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Abstract. Semiparametric Bayesian methods have been proposed in
the literature for growth curve modeling to reduce the adverse effect
of having nonnormal data. The normality assumption of measurement
errors in traditional growth curve models was replaced by a random
distribution with Dirichlet process mixture priors. However, both
the random effects and measurement errors are equally likely to be
nonnormal. Therefore, in this study, three types of robust distributional
growth curve models are proposed from a semiparametric Bayesian
perspective, in which random coefficients or measurement errors follow
either normal distributions or unknown random distributions with
Dirichlet process mixture priors. Based on a Monte Carlo simulation
study, we evaluate the performance of the robust models and demonstrate
that selecting an appropriate model for practical data analyses is very
important, by comparing the three types of robust distributional models
as well as the traditional growth curve models with the normality
assumption. We also provide a straightforward strategy to select the
appropriate model.

Keywords: Semiparametric Bayesian methods · Growth curve modeling
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1 Introduction

Longitudinal studies help us understand changes. Unlike one-off cross-sectional
studies that give information about subjects at one point, like a snapshot
photo, longitudinal studies follow subjects across time, more like a photo
album. They tell a story of subjects not only at a moment in time, but also
over time, showing how subjects have changed and what factors have caused
between-subjects variations in change. Growth curve models are widely used in
longitudinal research (e.g., McArdle & Nesselroade, 2014) as many longitudinal
models in social and behavioral sciences, such as multilevel models and linear
hierarchical models, can be written as a form of growth curve models. In practice,
traditional growth curve model estimation is based on the assumption that both
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random effects and within-subject measurement errors are normally distributed.
However, data in social and behavioral sciences are rarely normal and may be
contaminated by outliers (Cain et al., 2017; Micceri, 1989). Because ignoring
the nonnormality of data may lead to imprecise or even inaccurate parameter
estimates and misleading statistical inferences (e.g., Maronna et al., 2006; Yuan
& Bentler, 2001), and routine methods, such as deleting the outliers, may lead to
problems such as resulting inferences failing to reflect uncertainty and reduced
efficiency (e.g., Lange et al., 1989; Yuan & Bentler, 2002), researchers have
developed robust methods to obtain reliable parameter estimation and statistical
inference.

The basic ideas of robust methods often include two types. The first type
is to assign a weight to each subject in a dataset according to its distance
from the center of the majority of the data aiming to downweight potential
outlying observations (e.g., Pendergast & Broffitt, 1985; Silvapulle, 1992; Singer
& Sen, 1986; Yuan & Bentler, 1998; Zhong & Yuan, 2010). The second type
is to use certain nonnormal distributions that are mathematically tractable,
instead of normal distributions, to model data distributions. Both types of robust
methods have been directly applied to growth curve modeling. For example, on
the one hand, Pendergast & Broffitt (1985) and Singer & Sen (1986) proposed
robust estimators based on M-methods for growth curve models with elliptically
symmetric errors, and Silvapulle (1992) further extended the M-method to allow
asymmetric errors for growth curve analysis. Yuan & Zhang (2012) developed
a two-stage robust procedure for structural equation modeling with nonnormal
missing data and applied the procedure to growth curve modeling. On the other
hand, latent variables and/or measurement errors were assumed to follow a t or
skew-t distribution (Tong & Zhang, 2012; Zhang, 2016) or a mixture of certain
distributions (Lu & Zhang, 2014; Muthén & Shedden, 1999). While being useful,
these methods still have limitations under certain conditions. For example,
the downweighting method did not perform well when latent variables contain
extreme scores (e.g., see simulation results in Zhong & Yuan, 2011). Using a t
distribution or a mixture of normal distributions still imposed restrictions on
the shape of the data distribution.

Semiparametric Bayesian methods, also referred to as nonparametric
Bayesian methods, can solve these issues as they are more flexible to relax the
normality assumptions. Semiparametric Bayesian modeling relies on a building
block, Dirichlet process (DP), which is a distribution over probability measures
that can be used to estimate unknown distributions. Therefore, the nonnormality
issue can be addressed by directly estimating the unknown random distributions
of latent variables or measurement errors (i.e., obtaining the posteriors of the
distributions). The advantages of using Semiparametric Bayesian methods have
been discussed in the literature (e.g., Fahrmeir & Raach, 2007; Ghosal et al.,
1999; Hjort, 2003; Hjort et al., 2010; MacEachern, 1999; Müller & Mitra, 2004).
First, they do not constrain models to a specific parametric form that may limit
the scope and type of statistical inferences in many situations. Second, they
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can provide full probability models for the data-generating process and lead to
analytically tractable posterior distributions.

Because of their flexibility and adaptivity, semiparametric Bayesian methods
have been applied to various models. Bush & MacEachern (1996), Kleinman
& Ibrahim (1998), and Brown & Ibrahim (2003) used DP mixtures to handle
nonnormal random effects. Burr & Doss (2005) used a conditional DP to handle
heterogeneous effect sizes in meta-analysis. Ansari & Iyengar (2006) included
Dirichlet components to build a semiparametric recurrent choice model. Si &
Reiter (2013) used DP mixtures of multinomial distributions for categorical
data with missing values. Semiparametric Bayesian methods have also been
applied to structural equation modeling to relax the normality assumption
of the latent variables (e.g., Lee et al., 2008; Yang & Dunson, 2010). Tong
& Zhang (2019) directly used a DP mixture to model nonnormal data in
growth curve modeling. Although it has been shown in Tong & Zhang (2019)
that semiparametric Bayesian methods outperformed traditional growth curve
modeling as well as Student’s t-distribution-based robust method when data
were not normal, nonnormal data were generated with measurement errors
nonnormally distributed and only measurement errors were modeled using
semiparametric Bayesian methods. In practice, it is possible that random effects
also violate the normality assumption. To account for this issue, we need to also
model random effects semiparametrically.

Therefore, in this study, three different types of robust distributional growth
curve models are proposed from a semiparametric Bayesian perspective. The
features of these three types of models as well as traditional growth curve
model are also discussed. In the next two sections, after introducing the idea of
semiparametric Bayesian modeling, we introduce three types of semiparametric
Bayesian growth curve models. Then, we compare the three types of models and
the traditional model in modeling different types of data through simulation
studies. Recommendations are provided at the end of the article.

