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Abstract. Growth curve analysis is a popular method for modeling in-
dividual development across time. Specifying growth curve models in a
Bayesian framework affords researchers the flexibility of including previ-
ous information as prior distributions of parameters. However, common
choices of prior distribution for modeling slope variance in a Bayesian
growth curve framework make determining the existence of meaning-
ful interindividual differences in intraindividual change across time diffi-
cult due to boundary values of these priors. Additionally, many current
methods are either technically difficult to implement or are sensitive to
model specification. We present a simple data permutation method that
reliably distinguishes between longitudinal data with individual slope
variation and those without slope variation. We show situations in that
the proposed data permutation testing outperforms DIC based model
comparison through Monte Carlo simulations and apply this data per-
mutation method to data derived from the National Longitudinal Study
of Adolescent to Adult Health.

Keywords: Bayesian Growth Curve Modeling · Random Slope Testing ·
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1 Introduction

Longitudinal research design is a powerful framework for testing psychological
hypotheses regarding change. In such a framework, researchers measure the same
construct from multiple participants across multiple time points so as to study
how a given psychological process changes over time (Baltes & Nesselroade,
1979). Due to the versatility and statistical power afforded by longitudinal re-
search designs, researchers have been able to study time-varying phenomena
such as patterns and outcomes of drug use among adolescents, trajectories of
public reaction to large-scale disasters, and stability of personality traits across
time (Roberts, Walton, & Viechtbauer, 2006; Shedler & Block, 1990; Silver, Hol-
man, McIntosh, Poulin, & Gil-Rivas, 2002). By collecting data in a longitudinal
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manner, researchers are able to simultaneously study how a given psychological
construct changes within an individual and what factors influence the varying
trajectories of said construct among different individuals.

Although collecting data in a longitudinal manner may be more difficult than
collecting data in a single wave, advances in data collection technologies have
made longitudinal research designs accessible to many researchers. As such, in
recent years longitudinal research designs have become commonplace in psy-
chological research. A Google Scholar search for the terms “longitudinal”, “re-
search”, and “psychology” shows an increase in number of related works from
about 140,000 results in the 1990s to more than 1,200,000 related works be-
tween 2010 and 2020. With this increase in popularity of longitudinal research
designs there has also come an increase in the number and quality of statistical
methods for analysing longitudinal data. Although varied, each method provides
researchers some insight into how psychological processes change over time.

1.1 Statistical Methods for Longitudinal Research

Statistical methods for longitudinal data analysis help researchers to under-
stand both intraindividual change and interindividual differences in intraindi-
vidual change across time. That is, researchers may use statistical methods for
longitudinal data analysis in order to gain a deeper understanding of how indi-
viduals change over time with respect to a variable of interest and how differ-
ent individuals may show different patterns of change. Growth curves modeling
is one popular way of assessing these qualities given a longitudinal sample of
participants (Grimm, Ram, & Estabrook, 2016; Hertzog & Nesselroade, 2003;
Oravecz & Muth, 2018). Growth curve models have been used by researchers
to study a wide variety of phenomena such as academic trajectories of children,
the development of individuals’ self-esteem, and changes in depressive symptoms
of adolescents over time (Baldwin & Hoffmann, 2002; Gomez-Baya, Mendoza,
Paino, Sanchez, & Romero, 2016; Gutman, Sameroff, & Cole, 2003). Due to the
simplicity and flexibility of growth curve models, different researchers may use
different statistical frameworks for estimating growth curve models. Such sta-
tistical frameworks for conducting growth curve analyses include mixed-effects
modeling/multilevel modeling and structural equation modeling.

Across statistical frameworks, growth curve models generally take the form:

Yij = β0 + β1Tj + u0i + u1iTj + ϵij , (1)

where Yij is the realizatio of an outcome variable from person i at time j,
i = 1, . . . , N , j = 1, . . . ,K, where N is the sample size and K is the total
number of measurement occasions, β0 is a fixed effect representing the average
intercept value at time Tj = 0 for all participants, β1 is a fixed effect represent-
ing the average slope over time, u0i is a random component of intercept for each
individual i with variance σ2

u0
, at time Tj = 0, u1i is a random component of

slope for each individual i with variance σ2
u1
, and ϵ is an error term with variance

σ2
ϵ . Specific and meaningful interpretation of these parameters have allowed for
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growth curve modeling to become a common tool for studying change (McAr-
dle & Nesselroade, 2003). Fixed-effect parameters relate to general trends across
all participants, while random-effect parameters relate to individual participant
variation from this overall group level behavior. Multiple statistical software
packages are capable of estimating parameters of growth curve models using
various techniques.

