
Journal of Behavioral Data Science, 2021, 1 (1), 85–126.
DOI: https://doi.org/10.35566/jbds/v1n1/p5

Factor or Network Model? Predictions From
Neural Networks

Alexander P. Christensen1 and Hudson Golino2

1 University of Pennsylvania
alexpaulchristensen@gmail.com

2 University of Virginia
hfg9s@virginia.edu

Abstract. The nature of associations between variables is important for
constructing theory about psychological phenomena. In the last decade,
this topic has received renewed interest with the introduction of psycho-
metric network models. In psychology, network models are often con-
trasted with latent variable (e.g., factor) models. Recent research has
shown that differences between the two tend to be more substantive
than statistical. One recently developed algorithm called the Loadings
Comparison Test (LCT) was developed to predict whether data were
generated from a factor or small-world network model. A significant limi-
tation of the current LCT implementation is that it’s based on heuristics
that were derived from descriptive statistics. In the present study, we
used artificial neural networks to replace these heuristics and develop a
more robust and generalizable algorithm. We performed a Monte Carlo
simulation study that compared neural networks to the original LCT
algorithm as well as logistic regression models that were trained on the
same data. We found that the neural networks performed as well as or
better than both methods for predicting whether data were generated
from a factor, small-world network, or random network model. Although
the neural networks were trained on small-world networks, we show that
they can reliably predict the data-generating model of random networks,
demonstrating generalizability beyond the trained data. We echo the call
for more formal theories about the relations between variables and dis-
cuss the role of the LCT in this process.

Keywords: neural networks · machine learning · data generating mecha-
nisms

The nature of associations between observable variables is one of the most
critical considerations for constructing theory about psychological phenomena
(Borsboom, van der Maas, Dalege, Kievit, & Haig, 2020; Haslbeck, Ryan, Robin-
augh, Waldorp, & Borsboom, 2019). Whether variables are associated because
they all have a common cause or because they reciprocally cause and effect one

86 A. P. Christensen & H. Golino

another is (ideally) theorized by the researcher and (often) implied by their choice
of psychometric model (Borsboom, 2006; Haslbeck, Ryan, Robinaugh, Waldorp,
& Borsboom, 2019). Determining whether empirical data are generated by one
of these mechanisms is therefore an important question (van Bork et al., 2019).
Although other possibilities exist (Kruis & Maris, 2016; Marsman et al., 2018),
these two explanations are perhaps the most common perspectives in psychology
and correspond to latent variable and network models, respectively. The debate
over the plausibility of these mechanisms has sparked renewed interest in the on-
tology and epistemology of psychological phenomena (Borsboom, 2008; Guyon,
Falissard, & Kop, 2017).

Factor (latent variable) models are represented by arrows going from latent
(unobservable) variables to observable variables. From a causal theory perspec-
tive, this representation suggests that a factor causes the response to the observ-
able variables (Edwards & Bagozzi, 2000). Network models represent observable
variables as nodes (circles) and their relationships (e.g., partial correlations) as
edges (lines). From a causal theory perspective, this representation suggests that
observed variables directly and reciprocally cause one another (van der Maas et
al., 2006). For both models, researchers may not interpret the models causally
but instead as summaries of covariance. In the last few years, the apparent dif-
ferences between these models have been shown to be more substantive than
statistical (Guyon, Falissard, & Kop, 2017), with several studies demonstrating
that both models can produce similar covariance patterns and model parame-
ters (e.g., dimensions and loadings; Golino & Epskamp, 2017; Hallquist, Wright,
& Molenaar, 2019; Marsman et al., 2018; van Bork et al., 2019; Waldorp &
Marsman, 2020).

Recent simulation studies, for example, have demonstrated that clusters of
nodes in networks identified by community detection algorithms (Fortunato,
2010) are consistent with latent factors in factor models (Christensen, Garrido,
& Golino, 2021; Golino & Epskamp, 2017; Golino et al., 2020). Other simula-
tions have demonstrated that node strength or the absolute sum of a node’s
connections in a network is consistent with confirmatory (Hallquist, Wright, &
Molenaar, 2019) and exploratory factor loadings (Christensen & Golino, 2021).
Despite producing similar model parameters, the substantive interpretations and
representations of these models imply different data generating mechanisms. The
implications of these different data generating mechanisms are important: Should
a researcher use factor or network analysis to model their data? More signifi-
cantly, should clinicians treat an underlying psychopathological disorder (factor
model) or the symptoms that constitute the disorder (network model; Borsboom,
2017)?

To answer these questions, the present research aimed to develop an algo-
rithm that could determine whether data were generated from a factor or network
model. Such a tool allows researchers to determine whether their data are struc-
tured more like their hypothesized data generating mechanism. Although data
generated from either model can fit and be represented by the other (van Bork et
al., 2019; van der Maas et al., 2006), researchers should attempt to design, use,

Factor or Network Model? 87

and model measures that align with their theoretical perspective (Christensen,
Golino, & Silvia, 2020). Recent developments have demonstrated that factor and
network models can potentially be distinguished by correlation patterns of the
data (Christensen & Golino, 2021; van Bork et al., 2019). One of these methods,
called the Loadings Comparison Test (LCT), compares loadings from factor and
network models to predict the data-generating model (Christensen & Golino,
2021). In its current form, however, the LCT relies on descriptive heuristics,
which are unlikely to generalize across many data conditions. To make the al-
gorithm more robust, we used artificial neural networks from machine learning.
We then performed a simulation to evaluate whether the neural networks per-
form better than the original heuristic-based algorithm and a set of regularized
logistic regression models.

1 Loadings Comparison Test

The LCT was inspired by van Bork et al. (2019) who demonstrated that uni-
dimensional factor models and sparse network models have subtle statistical
differences that can be used to determine whether the empirical data are more
likely generated from one model or the other. In their paper, they identified two
key differences: (1) the proportion of partial correlations that have a different
sign than the corresponding zero-order correlations and (2) the proportion of
partial correlations that are stronger than the corresponding zero-order corre-
lations. The empirical value of these proportions is then compared against the
distributions of data generated from factor and network models applied to simu-
lated covariance matrices. The model with the greater probability is determined
to be the most likely model. They referred to this test as the Partial Correlation
Likelihood Test.

The Partial Correlation Likelihood Test provides a test for determining
whether data are more likely generated from a factor or network model in uni-
dimensional data structures. Although unidimensional structures are critical to
psychology, the Partial Correlation Likelihood Test may not generalize to more
complex models (e.g., multidimensional models; van Bork et al., 2019). The
LCT was motivated by the need for such a test in multidimensional data. The
development of the LCT was based on the descriptive differences between factor
and network loadings when data were factor or network model (Christensen &
Golino, 2021). Network loadings are the standardized sum of each node’s con-
nections to nodes in each community in a network. Below, we provide notation
for how network loadings are computed.

Let W represent a symmetric n×n partial correlation network matrix where
n is the number of nodes. Node strength is defined as:

Si =

n∑
j=1

|Wij |

88 A. P. Christensen & H. Golino

where |Wij | is the absolute edge weight between node i and j and Si is node
strength for node i. Using this definition, node strength can be split by commu-
nities estimated in the network:

`ic =

C∑
j∈c
|Wij |,

where `ic is the sum of the edge weights in community c that are connected to
node i and C is the number of communities in the network. `ic can be standard-
ized using:

ℵic =
`ic√∑
`c
,

where
√∑

`c is the square root of the sum of all edge weights for nodes in com-
munity c and ℵic is the standardized network loading for node i in community
c. Signs are added after the loadings have been computed following the same
procedure as factor loadings (Comrey & Lee, 2013).

Across three simulations, Christensen and Golino (2021) demonstrated that
factor and network loadings are roughly equivalent when data are generated by
a factor model. To determine whether this equivalency held across other data
generating mechanisms, they generated data from random correlation matrices
with small correlations (between ±.15) and small-world networks. They found
that factor and network loadings were no longer consistent with one another
when data were generated from either data generating method. This observation
led them to develop a heuristic-based algorithm (LCT) that could potentially
be used to determine the data generating mechanism.

1.1 Original Algorithm

The algorithm starts by generating data from a multivariate normal distribu-
tion based on the empirical covariance matrix and estimating the number of
communities (or dimensions) using exploratory graph analysis (EGA; Golino &
Epskamp, 2017; Golino et al., 2020). EGA estimates a network and then applies
the Walktrap community detection algorithm (Pons & Latapy, 2006) to iden-
tify the number of communities in the network (see Appendix A.1 for statistical
details). Using the number of dimensions estimated by EGA, factor loadings
are computed using EFA with oblimin rotation. Similarly, network loadings are
computed with the EGA results. This process is repeated 100 times and loadings
are computed for each generated dataset.

Next, the proportions of loadings that are greater than or equal to small,
moderate, and large effect sizes are computed. For factor models, these effect sizes
are 0.40, 0.55, and 0.70, respectively (Comrey & Lee, 2013). For network models,
these effect sizes are 0.15, 0.25, and 0.35, respectively (Christensen & Golino,
2021). Dominant and cross-loadings that are greater than or equal to small effect
sizes are also computed. The proportion of loading effect sizes are computed to

Factor or Network Model? 89

summarize the covariance matrix into the same dimensions no matter how many
variables are in a dataset. More specifically, any n × n covariance matrix can
be summarized by these five loadings proportions for both factor and network
loadings, resulting in a comparable structure (ten loading proportions in total)
for all datasets.

We summarize Christensen and Golino’s (2021) rationale for why there might
be differences between factor and network models. Factor loadings are derived by
extracting the common covariance between variables. This computation of factor
loadings means that the magnitude of factor loadings depend on the shared vari-
ance across sets of variables. In contrast, network loadings are computed using
the standardized sum of each node’s connection to nodes in a certain dimension.
This computation means that their magnitudes only depend on the covariance
of each node with other nodes in a dimension. When data are generated from a
factor model, then there is usually common covariance to extract in each dimen-
sion. This common covariance leads factor and network loadings to be consistent
with one another as Christensen and Golino (2021) demonstrate.

Data generated from network models, however, do not imply common covari-
ance in each dimension but rather each node usually represents its own dimen-
sion (Cramer et al., 2012). Many real-world networks tend to have a small-world
structure (e.g., psychopathological disorders; Borsboom, Cramer, Schmittmann,
Epskamp, & Waldorp, 2011), which are characterized by nodes having many
neighboring connections but also some cross-network connections with even fewer
nodes that act as hubs or nodes with an above average number of connections
(Watts & Strogatz, 1998). This structure suggests that there might be common
covariance between variables, but they are not necessarily structured in a sys-
tematic way—that is, common covariance is not necessarily structured in well-
defined dimensions like factor models. Such a structure suggests that common
covariance may be identified across some variables but will be relatively diffuse
in general (i.e., across factors; Christensen & Golino, 2021). In contrast, network
loadings partition the covariance based on the dimension structure (rather than
common covariance), leading to a greater prevalence of loadings that are likely
to be at least small or larger. Finally, network loadings would also be expected
to have greater proportions of cross-loadings due to the partitioning, rather than
extraction, of common covariance. These differences between the two loadings
may thus be informative for determining whether data were generated from a
factor or network model.

The heuristics of the LCT algorithm were developed in part based on this em-
pirical rationale as well as simulated data. The first heuristic is the ratio of small
effect size (or larger) network loadings divided by small effect size (or larger) fac-
tor loadings. When this ratio is greater than 1.5, then the algorithm suggests the
data are generated from a network model; if not, a second heuristic is applied.
The second heuristic is the logarithm of the ratio of dominant factor loadings
that are a small effect size (or larger) divided by cross-factor loadings that are
a small effect size (or larger). When this logarithm ratio is greater than 5, then
the algorithm suggests the data are generated from a factor model; otherwise,

90 A. P. Christensen & H. Golino

a network model. This latter heuristic was derived post-hoc for simulated data
with large correlations between factors (0.70). Although simple, these heuristics
performed remarkably well in simulated samples: 77.9% to 100% accuracy for
factor models and 87.8% to 95.8% accuracy for network models (Christensen &
Golino, 2021).

