] 0.29034785 0.06514009 0.0006514009 0.0011798124

## muLS[3,2] -0.38549236 0.05797084 0.0005797084 0.0015226840

## Cov_b[1,1] 0.26303998 0.05820339 0.0005820339 0.0020464038
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## Cov_b[2,1] 0.03346480 0.02181222 0.0002181222 0.0007339775

## Cov_b[1,2] 0.03346480 0.02181222 0.0002181222 0.0007339775

## Cov_b[2,2] 0.10267863 0.01584738 0.0001584738 0.0003574567

## sig2 0.26908279 0.01841780 0.0001841780 0.0003431461

Step 8: Plot class profiles for interpretation The profiles of the classes are
displayed in Figure 10.
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Figure 10. Scatter line plot of growth trajectories. Black thin lines correspond to indi-
vidiual trajectories, colored thick lines correspond to the estimated growth trajectories
representing the three classes.

8 Reporting the Results for LCA

Weller and Faubert (2020) provides guidelines on the information that should
be included in an LCA report:

(1) Substantive theories guiding the choice of models to be evaluated are syn-
thesized

(2) Manifest variables are defined and their appropriateness is justified
(3) Report data characteristics (e.g., descriptive statistics, missing data)
(4) Provide statistical software used and the version number
(5) Estimation method is discussed
(6) Criteria used for selecting class model, both statistical (e.g., BIC, aBIC,

CAIC) and substantive
(7) Tabulate at least two fit indices, entropy, and smallest average latent class

posterior probability
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(8) Latent class proportions and conditional probabilities are reported and dis-
played (e.g., line plot)

(9) Boundary parameter estimates are highlighted and implications are dis-
cussed

(10) Meaningfulness of the latent class proportions is considered

Another comprehensive summary table can be found in Hancock et al. (2019,
p. 165), which lists key elements that should be addressed in any manuscript’s
methodological approach to LCA. In addition, Depaoli (2021) provides a tem-
plate for how to write up Bayesian LCA results for an empirical study (see
Section 9.7, p. 340).

9 Discussion

LCA is a popular technique that allows researchers to cluster individuals into
latent classes based on response patterns to manifest variables. In this tutorial,
LCA is described in a pedagogical manner to address the main challenge con-
fronting applied researchers−how to transition from statistical modeling to com-
puter programming. Although we demonstrated both the conventional LCA and
its Bayesian counterpart, we put emphasis on the Bayesian side. The Bayesian
framework can be advantageous for estimating LCA, particularly when sample
sizes are relatively small. The use of priors can improve the ability to obtain vi-
able and interpretable results. Nonetheless, the Bayesian approach is not exempt
from pitfalls. For instance, the label switching phenomenon makes the generated
MCMC samples non-identifiable and thus complicates the posterior inference.
Additionally, we highlighted other issues that one should be aware of when per-
forming LCA, including boundary estimates and quantitatively different classes.

The basic LCA for binary items along with the real data example should
provide the foundation for the readers to move on smoothly to the two more
advanced extensions: mixed-mode LCA and latent growth curve mixture model.
In the JAGS implementation, we decomposed these modeling approaches into
eight steps. Such a step-by-step procedure should allow the readers to apply
similar models in practice without much difficulty. We hope that this tutorial
serves as an approachable entry to a particular context of the extensive Bayesian
statistics literature.

Note

Supplementary materials can be downloaded here: https://doi.org/10.35566/
jbds/v2n2/qiu.
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Abstract. In behavioral studies, the frequency of a particular behavior
or event is often collected and the acquired data are referred to as count
data. This tutorial introduces readers to Poisson regression models which
is a more appropriate approach for such data. Meanwhile, count data
with excessive zeros often occur in behavioral studies and models such
as zero-inflated or hurdle models can be employed for handling zero-
inflation in the count data. In this tutorial, we aim to cover the necessary
fundamentals for these methods and equip readers with application tools
of JAGS. Examples of the implementation of the models in JAGS from
within R are provided for demonstration purposes.

Keywords: Count data · Zero-inflation · Poisson regression · ZIP model
· Hurdle model

1 Introduction

In behavioral studies, information such as the number of times a certain behav-
ior or event occurs is often collected in order to help understand individuals.
Such collected nonnegative and discrete data are typically called count data.
While normal distribution is the commonly used distribution in most research,
specifying a normal distribution for such outcome variables can be inappropri-
ate for at least two reasons: (1) negative and real expected values in a normal
distribution is possible while only nonnegative integer values are allowed in such
count data; and (2) the distribution of count data is often positively skewed
and its variance usually increases along with its mean, while mean and variance
are assumed to be unrelated in normal distributions. Poisson regression is more
appropriate than general linear regression for such count data, and it models the
non-negative integer responses against linear predictors through a link function.