2 Semiparametric Bayesian Modeling with DP Priors

A typical motivation of using semiparametric Bayesian methods is that one is
unwilling to make unverified assumptions for latent variables or measurement
error distributions as in the parametric modeling. Under a semiparametric
perspective, we model the distribution of a random vector ξ using a random
distribution function G with a prior G. Namely, the traditional parametric
assumption of the random vector ξ (i.e., ξ ∼ N(µξ,Φξ)) is replaced by

ξ ∼ G,
G ∼ G,

where G is an unknown distribution function and G is its prior, a distribution
over the distribution G. The prior G can be chosen as the Dirichlet process
(DP; Ferguson, 1973,7), which is the first prior defined for spaces of distribution
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function and is the most widely used one. The Dirichlet process generates
a random distribution function G, such that for any measurable partitions
P1, . . . , Pk of the sample space X , (G(P1), . . . , G(Pk)) follows a Dirichlet
distribution Dirichlet(αG0(P1), . . . , αG0(Pk)), where α and G0 are parameters
for the DP. For example, if X is the real space and P = (−∞, x] where x is a
real number, then

G(x) ∼ Dirichlet(αG0(x), α(1−G0(x))).

Thus,

E(G(x)) = G0(x),

V ar(G(x)) =
G0(x)(1−G0(x))

α+ 1
.

The DP is characterized by the two parameters, α and G0. G0 is a base
distribution, which represents the central or “mean” distribution in the
distribution space, while the precision parameter α governs how close realizations
of G are to G0. For example, Figure 1 displays generated random distributions
from the Dirichlet process given G0 and different values of α. The red lines in the
four plots represent the cumulative density curve for the base distribution G0,
which is a standard normal distribution in this case. Black lines in each figure
represent Gs generated from the Dirichlet process in five replications given G0

and α. Clearly, as α increases, generated Gs are closer to G0.
Ferguson (1973) introduced the DP as a random probability measure that has

two desirable properties: (1) its support is sufficiently large, and (2) the posterior
distribution is analytically manageable. He explained that the Dirichlet process
is a conjugate prior and the posterior of G is DP (α̃, G̃0). The two parameters
α̃ = α+N and

G̃0 =
α

α+N
G0 +

N

α+N
GN ,

where GN is the empirical distribution function of the data. Thus, the posterior
point estimate of G, E(G|data) = G̃0, is a weighted average of two distributions:
G0 and GN . If α = 0, the posterior point estimate is GN , which is nonparametric.
When α approaches infinity, the posterior point estimate approaches to G0,
which is parametric. In practice, α ∼ Gamma(a1, a2), which is neither 0 nor
infinity. Thus, we consider the posterior point estimate of G as semiparametric.

2.1 Stick-breaking construction

Sethuraman (1994) developed a constructive way of forming G, known as “stick-
breaking”, and showed that draws from stick-breaking are indeed DP distributed
under very general conditions. Let q1, q2, . . . , qk, . . . ∼ Beta(1, α). Define

pk = qk

k−1∏
j=1

(1− qj).
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Figure 1. Random distributions generated from the Dirichlet process in five
replications given a standard normal base distribution and different values of α

Then,

G =

∞∑
k=1

pkδξ∗k ,

where δξ∗k is the Dirac probability measure and ξ∗k ∼ G0. It is important to note
that

∑∞
k=1 pk = 1 as it guarantees G to be a distribution.

The process of the stick-breaking construction is given below.

1. Draw ξ∗1 from G0;

2. Draw q1 from Beta(1, α), then p1 = q1;

3. Draw ξ∗2 from G0;

4. Draw q2 from Beta(1, α), then p2 = q2(1− q1);

...
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Therefore, the distribution G(·) is a discrete distribution as

G(·) =



ξ∗1 , p = p1

ξ∗2 , p = p2
...

...

ξ∗k, p = pk
...

...

.

To define a continuous distribution, the Dirichlet process can be used as the basis
of a mixture model, for example, a mixture of N(µk, σ

2
k) with mixing proportions

defined by pk. Theoretically, there are an infinite number of mixture components
as k = 1, . . . ,∞, given an arbitrarily flexible choice of distributional shapes.
Multimodal or heavy-tailed distributions can be naturally modeled in this way.
In practice, a finite number of mixture components would be good enough, and
this number is taken into account by the Dirichlet process. Smaller values of DP
precision parameter α result in a smaller number of mixture components.

3 Three Types of Semiparametric Bayesian Growth
Curve Models

Consider a longitudinal dataset with N subjects and T measurement occasions.
Let yi = (yi1, . . . , yiT )′ be a T × 1 random vector with yij being an observation
from subject i at time j (i = 1, . . . , N ; j = 1, . . . , T ). A typical growth curve
model can be written as

yi = Λbi + ei,

bi = β + ui,

where Λ is a T × q factor loading matrix that determines the growth curves, bi

is a q × 1 vector of random effects, and ei is a vector of measurement errors.
The vector of random effects bi varies around its mean β. The residual vector
ui represents the deviation of bi from β. When

Λ =


1 0
1 1
...

...
1 T − 1

 ,bi =

(
Li

Si

)
, and β =

(
βL
βS

)
,

the model is reduced to a linear growth curve model with random intercept Li

and random slope Si. The mean intercept and slope are denoted as βL and βS ,
respectively.

Traditionally, ei and ui are assumed to follow multivariate normal
distributions with mean vectors of zero and covariance matrices Φ and Ψ ,
respectively, so ei ∼ MNT (0,Φ) and ui ∼ MNq(0,Ψ), where MN denotes
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a multivariate normal distribution and its subscript indicates its dimension.
Although traditional growth curve models are widely used, they can be deficient
because practical data often violate the normality assumption. Tong & Zhang
(2019) proposed to model ei using semiparametric Bayesian methods to account
for the nonnormality of data. However, since the nonnormality of a growth curve
model may come from two resources – the measurement errors ei and the random
components ui (Pinheiro et al., 2001), we model either one or both of them
semiparametrically and propose three types of robust distributional growth curve
models. The first type of robust semiparametric Bayesian growth curve models is
the same as what Tong & Zhang (2019) proposed: we let ei ∼ Ge, Ge ∼ DP and
keep ui ∼ MNq(0,Ψ). The second type of robust growth curve models can be
derived by keeping ei ∼ MNT (0,Φ) and letting ui ∼ Gu, Gu ∼ DP . The third
type of robust growth curve model can be obtained by letting ei ∼ Ge, Ge ∼ DP
and ui ∼ Gu, Gu ∼ DP . We denote the three types of robust growth curve
models as the Semi-N distributional model, the N-Semi distributional model,
and the Semi-Semi distributional model, respectively. Similarly, we also denote
the traditional growth curve model as the N-N distributional model.