Despite high accuracy for all models, there were a couple limitations in their
validation. First, sample sizes were all generated with 1000 cases, which is large
relative to many samples used in psychology. Second, the simulated models used
novel data but with the same data structures that the heuristics were derived
from. The number of variables, for example, was held constant at fifteen for all
models, and factor models were always generated with three factors and five
variables per factor. These limitations are likely to result in overfitting and a
lack of generalizability to other samples and data structures. These limitations
motivated the current study where we sought to improve the LCT algorithm
by replacing these simple heuristics with a more sophisticated computational
approach: artificial neural networks.

2 Artificial Neural Networks

Artificial neural networks are a commonly used technique in machine learning
research (Dreiseitl & Ohno-Machado, 2002). They come in many forms but per-
haps the most basic are feed-forward networks where data are input as nodes and
are “fed through” the network to output nodes (i.e., the prediction). In machine
learning terms, neural networks are a supervised learning model, which means
that the researcher supplies both the input variables and the output variables
that the neural network must then “learn” a mapping between them. In our
study, the input corresponded to the factor and network loading proportions.
The output corresponded to the data-generating model (either factor or net-
work). The mapping between the input and output occurs through the hidden
layers of the neural network where the model learns the appropriate weighting
scheme that optimizes the prediction of the output from the input.

A neural network with no hidden layers can represent linear functions only
and is equivalent to a standard regression model (e.g., an output node with a
sigmoid activation function is a logistic regression model). With a single hidden
layer, a neural network can approximate “any function that has a continuous
mapping from one finite space to another” (Heaton, 2008). Two hidden layers
can represent any arbitrary boundary (e.g., non-linear functions), approximating
any mapping between the input and output (Hornik, 1991; Sontag, 1991). Key
to training neural networks is deciding on the number of hidden layers and
the number of neurons (or nodes) in each of the hidden layers. More complex
mappings require more complex neural networks (i.e., more nodes and layers).

An important concept for neural network learning is backpropogation. Back-
propogation refers to the adjustment of weights and biases in the network (start-
ing from the output back to the input; Watt, Borhani, & Katsaggelos, 2016). In
training, batches or a certain number of samples of the data are fed through the

Factor or Network Model? 91

network’s weights and predictions are made about the output. With each batch,
the network updates its weights and biases by trying to minimize the loss of
information between the predicted output and the actual output. The end goal
is to minimize the loss of information between the predicted and actual output
to maximize the accuracy of the neural network’s predictions.

One of the advantages of neural networks is that they can learn mappings
between the input and output that are otherwise difficult to abstract (e.g., non-
linear relationships). In our case, going beyond simple descriptive heuristics to
map loading proportions to the data-generating model. This advantage of neural
networks is also a disadvantage. The mapping is often a “black box” that does
not offer clear interpretations of the underlying function—that is, what exactly
the neural network is using to distinguish a factor model from a network model.

2.1 Training the Neural Networks

In this section, we briefly describe the training procedure we used to arrive at
our final neural networks (a full description of the training process can be found
in Appendix A.2). Based on the original LCT algorithm, we expected certain
conditions to be more difficult to predict the data-generating model. Specifically,
we expected the size of the correlation between factors to have a substantial effect
on prediction accuracy. To this end, we started by training two neural network
models: one with low correlations between factors (0.00 and 0.30) and another
with high correlations between factors (0.50 and 0.70). Such a strategy is often
referred to as an ensemble of networks (Zhou, Wu, & Tang, 2002) where each
network is fine-tuned to a specific part of the problem to improve the overall
prediction of a more complex problem. The rationale for building several neural
networks to predict different factor models from network models is that different
information is likely to be more relevant for one set of factor models than another
(primarily along the lines of the magnitude of correlations between factors).

During the training of neural networks, part of the data is “held out” from
the network’s learning. Consistent with the literature, we used an 80/20 split of
our data where 80% of the data is used to train the network and 20% of the data
is used to validate the training. The purpose of this procedure is to evaluate the
neural network on data that was not used in its training. During this procedure,
we found that the high correlations between factors neural network was not very
accurate. We discovered that there were specific conditions where the neural
network was unable to predict the data-generating model. These conditions were
where the number of variables per factor was greater than the number of factors.
Based on this finding, we used two neural networks for factor models with high
correlations between factors (0.50 and 0.70): one with the number of variables
per factor greater than the number of factors and another with the number
of variables per factor less than the number of factors. The training validation
accuracy of both neural networks was sufficient.

Our final neural network ensemble consisted of three neural networks: low
correlations between factors, high correlations between factors with the number
of variables per factor greater than the number of factors, and high correlations

92 A. P. Christensen & H. Golino

between factors with the number of variables per factor less than the number of
factors. Our ensemble worked by having each neural network make a prediction
for whether the data were generated from a factor or network model. If any of
the neural networks predicted a factor model, then the ensemble suggests a fac-
tor model. Conversely, if all neural networks predicted a network model, then the
ensemble suggests a network model. To determine whether a neural network ap-
proach was necessary, we compared their performance to corresponding logistic
regression models that were regularized using the least absolute shrinkage and
selection operator (LASSO; Tibshirani, 1996). Logistic regression is commonly
used as a comparison method and is useful for determining the expected baseline
performance of a neural network (Dreiseitl & Ohno-Machado, 2002).

3 Present Study

In our present study, we set out to validate the neural networks against Chris-
tensen and Golino’s (2021) original LCT heuristics and the logistic regression
models that were trained alongside the neural networks. Although the neural
networks were already validated on novel samples held out from their training
samples, we sought to further test their generalizability by generating data using
different conditions than the ones they were trained on—that is, manipulating
the parameters of the factor and network models such that they were novel. Fur-
ther, we generated data from random network models, which were not used to
train the neural network and logistic regression models or the development of the
original heuristic-based algorithm. Random network models are generated by a
random process, making dependencies between variables unsystematic. Because
the random network models are completely novel, they represent an ideal test
of generalizability.

The original algorithm relied on a bootstrap approach (e.g., generating 100
samples) to compute the loadings proportion heuristics used to predict the
model. In contrast, the neural network and logistic regression approaches can
make predictions based on the empirical data. One potential advantage of the
neural network and logistic regression approaches is that they can also be ap-
plied to each sample of the bootstrap data. Beyond the empirical predictions,
the means of the loadings proportions could be computed and used to make
a prediction. Another prediction could made based on the proportion of each
time a model was predicted from the data (e.g., more than 50% of the sam-
ples suggesting a model predicts that model). In our simulation, we tested each
type of prediction (hereafter referred to as empirical, bootstrap, and proportion,
respectively).

4 Methods

4.1 Data Generation

All data were generated as continuous variables and sample sizes for all models
were generated with 400 and 750 cases. For each model, a total of 7,200 samples

Factor or Network Model? 93

were generated, resulting in 21,600 total samples. Conditions of each model con-
sisted of different parameter settings than what the neural network and logistic
regression models were trained on. The random network models were completely
novel to all LCT configurations.

4.1.1 Factor model We generated data from multivariate normal factor mod-
els following the same approach as Golino et al. (2020). First, the reproduced
population correlation matrix was computed:

RR = ΛΦΛ′,

where RR is the reproduced population correlation matrix, Λ is the k (variables)
× r (factors) factor loading matrix, and Φ is the r × r correlation matrix. The
population correlation matrix, RP, was then obtained by putting the unities
on the diagonal of RR. Next, Cholesky decomposition was performed on the
correlation matrix such that:

RP = U′U.

If the population correlation matrix was not positive definite (i.e., at least
one eigenvalue ≤ 0) or any single item’s communality was greater than 0.90, then
Λ was re-generated and the same procedure was followed until these criteria are
met. Finally, the sample data matrix of continuous variables was computed:

X = ZU,

where Z is a matrix of random multivariate normal data with rows equal to the
sample size and columns equal to the number of variables.

We manipulated number of variables per factor (4, 6, and 8), number of
factors (2, 4, and 6), and correlations between factors (.00, .30, .50, and .70).
As the magnitude of the correlations between factors increased, so too did the
variance of the distribution the cross-loadings were drawn from. Specifically,
cross-loadings were drawn from a random normal distribution with a mean of 0
and standard deviation of .050, .075, .100, and .125, respectively. This made it
possible to generate cross-loading magnitudes that were quite large (e.g., .40),
creating more difficult conditions to decipher factor from network models when
the correlations between factors were large (e.g., .70). Cross-loadings were al-
lowed to be both positive and negative. Factor loadings on the dominant factors
were randomly drawn from a uniform distribution with a minimum of .40 and
maximum of .70. In total, there were 72 conditions (sample size × number of fac-
tors × variables per factor × correlations between factors) that were generated
100 times.

4.1.2 Network model We generated data from two different network mod-
els: small-world and random. We generated small-world networks by adapting
the bdgraph.sim algorithm in the BDgraph package (Mohammadi & Wit, 2015)

94 A. P. Christensen & H. Golino

in R (R Core Team, 2020) to incorporate the sample smallworld function from
the igraph package (Csardi & Nepusz, 2006). The algorithm starts by gener-
ating a binary undirected small-world network that follows the Watts-Strogatz
model (Watts & Strogatz, 1998). Next, following Williams, Rhemtulla, Wysocki,
and Rast (2019), the weights are drawn from a G-Wishart distribution corre-
sponding to 90% of partial correlations within the range ±.40. As Williams,
Rhemtulla, Wysocki, and Rast (2019) note, large networks are more likely to
have smaller partial correlations due to more variance being partialled out; how-
ever, given that many psychological assessment instruments have redundancies
(Christensen, Golino, & Silvia, 2020), partial correlations as large as .40 may
not be uncommon even when there are a large number of variables (Wysocki &
Rhemtulla, 2019). Therefore, we allowed networks, regardless of the number of
variables, to have weights between ±.40. The distributions of the absolute values
of these weights were typically positively skewed.

For the small-world network models, number of variables (12, 24, 36, and 48),
rewiring probabilities (.075, .15, and .30), and densities (.30, .50, and .70) were
manipulated. The rewiring probabilities were chosen on the basis of typical small-
world network models where the standard Watts-Strogatz small-world model
is around .10 (±5) and typical psychological small-world networks are likely
somewhere between .01 and .50. Importantly, the number of variables tended to
be within the same range as the factor models (between 8–48) to allow for closer
comparisons of the two models, which had a similar number of variables. It is
worth noting that our density and partial correlation magnitudes were within
the general range of many psychological networks (for a review, see Wysocki &
Rhemtulla, 2019). In total, there were 72 conditions (sample size × number of
variables × rewiring probabilities × densities) that were generated 100 times.

We generated random networks using the bdgraph.sim algorithm in the
BDgraph package. The network and data generation approach was identical to
the small-world networks. The main difference is that random networks randomly
connect edges between all nodes, making them less structured relative to small-
world networks (Watts & Strogatz, 1998). Like the small-world networks, we
manipulated the number of variables (15, 25, 35, and 45) and density of the
random networks (.30, .50, and .70). We also manipulated the probability that
a pair of nodes would have edge (.25, .50, .75). In total, there were 72 conditions
(sample size × number of variables × rewiring probabilities × densities) that
were generated 100 times.

4.2 Statistical Analysis

4.2.1 Analysis of Variance We computed analysis of variances (ANOVAs)
across conditions. We used a fully factorial design to allow for all possible
interactions between conditions. Partial eta squared (η2p) was used for effect
size. We followed Cohen’s (1992) effect size guidelines: small (η2p = 0.01),
moderate(η2p = 0.06), and large (η2p = 0.14).