Meanwhile, count data in behavioral research are often heavily skewed due
to large amount of zero responses. The zero responses consist of responses from
either the individuals who never engaged in such behaviors or those who have
engaged but not currently (Grimm & Stegmann, 2019). For example, in alco-
hol use disorder (AUD) studies, the number of alcohol drinks is often collected
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from the participants. A zero response could either from participants who never
engaged in drinking behavior, or those who drink but not when they are being
sampled. The zero-inflated Poisson (ZIP; Lambert (1992)) model was proposed
when zeros are assumed to be from both scenarios while the hurdle model (Mul-
lahy, 1986) is appropriate when zeros are assumed to be from only one source. In
this tutorial, Poisson regression models for count data, as well as ZIP and hur-
dle models for zero-inflated response variables are discussed under the Bayesian
framework. Examples of estimating these models with JAGS (Plummer, 2003)
and R (Team, 2013) package runjags (Denwood, 2016) are illustrated.

1.1 Poisson Regression

The responses Y = (Y1, .., Yn)
T are count of independent events occur in a fixed

time interval for n participants. The likelihood function for each response is
specified as:

Yi ∼ Poisson(λi), λi > 0,

where the rate parameter λi denotes the average number of count per time
interval for each person. The density function can be written as p(Yi = k) =
e−λiλ

k
i

k! for k > 0. The parameter λi can be modeled as a linear function of a
set of predictors X with a log link function such that: log(λi) = β0 + β1X1i +
β2X2i + ...+ βPXPi. The parameter β0 is the intercept, which is the predicted
mean of exp(Y ) when X is 0. The parameter βj is the coefficient corresponding
to the changes in predictor Xp: one unit increase in X is associated with the
expected change in the outcome exp(Y ).

1.2 Zero-inflated Poisson (ZIP) Model

In the ZIP framework, the excess zero observations are from either individuals
who never engaged in the behaviors of interest, with probability pi, or individ-
uals who are part of the Poisson distribution in which zeros are generated from
participants who have engaged in the behavior but not when the survey was
conducted, with probability 1− pi:

Yi ∼

{
0, with probability pi

Poisson(λi), with probability 1− pi,

where i indicates the ith participant. The parameter λi is the mean parameter for
Poisson distribution and represents the expected event frequency for individual

i. Thus, p(Yi = 0) = pi + (1 − pi) × e−λiλ0
i

0! = pi + (1 − pi) × e−λi and p(Yi =

k) = (1 − pi)
e−λiλk

i

k! for k > 0. Let X be the covariates that affect the Poisson
mean and B be the covariates affect the probability pi through log and logit link
functions respectively:

log(λi) = β0 + β1X1i + β2X2i + ...+ βPXPi

logit(pi) = γ0 + γ1B1i + γ2B2i + ...+ γJBJi,
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where βs and γs are coefficients for design matrices, which include a column of
1 as intercept and predictors X or B respectively. The interpretation for β0 and
β1 is similar as in Poisson regression. γ0 and γ1 are specific to ZIP model. When
B is zero, the average odds for a participant to be in the “zero only” group
vs. “Poisson” group is exp(γ0). With one unit increases in B, the odds that a
participant would be in the “zero only” group vs. “Poisson” group increases by
a factor of exp(γ1).

1.3 Hurdle Model

While there are two types of individuals in ZIP, the hurdle model treats all par-
ticipants in the same way so that everyone could be engaged in the behavior
when the survey was undertaken: they could decide to be engaged in the behav-
ior, and then the intensity of the behavior. Thus, two processes are involved in
the hurdle model. For n independent observations Yi:

Yi ∼

{
0, with probability pi

truncated Poisson(λi) with probability 1− pi.