3.1 Implementation: truncated stick-breaking construction

3.1.1 Semi-N distributional model. In the Semi-N distributional model,
we assume that ei ∼ Ge where Ge is an unknown random distribution that
is determined by the data. Because the distribution of ei is continuous, a DP
mixture (DPM) can be used to model the measurement errors such that

Ge =



D(µ
(1)
e ,Φ(1)), with p = p1

D(µ
(2)
e ,Φ(2)), with p = p2

...
...

D(µ
(k)
e ,Φ(k)), with p = pk

...
...

,

where D represents a predetermined multivariate distribution (e.g., multivariate

normal, t, multinomial, etc.), and µ
(k)
e and Φ(k), k = 1, . . . ,∞ are means

and covariances of the multivariate distribution in the kth component with
probability pk. Tong & Zhang (2019) proposed that

ei|Φi ∼MNT (0,Φi),

Φi|G ∼ G,
G ∼ DP (α,G0).

That is, the unknown distribution Ge is approximated by a mixture of
multivariate normal distributions where the mixing measure has a Dirichlet
process prior, Ge ∼ DPM . The DP prior DP (α,G0) can be obtained using
the truncated stick-breaking construction (e.g., Lunn et al., 2013; Sethuraman,
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1994). Specifically, DP (·) =
∑C

j=1 pjδzj (·), 1 ≤ C < ∞, where C (1 ≤ C ≤
N,often set at a large number) is a possible maximum number of mixture
components, δzj (·) denotes a point mass at zj and zj ∼ G0 independently. The
random weights pj can be generated through the following procedure. With
q1, q2, . . . , qC ∼ Beta(1, α), define

p
′

j = qj

j−1∏
k=1

(1− qk), j = 1, . . . , C.

Then, pj is obtained by

pj =
p
′

j∑C
k=1 p

′
k

,

to satisfy that
∑C

j=1 pj = 1.
Thus, the distribution of ei through the truncated stick-breaking construction

is

Ge =


MN(µ

(1)
e ,Φ(1)), with p = p1

MN(µ
(2)
e ,Φ(2)), with p = p2

...
...

MN(µ
(C)
e ,Φ(C)), with p = pC

.

Given that the mean of ei is 0, we constrain
∑C

j=1 pjµ
(j)
e = 0. For simplicity,

we follow Tong & Zhang (2019) and constrain µ
(j)
e to be 0. We use inverse

Wishart priors p(Φ(j)) = IW (n0,W0) for the covariance matrices of the mixture
components, Φ(j), j = 1, . . . , C. Following Lunn et al. (2013, page 294), we fix the
shape parameter n0 at a specific number and assign an inverse Wishart prior to
the scale matrixW0. With such a specification, the measurement error for subject
i, ei, has a pj probability of coming from the mixing component MN(0,Φ(j)).
If ei, i = 1, . . . , N are from Ke different distributions among MN(0,Φ(j)), j =
1, . . . , C, Ke is called the number of clusters for ei. Clearly, Ke ≤ C, and within
each cluster, eis come from the same distribution.

Bayesian methods are applied to estimate the model. The key idea of
Bayesian methods is to compute the posterior distributions for model parameters
by combining the likelihood function and the priors. Recall that in traditional
N-N distributional growth curve model, β,Φ, and Ψ are the model parameters.
Here in the Semi-N model, β and Ψ are still model parameters and can be
estimated in the same way. However, instead of estimating Φ as in the N-N
model, we obtain ei and Ke. The estimate of Ke indicates the heterogeneity
of between-subject measurement errors ei. With a larger value of Ke, we are
more confident to conclude that different subjects’ measurement errors are
distributed differently. To obtain an estimate of Φ (the covariance matrix of ei),
we let ei(s), i = 1, . . . , N be the observations of ei simulated from the posterior
distribution in the sth Gibbs sampler iteration, and let Φ(s) be the corresponding
sample covariance matrix. An estimate of Φ can be taken as the mean of Φ(s),
averaging over all the Gibbs sampler iterations after the burn-in period.



Semiparametric Bayesian in GCM 61

3.1.2 N-Semi distributional model In the N-Semi model, ui follow an
unknown distribution Gu with a Dirichlet process prior. We can obtain the
mixing proportion pk and construct the distribution Gu in a similar way as in
the Semi-N model.

Gu =


MN(µ

(1)
u ,Ψ (1)), p = p1

MN(µ
(2)
u ,Ψ (2)), p = p2

...
...

MN(µ
(C)
u ,Ψ (C)), p = pC

,

where µ
(k)
u and Ψ (k), k = 1, . . . , C are parameters of the multivariate normal

distribution in the kth component. Since ui represents the random component

of the random effects bi, it is also reasonable to set µ
(k)
u = 0. For the covariance

matrices of the mixture components, Ψ (k), inverse Wishart priors are used

p(Ψ (k)) = IW (m0, V0),

where m0 and V0 are hyperparameters.
Therefore, ui comes from MN(0,Ψ (k)) with the probability pk. The number

of clusters for ui is denoted by Ku. Within each cluster, uis come from the same
distribution.

In contrast to the N-N and Semi-N distributional growth curve models, in the
N-Semi model, we obtain ui and Ku in the Markov chain Monte Carlo (MCMC)
procedure instead of estimating Ψ , while the fixed effects β and the covariance
matrix of measurement errors Φ are still model parameters and estimated in
the same way. The estimate of Ku indicates the heterogeneity of random effects
for different subjects. If Ku is large, we are more confident to conclude that
different subjects have different growth trajectories. To obtain an estimate of Ψ
(the covariance matrix of ui), we let ui(s), i = 1, . . . , N be the observations of
ui simulated from the posterior distribution in the sth Gibbs sampler iteration,
and let Ψ(s) be the corresponding sample covariance matrix. An estimate of
Ψ is the mean of Ψ(s), averaging over all the Gibbs sampler iterations after

the burn-in period. For the linear growth curve model, the estimate Ψ̂ is a
2 × 2 matrix ((σ̂2

L, σ̂LS)′, (σ̂LS , σ̂
2
S)′). The significance of σ̂2

L and σ̂2
S imply the

existence of between-subject differences in the initial level and the rate of change,
respectively. A significant σ̂LS means that the initial level and the rate of change
are significantly correlated.

3.1.3 Semi-Semi distributional model In the Semi-Semi model, both
ei and ui follow unknown distributions Ge and Gu, separately. The two
distributions can be constructed in the same way as in the Semi-N and N-Semi
distributional models. Consequently, we cannot obtain both the estimates of
Φ and Ψ directly, but they can be calculated following the same procedure
as discussed in previous sections, and be interpreted likewise. Besides Φ and
Ψ , other model parameters include β, Ke, and Ku, which can be estimated
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explicitly in the MCMC procedure. The fixed effect β represents the average
initial level and rate of change for all subjects. The number of clusters for ei and
the number of clusters for ui are Ke and Ku, indicating the heteroscedasticities
of ei and ui, respectively.