Factor or Network Model? 95

4.2.2 Confusion Matrix Metrics We computed confusion matrix metrics
for the models using the empirical, bootstrap, and proportion predictions of the
algorithm. To provide an example of these metrics, we use the factor model as the
model under consideration. A true positive (TP) was when the predicted and true
generating model matched the model under consideration (e.g., factor). A true
negative (TN) was when the predicted and true generating model (e.g., network)
were not the model under consideration (e.g., factor). A false positive (FP) was
when the predicted generating model matched the model under consideration
(e.g., factor) but not the true generating model (e.g., network). A false negative
(FN) was when the predicted generating model (e.g., network) did not match
the model true generating model and model under consideration (e.g., factor).

Using this confusion matrix, we computed sensitivity (TP
TP+FN),

specificity (TN
TN+FP), false discovery rate (FDR; FP

FP+TP), accu-

racy (TP+TN
TP+FP+TN+FN), and Matthews correlation coefficient (MCC;

(TP×TN)−(FP×FN)√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

). Sensitivity is the proportion of

positives that are correctly identified as TPs, while specificity is the proportion
of negatives that are correctly identified as TNs. The FDR is the proportion
of FPs that are found relative to the total positives that are predicted by the
algorithm. Accuracy is the proportion of correct predictions (TPs and TNs) of
the algorithm, representing an overall summary of sensitivity and specificity.
Finally, the MCC is considered the best overall metric for classification evalu-
ation because it is an unbiased measure that uses all aspects of the confusion
matrix, representing a special case of the phi coefficient between the predicted
and true model (Chicco & Jurman, 2020).

5 Results

Starting with general accuracy, the neural network predictions had the highest
percent correct: proportion (96.2%), bootstrap (95.1%), and empirical (86.7%).
These were followed by the original algorithm (85.9%) and the logistic regres-
sion predictions: bootstrap (70.5%), proportion (68.7%), and empirical (67.4%).
Because the logistic regression predictions were poor, we focus on the confusion
matrix metrics of the neural network and original algorithm predictions.

Across all metrics, the bootstrap and proportion predictions were superior
to the single-shot empirical predictions. It is important to note that accuracy
and MCC will be the same between models, specificity and sensitivity will be the
opposite between models, and FDR will be different between the two models. For
specificity and sensitivity, we focus on factor models (sensitivity and specificity
for network models, respectively). Overall, proportion predictions outperformed
all others: sensitivity = 0.995 and specificity = 0.946 for factor models. The
accuracy and MCC were also very high: 0.962 and 0.919, respectively. The FDR
was 0.099 for factor models and 0.003 for network models.

The bootstrap predictions performed similarly well: sensitivity = 0.987 and
specificity = 0.933 for factor models. The accuracy and MCC were high: 0.951

96 A. P. Christensen & H. Golino

and 0.896, respectively. The FDR was 0.120 for factor models and 0.007 for
network models. The empirical predictions were slightly better than the original
algorithm (in parentheses): sensitivity = 0.984 (0.931) and specificity = 0.809
(0.822) for factor models. The accuracy and MCC were fairly high: 0.867 (0.859)
and 0.751 (0.718), respectively. The FDR was 0.279 (0.273) for factor models
and 0.010 (0.041) for network models.

5.1 Factor Model Percent Correct

In general, predictions for the factor model were highly accurate (≥ 75%) across
all conditions for the neural network and logistic regression methods (Figure
1). Lower accuracy for all methods tended to occur when correlations between
factors were large (.70). The ANOVA found that there was only one effect that
reached at least a moderate effect size. This moderate effect was an interaction
between method and correlations between factors (η2p = 0.07). This interaction
was driven by the original algorithm and large correlations between factors (Fig-
ure 1).

NFAC: 2

CORF: 0

NFAC: 2

CORF: 0.3

NFAC: 2

CORF: 0.5

NFAC: 2

CORF: 0.7

NFAC: 4

CORF: 0

NFAC: 4

CORF: 0.3

NFAC: 4

CORF: 0.5

NFAC: 4

CORF: 0.7

NFAC: 6

CORF: 0

NFAC: 6

CORF: 0.3

NFAC: 6

CORF: 0.5

NFAC: 6

CORF: 0.7

N
: 400

N
: 750

4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Variables per Factor

P
er

ce
nt

 C
or

re
ct

Method

Logistic Regression

Neural Network

Original Algorithm

Type

Bootstrap

Empirical

Proportion

Factor Model Accuracy

Figure 1. Percent correct for factor models in each condition. NFAC = number of
factors, CORF = correlations between factors, and N = sample size.

Across all conditions, the neural network and logistic regression methods were
comparable to or better than the original LCT algorithm. The neural network
method was comparable to logistic regression method on all three prediction
types: empirical (98.4% and 98.9%, respectively), bootstrap (98.7% and 99.6%,
respectively), and proportion (99.5% and 99.8%). The original algorithm was
lower but still had high accuracy (93.1%).

Factor or Network Model? 97

5.2 Small-world Network Model Percent Correct

As a general trend, all methods tended to improve in percent correct as the small-
world network models became denser (Figure 2). The neural network method by
far outperformed the logistic regression and original algorithm methods when the
networks were sparse (0.30). Across all conditions, the neural networks performed
as well as or better than the logistic regression and original algorithm predictions,
with the proportion predictions achieving at least 75% correct or greater. There
was one large effect for method (η2p = 0.18). The overall percent correct made
this effect clear: neural network (90.9%), logistic regression (82.1%), and original
algorithm (56.5%).

REWIRE: 0.075

D: 0.3

REWIRE: 0.075

D: 0.5

REWIRE: 0.075

D: 0.7

REWIRE: 0.15

D: 0.3

REWIRE: 0.15

D: 0.5

REWIRE: 0.15

D: 0.7

REWIRE: 0.3

D: 0.3

REWIRE: 0.3

D: 0.5

REWIRE: 0.3

D: 0.7

N
: 400

N
: 750

12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48 12 24 36 48

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Variables

P
er

ce
nt

 C
or

re
ct

Method

Logistic Regression

Neural Network

Original Algorithm

Type

Bootstrap

Empirical

Proportion

Small−world GGM Accuracy

Figure 2. Percent correct for small-world network models in each condition. REWIRE
= rewiring probability, D = density, and N = sample size.

Relative to the neural network method, the logistic regression and original
algorithm methods did not perform as well. These results suggest that the logis-
tic regression and original algorithm were strongly biased toward factor models.
There were two clear patterns in their results. Logistic regression performed
worse as the density decreased and the number of variables increased. The orig-
inal algorithm was primarily affected by density with accuracy decreasing as
density decreased.

5.3 Random Network Model Percent Correct

The random network models were not used to train or develop the methods and
therefore represent the strongest test of generalizability. As a general trend, all

98 A. P. Christensen & H. Golino

methods tended to improve in percent correct as the random network models
became denser (Figure 3). Overall, the neural network (88.3%) outperformed
the original algorithm (82.3%) and logistic regression (50.8%) methods. When
broken down by prediction type, neural network proportion (93.4%) and boot-
strap (91.8%) predictions had the highest accuracy followed by the original al-
gorithm (82.3%) and neural network empirical (79.6%) prediction. All logistic
regression predictions were less than 60%. There was one large effect for method
(η2p = 0.20). This effect was largely driven by logistic regression (Figure 3).

PROB: 0.25

D: 0.3

PROB: 0.25

D: 0.5

PROB: 0.25

D: 0.7

PROB: 0.5

D: 0.3

PROB: 0.5

D: 0.5

PROB: 0.5

D: 0.7

PROB: 0.75

D: 0.3

PROB: 0.75

D: 0.5

PROB: 0.75

D: 0.7

N
: 400

N
: 750

15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 15 25 35 45

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Variables

P
er

ce
nt

 C
or

re
ct

Method

Logistic Regression

Neural Network

Original Algorithm

Type

Bootstrap

Empirical

Proportion

Random GGM Accuracy

Figure 3. Percent correct for small-world network models in each condition. PROB =
edge probability, D = density, and N = sample size.

These results add further support to the finding that logistic regression was
strongly biased toward factor models. Similar to the small-world network results,
all methods tended to decrease in accuracy as the density decreased. Accuracy
tended to increase as variables increased for the neural network while accuracy
tended to decrease as variables increased for logistic regression.

6 Real-world Examples

The simulation provides evidence that the LCT algorithm paired with neural
networks can be a powerful predictive tool for identifying whether data are
generated from a specific model. It is important, however, to demonstrate that
the LCT works in practice. To illustrate this, we examined two different datasets
that are assumed to be generated from a factor and network model.

Factor or Network Model? 99

6.1 International Personality Item Pool Big Five Inventory

The first example dataset consisted of 2800 observations on items from the In-
ternational Personality Item Pool’s (Goldberg, 1999) Big Five Inventory (BFI;
John, Donahue, & Kentle, 1991), which is available in the psych package (Rev-
elle, 2017) in R. The BFI traditionally has five factors, each with five items,
corresponding to the Big Five factor model: openness to experience, conscien-
tiousness, extraversion, agreeableness, and neuroticism. The robustness of this
factor structure has been demonstrated across a variety of samples (e.g., Donnel-
lan, Oswald, Baird, & Lucas, 2006). Although there is no way to determine that
the BFI is actually generated from a factor model, its robust factor structure
suggests that the data structure should follow a factor model.

We applied the LCT to the full dataset as well as sub-samples that were ran-
domly split into 400 cases each (seven sub-samples in total; see Appendix A3 for
code to replicate this analysis). For the full dataset, all predictions—empirical,
bootstrap, and proportion—were for a factor model. Across the sub-samples,
the results varied slightly by prediction: empirical (6 factor and 1 network),
bootstrap (7 factor), and proportion (7 factor).

6.2 Resting State Default Mode Network

The second example dataset consisted of mean blood oxygen level-dependent
(BOLD) activation levels of twenty regions of interest (ROIs) in the brain that
corresponded to the default mode network (DMN) during five-minute resting
state scans in 144 participants from Beaty et al. (2018). The DMN corresponds
to a set of cortical midline, medial temporal, and posterior inferior parietal re-
gions that often co-activate together. Recent research has demonstrated that the
DMN can be broken down into several distinct sub-networks (Andrews-Hanna,
Smallwood, & Spreng, 2014; Gordon et al., 2020). Brain networks are a well-
known real-world example of networks, which make them an appropriate test of
whether the LCT performs as expected.

We applied the LCT to the correlation matrices of the 20 ROIs based on the
DMN structure identified in the Shen brain atlas (Shen, Tokoglu, Papademetris,
& Constable, 2013; see Appendix A.4 for code to replicate this analysis). The
correlation matrices were derived from time series with the length of 150, which
was used as the sample size input for the LCT. For the bootstrap and proportion
predictions, all participants’ DMN networks were suggested to be generated from
a network model. The empirical prediction suggested that most 140 (97.2%) were
generated from network models.

6.3 Summary

Taken together, these examples demonstrate the validity of the LCT on real-
world datasets that were expected to be generated from factor and network
models. Given the robustness of the proportion prediction of the LCT in the
simulation and our examples here, we suggest that researchers should place the

100 A. P. Christensen & H. Golino

most weight on this prediction. A consensus across predictions is most likely to be
robust but when they conflict researchers should give priority to the proportion
prediction followed by the bootstrap and empirical predictions. One benefit of
the proportion prediction is that it provides some inference into the certainty
of the data-generating model by offering the proportion of samples that were
predicted to be from either a factor or network model.

7 Discussion

The present study sought to use artificial neural networks to improve the LCT
algorithm, which was designed to determine whether data are generated from a
factor or network model based on factor and network loading structures. Our
results demonstrate how artificial neural networks can be a powerful tool for de-
veloping highly predictive models. In the context of our study, we demonstrated
that neural networks (specifically with proportion predictions) outperform sim-
ple heuristics (i.e., the original LCT algorithm) and logistic regression models
for predicting the data-generating model.