In contrast to ZIP which includes logistic regression to predict “excess ze-
ros” over and above the zeros predicted by Poisson, hurdle models uses logis-
tic regression to predict zero vs non-zeros. The “hurdle” is used to measure
whether a response falls below or above the hurdle (e.g., the hurdle is zero
in this case). The positive responses above the hurdle zero are then modeled
by other truncated count regressions. In this framework, p(Yi = 0) = pi and

p(Yi = k) =
(1−pi)(λ

k
i e

−λi )

(1−e−λi )k!
for k > 0. Similar to the ZIP framework, design

matrices, which include a column of 1 as intercept and predictors X or B, are
associated with log(λi) and logit(pi) through coefficients βs and γs respectively.
However, the interpretation for γs is slightly different from in ZIP: When B is
zero, the average odds for a participant not engaging vs. engaging in the behav-
ior is exp(γ0). With one unit increase in B, the odds that a participant would
not be engaging vs. engaging in the behavior increases by a factor of exp(γ1).

2 Model Estimation

2.1 Data Description

The data on number of recreational boating trips to Lake Somerville was col-
lected in 1980. The dataset includes 659 responses from registered leisure boat
owners in 23 counties in Texas. Figure 1 reveals its variability from 0 up to
around 80 with large amount of zero responses. It clearly suggests that this
count variable is not normally distributed. The number of recreational trips is
often associated with the annual household income. In this illustrative example,
we examine whether income is a predictor of number of recreational boating
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trips a person took. The income variable measures the annual household income
of the respondent (in 1,000 USD) and is centered at its mean for the purpose of
interpretability. The data is available in R package AER (Kleiber & Zeileis, 2008).
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Figure 1. Histogram of the outcome variable.

2.2 Estimation of Poisson Regression in runjags

We consider a model in which log(λ) is a linear function of income, where λi

denotes the average number of vacations person i took. The regression equation
is:

log(λi) = β0 + β1 × incomeC.

The model can be estimated in R with package runjags and the function
run.jags is used. It requires a valid model definition, string of monitored vari-
ables (beta0 for β0 and beta1 for β1 in this example), and data, as discussed
below.

1 Pois_Est <- run.jags(model = Poisson_Model , monitor =

2 c(" beta0", "beta1", "exp_beta0", "exp_beta1 "),

3 data = data , n.chains = 3, inits = inits ,

4 method = "simple", adapt = 1000, burnin = 3000,

5 sample = 10000)
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Some of the important arguments used in the function run.jags are:

– model. The model can be specified as a character string, including the likeli-
hood function and initial values. In order to estimate the Poisson regression
model using JAGS, we first need to specify its likelihood function for all par-
ticipants and define λi with the log link function (see Lines 2 - 6 below).
Note the operator “ ∼” is used to define random variables and it repre-
sents “is distributed as”. Line 6 Y[i] ~ dpois(lambda[i]) means that the
response Y[i] is distributed as a Poisson distribution with rate parameter
lambda[i]. The operator <- is for the linear function: log(lambda i) <-
beta0 + beta1*X[i]. Non-informative priors for β0 and β1 can be set as β0,
β1 ∼ N(0, 1000). In JAGS, a normal distribution is specified as dnorm(mu,

tau), with mean mu and precision tau, where precision is the reciprocal of
the variance. Thus, N(0, 1000) is specified as dnorm(0, 1/1000) in JAGS,
see Lines 9 - 10.

1 Poisson_Model <- "model{

2 ## Likelihood ##

3 for (i in 1:N){

4 Y[i] ~ dpois(lambda[i])

5 log(lambda[i]) <- beta0 + beta1*X[i]

6 }

7
8 ## priors for coefficients

9 beta0 ~ dnorm(0, 1/1000)

10 beta1 ~ dnorm(0, 1/1000)

11
12 ## exponentiate the paramters

13 exp_beta0 <- exp(beta0)

14 exp_beta1 <- exp(beta1)

15 }"

– monitor. The parameters to be estimated are defined in a character string.
Since the coefficient parameters are in log odds scale in Poisson regres-
sions, their exponentiated parameters should be obtained for interpretation.
InJAGS, the exponentiated parameters exp beta0 for exp(β0) and exp beta1

for exp(β1) can be sampled directly. exp beta0 and exp beta1 need to spec-
ified in monitor argument as well as in model.

– inits. We need to prepare initial values for beta0 and beta1 as shown below.
A set of initial values is specified as a list regarding the parameters to be
estimated. When multiple chains are generated for convergence diagnosis, a
nested list using the inits argument with length equal to the number of
chains should be specified. In this example, three sets of initial values are
specified since three chains are used for convergence diagnosis.
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1 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

2 beta1 = rnorm(1, 0, 0.1)) ,

3 list(beta0 = 1, beta1 = 1),

4 list(beta0 = -1, beta1 = -1))

– data. The variables from data are specified as a list and passed into the
data used in JAGS, with the argument data. The outcome variable Y in
Poisson Model is the “trips” variable from the raw data dat, denoted as Y
= dat$trips; the predictor X is the centered “income” variable, denoted as
X = dat$incomeC. In Poisson Model, N is the total sample size and need to
be defined as N = nrow(dat).