3.2 Visual model comparisons

To illustrate the differences among the N-N, Semi-N, N-Semi, and Semi-Semi
distributional models, we generate and plot data from the four types of models
(Figure 2). For each type of model, data on 50 subjects are generated at four
occasions assuming a linear growth trend. Figure 2(a) displays the trajectories
of the data generated from the N-N distributional model. No outlier can be
observed. The overall trajectory looks clean and smooth. Figure 2(b) plots
the data generated from the Semi-N distributional model with nonnormal
measurement errors and normal random effects. Noticeably, some observations
stand out of the overall trajectory such as those labeled by 1 and 2. A close
look at the two observations reveals that the reason why they deviate from the
overall trajectory is that they are off their own growth trajectories. Figure 2(c)
portrays data from the N-Semi distributional model with normal measurement
errors but nonnormal random effects. Some observations also deviate from the
overall growth trajectory. However, it seems that those observations are still
on their own growth trajectories. The reason why they stand out is that the
rate of growth for the specific case is very different from the majority of cases.
Figure 2(d) draws the trajectories for the data from the Semi-Semi distributional
model with both nonnormal errors and random effects. Clearly, the outlying
observations are due to two sources - the trajectory of a case deviates from
the overall trajectory and the observation for this specific case is off its own
trajectory. For example, observation 1 stands out because it is off the trajectory
of the case and the case itself has a lower initial level and a lower rate of change.
In summary, Figure 2 suggests that the four types of distributional growth curve
models can imply very different patterns in growth trajectories. For instance, if
a subject’s growth trajectory is within the normal range of the overall trajectory
and an observation at certain times stands out, the data are more likely to come
from the Semi-N distributional model. If, within a subject, observations follow
a smooth pattern but the trajectory itself differs from the overall trajectory, the
data are more likely to come from the N-Semi distributional model. Therefore,
given an empirical data set, it is very important to specify the correct type of
growth curve models. In order to concretely demonstrate the possible adverse
effects of misspecification for finite samples, we conduct a simulation study in
the next section.

4 A Simulation Study

In this simulation study, we aim to evaluate the performance of the three robust
distributional models as well as the traditional N-N model. Moreover, the effects
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Figure 2. Trajectory plots of data generated from the 4 different types of distributional
growth curve models. Data on 50 subjects are generated for 4 measurement occasions.
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of the misspecification of the three types of robust distributional growth curve
models will be studied to compare the intrinsic characteristics of them. We
first generate data from the N-N, Semi-N, N-Semi, and Semi-Semi distributional
models and name the data as N-N data, Semi-N data, N-Semi data, and Semi-
Semi data, respectively. Then, for each type of data, we fit all four types of
models and compare their parameter estimates.

We focus on a linear growth curve model as discussed in the previous section

yi = Λbi + ei,

bi = β + ui.

In the model (see Figure 3), the fixed effects are given by β = (βL, βS)
′

=

(6.2, 0.3)
′
.

Figure 3. Path diagram of a linear growth curve model. The numbers in the path
diagram are population parameter values used in the simulation.
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4.1 Study design

In this study, seven possible influential factors are studied (see Table 1): type of
model, type of data, potential number of clusters (C), sample size (N), number
of measurement occasions (T ), the covariance between the latent intercept and
slope (σLS), and variance of measurement errors (σ2

e).
First, four types of distributional growth curve models are considered,

including the N-N, Semi-N, N-Semi, and Semi-Semi distributional models.
Second, based on the four types of models, we generate four types of data, called
N-N data, Semi-N data, N-Semi data, and Semi-Semi data correspondingly. We
use each one of the four models to fit all four types of data under different
conditions of the other five influential factors as described below.

(1) Three different sample sizes are considered: N =50, 200, and 500.
(2) The number of measurement occasions T is either 3 or 5. (3) For the
semiparametric models, we assume that data are potentially from 5 or 20
different clusters. (4) For the growth curve model parameters, the covariance
between the latent intercept and the slope σLS is either 0 or 0.3, reflecting
uncorrelated and correlated coefficients, respectively. When we generate ui from
the semiparametric perspective, we simply generate Ψ (k) ∼ IW (m0, (m0 −
2 − 1)Ψ) where Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′) and the hyperparameter m0 = 4

so that the mean of Ψ (k) is Ψ and thus the “mean” of Gu is a distribution
with its covariance matrix being Ψ . (5) In practice, it is typical to assume the
independence of measurement errors and the homogeneity of error variances
across time, so the within-subject measurement error structure is usually
simplified to Φ = σ2

eI. The variance of measurement errors σ2
e is manipulated

to be 0.5 or 0.7 to investigate the influence of measurement errors. When we
generate ei = (ei1, . . . , eiT )′ semiparametrically, we can set Φ(k) ∼ IW (n0, (n0−
T − 1)σ2

eI). However, in practice, it is easier to generate ei1, . . . , eiT separately

from a univariate distribution N(0, σ
2(k)
e ). We generate σ

2(k)
e from σ

2(k)
e ∼

IG(c0, d0), where c0 = 2 and d0 = σ2
e so that the mean of σ

2(k)
e is d0/(c0−1) = σ2

e .
Overall, 768 conditions of simulations are considered. For each condition, a

total of 200 data sets are generated and analyzed in OpenBUGS (Lunn et al.,
2013).

4.1.1 Pseudo-procedure to generate the Semi-Semi data
1. Set C equal to the number of clusters;
2. Generate p1k, k = 1, ..., C ;

3. Generate σ
2(k)
e ∼ IG(c0, d0);

4. Generate p2k, k = 1, ..., C;
5. Generate Ψ (k) ∼ IW (m0, (m0 − 2− 1)Ψ);
6. For i in 1 : N , do

(a) Randomly select a cluster based on p1k;
(b) If the k1th cluster is selected in (a), generate ei1, . . . , eiT ∼

N(0, σ
2(k1)
e ) and let ei = (ei1, . . . , eiT )′;

(c) Randomly select a cluster based on p2k;
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(d) If the k2th cluster is selected in (c), generate ui ∼MN(0,Ψ (k2));
(e) Generate yi = Λβ + Λui + ei.