The significance of this problem has grown increasingly relevant as recent
studies have demonstrated that similar covariance patterns and models parame-
ters (e.g., dimensions, loadings) can be derived from factor and network models
(Golino et al., 2020; Hallquist, Wright, & Molenaar, 2019; Marsman et al., 2018;
van Bork et al., 2019; Waldorp & Marsman, 2020). These findings have shifted
the focus of the differences between these models from statistical to theoreti-
cal (Guyon, Falissard, & Kop, 2017; Kruis & Maris, 2016). Indeed, when the
data generating mechanism is a factor model, then the model parameters of fac-
tor and network models can be shown to be consistent with one another (e.g.,
dimensions, loadings; Christensen & Golino, 2021; Golino et al., 2020). These
parameters, specifically loadings, start to differ when the data generating mech-
anism is not a factor model. This raises an important question: What is the
difference between the structure of factor and network models?

We pinned our rationale on the factor model’s focus on extracting common
covariance. When it comes to our neural networks, their interpretations are a
black box of linear and non-linear transformations of the input to the output
and therefore make our predictions accurate but not necessarily explanatory (but
see Buhrmester, Münch, & Arens, 2019; Yarkoni & Westfall, 2017). Although
some hints are provided by our feature importance analysis (see Appendix A.2),
the exact mapping of between the loading structures and predicted model is
likely multifaceted (as demonstrated by the better performance in training and
validation of the neural networks over logistic regression). In unidimensional
models, there appears to be some statistical differences that can be exploited
but this may not generalize to more complex models (van Bork et al., 2019).
We show that, at the very, least summaries of the data’s structure (proportions
of small, dominant, and cross-loadings) are important for differentiating data
generated from these models.

Factor or Network Model? 101

When considering statistical assumptions and the feature importance anal-
ysis, our results point to the cross-loadings between dimensions: factor models
tend to minimize cross-loadings whereas network models typically have many
(Christensen & Golino, 2021). Indeed, cross-loadings of the factor models were
either the first or second most important input for the neural networks pre-
dicting whether the data were generated from a factor or network model (see
Appendix A.2). Another difference is the extent to which there is clustering due
to common covariance: factor models attempt to specifically extract common co-
variance whereas network models partition covariance. This is made evident by
the importance of the dominant factor loading across the models. This strongly
suggests that the lack of common covariance in dimensions of network models
is a substantial contributor for differentiating them from factor models. This
finding is consistent with variables in network models being characterized as
“causally autonomous” (Cramer et al., 2012).

Although our findings may not be able to provide an exact statistical answer
about the differences between these models (e.g., van Bork et al., 2019), they do
provide a predictive tool for whether data are structured as a factor or network
model. Specifically, the proportion predictions of the neural network following
the LCT algorithm had high accuracy for all models. Importantly, we do not
suggest that the LCT can inform the researcher about whether their data was
actually generated from a specific model. This is a critical distinction: The LCT
can accurately predict whether the data are structured as a specific model rather
than actually being generated by it. Indeed, our simulated data were generated
from specific models but this does not mean that data structured like a factor
model could not be generated from a network model (and vice versa; Fried, 2020;
van Bork et al., 2019; van der Maas et al., 2006).

This issue of equally plausible data-generating mechanisms has been dis-
cussed at length in the literature (Christensen & Golino, 2021; Marsman et al.,
2018; van Bork et al., 2019; Waldorp & Marsman, 2020), leading to recent calls
for researchers to develop formal (i.e., computational and mathematical) theo-
ries about their psychological phenomena of interest (Borsboom, van der Maas,
Dalege, Kievit, & Haig, 2020; Fried, 2020; Haslbeck, Ryan, Robinaugh, Waldorp,
& Borsboom, 2019). Theories and hypotheses about the relations between com-
ponents of the phenomena should be developed a priori to test their relations.
These should then inform whether a factor or network model is a more appropri-
ate statistical model for the representation of those relations. We view the LCT
as a test for whether components are structured like a factor or network model,
which can inform the researcher as to whether the relations between components
are interacting as expected. Said differently, we do not advise that the LCT sup-
plant theory about the relations between variables but suggest that it can serve
as a tool for reasoning about the hypothesized structure of psychological mea-
surements.

In this respect, scale developers can structure their scales to align more with
the structure of a factor or network model—that is, the data structure can be
manipulated to produce data that appear to be generated from one model or

102 A. P. Christensen & H. Golino

the other (see Appendix A.6 for an example). In fact, contemporary psycho-
metric practice has been doing exactly this for many years: variables that are
strongly interrelated are usually retained in scales and variables with substantial
cross-loadings are usually removed from scales (DeVellis, 2017). This approach
is often justified to ensure that the phenomena of interest are being cleanly
measured (i.e., unidimensional) yet most researchers rarely discuss whether the
theory about the relations between the variables actually dictate such distinc-
tions. Therefore, it again comes down to theory as to whether the data are
actually generated from said model.

For more practical terms, researchers must consider the data-generating
model when estimating scores from these psychometric models (network scores
can be computed as a weighted composite; e.g., Golino, Christensen, Moulder,
Kim, & Boker, 2020). As shown in Appendix A.2 and Christensen and Golino
(2021), the loading structures for factor and network loadings are consistent with
one another when the data are generated from a factor model, which suggests
that there is little consequence in whether a factor or network model is used to
estimate scores (Golino, Christensen, Moulder, Kim, & Boker, 2020). When the
data are generated (or even structured) as a network model, then there is di-
vergence between the loading structures with variables (e.g., dominant loadings;
Appendix A.2). This divergence can have a substantial effect on the computation
and interpretation of scores.

Such a consequence has been noted in less drastic circumstances with sum
scores and factor scores where differences can be observed when a tau-equivalent
latent variable model (i.e., sum scores) is applied to data generated from a con-
generic latent variable model (i.e., factor scores; McNeish & Wolf, 2020). These
differences in factor structures can potentially have substantial consequences for
the reliability and validity of measurement. Moreover, these consequences further
underscore the importance for researchers to consider that “scoring scales—by
any method—is a statistical procedure that requires evidence and justification”
(McNeish & Wolf, 2020, p. 2). Therefore, if data are generated from a network
model, then factor scores may not be appropriate and could possibly jeopar-
dize the validity of the research. Our study demonstrates that the LCT can be
used as one method to provide such evidence and justification as well as guide
researchers toward more valid measurement.

Importantly, we also echo recent calls by researchers who have stated that
there is no need to pit these models against each other but rather develop hybrid
models that include components that are from common cause and causal systems
(Christensen, Golino, & Silvia, 2020; Epskamp, Rhemtulla, & Borsboom, 2017;
Fried, 2020; Guyon, Falissard, & Kop, 2017). In this way, researchers should
consider the level of organization at which each phenomena is being measured.
Factor models, for example, may be more appropriate when measuring a specific
phenomenon with highly similar variables like a single characteristic of person-
ality whereas network models may be more appropriate for understanding how
these specific characteristics coalesce into more complex systems like a personal-
ity trait (Christensen, Golino, & Silvia, 2020; Mõttus & Allerhand, 2017). Even

Factor or Network Model? 103

still, individual personality traits may then appear as a factor model when ex-
amined together. This suggests that the level of organization may influence the
data structure and the relationships between the psychological components. This
jibes with the notion that hybrid models may be the most optimal stance (Fried,
2020; Guyon, Falissard, & Kop, 2017). The LCT can help researchers explore
and verify these hypothesized structures to better determine how hybridization
should occur.

There are several limitations that researchers must consider when using the
LCT. First, the LCT was trained on small-world network models and therefore
carries the assumption that most psychological networks will be generated from
small-world network models. We think this assumption is reasonable because
many real-world networks show small-world structure (e.g., brain networks; Mul-
doon, Bridgeford, & Bassett, 2016) and many psychological phenomena exhibit
properties that align with these assumptions such as psychopathological disor-
ders (Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp, 2011): clustering
of symptoms within a disorder (high clustering coefficient) yet bridges between
symptoms to other disorders (low average shortest path lengths; Cramer, Wal-
drop, van der Maas, & Borsboom, 2010). Moreover, we demonstrate that the
LCT can generalize to random network structures, which may be more appro-
priate when the network consists of unique variables that represent a specific
dimension like a network comprised of individual latent variables that represent
causally distinct phenomena (Cramer et al., 2012).

There are few standards for the characteristics and topology of what can be
considered a “typical” psychological network. Our data generating assumptions
were based on previous evidence that most real-world networks tend to be small-
world (including psychological networks; Borsboom, Cramer, Schmittmann, Ep-
skamp, & Waldorp, 2011), but the extent to which psychological networks are
represented by small-world networks and whether the parameters used in the
study mimic real-world psychological networks requires empirical validation (but
see Wysocki & Rhemtulla, 2019). In large part, this is because few psychological
network studies have examined the topological features of psychological networks
such as their degree distribution, which is a critical characteristic for determining
the type of network (e.g., random, small-world, scale-free, exponential random
graph; Newman, 2010). Further, small-worldness measures should be used to
determine whether data are more like a random, lattice, or small-world network
(see Telesford, Joyce, Hayasaka, Burdette, & Laurienti, 2011). In practice, this
task is difficult because network estimation methods differ in their preference
for sparsity, which affects all network measures (Wysocki & Rhemtulla, 2019).
Better data generation follows from more studies examining and reporting the
topology of psychological networks (e.g., Battiston et al., 2020; Burger et al.,
2020), which can in turn be used to train better neural networks to make more
valid predictions.

This leads us to a second, influential limitation: the predictions of the neural
networks are only as good as the data they are trained on. Therefore, we must be
critical of our own data generating methods and question whether they resemble

104 A. P. Christensen & H. Golino

real-world data. We believe that we have provided reasonably realistic datasets
that include factor models with dominant loadings between .40 and .70 and
a varying degree of cross-loadings. The range of loadings represent what are
considered to be acceptable to very high (Comrey & Lee, 2013), with .40 being
considered a rule of thumb for appropriate measurement of a latent variable
(DeVellis, 2017). Still, not all datasets will have loadings on the dominant factor
that are within this range.

Finally, in light of our discussion on theory, the LCT is focused on cross-
sectional datasets when most phenomena are likely to be dynamical systems
(e.g., Haslbeck, Ryan, Robinaugh, Waldorp, & Borsboom, 2019). This is a limi-
tation of the current implementation of the LCT but we suspect that the LCT
can be generalized to time series data by using dynamic factor analysis and
dynamic EGA (Golino, Christensen, Moulder, Kim, & Boker, 2020). Such an
approach could lead to determining whether some people represent represent a
phenomenon of interest as a common cause or causal system. This in turn could
offer inferences into individualized psychopathological intervention (Wright &
Woods, 2020), providing more specific answers to whether it would be more
effective for a clinician to treat an underlying disorder or specific symptoms.

Author Note

All data, code, and materials can be found on the Open Science Framework:
https://osf.io/4fe9g/.

The authors made the following contributions. Alexander P. Chris-
tensen (https://orcid.org/0000-0002-9798-7037): Conceptualization, Soft-
ware, Methdology, Writing - Original Draft, Writing - Review & Editing; Hudson
Golino (https://orcid.org/0000-0002-1601-1447): Conceptualization, Soft-
ware, Methdology, Writing - Review & Editing.