1 data <- list(Y = dat$trips , X = dat$incomeC ,
2 N = nrow(dat))

– n.chains. Multiple chains can be generated for convergence diagnostic. In
this example, three chains were simulated and denoted as n.chain = 3.
More chains will cause the simulation to run more slowly.

– method. A number of simulation methods are provided in JAGS. simple is
specified here since the model in the illustration example is relatively simple.
When more simulation time is possible, other methods allowing parallelisa-
tion should be considered.

– adapt. A adaption process is often needed for MCMC samplers in JAGS to
sample the posteriors more efficiently. The default is 1000 iterations.

– burnin. MCMC samplers often take a finite number of iterations to find the
region of posterior probability and this portion of chains should be discarded
for inference. The default is 4000 iterations. burnin and adapt should be
specified separately.

– sample. The total number of MCMC samples for each chain can be specified.
The default is 10,000 iterations.

Convergence Diagnosis Three Markov chains are obtained with three dif-
ferent set of initial values. The traceplots of the Markov chains for β0 and β1

and their exponential values are in Figure 2. Since there is no clear trend in
either of the plots and three chains are mixed well, it suggests that convergence
is achieved. In addition, the potential scale reduction factor (psrf; (Gelman &
Rubin, 1992)) in Table 1 are close to 1, suggesting again that convergence has
been reached.

Interpretation The exponentiated coefficients along with the HPD intervals
for β0 and β1 are shown in Table 1. When the household income is at the average
level (3,853 USD), the expected number of boat trips took by the respondents
is approximately 2 ( 2.21) times.
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Table 1. Bayesian parameter estimates from Poisson regression

Mean SD Lower 95 Upper 95 psrf

beta0 0.79 0.03 0.74 0.84 1.0002
beta1 -0.10 0.02 -0.13 -0.07 1.0004
exp beta0 2.21 0.06 2.09 2.32 1.0002
exp beta1 0.90 0.01 0.88 0.93 1.0004
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Figure 2. Traceplots of beta0 and beta1 from Poisson regression.
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In Table 1, “lower 95” is the 2.5 percentile of the HPD interval and “upper 95”
is the 95 percentile. Since 1 is not included in the HPD interval for exp(β1) [0.88,
0.93], the predictor income is statistically associated with number of boat trips
took by the respondents. With every $1000 increases in the annual household
income, the expected number of boat trips taken by the respondents decreases
by 10% (1- (exp(-0.1)) ×100%) on average.

2.3 Estimation of ZIP in runjags

The arguments inits, data, and model used in function run.jags for the ZIP
model are specified in similar ways as in Poisson regression.

1 ZIP_Est <- run.jags(model = ZIP_model ,

2 monitor = c(" beta0", "beta1", "gamma0", "gamma1"),

3 data = data , n.chains = 3, inits = inits ,

4 method = "simple", adapt = 1000, burnin = 3000,

5 sample = 10000, keep.jags.files = T, tempdir = T)

Similar to estimating Poisson regression in JAGS, both likelihood function
and prior for parameters are specified first in ZIP model.The likelihood function
is defined in Lines 2 - 9. In ZIP, the probability of a zero response coming from
the excessive zeros, which are from the group of respondents who never took a
boat trip (W[i] = 0), is pi. The probability of a zero response generated from
sampling zeros, who usually take boat trips but not when they are being sampled
is 1 − pi. The sampling zeros are zeros that are generated from the Poisson
distribution, denoted as W[i] = 1. W is a latent Bernoulli random variable and
is related to predictor centered income with logit link function:

logit(pi) = γ0 + γ1 × incomeC.

In another word, when W[i] is 0, W[i]*mu[i] or lambda[i] becomes 0. Y[i]
is generated from the excessive zeros, which is the group of respondents who
never took a boat trip. When W[i] is 1, Y[i] is generated from the Poisson
distribution with rate parameter mu[i]. The regression equation for λi is as
same as in Poisson regression:

log(λi) = β0 + β1 × incomeC.