4.2 Evaluation Criteria

We obtain the parameter estimate, bias, relative bias, empirical standard error,
mean square error (MSE), and coverage probability (CP) of the 95% highest
posterior density (HPD) credible intervals 1 for each parameter. Let θ denote a

parameter and also its population value, and let θ̂r, r = 1, . . . , 200 denote its
estimates from the rth simulation replication. Furthermore, let l̂r and ûr denote
the lower and upper limits of the 95% HPD credible interval for θ, respectively.
Then, the parameter estimate of θ, θ̂, is calculated as the average of parameter
estimates of 200 simulation replications

θ̂ =
1

200

200∑
r=1

θ̂r.

The bias of θ̂ is bias(θ̂) = θ̂ − θ. The relative bias of θ̂ is

RB(θ̂) =

100×

(
θ̂

θ
− 1

)
θ 6= 0,

100× θ̂ θ = 0.

Note that the relative bias is rescaled by multiplying 100. Smaller relative bias
indicates that the point estimate is less biased and thus more accurate. The
empirical standard error is defined by

SE(θ̂) =
1

199

200∑
r=1

(
θ̂r − θ̂

)2
.

The mean square error is calculated by MSE(θ̂) = bias(θ̂)2 + SE(θ̂)2. The CP
is calculated as

CP (θ̂) =
#(l̂r < θ < ûr)

200
,

where #(l̂r < θ < ûr) is the total number of replications with credible intervals
covering the true parameter value θ. Good 95% HPD credible intervals should
give coverage probabilities close to 0.95.

1 Posterior credible interval, also called credible interval or Bayesian confidence
interval, is analogical to the frequentist confidence interval. The 95% HPD credible
interval [l, u] satisfies: 1. Prob(l ≤ θ ≤ u|data) = 0.95; 2. for θ1 ∈ [l, u] and θ2 /∈ [l, u],
P rob(θ1|data) > Prob(θ2|data). In general, HPD intervals have the smallest volume
in the parameter space of θ, and numerical methods have to be used to find HPD
intervals.
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4.3 Results: Part I

In this part, we evaluate the performance of the semiparametric models through
comparing them with the traditional N-N model in parameter estimation.

First, when data are normally distributed, the four models perform equally
well, especially for large sample sizes. For example, Table 2 contains the absolute
bias and the standard errors for the six important model parameters (βL, βS ,
σ2
L, σ2

S , σLS , and σ2
e) of the four distributional models, when data are generated

from the N-N model with N = 500, T = 5, C = 20, σLS = 0.3, and σ2
e =

0.5. Apparently, there is no notable difference in the performance of the four
models. When sample size is small, the overall pattern does not change much
(see Table 3). For some parameter estimates, the semiparametric models may
slightly outperform the traditional N-N model.

Table 2. Parameter estimation for the four distributional models when data are
generated from the N-N model with N = 500, T = 5, C = 20, σLS = 0.3, and
σ2
e = 0.5

N-N model Semi-N model N-Semi model Semi-Semi model
AB SE AB SE AB SE AB SE

βL -0.004 0.049 -0.003 0.049 -0.003 0.050 -0.003 0.049
βS -0.002 0.017 -0.002 0.017 -0.002 0.017 -0.002 0.017
σ2
L 0.052 0.090 0.054 0.090 0.051 0.090 0.050 0.089
σ2
S 0.017 0.009 0.017 0.009 0.015 0.009 0.015 0.009

σLS -0.025 0.021 -0.024 0.021 -0.026 0.021 -0.026 0.021
σ2
e -0.019 0.015 -0.020 0.015 -0.020 0.015 -0.020 0.015

Note. AB: absolute bias; SE: empirical standard error.

Table 3. Parameter estimation for the four distributional models when data are
generated from the N-N model with N = 50, T = 3, C = 5, σLS = 0, and σ2

e = 0.1

N-N model Semi-N model N-Semi model Semi-Semi model
AB SE AB SE AB SE AB SE

βL -0.001 0.157 0.004 0.161 0.001 0.158 0.001 0.158
βS 0.007 0.053 0.005 0.054 0.006 0.053 0.006 0.054
σ2
L 0.025 0.226 0.029 0.230 -0.016 0.221 -0.021 0.221
σ2
S 0.039 0.028 0.037 0.027 0.019 0.028 0.018 0.028

σLS -0.015 0.057 -0.014 0.056 -0.017 0.055 -0.015 0.055
σ2
e 0.002 0.020 0.005 0.020 0.001 0.020 0.004 0.020

Note. AB: absolute bias; SE: empirical standard error.

Next, we evaluate the performance of the four models when data are not
normally distributed. Specifically, we compare the N-N model to the Semi-N,
N-Semi and Semi-Semi models in analyzing the Semi-N data, N-Semi data and
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Semi-Semi data, respectively. We take a close look at the parameter estimates,
bias, relative bias, empirical standard errors, MSEs, and CPs.

Table 4 contains the estimation results of the N-N and Semi-N models when
N = 200, T = 3, C = 20, σLS = 0, and σ2

e = 0.5 in analyzing the Semi-N data.
When data are generated with the measurement errors coming from different
clusters, using the Semi-N model consistently leads to less biased estimates,
smaller standard errors and MSEs, and better CPs. For the fixed effects βL and
βS , estimates from the N-N model and the Semi-N model are about the same.
Standard errors are smaller for the Semi-N model. Also, CPs of the 95% HPD
credible intervals from the Semi-N model are relatively closer to the nominal level
95%. For parameters σ2

L, σ2
S , and σLS which are related to the random effects,

the bias and standard errors are uniformly smaller by fitting the Semi-N model
to the data. Furthermore, the CPs for σ2

S and σLS increase from 0.910 and 0.905
to 0.940 and 0.945, respectively, tending much closer to the nominal level 95%.
We notice that the estimates of σ2

e are around 0.475 for both the N-N and Semi-
N models, the standard errors are large, and the CPs are extremely different
from the 95%. These are because the measurement errors eit are generated from
N(0, σ2

e), and σ2
e are generated from IG(2, 0.5) to control the mean of σ2

e to be
0.5. However, data generated from IG(2, 0.5) are usually less than 0.5 because
this inverse Gamma distribution is skewed to the right. Therefore, in practice,
we hardly can control the variance of the measurement errors when generating
the Semi-N data, and thus, the bias, MSE, and CP for σ2

e cannot be trusted for
the Semi-N data as the population parameter values are unknown. Note that the
parameter estimates and their standard errors can still be trusted. For the Semi-
N model, the estimated number of clusters for ei is about 6 and the standard
error of it is 0.653. There are 6 different clusters among the 200 subjects in the
distribution of the measurement errors. Because we use informative priors for the
DP precision parameter α to reduce the computational complexity and time, the
estimate of α is very precise. The same pattern can be observed for all the other
conditions in the comparison between the N-N and Semi-N models. Detailed
tables under different conditions are available in Appendix A on our GitHub
site: https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM.