1.2 Bayesian Growth Curve Modeling

Bayesian analysis is one way of estimating growth curve models for a given longi-
tudinal data set (Fearn, 1975; Oravecz & Muth, 2018; Zhang, Hamagami, Wang,
Nesselroade, & Grimm, 2007). Compared to other analysis frameworks, Bayesian
analysis allows researchers a high degree of flexibility in modeling complex lon-
gitudinal patterns of change. While many modern analysis methods have strict
assumptions of normality and other asymptotic assumptions, researchers using
Bayesian analyses are generally not limited by these concerns asprior distribu-
tions of all variables can be explicitly and flexibly modeled (Bayarri & Berger,
2004). Thus common longitudinal data analysis problems such as sample size
restrictions, non-normal data distributions, and missing data patterns due to
attrition are more easily handled in a Bayesian framework than in a frequentist
framework. Additionally, advancement in computational efficiency and Bayesian
analysis software has helped ease the burden of conducting Bayesian analysis
put on researchers new to Bayesian modeling (e.g., JAGS, STAN, BUGS).

In a Bayesian framework, parameters of a growth curve model are treated as
random variables whose realizations are modeled using some form of a Markov
chain Monte Carlo (MCMC) process such as Gibbs sampling to sample from
constantly updated distributions (Carlin & Chib, 1995; Gilks, Wang, Yvonnet,
& Coursaget, 1993). Equation (1) can also be expressed as:

Yij ∼ N(Ȳij , σ
2
ϵ )

Ȳij = b0i + b1iTj

b0i ∼ N(β0, σ
2
u0
)

b1i ∼ N(β1, σ
2
u1
),

(2)

where Ȳij is the expected value of Yij . This Bayesian parameterization of a
growth curve model allows researchers to use previous knowledge to hypothesize
the prior distributions of the parameters β0, β1, σ

2
u0
, σ2

u1
, and σ2

ϵ . Parameters b0i
and b1i may also be correlated. In such a case an additional parameter, σu0u1

, is
also modeled. Typically researchers set priors for β0 and β1 as either normal or
uniform distributions, while setting priors of the variance components σ2

u0
, σ2

u1
,

and σ2
ϵ as inverse gamma distributions, although other distributions have been

assessed (Gelman, 2006; Zhang, 2016; Zhang et al., 2007). These priors are then
iteratively updated into posterior distributions using data. After a large number
of iterations, a Bayesian model will converge, parameter estimates will remain
stable, and researchers may draw statistical inference.
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Substantive researchers routinely need to determine the statistical signifi-
cance of each parameter. Credible intervals are a commonly used in Bayesian
growth curve modeling (Zhang et al., 2007). A 100× (1− α)% credible interval
for a parameter is as an interval for which there is at least a 100 × (1 − α)%
chance said interval contains the true value of a given parameter, conditional on
a given data set. Similar to a frequentist confidence interval, a parameter is con-
sidered significant at the α-level when a 100× (1−α)% credible interval for said
parameter does not include 0. While versatile, credible intervals are not useful
for testing variance components of Bayesian growth curves. This is because the
gamma/inverse gamma distributions used to model such variance components
are bounded (0,∞). Also, parameters with gamma/inverse gamma distributed
priors tend to also have gamma/inverse gamma distributed posteriors. In such
a case, a Bayesian credible interval at any α-level will never include a 0 value
(Gelman, 2006). This boundary problem makes Bayesian hypothesis testing us-
ing credible intervals completely ineffective for testing variance parameters, thus
making statistical inference on the existence of significant individual differences
in interindividual change impossible. Fortunately, there are ways to overcome
this problem. In this article, we review alternative methods to credibility inter-
vals for testing for the existence of interindividual differences in intraindividual
change in growth curve models and propose a new test based upon data permu-
tations.