Note that the covariates for logit(pi) and log(λi) can be the same. For sim-
plicity, we use centered income as the predictor for both. Non-informative prior
N(0, 10000) is specified for the four estimated parameters β0, β1, γ0, and γ1 in
Lines 12 - 15.

1 ZIP_model <- "model{

2 ## likelihood

3 for (i in 1:N){

4 Y[i] ~ dpois(lambda[i])

5 lambda[i] <- W[i]*mu[i]
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6 W[i] ~ dbern(1-p[i])

7 log(mu[i]) <- beta0 + beta1*X[i]

8 logit(p[i]) <- gamma0 + gamma1*B[i]

9 }

10
11 ## prior

12 beta0 ~ dnorm(0, 1/10000)

13 beta1 ~ dnorm(0, 1/10000)

14 gamma0 ~ dnorm(0, 1/10000)

15 gamma1 ~ dnorm(0, 1/10000)

16
17 ## exponentiate the paramters

18 exp_beta0 <- exp(beta0)

19 exp_beta1 <- exp(beta1)

20 exp_gamma0 <- exp(gamma0)

21 exp_gamma1 <- exp(gamma1)

22 }"

Initial values for gamma0 and gamma1 are set in the same way as beta0 and
beta1. One new variable W is introduced and binary initial values of it are gen-
erated. The length of W is the total sample size for the data. See Lines 1 - 11
for details. The data specification for ZIP is as same as for Poisson regression as
the same dataset is used.

1 W <- dat$trips
2 W[dat$trips >0] <- 1

3
4 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

5 beta1 = rnorm(1, 0, 0.1),

6 gamma0 = rnorm(1, 0, 0.1),

7 gamma1 = rnorm(1, 0, 0.1), W = W),

8 list(beta0 = 1, beta1 = 1, gamma0 = 1,

9 gamma1 = 1, W = W),

10 list(beta0 = -1, beta1 = -1, gamma0 = 1,

11 gamma1 = 1, W = W))

12
13 data <- list(Y = dat$trips , X = dat$incomeC ,
14 B = dat$incomeC , N = nrow(dat))

Convergence Diagnosis The methods for convergence diagnosis for ZIP model
is as same as for Poisson regression models. Thus, the details are omitted here.

Interpretation The exponentiated coefficients and their HPD intervals for the
four estimated parameters are shown in Table 2. The results suggest that for
a respondent from a household with average income, the odds of a zero re-
sponse collected from this person indicating that s/he never went on a boat trip
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vs. s/she have taken a boat trip but not when being sampled is 1.71. This effect
is significant since its HPD interval [1.45, 2] does not contains 1. In addition,
when the annual household income increases by 1000 USD, the odds of a zero
response being generated from these who never went on a boat trip vs. those
who usually took a boat trip but not when being sampled decreases by 3% (
(1 − 0.97) × 100%). This effect is not significant since its HPD interval [0.88,
1.05] contains 1.

Meanwhile, for these who have taken a boat trip but not when being sampled,
an increase of $1000 in annual household income is associated with 13% ( (1 −
0.87)× 100%) less average number of boat trips taken by the respondents. This
effect is significant since the corresponding HPD interval [0.84, 0.9] does not
contain 1.

Table 2. Bayesian parameter estimates from the ZIP model

Mean SD Lower 95 Upper 95 psrf

beta0 1.78 0.03 1.73 1.84 1.0002
beta1 -0.14 0.02 -0.18 -0.11 1.0001
gamma0 0.53 0.08 0.38 0.69 1.0001
gamma1 -0.03 0.05 -0.12 0.05 1.0000
exp beta0 5.95 0.16 5.63 6.26 1.0002
exp beta1 0.87 0.02 0.84 0.90 1.0001
exp gamma0 1.71 0.14 1.45 2.00 1.0001
exp gamma1 0.97 0.04 0.88 1.05 1.0000

2.4 Estimation of Hurdle Models in runjags

In contrast to ZIP where both count and binary parts generate zeros, only the
binary part modeled by logistic function in hurdle models generates zeros. The
nonzero responses are assumed to be from a truncated Poisson distribution. Zero
trick is used when setting up the Bayesian model in runjags. The details of zero
trick approach are discussed in (Ntzoufras, 2011) and the code for the likelihood
function specification is in Lines 2 - 14. C <- 10000 is specified for the zero
trick to make -ll[i] + C greater than 0. A dummy variable z[i] is created so
that it is 0 when Y[i] is smaller than 0.0001 and is 1 otherwise.