Table 5 presents the comparison between the N-N and N-Semi models when
N = 200, T = 5, C = 20, σLS = 0, and σ2

e = 0.1 in analyzing the N-Semi data.
The parameter estimates for the fixed effects βL and βS are about the same
for both the N-N and N-Semi models, whereas the standard error estimates for
βL and βS are smaller for the N-Semi model, usually resulting in smaller CPs
of the HPD intervals. Under this specific condition, the CPs for the N-Semi
model are closer to the nominal level 95%. For the variance estimate of the
measurement error σ2

e , fitting the two models leads to similar results as well.
This phenomenon is closely related to the estimate of Ku. In this analysis, the
estimate of Ku is 2.418, meaning that there are only 2 potential clusters for the
random effects. In this case, using the N-Semi model may not be very different
from using the traditional growth curve model. For parameter σ2

L, σ2
S , and σLS ,

their bias, MSEs, and CPs cannot be trusted. The reason is similar to the reason

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM


70 X. Tong

Table 4. Parameter estimation for the N-N and Semi-N distributional models when
data are generated from the Semi-N model with N = 200, T = 3, C = 20, σLS = 0,
and σ2

e = 0.5

N-N model Semi-N model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.201 0.001 0.009 0.082 0.007 0.960 6.201 0.001 0.008 0.081 0.007 0.955
βS 0.303 0.003 0.845 0.041 0.002 0.980 0.302 0.002 0.620 0.039 0.001 0.970
σ2
L 1.016 0.016 1.576 0.138 0.019 0.970 1.014 0.014 1.395 0.134 0.018 0.970
σ2
S 0.135 0.035 35.280 0.035 0.002 0.910 0.132 0.032 31.663 0.028 0.002 0.940

σLS -0.022 -0.022 -2.157 0.058 0.004 0.905 -0.019 -0.019 -1.899 0.053 0.003 0.945
σ2
e 0.475 -0.025 -5.076 0.365 0.134 0.240 0.476 -0.024 -4.835 0.364 0.133 0.215

Ke - - - - - - 5.800 - - 0.653 - -
α - - - - - - 0.999 -0.001 -0.069 0.006 0.000 1.000

Note. Est.: estimate; AB: absolute bias; RB: relative bias; SE: standard error; MSE:
mean square error; CP: coverage probability.

why bias, MSE, and CP cannot be trusted for parameter σ2
e in analyzing the

Semi-N data. Here when the N-Semi data are generated, ui is generated from the
multivariate normal distribution MN(0,Ψ), where Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′)

is generated from an inverse Wishart distribution IW (4, ((1, 0)′, (0, 0.1)′)) to
control the mean of Ψ to be ((1, 0)′, (0, 0.1)′). In practice, it is not possible
to generate multivariate data evenly distributed around the the mean, so the
population parameter values for Ψ = ((σ2

L, σLS)′, (σLS , σ
2
S)′) are unknown, and

thus, we cannot calculate bias, MSE, and CPs for those parameters. In this
analysis, we still use informative priors for the precision parameter α to reduce
the computational time. The above pattern can be observed under the other
conditions as well when comparing the N-N and N-Semi models (see detailed
results in Appendix A on our GitHub site).

Table 5. Parameter estimation for the N-N and N-Semi distributional models when
data are generated from the N-Semi model with N = 200, T = 5, C = 20, σLS = 0,
and σ2

e = 0.1

N-N model N-Semi model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.200 0.000 0.005 0.054 0.003 0.985 6.199 -0.001 -0.020 0.051 0.003 0.975
βS 0.299 -0.001 -0.457 0.021 0.000 0.970 0.298 -0.002 -0.699 0.019 0.000 0.965
σ2
L 0.836 -0.164 -16.353 1.304 1.726 0.120 0.829 -0.171 -17.113 1.299 1.715 0.050
σ2
S 0.094 -0.006 -6.150 0.098 0.010 0.195 0.089 -0.011 -10.798 0.098 0.010 0.055

σLS -0.009 -0.009 -0.919 0.244 0.060 0.345 -0.010 -0.010 -1.015 0.243 0.059 0.135
σ2
e 0.099 -0.001 -0.529 0.005 0.000 0.955 0.099 -0.001 -0.737 0.005 0.000 0.950

Ku - - - - - - 2.418 - - 0.789 - -
α - - - - - - 0.967 -0.033 -3.309 0.008 0.001 1.000
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The comparison results between the Semi-Semi and N-N models are presented
in Table 6 for the Semi-Semi data when N = 50, T = 3, C = 20, σLS = 0.3,
and σ2

e = 0.5. For this comparison, we can only compare the bias, standard
error estimates, MSEs and CPs for the fixed effects parameters. Clearly, the
absolute bias for the two models is close to each other, whereas the standard
errors are consistently smaller for the Semi-Semi model than those for the
traditional N-N model, indicating the efficiency of the estimates can be increased
by using the robust Semi-Semi model. When generating the Semi-Semi data, we
cannot manipulate the covariance matrix of ui and the variance of ei exactly.
Therefore, the population parameter values of σ2

L, σ2
S , σLS , and σ2

e are unknown,
so that the bias, MSEs, and CPs for these parameters cannot be evaluated. In
Table 6, we also observe that the estimate of Ke is 4.501 and the estimate
of Ku is 2.416, implying that there are about 5 clusters for ei and 2 clusters
for ui, respectively, among the 50 subjects. Different subjects’ measurement
errors are distributed differently, whereas their growth trajectories are not as
much different. By using the informative priors for α1 and α2, the estimates of
them are very precise. More comparison results between the Semi-Semi model
and the N-N model under different conditions are available in Appendix A on
https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM.