1.3 Testing for the Existence of Interindividual Differences in
Intraindividual Change

This problem of determining the existence of interindividual differences in in-
traindividual change can be viewed as a problem of model comparison and se-
lection. That is, determining if a model which includes a parameter indicative
of interindividual differences in intraindividual change fits data better than a
model without such a parameter. In determining how to specify such a model,
Barr, Levy, Scheepers, and Tily (2013) argued for using the most complex struc-
ture admissible for a given data set; see also Barr (2013). Other researchers such
as Bates, Kliegl, Vasishth, and Baayen (2015) and Matuschek, Kliegl, Vasishth,
Baayen, and Bates (2017), urged caution when using such an approach as more
complex models may lead to convergence issues, as well as a a loss of statistical
power. Model selection is key for accurately assessing all important effects, while
minimizing estimation issues. Many methods currently exist for testing for sig-
nificant random slope parameters within a frequentist framework by determining
an optimal model structure. These include likelihood based comparison meth-
ods, penalty functions, and information criterion (Fan & Li, 2012; Peng & Lu,
2012; Stram & Lee, 1994; Vaida & Blanchard, 2005). There are currently fewer
methods for testing for significant random slope paramters within a Bayesian
growth curve context. Perhaps the most common methods for Bayesian model
comparison are using deviance information criterion (DIC) values and Bayes
factors.
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Deviance information criterion Deviance information criterion is an infor-
mation metric derived from the posterior distribution of the log-likelihood of a
given data set and a penalization value based on the complexity of a given model
(Spiegelhalter, Best, & Carlin, 1998; Spiegelhalter, Best, Carlin, & van der Linde,
2002). DIC is calculated as:

DIC = Eθ|y[D(θ)] + pD

D(θ) = −2log(L(θ|y))
pD = Eθ|y[D(θ)]−D(Eθ|y[θ]),

(3)

where θ is the parameterization of a given model, L(θ|y) is the likelihood of θ
given some data, y, Eθ|y[D(θ)] is a the expectation of D(θ) conditional on y,
and Eθ|y[θ] is the expectation of θ conditional on y.

As a model’s likelihood increases, D(θ) tends to 0. Conversely, as the number
of parameters in a model increase, so does pD. In this way DIC simultaneously
incorporates model fit and penalizes overly complex models. For model com-
parison purposes on a given data set, model selection by DIC is conducted by
selecting the model with a lower DIC value by at least 10 points, otherwise se-
lecting the model with fewer parameters (Spiegelhalter et al., 1998). Thus, a
researcher interested in testing for the existence of interindividual differences in
intraindividual change across time within his/her own data would compare the
DIC values of two competing growth cruve models. One model would allow the
slope parameter to vary by participant, and another model would fix this value
to be the same for all participants. Assuming a DIC difference of more than 10
points, the model with a lower DIC value would then be considered more appro-
priate for these data than the model with a higher DIC value (Lunn, Jackson,
Best, Spiegelhalter, & Thomas, 2012).

Although DIC is a relatively reliable metric for model selection it is not
without its criticisms. According to a review by Spiegelhalter et al. (2014), some
of the most common criticisms of DIC is its lack of consistency and its weak
theoretical justification. As an alternative to model comparison using DIC, some
researchers argue for the use of Bayes factors (Ward, 2008).

Bayes factor The Bayes factor is another common measure for model com-
parison within a Bayesian framework (Kass & Raftery, 1995; Lodewyckx et al.,
2011; Saville & Herring, 2009). Bayes factors can be thought of as a ratio of
evidence for one model over another, which is evident in its calculation:

B =
p(y|M1)

p(y|M2)
=

p(M1|y)
p(M2|y)

p(M2)

p(M1)
, (4)

where M1 and M2 are different models used on the same data, y. The Bayes
factor, B, can then be used for model selection. For B > 3, one would say that
there is substantial evidence for M2 over M1 and thus a researcher would select
M2 as the more probable model. If however B < 1

3 , a researcher would select M1
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as the more probable model for the generation of y (Stefan, Gronau, Schönbrodt,
& Wagenmakers, 2019).