Correspondence concerning this article should be addressed to Alexander P.
Christensen, Department of Neurology, University of Pennsylvania, Philadelphia,
PA, 19104. E-mail: alexpaulchristensen@gmail.com

References

Allaire, J. J., & Chollet, F. (2020). keras: R interface to ‘Keras’. Retrieved from
https://keras.rstudio.com

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default net-
work and self-generated thought: Component processes, dynamic control,
and clinical relevance. Annals of the New York Academy of Sciences, 1316,
29–52. doi: https://doi.org/10.1111/nyas.12360

Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M.,
Patania, A., . . . Petri, G. (2020). Networks beyond pairwise
interactions: Structure and dynamics. Physics Reports. doi:
https://doi.org/10.1016/j.physrep.2020.05.004

https://osf.io/4fe9g/
https://orcid.org/0000-0002-9798-7037
https://orcid.org/0000-0002-1601-1447
mailto:alexpaulchristensen@gmail.com
https://keras.rstudio.com

Factor or Network Model? 105

Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D.,
Benedek, M., Chen, Q., . . . Silvia, P. J. (2018). Robust prediction
of individual creative ability from brain functional connectivity. Pro-
ceedings of the National Academy of Sciences, 115, 1087–1092. doi:
https://doi.org/10.1073/pnas.1713532115

Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71,
425–440. doi: https://doi.org/10.1007/s11336-006-1447-6

Borsboom, D. (2008). Psychometric perspectives on diagnostic sys-
tems. Journal of Clinical Psychology, 64, 1089–1108. doi:
https://doi.org/10.1002/jclp.20503

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry,
16, 5–13. doi: https://doi.org/10.1002/wps.20375

Borsboom, D., Cramer, A. O. J., Schmittmann, V. D., Epskamp, S., & Waldorp,
L. J. (2011). The small world of psychopathology. PLoS ONE, 6, e27407.
doi: https://doi.org/10.1371/journal.pone.0027407

Borsboom, D., van der Maas, H., Dalege, J., Kievit, R., & Haig, B. (2020). The-
ory construction methodology: A practical framework for theory formation
in psychology. PsyArXiv. doi: https://doi.org/10.31234/osf.io/w5tp8

Buhrmester, V., Münch, D., & Arens, M. (2019). Analysis of explainers of black
box deep neural networks for computer vision: A survey. arXiv. Retrieved
from https://arxiv.org/abs/1911.12116

Burger, J., Isvoranu, A.-M., Lunansky, G., Haslbeck, J., Epskamp, S.,
Hoekstra, R., . . . Blanken, T. (2020). Reporting standards for psy-
chological network analyses in cross-sectional data. PsyArXiv. doi:
https://doi.org/10.31234/osf.io/4y9nz

Chen, J., & Chen, Z. (2008). Extended bayesian information criteria for
model selection with large model spaces. Biometrika, 95, 759–771. doi:
https://doi.org/10.1093/biomet/asn034

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification eval-
uation. BMC Genomics, 21, 6. doi: https://doi.org/10.1186/s12864-019-
6413-7

Christensen, A. P., Garrido, L. E., & Golino, H. (2021). Comparing commu-
nity detection algorithms in psychological data: A Monte Carlo simulation.
PsyArXiv. doi: https://doi.org/10.31234/osf.io/hz89e

Christensen, A. P., & Golino, H. (2019). Estimating the stability of the number of
factors via Bootstrap Exploratory Graph Analysis: A tutorial. PsyArXiv.
doi: https://doi.org/10.31234/osf.io/9deay

Christensen, A. P., & Golino, H. (2021). On the equivalency of fac-
tor and network loadings. Behavior Research Methods. doi:
https://doi.org/10.3758/s13428-020-01500-6

Christensen, A. P., Golino, H., & Silvia, P. J. (2020). A psychometric net-
work perspective on the validity and validation of personality trait
questionnaires. European Journal of Personality, 34, 1095–1108. doi:
https://doi.org/10.1002/per.2265

https://arxiv.org/abs/1911.12116

106 A. P. Christensen & H. Golino

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159. doi:
https://doi.org/10.1037/0033-2909.112.1.155

Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis (2nd ed.).
New York, NY: Psychology Press.

Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind,
N., Aggen, S. H., . . . Borsboom, D. (2012). Dimensions of normal per-
sonality as networks in search of equilibrium: You can’t like parties if
you don’t like people. European Journal of Personality, 26, 414–431. doi:
https://doi.org/10.1002/per.1866

Cramer, A. O. J., Waldrop, L. J., van der Maas, H. L., & Borsboom, D. (2010).
Comorbidity: A network perspective. Behavioral and Brain Sciences, 33,
137–150. doi: https://doi.org/10.1017/S0140525X09991567

Csardi, G., & Nepusz, T. (2006). The igraph software package for com-
plex network research. InterJournal, Complex Systems, 1695, 1–9.
Retrieved from https://www.semanticscholar.org/paper/The-

igraph-software-package-for-complex-network-Cs/%C3/%A1rdi-

Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df

DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.).
Thousand Oaks, CA: SAGE Publications.

Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006).
The mini-IPIP scales: Tiny-yet-effective measures of the Big Five
factors of personality. Psychological Assessment, 18, 192–203. doi:
https://doi.org/10.1037/1040-3590.18.2.192

Dozat, T. (2016). Incorporating Nesterov momentum in Adam. In Proceed-
ings of 4th international conference on learning representations, work-
shop track (pp. 604–612). San Juan, Puerto Rico. Retrieved from https:

//openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial
neural network classification models: A methodology review. Journal of
Biomedical Informatics, 35, 352–359. doi: https://doi.org/10.1016/S1532-
0464(03)00034-0

Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relation-
ships between constructs and measures. Psychological Methods, 5, 155–174.
doi: https://doi.org/10.1037/1082-989X.5.2.155

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized par-
tial correlation networks. Psychological Methods, 23, 617–634. doi:
https://doi.org/10.1037/met0000167

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psy-
chometrics: Combining network and latent variable models. Psychome-
trika, 82, 904–927. doi: https://doi.org/10.1007/s11336-017-9557-x

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many
are useful: Learning a variable’s importance by studying an entire class of
prediction models simultaneously. Journal of Machine Learning Research,
20, 1–81. Retrieved from https://jmlr.org/papers/v20/18-760.html

https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/%C3/%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/%C3/%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://www.semanticscholar.org/paper/The-igraph-software-package-for-complex-network-Cs/%C3/%A1rdi-Nepusz/1d2744b83519657f5f2610698a8ddd177ced4f5c?p2df
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://jmlr.org/papers/v20/18-760.html

Factor or Network Model? 107

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486, 75–
174. doi: https://doi.org/10.1016/j.physrep.2009.11.002

Fried, E. I. (2020). Lack of theory building and testing impedes
progress in the factor and network literature. PsyArXiv. doi:
https://doi.org/10.31234/osf.io/zg84s

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covari-
ance estimation with the graphical lasso. Biostatistics, 9, 432–441. doi:
https://doi.org/10.1093/biostatistics/kxm045

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularized paths for general-
ized linear models via coordinate descent. Journal of Statistical Software,
22, 1–34. doi: https://doi.org/10.18637/jss.v033.i01

Friedman, J., Hastie, T., & Tibshirani, R. (2014). glasso: Graphical lasso – es-
timation of Gaussian graphical models. Retrieved from https://CRAN.R-

project.org/package=glasso

Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inven-
tory measuring the lower-level facets of several five-factor models. In I.
Mervielde, I. Deary, F. De Fruyt, & F. Ostendorf (Eds.), Personality psy-
chology in Europe (Vol. 7, pp. 7–28). Tilburg, The Netherlands: Tilburg
University Press.

Golino, H., Christensen, A. P., Moulder, R., Kim, S., & Boker, S. M. (2020).
Modeling latent topics in social media using Dynamic Exploratory Graph
Analysis: The case of the right-wing and left-wing trolls in the 2016 US
elections. PsyArXiv. doi: https://doi.org/10.31234/osf.io/tfs7c

Golino, H., & Epskamp, S. (2017). Exploratory Graph Analysis: A new approach
for estimating the number of dimensions in psychological research. PLoS
ONE, 12, e0174035. doi: https://doi.org/10.1371/journal.pone.0174035

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana,
R., . . . Martinez-Molina, A. (2020). Investigating the performance of Ex-
ploratory Graph Analysis and traditional techniques to identify the num-
ber of latent factors: A simulation and tutorial. Psychological Methods, 25,
292–320. doi: https://doi.org/10.1037/met0000255

Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold,
D. J., . . . others. (2020). Default-mode network streams for coupling to
language and control systems. Proceedings of the National Academy of
Sciences, 117, 17308–17319. doi: https://doi.org/10.1073/pnas.2005238117

Guyon, H., Falissard, B., & Kop, J.-L. (2017). Modeling psychologi-
cal attributes in psychology–an epistemological discussion: Network
analysis vs. latent variables. Frontiers in Psychology, 8, 798. doi:
https://doi.org/10.3389/fpsyg.2017.00798

Hallquist, M., Wright, A. C. G., & Molenaar, P. C. M. (2019). Problems with
centrality measures in psychopathology symptom networks: Why network
psychometrics cannot escape psychometric theory. Multivariate Behavioral
Research. doi: https://doi.org/10.1080/00273171.2019.1640103

https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=glasso

108 A. P. Christensen & H. Golino

Haslbeck, J., Ryan, O., Robinaugh, D., Waldorp, L., & Borsboom, D.
(2019). Modeling psychopathology: From data models to formal theories.
PsyArXiv. doi: https://doi.org/10.31234/osf.io/jgm7f

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision (pp. 1026–1034).

Heaton, J. (2008). Introduction to neural networks with Java (2nd ed.). St. Louis,
MO: Heaton Research, Inc.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4, 251–257. doi: https://doi.org/10.1016/0893-
6080(91)90009-T

Hurley, R. S., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The broad
autism phenotype questionnaire. Journal of Autism and Developmental
Disorders, 37 (9), 1679–1690.

Ingersoll, B., Hopwood, C. J., Wainer, A., & Donnellan, M. B. (2011). A com-
parison of three self-report measures of the broader autism phenotype in a
non-clinical sample. Journal of Autism and Developmental Disorders, 41,
1646–1657. doi: https://doi.org/10.1007/s10803-011-1192-2

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An in-
troduction to statistical learning. New York, NY: Springer. doi:
https://doi.org/10.1007/978-1-4614-7138-7

Jessen, L. E. (2021). nnvizRt: A server for visualizing architectures of neural
networks. Retrieved from https://leonjessen.shinyapps.io/nnvizRt/

John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory—
Versions 4a and 54. Berkeley, CA: University of California, Berkeley, In-
stitute of Personality and Social Research.

Karpathy, A. (2019). A recipe for training neural networks. Retrieved April 25,
2019, from https://karpathy.github.io/2019/04/25/recipe/

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv. Retrieved from https://arxiv.org/abs/1412.6980

Kruis, J., & Maris, G. (2016). Three representations of the Ising model. Scientific
Reports, 6, srep34175. doi: https://doi.org/10.1038/srep34175

Lauritzen, S. L. (1996). Graphical models. Oxford, UK: Clarendon Press.

Marsman, M., Borsboom, D., Kruis, J., Epskamp, S., van Bork, R.,
Waldorp, L. J., . . . Maris, G. (2018). An introduction to net-
work psychometrics: Relating Ising network models to item response
theory models. Multivariate Behavioral Research, 53, 15–35. doi:
https://doi.org/10.1080/00273171.2017.1379379

McNeish, D., & Wolf, M. G. (2020). Thinking twice about sum scores. Behavior
Research Methods. doi: https://doi.org/10.3758/s13428-020-01398-0

Mohammadi, R., & Wit, E. C. (2015). BDgraph: An R package for Bayesian
structure learning in graphical models. Journal of Statistical Software, 1–
30. doi: https://doi.org/10.18637/jss.v089.i03

Mõttus, R., & Allerhand, M. (2017). Why do traits come together? The under-
lying trait and network approaches. In V. Ziegler-Hill & T. K. Shackelford

https://leonjessen.shinyapps.io/nnvizRt/
https://karpathy.github.io/2019/04/25/recipe/
https://arxiv.org/abs/1412.6980

Factor or Network Model? 109

(Eds.), SAGE handbook of personality and individual differences: The sci-
ence of personality and individual differences (pp. 1–22). London, UK:
SAGE Publications.

Muldoon, S. F., Bridgeford, E. W., & Bassett, D. S. (2016). Small-world
propensity and weighted brain networks. Scientific Reports, 6, 22057. doi:
https://doi.org/10.1038/srep22057

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In International conference on machine learning (pp. 807–
814). Haifa, Israel. Retrieved from https://icml.cc/Conferences/2010/

papers/432.pdf

Newman, M. E. J. (2006). Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103, 8577–8582. doi:
https://doi.org/10.1073/pnas.0601602103

Newman, M. E. J. (2010). Networks: An introduc-
tion. New York, NY: Oxford University Press. doi:
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation
functions: Comparison of trends in practice and research for deep learning.
arXiv. https://arxiv.org/abs/1811.03378

Pons, P., & Latapy, M. (2006). Computing communities in large networks using
random walks. Journal of Graph Algorithms and Applications, 10, 191–218.
doi: https://doi.org/10.7155/jgaa.00185

Prechelt, L. (2012). Early stopping – but when? In G. Montavon, G. B. Orr,
& K.-R. Müller (Eds.), Neural networks: Tricks of the trade (2nd ed., pp.
53–68). Berlin, Germany: Springer-Verlan.