Table 6. Parameter estimation for the N-N and Semi-Semi distributional models when
data are generated from the Semi-Semi model with N = 50, T = 3, C = 20, σLS = 0.3,
and σ2

e = 0.5

N-N model Semi-Semi model
Est. AB RB (%) SE MSE CP Est. AB RB (%) SE MSE CP

βL 6.195 -0.005 -0.087 0.166 0.028 0.980 6.196 -0.004 -0.060 0.147 0.021 0.970
βS 0.300 0.000 0.161 0.079 0.006 0.980 0.298 -0.002 -0.526 0.073 0.005 0.980
σ2
L 1.098 0.098 9.841 1.258 1.592 0.425 1.051 0.051 5.126 1.220 1.491 0.295
σ2
S 0.247 0.147 147.283 0.300 0.112 0.710 0.217 0.117 116.946 0.151 0.037 0.635

σLS 0.157 -0.143 -47.786 0.440 0.214 0.275 0.163 -0.137 -45.702 0.351 0.142 0.165
σ2
e 0.550 0.050 10.086 0.907 0.826 0.285 0.543 0.043 8.606 0.959 0.922 0.230

Ke - - - - - - 4.501 - - 0.420 - -
Ku - - - - - - 2.416 - - 0.584 - -
α1 - - - - - - 1.000 0.000 0.016 0.004 0.000 1.000
α2 - - - - - - 0.980 -0.020 -2.007 0.006 0.000 1.000

In sum, the performance of the four models is about the same for normally
distributed data, especially when the sample size is large. When the sample
size is small, even for normal data, some semiparametric models may perform
slightly better than the traditional N-N model in the precision of parameter
estimation. When data are not normally distributed, the traditional N-N model
performs relatively worse than the semiparametric models. They may not exhibit
quite different parameter estimates for fixed effects βL and βS , but the standard
errors for all parameters are smaller for the semiparametric models than those

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
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for the N-N model, potentially resulting in higher statistical power. In addition,
the differences between the N-N model and the semiparametric models are
closely related to the numbers of clusters Ke and Ku, which represents the
heteroscedasticities of ei and ui, respectively. If Ke or Ku is much larger
than 1, data are more likely to be nonnormal, and the differences between the
results from the N-N model and the semiparametric models should be bigger.
Theoretically, if the estimates of Ke and Ku are 1, the parameter estimation
from the Semi-Semi model should be the same as those from the traditional N-N
model.

4.4 Results: Part II

We have shown that the semiparametric models perform at least equally
well as the traditional N-N growth curve model when data are normal,
and perform better when data are nonnormal. We recommend utilizing the
semiparametric models in practical data analyses. Because there are three
different semiparametric models, another purpose of this simulation study is
to evaluate the effects of the misspecification of the three types of distributional
growth curve models. Two commonly used statistics, which examine more than
one performance criterion (Collins et al., 2001), are calculated for each model
parameter to compare the three types of semiparametric growth curve models.
The first statistic is the MSE based on 200 sets of parameter estimates and
standard errors, and the second one is the CP of the 95% HPD credible intervals.
The MSEs and CPs are then averaged over certain model parameters for each
simulation condition. For the Semi-N data, MSEs and CPs are averaged over
βL, βS , σ2

L, σ2
S , and σLS , because the MSE and CP for σ2

e cannot be trusted,
as explained previously. For the N-Semi data, MSEs and CPs are averaged over
βL, βS , and σ2

e since the population parameter values for σ2
L, σ2

S , and σLS are
unknown. For the Semi-Semi data, MSEs and CPs are only averaged over βL
and βS .

Table 7 summarizes the results for the analysis of each type of data by
different types of distributional models with different sample sizes when T = 5,
C = 5, σLS = 0, and σ2

e = 0.1. In the table, on the rows are the different types
of generated data and on the columns are the three types of semiparametric
distributional models used to analyze the generated data. In almost all situations,
the model used to generate the data provides the best estimation results with
smaller MSE and better credible interval coverage among the three types of
robust growth curve models. For example, for the Semi-N data with N = 200,
the Semi-N distributional model gives the best coverage probability and a
comparable MSE to the other models. Similarly, for the N-Semi data with
N = 50, the MSE for the N-Semi model is one of the smallest and the CP
for the N-Semi model is the closest to the nominal level. Intuitively, we may
consider the Semi-Semi model as the most general model and apply it to all
the cases. However, it is not always a good idea. First, through our simulation
results, although the MSEs for the Semi-Semi model are the smallest under
different conditions, the CPs for the Semi-Semi model are not always the
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best. By using the Semi-Semi model, the parameter estimates are slightly less
accurate, while the standard errors are slightly smaller. Unexpectedly, the slight
changes in the estimates and standard errors may result in a substantially lower
coverage probability. Thus, the Semi-Semi distributional growth curve model
is not optimal all the time. Second, theoretically, although the semiparametric
approach is the same as the traditional growth curve analysis when the numbers
of clusters take the value of 1, the estimated numbers of clusters are almost not
possible to be 1 when we fit a semiparametric model to normal data. Because
in each iteration of the MCMC sampling procedure, we count the number of
clusters, which are at least 1. If in one iteration, the number of clusters happens
to be bigger than 1 due to sampling errors, the estimated number of clusters
cannot be exact 1. Therefore, semiparametric approach is not the same as
the traditional growth curve analysis when analyzing normal data. One will
lose statistical accuracy and increase type I errors by fitting the Semi-Semi
distributional model to the N-N, Semi-N, or N-Semi data. Third, practically,
estimating a Semi-Semi distributional model is more time-consuming than other
types of models. It is often worth putting effort into determining the distributions
of random effects and measurement errors to select the correct type of model.

The above results hold for different sample sizes, the number of measurement
occasions, the potential number of clusters, the covariance between the latent
intercept and slope, and the variance of the measurement errors. Take a closer
look at the influence of these factors, we notice that the MSEs decrease as the
sample size increases. By comparing Tables 7 and 8, Tables 7 and 9, Tables
7 and 10, and Tables 7 and 11, we observe separately that the number of
measurement occasions, the potential number of clusters, the covariance between
the latent intercept and slope, and the variance of the measurement errors do not
affect the performance of the semiparametric models. More tables under different
conditions are given in Appendix B on our GitHub site: https://github.com/
CynthiaXinTong/SemiparametricBayeisnGCM.

In summary, the accuracy and efficiency of the estimation for a specific type
of data closely depend on the correct specification of a model. Consequently, in
practical data analyses, it is important to choose the correct type of model.

4.5 Model selection

Tong & Zhang (2012) proposed three model diagnostic methods and the
“distribution checking based on individual growth curve analysis” method can
be easily adopted for the semiparametric approach. In this method, an individual
growth curve (yi = Λbi + ei) is first fitted to data from each individual. Using
the least square estimation method, the individual coefficients (random effects)
bi = (biL, biS)T and the measurement errors ei = (ei1, . . . , eiT )T are estimated

and retained. Let b = (b̂1, · · · , b̂N )T and e = (ê1, · · · , êN )T where b is a
N × 2 matrix of individual coefficients estimates and e is a N × T matrix of
estimated errors. Then, we test the normality of e and b. If all 2 columns of b
follow normal distributions, we consider the individual coefficients to be normally
distributed. Otherwise, we consider them nonnormally distributed. Similarly, if

https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
https://github.com/CynthiaXinTong/SemiparametricBayeisnGCM
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all T columns of e are normally distributed, the errors are viewed as from normal
distributions. If e and b are not normally distributed, semiparametric approach
is recommended. Based on the combination of the distributions for e and b, the
decision can be made according to Table 12.