Although intuitive, Bayes factors can be difficult to obtain analytically and
calculations for their numeric approximations can be computationally intensive
for some models or require hyper-parameters to be set by a researcher. Addition-
ally there are methods for numerically approximating Bayes factors including so
called default Bayes factors, approximate Bayes factors, and Bayes factors es-
timated through the product space method (Lodewyckx et al., 2011; Rouder
& Morey, 2012; Saville & Herring, 2009). Each of these methods for estimat-
ing Bayes factors require time and energy for a researcher to understand each
method’s intricacies well enough to properly implement each method. Bayes
factor calculations may also be sensitive to a researcher’s specification of priors
(Ward, 2008). Additionally, implementations of Bayes factors have been shown to
be inappropriate for many data sources and Bayes factors themselves have been
argued as having frequentist properties, making many numerically approximated
Bayes factors uninformative (Hoijtink, van Kooten, & Hulsker, 2016; Morey, Wa-
genmakers, & Rouder, 2016). Such difficulties make estimation of Bayes factors
using for more complex models, such as growth curves, intractable. Indeed the
authors of this article could find no reliable method for estimating Bayes factors
for growth curve models as most numerical methods are either not able to take
into account random effect structures or require overly sensitive hyper-parameter
settings to initiate jumping behaviors between models needed to obtain proper
Bayes factor approximations (Lodewyckx et al., 2011; Rouder & Morey, 2012;
Saville & Herring, 2009). Many current methods that do offer Bayes factors for
random effects models do not give Bayes factor values for the random effects
parameters of interest in this aritcle. Thus, a researcher would find difficulty in
using Bayes factors for testing for the existence of interindividual differences in
intraindividual change across time. Although the DIC and Bayes factor meth-
ods are not the only methods used to assesses the random effects structure of
growth models, these are perhaps the most common (Cai & Dunson, 2006; Chen
& Dunson, 2003; Piironen & Vehtari, 2017; Ward, 2008).

1.4 The Proposed Method: A Data Permutation Algorithm for
Testing Random Slopes

The DIC and Bayes factor methods share a common quality, each are model
driven approaches. With either method, a researcher must specify two separate
models that are then compared to one another. Thus, in order to test for the
existence of a quality of interest within a data set, the models themselves are
modified and the associated data are left alone. In contrast, data driven methods
such as bootstrap analyses, randomization tests, and surrogate data analyses
have been shown to also be effective at establishing existence of a specific quality
of interest within a given data set (Efron, 1979; Moulder, Boker, Ramseyer, &
Tschacher, 2018; Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992). These
methods rely on modifying data sets through some randomized approach such
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as sampling with replacement or data shuffling, to destroy qualities of order and
structure within a given data set.

With this in mind, we propose a simple and relatively uncomplicated data
driven method for determining the existence of interindividual differences in in-
traindividual change in a Bayesian growth curve framework. Namely, we propose
a data permutation algorithm which effectively tests if a random slope param-
eter is reliably distinguishable from random noise. In terms of model selection,
this would be similar to determining if the model in Equation (2) fits the data
better than a simpler model with a fixed slope:

Yij ∼ N(Ȳij , σ
2
ϵ ),

Ȳij = b0i + β1Tj ,

b0i ∼ N(β0, σ
2
u0
).

(5)

Our proposed data permutation algorithm is as follows:

i) Create a fully specified Bayesian growth curve model (Equation 2) including
a random slope term, using unaltered/original data, denoted as y0, and store
the posterior samples of σ2

u1
|y0 obtained from a MCMC procedure after a

burn-in period.
ii) Consistently sort data either descending or ascending at each time point to

create a second data set, ysort.
iii) Rerun step i) using ysort, and store the samples of σ2

u1
|ysort.

iv) Randomly shuffle y0 within each time point to create a third data set, yshuff .
v) Rerun step i) using yshuff , and store the samples of σ2

u1
|yshuff .

vi) Compare the mean of the samples from σ2
u1i

|y0, µ0, with the mean of the
samples of σ2

u1
|ysort, µsort, and the mean of samples of σ2

u1
|yshuff , µshuff .

If |µ0 − µsort| < |µ0 − µshuff | then slope term of the model can be said to
reliably vary between individuals. Else the slope term can not reliably be
said to vary between participants.