The log likelihood of the truncated Poisson distribution truncPois[i] is de-
fined in Lines 6 - 7. The total likelihood function is the sum of z[i]*(log(1-p[i])
+ truncPois) and (1-z[i])*log(p[i]). When z[i] is 0 (Y[i] is 0, or Y[i]
is from the zero-only group), the total likelihood function is log(p[i]); when
z[i] is 1 (Y[i] is positive, or Y[i] is from the truncated Poisson group), the
total likelihood function is log(1-p[i]) + truncPois.

Non-informative priors N(0, 10000) is specified in Lines 18 - 21 for the four
parameters β0, β1, γ0, and γ1.
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1 hurdle_model <- "model{

2 # likelihood

3 C <- 10000

4 for (i in 1:N){

5 zeros[i] ~ dpois(-ll[i] + C)

6 truncPois[i] <- Y[i]*log(mu[i]) - mu[i]

7 - (log(1-exp(-mu[i])) + logfact(Y[i]))

8
9 l1[i] <- (1-z[i])* log(p[i])

10 l2[i] <- z[i]*( log(1-p[i]) + truncPois[i])

11 ll[i] <- l1[i] + l2[i]

12
13 log(mu[i]) <- beta0 + beta1*X[i]

14 logit(p[i]) <- gamma0 + gamma1*B[i]

15 }

16
17 # prior

18 beta0 ~ dnorm(0, 1/10000)

19 beta1 ~ dnorm(0, 1/10000)

20 gamma0 ~ dnorm(0, 1/10000)

21 gamma1 ~ dnorm(0, 1/10000)

22 }"

Similar to ZIP, the initial values for the four parameters β0, β1, γ0, and γ1
are set as below. A column of zeros is added to data for the zero trick approach.
Values of z[i] are generated from raw data and are provided to the argument
data.

1 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

2 beta1 = rnorm(1, 0, 0.1),

3 gamma0 = rnorm(1, 0, 0.1),

4 gamma1 = rnorm(1, 0, 0.1)),

5 list(beta0 = 1, beta1 = 1, gamma0 = 1,

6 gamma1 = 1),

7 list(beta0 = -1, beta1 = -1, gamma0 = 1,

8 gamma1 = 1))

9 z<-dat$trips
10 z[dat$trips > 0] <- 1

11 data <- list(Y = dat$trips , X = dat$incomeC ,
12 B = dat$incomeC , N = nrow(dat),

13 z = z, zeros = rep(0, nrow(dat)))

Convergence Diagnosis The methods for convergence diagnosis for hurdle
model are the same for Poisson regression models. Thus, the details are omitted
here.
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Interpretation The exponentiated coefficients and the corresponding HPD
intervals are presented in Table 3. For a respondent from a household with
average income, the odds of this person not have been to vs. have been to a boat
trip is 1.73. This is significant since its HPD interval [1.47, 2.01] does not contain
1. The odds decrease by 2% ( (1 − 0.98) × 100%) when the average house hold
income increases by $1000. This effect is not significant since its HPD interval
[0.9, 1.07] contains 1.

Meanwhile, for those who have taken a trip when being sampled, an increase
of $1000 in annual household income is associated with 13% ( (1 − 0.87) ×
100%) less average number of boat trips taken by the respondents. This effect is
significant since the corresponding HPD interval [0.84, 0.9] does not contain 1.

Table 3. Bayesian parameter estimates from the hurdle model

Mean SD Lower 95 Upper 95 psrf

beta0 1.78 0.03 1.73 1.84 1.0002
beta1 -0.14 0.02 -0.18 -0.11 1.0003
gamma0 0.55 0.08 0.39 0.71 1.0003
gamma1 -0.02 0.04 -0.10 0.07 1.0002
exp beta0 5.96 0.16 5.65 6.27 1.0002
exp beta1 0.87 0.02 0.84 0.90 1.0003
exp gamma0 1.73 0.14 1.47 2.01 1.0003
exp gamma1 0.98 0.04 0.90 1.07 1.0001

3 Discussion

This tutorial covered methods handling count data and how these methods can
be estimated in Bayesian framework with runjags. When the data is positively
skewed with zero inflation, ZIP and hurdle models can be considered to han-
dle such scenarios. Even though ZIP and hurdle models have been employed
interchangeably in psychological research, they are described in two distinct
frameworks: ZIP is a mixture model in which zeros can be generated from both
Poisson and Bernoulli distributions while hurdle is a two-part model separating
zeros from positive responses. While the output tables for ZIP and hurdle models
suggest that the results are very similar, the interpretation of the models differs.
Researchers should be careful with the choice of methods when working with
zero-inflated data.