Table 12. Distribution checking based on individual growth curve analysis

Errors Individual Coefficients Model

normal normal N-N distributional model
nonnormal normal Semi-N distributional model

normal nonnormal N-Semi distributional model
nonnormal nonnormal Semi-Semi distributional model

5 Discussion

Restricting to a parametric probability family can delude investigators and
falsely make an illusion of posterior certainty (Müller & Mitra, 2004). In
this study, we proposed a semiparametric Bayesian approach for growth curve
analysis with nonnormal data. The normal distributions of the random effects
and/or measurement errors of traditional growth curve model were replaced
by random distributions with DPM priors. Thus, four types of distributional
growth curve models were discussed, including the traditional N-N model, the
robust Semi-N, N-Semi, and Semi-Semi models. Through a simulation study,
we systematically evaluated the performance of the semiparametric Bayesian
method and further assessed the effects of the misspecification of the four types
of distributional growth curve models to compare the intrinsic characteristics
of them. Seven potentially influential factors were considered including type of
data (N-N data, Semi-N data, N-Semi data, Semi-Semi data), type of model
(N-N model, Semi-N model, N-Semi model, Semi-Semi model), number of
measurement occasions (T = 3, 5), potential number of clusters (C = 5, 20),
the covariance between the latent intercept and slope (σLS = 0, 0.3), variance
of measurement errors (σ2

e = 0.1, 0.3), and sample size (N = 50, 100, 200).
Among the seven factors, the number of measurement occasions, the potential
number of clusters, the covariance between the latent intercept and slope, and the
variance of measurement errors were not influential to the comparison among the
performance of the four types of distributional models. The following conclusions
can be drawn for the other three factors.

First, the three types of semiparametric models perform as well as, or better
than, the traditional N-N model, especially when data are nonnormal. When
data are normally distributed, we may obtain slightly biased but more efficient
parameter estimates by using the semiparametric models. It is possible for the
semiparametric models to lead to worse CPs, but the MSEs are often smaller.
When data are nonnormal, we recommend using the robust models instead of
the traditional growth curve model as they provide much more accurate and
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precise parameter estimates. Second, the semiparametric approach can improve
the efficiency of the parameter estimation. For example, in Tables 4-6, the
standard errors in the right panel are uniformly larger than those in the left
panel, indicating the parameter estimation from the traditional growth curve
analysis is less efficient. However, we would like to note that although the
Semi-Semi model is the most general type of models, it is not always optimal.
Misusing the Semi-Semi model could result in lower CPs and more type I errors.
Moreover, fitting the Semi-Semi model to data is more time-consuming than
fitting simpler models. Therefore, it is important to specify the correct type of
model for practical data analyses. The “eyeball” method and the “distribution
checking based on individual growth curve analysis” method can be used for
model diagnostics (see Tong & Zhang, 2012). Third, the increase of the sample
size can often improve the performance of all the four types of models. As shown
in Tables 7-11, MSEs become smaller when sample size increases, but sample size
does not affect the comparison among the four types of models. In general, we
recommend using robust semiparametric models, especially when nonnormality
is suspected.

For the semiparametric Bayesian approach, the normal assumption is replace
by a random distribution with a DPM prior. In our study, the random
distribution is a mixture of multivariate normal distributions with the mixing
proportions generated following certain rules (e.g., truncated stick-breaking
construction). So, similar to the finite growth mixture modeling, the number
of clusters increases along with the increase of sample size. This is reasonable,
because the diversity increases as more subjects are enrolled in the study.
Naturally, there need to be more clusters. However, the semiparametric Bayesian
growth curve modeling is different from finite growth mixture modeling. For
finite growth mixture modeling, adding one additional cluster brings in several
more parameters to be estimated. Thus, it is not possible to have many clusters
when we conduct finite growth mixture analyses, whereas it is not a problem for
us to obtain a large number of clusters if we use the semiparametric Bayesian
method. The number of parameters for the semiparametric Bayesian model keeps
the same no matter how many clusters there are.

We would like to note that the DP precision parameter α governs the
expected number of clusters. Smaller values of α result in a smaller number
of clusters. In this study, the DP precision parameter α has an informative
priorGamma(100, 100) to reduce the computational complexity and convergence
issue. The αs generated from the MCMC procedure are very close to 1.
When α equals 1, about 90% prior weight on between 3 and 7 clusters (Lunn
et al., 2013). Tong & Ke (2021) evaluated the effect of precision parameter
prior on model estimation, model convergence, and computation time. They
recommended using informative priors for the precision parameter, even when
the information is inaccurate. Following their recommendation, the informative
prior Gamma(100, 100) was chosen in this study.



Semiparametric Bayesian in GCM 81

Limitations and future directions

In this study, we proposed to use a random mixture distribution to replace the
normal assumption for robustness, but the distribution of mixture components
is still specified as normal. To be more general, the distribution of mixture
components can be nonnormal as well. For example, it is quite possible that
the t distribution is a better substitute, and the Gamma distribution probably
can better accommodate the skewness in the data. Thus, the influence of the
distribution form of the mixture components needs further evaluation.

Note that we only compared the parameter estimation for model comparison.
How well the models fit the data is not evaluated. Deviance Information Criterion
(DIC) is widely used to evaluate the model fit in Bayesian analysis. Despite
the popularity of DIC, it has received much criticism since it was proposed
(Spiegelhalter et al., 2002). Celeux et al. (2006) argued that the DIC introduced
by Spiegelhalter et al. for model assessment and model comparison was directly
inspired by linear and generalized linear models, but it was open to different
possible variations in the setting of models involving random effects, as in
our robust growth curve models. A number of ways of computing DICs are
proposed in Celeux et al. (2006), and their advantages and disadvantages are
discussed. However, the calculation of DIC in semiparametric Bayesian analysis
has not been studied. Thus, a more sophisticated way to calculate DIC should
be considered deeply in the future, since DIC is an important index to evaluate
the model performance.

This study focuses on robust simple linear growth curve models for
demonstration. However, the same methods should work for nonlinear growth
curve models as well. The performance of the more complicated semiparametric
growth curve models (e.g. logistic and Gompertz models) can be studied in the
future.
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