R Core Team. (2020). R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing. Retrieved from
https://www.R-project.org/

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and per-
sonality research. Evanston, Illinois: Northwestern University. Retrieved
from https://CRAN.R-project.org/package=psych

Ruder, S. (2016). An overview of gradient descent optimization algorithms.
arXiv. Retrieved from https://arxiv.org/abs/1609.04747

Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013).
Groupwise whole-brain parcellation from resting-state fMRI data
for network node identification. NeuroImage, 82, 403–415. doi:
https://doi.org/10.1016/j.neuroimage.2013.05.081

Sontag, E. D. (1991). Feedback stabilization using two-hidden-layer nets. In
1991 American control conference (pp. 815–820). Boston, MA: IEEE. doi:
https://doi.org/10.23919/ACC.1991.4791486

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In International conference
on machine learning (pp. 1139–1147). Atlanta, GA. Retrieved from https:

//www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/abs/1811.03378
https://www.R-project.org/
https://CRAN.R-project.org/package=psych
https://arxiv.org/abs/1609.04747
https://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf
https://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf

110 A. P. Christensen & H. Golino

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J.
(2011). The ubiquity of small-world networks. Brain Connectivity, 1 (5),
367–375. doi: https://doi.org/10.1089/brain.2011.0038

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 267–288. doi:
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

van Bork, R., Rhemtulla, M., Waldorp, L. J., Kruis, J., Rezvanifar, S., &
Borsboom, D. (2019). Latent variable models and networks: Statistical
equivalence and testability. Multivariate Behavioral Research, 1–24. doi:
https://doi.org/10.1080/00273171.2019.1672515

van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M.,
Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of
general intelligence: The positive manifold of intelligence by mutualism.
Psychological Review, 113, 842–861. doi: https://doi.org/10.1037/0033-
295X.113.4.842

Waldorp, L., & Marsman, M. (2020). Relations between networks, regres-
sion, partial correlation, and latent variable model. arXiv. Retrieved from
https://arxiv.org/abs/2007.10656

Ward, J. H. (1963). Hierarchical clustering to optimise an objective function.
Journal of the American Statistical Association, 58, 238–244.

Watt, J., Borhani, R., & Katsaggelos, A. (2016). Machine learning refined: Foun-
dations, algorithms, and applications. Cambridge, UK: Cambridge Univer-
sity Press. doi: https://doi.org/10.1017/CBO9781316402276

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’
networks. Nature, 393, 440–442. doi: https://doi.org/10.1038/30918

Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonreg-
ularized estimation of psychological networks. Multivariate Behavioral Re-
search, 54, 719–750. doi: https://doi.org/10.1080/00273171.2019.1575716

Wright, A. G., & Woods, W. C. (2020). Personalized models of
psychopathology. Annual Review of Clinical Psychology, 16. doi:
https://doi.org/10.1146/annurev-clinpsy-102419-125032

Wysocki, A. C., & Rhemtulla, M. (2019). On penalty parameter selection for
estimating network models. Multivariate Behavioral Research, 1–15. doi:
https://doi.org/10.1080/00273171.2019.1672516

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psy-
chology: Lessons from machine learning. Perspectives on Psychological Sci-
ence, 12, 1100–1122. doi: https://doi.org/10.1177/1745691617693393

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling neural networks: Many
could be better than all. Artificial Intelligence, 137, 239–263. doi:
https://doi.org/10.1016/S0004-3702(02)00190-X

A Appendix

A.1 Exploratory Graph Analysis

Exploratory graph analysis (EGA; Golino & Epskamp, 2017; Golino et al., 2020)
is a network psychometrics dimension identification method. The approach be-

https://arxiv.org/abs/2007.10656

Factor or Network Model? 111

gins by estimating a network from the empirical data and applying a community
detection algorithm to identify communities (or dimensions) in the network. The
traditional EGA method estimates a Gaussian graphical model (GGM; Lau-
ritzen, 1996) where nodes are variables and edges are the partial correlations
between nodes after being conditioned on all other nodes. In psychological net-
works, the most common way of estimating a GGM is to use the graphical
least absolute shrinkage and selection operator (GLASSO; Friedman, Hastie, &
Tibshirani, 2008; Friedman, Hastie, & Tibshirani, 2014) with extended Bayesian
information criterion (EBICglasso; Chen & Chen, 2008; Epskamp & Fried, 2018).
Once the EBICglasso is applied, the Walktrap (Pons & Latapy, 2006) commu-
nity detection algorithm is applied. The Walktrap algorithm uses random walks
or stochastic steps from one node over an edge to another to determine the
distance and similarity between two nodes. These random walks tend to stay
within subsets of related nodes because they tend to be closer and more similar
to one another. The algorithm merges the results, based on an agglomerative
clustering approach (Ward, 1963), of the random walks to separate the com-
munities. Modularity or the extent to which nodes maximize the proportion of
connections within their community relative to connections to other communi-
ties (Newman, 2006) is then used as criterion for selecting the optimal clustering
(or community) organization.

A.2 Training the Neural Networks

A.2.1 Data Generation Following the same data generating procedures in
the main text, we generated 480,000 datasets in total. For the factor models,
we manipulated number of variables per factor (3, 4, 5, 6, and 7), number of
factors (3, 4, 5, and 6), and correlations between factors (.00, .30, .50, and .70).
In total, there were 240 conditions (sample size × number of variables per factor
× number of factors × correlations between factors). For each condition, 1,000
samples were generated.

In contrast to previous simulation studies on psychological networks which
have generated data from random network models (e.g., Epskamp, Rhemtulla, &
Borsboom, 2017; van Bork et al., 2019; Williams, Rhemtulla, Wysocki, & Rast,
2019), we generated the training network models based on small-world networks.
Despite being the most widely studied type of network, random network models
are largely incongruous with most real-world networks (e.g., lack of clustering,
no correlation between degrees of adjacent nodes, shape of degree distribution;
Newman, 2010). Small-world networks, however, at least mirror some properties
of real-world networks (e.g., clustering, shortcuts between nodes; Newman, 2010)
and are commonly found in real-world networks (e.g., brain networks; Muldoon,
Bridgeford, & Bassett, 2016). Therefore, small-world networks are more likely
to represent many psychological phenomena (e.g., psychopathology; Borsboom,
Cramer, Schmittmann, Epskamp, & Waldorp, 2011). Moreover, the structure
of small-world networks (high clustering and low distances between nodes) is
closer to structures produced by factor models than random networks. We ma-
nipulated number of variables (10, 20, 30, and 40), density (.20, .40, .60, and

112 A. P. Christensen & H. Golino

.80), and rewiring probability (.01, .05, .10, .25, and .50). In total, there were
240 conditions (sample size × number of variables × neighborhood × rewiring
probability). For each condition, we generated 1,000 samples.

A.2.2 Building Neural Networks Formal articles on steps for how to train
neural networks appropriately are sparse; however, there are several resources
available. Our approach followed Andrej Karpathy’s “recipe” for training neural
networks (Karpathy, 2019). This recipe starts by thoroughly inspecting the data
distributions and looking for patterns, developing a neural network skeleton by
making a simplified model, overfitting a small portion of samples (e.g., 100) from
the data, regularizing the model to prevent overfitting (e.g., early stopping),
optimizing hyperparameters (e.g., number of nodes and hidden layers, learning
rate, batch size), and using neural network ensembles (which we describe in
our Introduction section). To prevent overfitting of the training data, we added
an early stopping criterion: when the validation loss plateaued (i.e., decreases
in the loss function less than .001) for ten epochs (or ten runs through the
entire training dataset; Prechelt, 2012), then the best weights (highest training
accuracy) were kept and used as our model.

A.2.3 Input Nodes Neural networks require a specific structure for input.
We used the proportion of loading effect sizes to summarize the covariance matrix
into a specific set of variables for input. This approach makes it so that no matter
how many variables are in a dataset they can always be summarized into the
same variables that are fed into the neural network. Using proportions that are
equal to or larger than a certain effect size allows for more continuous cut-offs
that reduce some of arbitrariness that is inherent in rule-of-thumb effect sizes.

Following Christensen and Golino’s (2021) LCT algorithm, we submitted
each dataset to EGA and EFA (using the same number of dimensions estimated
by EGA). For both the network and factor loadings, we computed the proportion
of loadings that were greater than small (.15 and .40, respectively), moderate
(.25 and .55, respectively), and large (.35 and .70, respectively) effect sizes as
well as the proportion of loadings that were greater than small effect sizes for
dominant and cross-loadings (Christensen & Golino, 2021; Comrey & Lee, 2013).
For each dataset, this created 10 proportions in total (five proportions for each
loading type) that were used as the base input nodes for all neural networks.

Additional input nodes were created by computing the ratio between the
exponent of a base network loading (i.e., small, moderate, large, dominant, and
cross) and the exponent of the corresponding base factor loading. To normalize
these ratios to be between zero and one (the same range as the proportions), we
used min-max normalization using the minimum and maximum possible ratio:

x− exp(0)
exp(1)

exp(1)
exp(0) −

exp(0)
exp(1)

,

Factor or Network Model? 113

where x is the ratio between the exponent of a network loading proportion (e.g.,
small) and the exponent of the corresponding factor loading proportion. Addi-
tional inputs were not included if they did not increase prediction beyond the
base model when training the logistic regression. For all models, only the dom-
inant ratio improved the accuracy of the logistic regression predictions. When
additional inputs were used, we mention them in their corresponding neural net-
work descriptions. Below is a figure representing the data processing pipeline to
be fed data into the neural network (Figure 4).

Figure 4 displays simulated data from a factor model with two factors, six
variables per factor, small correlations between factors (0.30), and sample size
of 1000. The pipeline from data to neural network starts by computing a corre-
lation matrix. Next, EGA is used to estimate the number of dimensions. These
dimensions are then used as the number of factors to estimate in an EFA model
with oblimin rotation. Factor and network loadings are then computed. The
proportion of loadings that are greater than or equal to small, moderate, and
large effect sizes are computed. Similarly, the proportion of dominant and cross-
loadings that are greater than or equal to a small effect size are computed. This
is done for both factor and network loadings. Finally, these loadings are fed
as input into the neural network. The neural network then predicts the model
that the data were generated from. The neural network was visualized using the
nnvizRt Shiny application (Jessen, 2021) in R.

A.2.4 Activation Function Activation functions determine the output from
a node given the input to the node. All hidden layers for all neural networks used
the Parametric Rectified Linear Unit (PReLu; He, Zhang, Ren, & Sun, 2015)
activation function. The Rectified Linear Unit (ReLu; Nair & Hinton, 2010) is the
contemporary choice for most applications of deep learning (as opposed to the
historically and often still used sigmoid function; Nwankpa, Ijomah, Gachagan,
& Marshall, 2018). The ReLu activation function is a non-linear function that
returns the input of the function as the output unless the input is negative, which
is instead set to zero (inspired by the action potential of biological neurons).
One limitation of the ReLu function is that it can cause some neurons to never
activate (no matter the input), always outputting zero (known as the “dying
neuron problem”; He, Zhang, Ren, & Sun, 2015). PReLu overcomes this issue
by allowing a trainable parameter α to be adjusted so that some small non-zero
negative weights still activate neurons in the network. When α is zero for a node,
then PReLu is equivalent to ReLu. This flexibility of PReLu allows it to perform
at least as well as ReLu. For all output layers, we used the sigmoid function
(ex

ex+1) to estimate the probability of a given sample belonging to the outcome
model (i.e., the model designated as 1 in the output). A cut-off probability
of .50 was used to determine what model the sample belonged to (e.g., factor
vs. network model).