Furthermore, both ZIP and hurdle models provide more information than
Poisson model when zero-inflation is present in the data. For example, income
is associated with the odds of zero responses being collected from responders
never went vs. have been on a boat trip but not when being sampled in ZIP. At
the same time, income is associated with the odds of a person have not been to
vs. have been to a boat trip. However, this information is not provided in Poisson
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models. In addition, even though the estimated βs are similar in all three models,
the estimated β in Poisson model is larger than the values estimated in the ZIP
and hurdle models.

This tutorial serves for the purpose of illustrating how the models can be
estimated with runjags. Important topics such as model selections or other
distributions handling count data are not covered in this paper. Readers can
refer to Feng (2021) for a comprehensive comparison between ZIP and hurdle
models handling zero-inflated count data.
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Appendix A Supplemental Material

1 ########### Get the data ready for analysis ###########

2
3 library(AER)

4 data(" RecreationDemand ")

5 dat <-RecreationDemand

6 dat$incomeC <- dat$income - mean(dat$income)
7 hist(dat$trips , main = "",

8 xlab = "Number of recreational boating trips")

9
10 ############### load packages ###############

11 library(runjags)

12 library(kableExtra)

13
14
15 ############### analyses ###############

16
17 ###### Poisson ######

18 Poisson_Model <- "model{

19 ## Likelihood ##

20 for (i in 1:N){

21 Y[i] ~ dpois(lambda[i])

22 log(lambda[i]) <- beta0 + beta1*X[i]

23 }

24
25 ## priors for coefficients

26 beta0 ~ dnorm(0, 1/10000)

27 beta1 ~ dnorm(0, 1/10000)

28
29 ## exponentiate the paramters

30 exp_beta0 <- exp(beta0)

31 exp_beta1 <- exp(beta1)

32 }"

33
34 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

35 beta1 = rnorm(1, 0, 0.1)) ,

36 list(beta0 = 1, beta1 = 1),

37 list(beta0 = -1, beta1 = -1))

38
39 data <- list(Y = dat$trips , X = dat$incomeC ,
40 N = nrow(dat))

41
42 Pois_Est <- run.jags(model = Poisson_Model ,

43 monitor = c(" beta0", "beta1", "exp_beta0",
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44 "exp_beta1"), data = data , n.chains = 3,

45 inits = inits , method = "simple", adapt = 1000,

46 burnin = 3000, sample = 10000)

47
48
49 res11 <-cbind(round(Pois_Est$HPD[,c(1,3)],2),
50 round(Pois_Est$summary$statistics [,1:2],2),
51 round(Pois_Est$psrf$psrf [,1],4))
52 colnames(res11) <- c("Lower 95", "Upper 95",

53 "Mean", "SD", "psrf")

54 kable(res11 , caption = "Poisson runjags

55 Output", "simple ")

56 par(mfrow = c(1, 2))

57 plot(Pois_Est , plot.type = "trace")

58
59
60 ###### ZIP ######

61 ZIP_model <- "model{

62 ## likelihood

63 for (i in 1:N){

64 Y[i] ~ dpois(lambda[i])

65 lambda[i] <- W[i]*mu[i]

66 W[i] ~ dbern(1-p[i])

67 log(mu[i]) <- beta0 + beta1*X[i]

68 logit(p[i]) <- gamma0 + gamma1*B[i]

69 }

70
71 ## prior

72 beta0 ~ dnorm(0, 1/10000)

73 beta1 ~ dnorm(0, 1/10000)

74 gamma0 ~ dnorm(0, 1/10000)

75 gamma1 ~ dnorm(0, 1/10000)

76
77 ## exponentiate the paramters

78 exp_beta0 <- exp(beta0)

79 exp_beta1 <- exp(beta1)

80 exp_gamma0 <- exp(gamma0)

81 exp_gamma1 <- exp(gamma1)

82 }"

83
84 W <- dat$trips
85 W[dat$trips >0] <- 1

86
87 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

88 beta1 = rnorm(1, 0, 0.1),
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89 gamma0 = rnorm(1, 0, 0.1),