A.2.5 Gradient Descent Optimizer For all models, we used the Nestorov
Adaptive Moment Estimation optimizer (NADAM; Dozat, 2016), which tends

114 A. P. Christensen & H. Golino

Figure 4. From Data to Neural Network Pipeline

Factor or Network Model? 115

to be the contemporary choice of neural networks (Ruder, 2016). The details
of gradient descent optimizers are beyond the scope of this paper; however,
their purpose was to minimize their functions by iteratively moving towards the
steepest part of the gradient or slope of the loss function (Watt, Borhani, &
Katsaggelos, 2016). At each iteration, the algorithm takes certain sized steps
on the gradient, which are called the learning rate. Higher learning rates lead to
larger steps toward a loss minimum but can potentially over-step a more optimal
minimum; lower learning rates are more likely to reach an optimal minimum but
take more time to get there. NADAM is an adaptive algorithm that changes the
learning rate over time in order to achieve appropriate descent. The foundation
of this algorithm is based on the Adaptive Moment Estimation (ADAM) opti-
mizer (Kingma & Ba, 2014), but uses an alternative momentum parameter called
Nesterov’s accelerated gradient momentum (NAG; Sutskever, Martens, Dahl, &
Hinton, 2013). In NADAM, NAG moves toward an intermediate direction and
then corrects toward the gradient, which allows the momentum to be shifted
toward the minimum (even after moving past the minimum; for more details,
see Dozat, 2016).

A.2.6 Loss and Accuracy Gradient descent optimizers aim to minimize a
loss function or the error between the actual and predicted outcomes. In our
neural networks, this was binary cross entropy or logarithmic loss. Binary cross
entropy is defined as the distance between two probability distributions (e.g.,
actual and predicted outcomes) and mathematically represented as:

CE = −
(
y log(p) + (1− y) log(1− p)

)
,

where y is the actual model and p is the predicted probability of the dataset
belonging to the model. If y = 1, then CE; otherwise, if y = 0, then 1− CE.

Binary accuracy was our accuracy measure, which is the mean of correct
identifications in the total sample. The accuracy typically corresponds to loss
but not necessarily. This is because correct model identifications are part of the
binary cross entropy equation. Their difference arises in the fact that binary cross
entropy considers the probability in which a dataset belongs to the correct model.
In the random vs. non-random model, for example, a probability ≥ .50 would be
considered a random model (1); otherwise, it is considered a non-random model
(0). A correct identification would be a 1 but its probability could be as low as
.50. In terms of binary cross entropy, the loss for a correct identification could
range from 0 (p = 1) to 0.693 (p = .50). Therefore, loss is informative about the
decisiveness of the predictions and accuracy is informative about the correctness
of the predictions.

A.2.7 Training Neural Networks Models were set up with a certain num-
ber of samples, which were then split into the original training (80% of the
overall sample) and validation (20% of the overall sample) samples. The original
validation samples are then completely held out of the model training phase and

116 A. P. Christensen & H. Golino

were only seen after the model had been trained. The original training samples
were used to train the model. During training, the original training samples are
further split into a new training dataset (80% of the training samples) and vali-
dation dataset (20% of the training samples). This new training dataset is then
randomly sampled without replacement with a specific number of batch sizes
(number of training samples used in each update of the gradient and weights).
After all of the new training dataset samples have been used once, the model is
tested using the new validation dataset.

Loss and accuracy metrics are then provided with the training loss and accu-
racy representing the last model in the epoch and the validation loss and accuracy
representing the performance of this last model on the validation dataset. The
conclusion of a single run of this process is called an epoch. Each new epoch will
randomly draw samples without replacement from the original training samples
and form new training and validation datasets (a process known as shuffling).
For all neural networks, we set the total number of epochs to 100 to allow train-
ing to proceed as necessary to settle into a minimum. Training was terminated
when either the epochs reached 100 or our early stopping criterion was reached
(i.e., decrease in validation loss less than .001 for ten consecutive epochs). After
training was terminated, the final model was then tested on the original valida-
tion samples, which are considered to be novel because they had not been seen
during the training of the model.

As a baseline comparison model, we trained the lasso regularized logistic
regression models on the same original training data using the same input vari-
ables used in the neural networks. Regularized logistic regression models were
chosen as a comparison for two reasons: (1) logistic regression models tend to
perform better than other machine learning classification methods, such as sup-
port vector machines and decision trees, when there are overlapping classes, and
(2) regularization reduces the flexibility of the model, which makes it less likely
to overfit the underlying function in the training data and more likely to gener-
alize to other data conditions (James, Witten, Hastie, & Tibshirani, 2013). The
use of logistic regression models provides inference into whether more complex
neural networks are necessary. The coefficients of each trained logistic model
were extracted and then solved for each case of the original validation dataset.
Accuracy and loss were then computed for the original validation dataset.

A.2.8 Feature Importance In order to determine the importance of each
input into each neural network, we computed a measure of feature importance
on the original validation datasets that were held out of the original training
datasets following Fisher, Rudin, and Dominici (2019). The approach works by
permutating one-by-one each input variable and computing the loss. The loss is
then divided by the original loss to obtain the relative decrease in performance
for the permutated input. Because of the stochasticity of the permutations, we
computed this analysis ten times and computed the mean of the values. Values
greater than one suggest the input was important with larger values suggest-
ing greater importance whereas values near one suggest that the input did not

Factor or Network Model? 117

improve the model and less than one suggest that the input made the model
worse.

A.2.9 Data Analysis All analyses were performed in R. All neural networks
were trained using the keras package (Allaire & Chollet, 2020) and all logistic
regression models were fit with the glmnet package (Friedman, Hastie, & Tib-
shirani, 2010). All data, R code and scripts are available on the Open Science
Framework (OSF). Each neural network is available on the OSF and can be
further fine-tuned and improved with new data and examples (i.e., the models
can be further trained with new models, data conditions, and methods of data
generation).

A.2.10 Results The mean proportions of the base network and factor load-
ings across each data-generating models are presented in Figure 5.

Network Factor

Small Moderate Large DominantCross Small Moderate Large DominantCross

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Loading

M
ea

n
P

ro
po

rt
io

n

Model

Factor

Network

Figure 5. Mean proportions of the base input loadings for the neural network models.
Error bars represent 0.5 standard deviations.

The most glaring differences between models are proportion of dominant
loadings that achieve a small effect size or larger for both network and factor
loadings. This difference is most apparent when the data are generated from
a network model. Table 1 presents a summary of the architecture the neural
networks including the parameters and validation estimates.

Across all neural networks, we found comparable or better performance than
the logistic regression models, suggesting that the neural networks were reason-
able and potentially necessary for optimal performance in the LCT algorithm.

Model 1: Low Correlation Factor vs. Network. For the low correla-
tion factor vs. network model, we removed the datasets corresponding to the

https://osf.io/4fe9g/
https://osf.io/4fe9g/

118 A. P. Christensen & H. Golino

Table 1. Neural Network Architectures, Parameters, and Metrics

Neural
Network

Logistic
Regression

Model Architecture
Batch
Size

Learning
Rate

Loss Accuracy Loss Accuracy

1 11 9 1 64 .0003 0.180 0.928 0.286 0.890
2 11 9 1 32 .0005 0.159 0.937 0.257 0.908
3 11 9 1 32 .001 0.239 0.902 0.401 0.846

Note. Model: 1 = low correlation vs. network; 2 = high correlation with
variables greater than factors vs. network; 3 = high correlation with
variables less than or equal to factors vs. network. Grey boxes denote
best values of loss and accuracy for each model.

data generated from factor models with correlations between factors of .50 and
.70 (120,000 samples), leaving us with 120,000 samples of orthogonal and low
correlations between factors (.00 and .30, respectively). To obtain an equivalent
number of datasets generated from the network models, we randomly sampled
40,000 network datasets from each level of sample size (i.e., 250, 500, and 1000),
resulting in 120,000 total network datasets. In total, we used 240,000 datasets.

We created a single binary output variable with 1 corresponding to a factor
model and 0 corresponding to not a low correlation factor model. Importantly,
it is possible that the learned weights of the low correlation factor model could
still correspond to other factor models even though they weren’t observed in
the trained model. This potential for overlap was on purpose and allowed mul-
tiple checks of factor models to be learned against network models in the LCT
algorithm.

The input of this model consisted of our base input nodes along with an
additional input: dominant ratio. This made for eleven input nodes in total.
There was one hidden layer with nine nodes. Our final model did not reach
our early stopping criterion and was terminated after the 100th epoch. We then
evaluated the model on the validation dataset, which achieved a loss of 0.180
and accuracy of 92.8%. The neural network model outperformed the regularized
logistic regression model by a full tenth in loss and over three percent in accuracy
(Table 1). The inputs that had the greatest importance were the cross factor
loading (2.57), dominant factor loading (2.55), and large factor loading (2.12).

Model 2: High Correlation with Variables per Factor Greater than
Factors vs. Network. The setup of the high correlation with variables greater
than factors vs. network model was identical to Model 1 except the samples
retained were the high correlation between factors (i.e., .50 and .70; 120,000
samples) rather than the low correlation between factors. From these samples,
we extracted samples that were generated with the number of variables per factor
that were greater than the number of factors (e.g., 4 variables per factor and 3
factors). This resulted in 60,000 samples used in training. Just as Model 1, we

Factor or Network Model? 119

Table 2. Importance of Input for Each Model

Network Factor Ratio

Model Small Moderate Large Dominant Cross Small Moderate Large Dominant Cross Dominant

1 2.09 1.53 1.16 1.59 1.68 1.66 1.21 2.12 2.55 2.57 1.09
2 2.20 2.27 1.23 1.28 1.27 3.07 1.30 2.44 1.54 3.28 1.93
3 6.65 1.81 1.35 2.05 1.88 1.67 1.18 1.84 2.22 2.45 1.37

Note. Model: 1 = low correlation vs. network; 2 = high correlation with variables greater
than factors vs. network; 3 = high correlation with variables less than or equal to factors
vs. network. Grey boxes denote top three most important features for each model.

randomly sampled an equal number of network samples across the same sample
size levels, resulting in a total of 120,000 samples.

The exact same input and hidden layers were used as Model 1. Similarly, our
final model did not meet our early stopping criterion and was terminated after
the 100th epoch. We then evaluated the model on the validation dataset, which
achieved a loss of 0.159 and accuracy of 93.7%. This neural network outperformed
the logistic regression model in loss and accuracy (Table 1). The inputs that had
the greatest importance were the cross factor loading (3.28), small factor loading
(3.07), and large factor loading (2.44).

Model 3: High Correlation with Variables per Factor Less than
or Equal to Factors vs. Network. The setup of the high correlation with
variables less than or equal to factors vs. network model was the same as Model 2
except models with the samples retained were the moderate and high correlation
between factors (i.e., .50 and .70) with variables per factor than were equal to or
less than the number of factors (60,000 samples; e.g., 3 variables per factor and
5 factors). Similarly, an equivalent number of network models were randomly
drawn from the 240,000 network models (across the same sample size levels),
resulting in a total of 120,000 samples. The inputs and hidden layers were the
same as Model 1 and 2. Our final model reached our threshold of early stopping
on epoch 88. We then evaluated the model on the validation dataset, which
achieved a loss of 0.239 and accuracy of 90.2%. Relative to the other models,
the neural network substantially outperformed the logistic regression model on
both loss and accuracy (differences of .162 and 5.6%, respectively). The inputs
that had the greatest importance were the small network loading (6.65), cross
factor loading (2.45), and dominant factor loading (2.22).