90 gamma1 = rnorm(1, 0, 0.1),

91 W = W), list(beta0 = 1, beta1 = 1,

92 gamma0 = 1, gamma1 = 1, W = W),

93 list(beta0 = -1, beta1 = -1,

94 gamma0 = 1,

95 gamma1 = 1, W = W))

96
97 data <- list(Y = dat$trips , X = dat$incomeC ,
98 B = dat$incomeC , N = nrow(dat))

99
100 ZIP_Est <- run.jags(model = ZIP_model , monitor =

101 c("beta0", "beta1", "gamma0", "gamma1",

102 "exp_beta0", "exp_beta1", "exp_gamma0",

103 "exp_gamma1 "), data = data , n.chains = 3,

104 inits = inits , method = "simple", adapt = 1000,

105 burnin = 3000, sample = 10000,

106 keep.jags.files = T, tempdir = T)

107 res2 <-cbind(round(ZIP_Est$HPD[,c(1,3)],2),
108 round(ZIP_Est$summary$statistics [,1:2],2),
109 round(ZIP_Est$psrf$psrf [,1],4))
110 colnames(res2) <- c("Lower 95", "Upper 95", "Mean",

111 "SD", "psrf")

112 res22 <-round(exp(res2[,c(1, 2, 3)]) ,2)

113
114 kable(res22 , caption = "ZIP runjags Exponentiated

115 Output", "simple ")

116 par(mfrow = c(1, 2))

117 plot(ZIP_Est , plot.type = "trace")

118
119
120 ###### Hurdle ######

121 hurdle_model <- "model{

122 ## likelihood

123 C <- 10000

124 for (i in 1:N){

125 zeros[i] ~ dpois(-ll[i] + C)

126 truncPois[i] <- Y[i]*log(mu[i]) - mu[i] -

127 (log(1-exp(-mu[i])) + logfact(Y[i]))

128
129 l1[i] <- (1-z[i])* log(p[i])

130 l2[i] <- z[i]*( log(1-p[i]) + truncPois[i])

131 ll[i] <- l1[i] + l2[i]

132
133 log(mu[i]) <- beta0 + beta1*X[i]
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134 logit(p[i]) <- gamma0 + gamma1*B[i]

135 }

136
137 ## prior

138 beta0 ~ dnorm(0, 1/10000)

139 beta1 ~ dnorm(0, 1/10000)

140 gamma0 ~ dnorm(0, 1/10000)

141 gamma1 ~ dnorm(0, 1/10000)

142
143 ## exponentiate the paramters

144 exp_beta0 <- exp(beta0)

145 exp_beta1 <- exp(beta1)

146 exp_gamma0 <- exp(gamma0)

147 exp_gamma1 <- exp(gamma1)

148 }"

149
150 z<-dat$trips
151 z[dat$trips > 0] <- 1

152
153 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

154 beta1 = rnorm(1, 0, 0.1),

155 gamma0 = rnorm(1, 0, 0.1),

156 gamma1 = rnorm(1, 0, 0.1)),

157 list(beta0 = 1, beta1 = 1,

158 gamma0 = 1, gamma1 = 1),

159 list(beta0 = -1, beta1 = -1,

160 gamma0 = 1,

161 gamma1 = 1))

162
163 data <- list(Y = dat$trips , X = dat$incomeC ,
164 B = dat$incomeC ,
165 N = nrow(dat), z = z,

166 zeros = rep(0, nrow(dat)))

167
168 hurdle_Est <- run.jags(model = hurdle_model ,

169 monitor = c(" beta0", "beta1",

170 "gamma0", "gamm a1", "exp_beta0",

171 "exp_beta1", "exp_gamma0", "exp_gamma1 "),

172 data = data , n.chains = 3,

173 inits = inits , method = "simple",

174 adapt = 1000, burnin = 3000,

175 sample = 10000,

176 keep.jags.files = T, tempdir = T)

177
178 res33 <-cbind(round(hurdle_Est$HPD[,c(1,3)],2),
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179 round(hurdle_Est$summary$statistics [,1:2],2),
180 round(hurdle_Est$psrf$psrf [,1],4))
181 colnames(res33) <- c("Mean", "SD",

182 "Lower 95", "Upper 95"," psrf")

183 res33 <-round(exp(res33[,c(1, 2, 3)]) ,2)

184 kable(res33 , caption = "Hurdle runjags

185 Exponentiated Output", "simple ")

186 plot(hurdle_Est , plot.type = "trace")
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