A.3 Reproducible Code for the Loadings Comparison Test with Big
Five Inventory

Set seed

set.seed (3532)

Install latest EGAnet package

devtools :: install_github("hfgolino/EGAnet")

120 A. P. Christensen & H. Golino

Load packages

library(psych)

library(EGAnet)

library(psychTools)

Get BFI data

bfi.data <- bfi [,1:25]

LCT of the full dataset

LCT(bfi.data)

Randomly sample from BFI data

samps <- sample (1: nrow(bfi), nrow(bfi))

Split samples into sizes of 400

start <- seq(1, nrow(bfi), 400)

end <- seq(400, nrow(bfi), 400)

New samples

new.samps <- list()

for(i in 1: length(start)){

new.samps[[i]] <-

bfi.data[samps[start[i]:end[i]],]

}

Apply LCT to new BFI samples

res.bfi <- lapply(new.samps , LCT)

Empirical

mean(lapply(res.bfi ,

function(x){x$empirical }) == "Factor")

Bootstrap

mean(lapply(res.bfi ,

function(x){x$bootstrap }) == "Factor")

Proportion

mean(lapply(res.bfi , function(x){

names(x$proportion)[which.max(x$proportion)]
}) == "Factor")

A.4 Reproducible Code for the Loadings Comparison Test with
Default Mode Networks

Factor or Network Model? 121

Install latest EGAnet package

devtools :: install_github("hfgolino/EGAnet")

Load packages

library(googledrive)

library(EGAnet)

Create path to temporary file

temp <- tempfile ()

Download to temporary file

drive_download(paste("https://drive.google.com/file/d/",

"1T7_mComB6HPxJxZZwwsLLSYHXsOuvOBt", "/view?usp=sharing",

sep = ""), path = temp)

Load resting state brain data

load(temp)

Get default mode network from Shen atlas

(from NetworkToolbox)

atlasNet <-

c(2,4,3,2,3,3,2,2,2,1,4,1,3,2,4,1,2,4,2,4,2,

2,5,5,5,5,5,4,4,2,2,4,5,5,5,4,5,5,5,5,8,6,

8,4,5,5,2,2,3,3,5,1,1,1,2,1,1,5,8,5,5,5,5,

1,1,8,8,6,8,2,8,6,8,8,6,7,6,7,6,6,7,6,4,5,

3,3,6,4,5,3,4,5,4,4,4,3,5,6,4,7,4,7,4,4,4,

4,4,4,5,4,2,2,4,4,3,2,4,4,4,4,4,4,4,4,4,4,

4,4,4,4,4,4,4,3,4,4,1,3,2,1,3,2,2,4,1,4,2,

1,1,1,1,4,1,2,4,1,2,5,5,5,5,1,5,2,1,5,5,5,

4,5,5,5,5,5,8,6,8,4,5,5,5,2,1,2,1,1,1,5,5,

1,5,1,2,1,5,2,5,6,2,8,8,5,3,8,6,8,6,6,8,8,

6,7,7,7,6,6,4,5,1,4,4,3,3,4,3,4,3,5,4,4,4,

4,4,4,5,4,4,4,3,8,7,2,4,4,4,2,2,4,4,4,4,4,

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

dmn <- which(atlasNet == 3)

Grab only default mode networks

rest.dmn <- restOpen[dmn ,dmn ,]

Convert array to list

dmn.list <- list()

Make diagonals 1

for (i in 1:dim(rest.dmn)[3]){

122 A. P. Christensen & H. Golino

net <- rest.dmn[,,i]

diag(net) <- 1

dmn.list[[i]] <- net

}

Apply LCT to DMN list

150 = length of original time series

res.dmn <- lapply(dmn.list , LCT , n = 150)

Empirical

mean(lapply(res.dmn , function(x){x$empirical }) == "Network")

Bootstrap

mean(lapply(res.dmn , function(x){x$bootstrap }) == "Network")

Proportion

mean(lapply(res.dmn , function(x){

names(x$proportion)[which.max(x$proportion)]
}) == "Network")

A.5 Session Information for Appendix A.3 and A.4

R version 4.0.5 (2021-03-31)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 10 x64 (build 19042)

Matrix products: default

locale:

[1] LC_COLLATE=English_United States.1252

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] psych_2.1.3 EGAnet_0.9.9 googledrive_1.0.1

[4] papaja_0.1.0.9997 ggplot2_3.3.3

loaded via a namespace (and not attached):

[1] pillar_1.6.0 compiler_4.0.5 tools_4.0.5

Factor or Network Model? 123

[4] digest_0.6.27 nlme_3.1-152 lattice_0.20-44

[7] evaluate_0.14 lifecycle_1.0.0 tibble_3.1.1

[10] gtable_0.3.0 pkgconfig_2.0.3 rlang_0.4.11

[13] xfun_0.22 DBI_1.1.1 parallel_4.0.5

[16] yaml_2.2.1 withr_2.4.2 stringr_1.4.0

[19] dplyr_1.0.6 knitr_1.33 generics_0.1.0

[22] vctrs_0.3.8 grid_4.0.5 tidyselect_1.1.1

[25] glue_1.4.2 R6_2.5.0 fansi_0.4.2

[28] rmarkdown_2.8 bookdown_0.22 purrr_0.3.4

[31] magrittr_2.0.1 scales_1.1.1 ellipsis_0.3.2

[34] htmltools_0.5.1.1 mnormt_2.0.2 assertthat_0.2.1

[37] colorspace_2.0-1 utf8_1.2.1 stringi_1.6.1

[40] munsell_0.5.0 tmvnsim_1.0-2 crayon_1.4.1

A.6 Example of data-generating model Manipulation

To demonstrate how the structure of data can be manipulated toward a cer-
tain model, we used a dataset that consisted of 2,832 observations on items
from the Broad Autism Phenotype Questionnaire (BAPQ; Hurley, Losh, Parlier,
Reznick, & Piven, 2007) that was a collected as a part of the Simons Foundation
Autism Research Initiative’s Simplex Collection (https://www.sfari.org/).
The BAPQ was completed by the mothers and fathers of children on the Autism
spectrum. The BAPQ consists of three sub-scales—aloof personality, pragmatic
language problems, and rigid personality—that are based on direct assessment
interviews with parents of autistic people that correspond to defining behavioral
domains of autism: social, communication deficits, and stereotyped-repetitive be-
haviors (Hurley, Losh, Parlier, Reznick, & Piven, 2007). The BAPQ has demon-
strated a robust three-factor structure (Ingersoll, Hopwood, Wainer, & Donnel-
lan, 2011) with each sub-scale containing twelve items that are rated on a 6-point
Likert scale. Correlations between the means of the sub-scales tend to be highly
correlated in clinical samples (r’s from .50 to .70; Hurley, Losh, Parlier, Reznick,
& Piven, 2007) but smaller when using factor analysis in non-clinical samples
(r’s from .10 to .30; Ingersoll, Hopwood, Wainer, & Donnellan, 2011).

Because we have data for both mothers and fathers, we applied the LCT
to each parent’s datasets. We split the datasets into training (n = 1,699) and
testing (n = 1,133) sets to validate the LCT’s results. Below we present a table
(Table 3) for the predictions of the LCT.

The results demonstrate that the BAPQ in mothers is a factor model based
on the empirical prediction and network model based on the bootstrap and
proportion prediction. For the fathers, the training data were predicted to be
a factor model across all predictions while the testing data were predicted to
be a network model across all predictions. In short, the results are mixed but
lean towards a network model with three out of for datasets having network
predictions for the proportion prediction. Based on this result, we would conclude
that the data for mothers and fathers are most likely generated from a network

https://www.sfari.org/

124 A. P. Christensen & H. Golino

Table 3.

Predictions

Parent Dataset Empirical Bootstrap Proportion

Mother
Training Factor Network

Network (0.59)
Factor (0.41)

Testing Factor Network
Network (0.71)
Factor (0.29)

Father
Training Factor Factor

Factor (0.72)
Network (0.28)

Testing Network Network
Network (0.55)
Factor (0.45)

model. Notably, the fathers’ datasets were leaning towards a factor model relative
to the mothers datasets (including the training data being a factor model across
predictions).

If, for example, we thought that the data generating mechanism was a factor
model, then we should try to adjust the data’s structure toward a factor model.
To do so, we could analyze the structure of the data to see which items are
multidimensional or leading to larger cross-loadings between dimensions. One
approach for achieving these results is called bootstrap exploratory graph analysis
(bootEGA; Christensen & Golino, 2019).

bootEGA applies a parametric bootstrap approach where N number of repli-
cate samples are generated from a multivariate normal distribution based on the
empirical correlation matrix. Each replicate sample is then analyzed using EGA
(see Appendix A.1 for a description), forming a distribution of factors and item
placement within those factors. Taking advantage of the deterministic alloca-
tion of items into factors, we can determine how often items are replicating in
their empirical dimension as well as other dimensions. That is, we can deter-
mine how stable the factors are with respect to how items are placed into them
(Christensen, Golino, & Silvia, 2020). Items that are not replicating well in their
empirically derived factor (e.g., EGA identified factor) indicate that these items
are likely to be multidimensional, have larger cross-loadings, and are likely lead-
ing the data structure to be more like a network model.

When performing such an analysis, we found that there were four factors
with identical item placement for the mothers and fathers datasets’ empirically
derived structure (using EGA). Using this factor structure and item placement,
we applied bootEGA (n = 500) to the training and testing datasets for both
mothers and fathers. The item stability analysis found one factor containing
items that were relative unstable. These items and their stability (number of
times replicating in their empirically derived structure) are presented in Table
4. When removing these items, the data structure for all datasets moved closer
to a factor model structure as shown in Table 5.

Indeed, three out of four datasets now suggest a factor model relative to
a network model. For those three models suggesting a factor model (mothers

Factor or Network Model? 125

Table 4.

Replication Proportion

Mother Father

Item Description Training Testing Training Testing

7. I am ”in-tune” with the
other person during con-
versation

0.41 0.59 0.18 0.11

12. People find it easy to
approach me

0.33 0.10 0.03 0.02

21. I can tell when someone
is not interested in what I
am saying

0.42 0.62 0.18 0.11

23. I am good at making
small talk

0.33 0.10 0.03 0.02

25. I feel like I am really
connecting with other peo-
ple

0.33 0.10 0.03 0.02

28. I am warm and friendly
in my interactions with
others

0.34 0.10 0.03 0.02

34. I can tell when it is time
to change topics in conver-
sation

0.42 0.62 0.18 0.11

Table 5.

Predictions

Parent Dataset Empirical Bootstrap Proportion

Mother
Training Factor Factor

Factor (0.73)
Network (0.27)

Testing Network Network
Network (0.58)
Factor (0.42)

Father
Training Factor Factor

Factor (1.00)
Network (0.00)

Testing Factor Factor
Factor (0.72)

Network (0.28)

126 A. P. Christensen & H. Golino

training and both fathers), all predictions were for a factor model. The testing
mothers dataset was a network across all predictions but notably the proportions
prediction suggested that the model moved away from a network model and
closer to a factor model (from 0.71 to 0.58 for a network model and 0.29 to 0.42
for a factor model).

	Factor or Network Model? Predictions From Neural Networks
	Loadings Comparison Test
	Original Algorithm

	Artificial Neural Networks
	Training the Neural Networks

	Present Study
	Methods
	Data Generation
	Factor model
	Network model

	Statistical Analysis
	Analysis of Variance
	Confusion Matrix Metrics

	Results
	Factor Model Percent Correct
	Small-world Network Model Percent Correct
	Random Network Model Percent Correct

	Real-world Examples
	International Personality Item Pool Big Five Inventory
	Resting State Default Mode Network
	Summary

	Discussion
	Appendix
	Exploratory Graph Analysis
	Training the Neural Networks
	Data Generation
	Building Neural Networks
	Input Nodes
	Activation Function
	Gradient Descent Optimizer
	Loss and Accuracy
	Training Neural Networks
	Feature Importance
	Data Analysis
	Results

	Reproducible Code for the Loadings Comparison Test with Big Five Inventory
	Reproducible Code for the Loadings Comparison Test with Default Mode Networks
	Session Information for Appendix A.3 and A.4
	Example of data-generating model Manipulation