To understand how this algorithm works, consider Figure 1. Across all three
plots, the parameters β0 (fixed intercept) and β1 (fixed slope) from equation (2)
are all the same. Figure 1(b) represents the kind of data one might expect to
find from a given research study, with σ2

u0
, σ2

u1
, and σ2

ϵ all greater than 0. We
will consider this data as y0 for this example. Figure 1(a) is the sorted version
of y0, which we call ysort. Notice a few interesting qualities of ysort. Firstly, no
line of ysort crosses another. Also, the error variance about each individually
modeled line is minimized. Thus the ratio of σ2

u1i
to σ2

ϵij for ysort is larger than
the same ratio for y0, assuming y0 is not already in a sorted state. The opposite
is true for yshuff . Assuming that y0 had some intrinsic structure to itself due
to some true and natural underlying growth phenomenon, the ratio of σ2

u1
to

σ2
ϵ for yshuff should be smaller smaller than the same ratio for y0, Figure 1(c).

The difference between the means of the posterior sampling distributions of
p(σ2

u1
|ysort), p(σ2

u1
|y0), and p(σ2

u1
|yshuff ) then give a measure of how similar

the three distributions of p(σ2
u1
|y) are. Thus if |µ0 −µsort| < |µ0 −µshuff |, then
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the sampling distribution of the posterior distribution of σ2
u1

for the unedited
data is more like the posterior distribution of σ2

u1
for data which has noticeable

slope variation. If |µ0 −µsort| > |µ0 −µshuff |, then the sampling distribution of
the posterior distribution of σ2

u1
for the unedited data is more like the posterior

distribution of σ2
u1

for data which has been randomly shuffled and has slope
variation that is difficult to distinguish from random noise.

Figure 1. Example growth curve plots for (a) sorted data, (b) non-sorted data, and
(c) randomly shuffled data. Each plot shares the same data values, only the order of
the data at each time point has changed. As such, each plot has the same average
intercept and average slope.

This method may be considered a form of a permutation test. Permutation
tests are a class of tests for comparing a given test statistic to a distribution of
these test statistics obtained from a random ordering of the data (Collingridge,
2013; Golland & Fischl, 2003; Pesarin & Salmaso, 2010; Theiler et al., 1992). This
random ordering builds a test statistic under the distribution of a null-hypothesis
that there is no natural order to the data. Any test statistic outside of a set α-
level, based on the permutation distribution, is then considered to be highly
unlikely given random chance and thus must contain some meaningful and non-
random structure. Our method differs from traditional permutation methods in
that we propose the use of only a single random shuffle. This is because of the
bounds set by 0 and σ2

u1
for ysort. Over multiple different parameterizations, we

found that on a scale of 0 to σ2
u1

for ysort, the distribution of multiple random
yshuff is small in comparison (< 5% of the overall space). As such, one random
shuffle should give a good approximation of the distribution of multiple random
yshuff . However, should a researcher need more precision, taking an average of
multiple random yshuff values will give a more accurate result.

In order to gain an intuitive understanding of this algorithm, consider this
analogy of an individual with messy hair who wants a new hair style from a
barber. A customer (data) with messy hair walks into a barber shop and asks
the barber (researcher) for a haircut fitting for said customer’s natural hair
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style. The barber accepts this request and beings work, but is unable to visually
determine if the customer has naturally curly hair (variable slopes) or naturally
straight hair (constant slopes) due to the current messy state of the customer’s
hair. The barber knows however, that a natural property of hair is that curly
hair is naturally difficult to straighten and straight hair is naturally difficult
to curl. So the barber first attempts to straighten (sort) the customer’s hair
and finds that the hair changed very little. The barber then attempts to curl
(shuffle) the customer’s hair and finds the customer’s hair curled with ease and
had changed much from its original messy state. Thus, the barber concludes
that the customer had naturally curly hair as the messy state of the customer’s
hair was most easily and most dramatically changed by curling (i.e., a reliable
variation in slopes was found because |µ0 − µsort| < |µ0 − µshuff |).

The remainder of this article is structured as follows: First, a simulation is
presented of the proposed permutation method compared to using DIC values
for determining the existence of slope variation. Then an application of this
method to data from the National Longitudinal Study of Adolescent to Adult
Health is presented. Finally this article concludes with a discussion regarding
the proposed method’s usefulness, an introduction to an analysis tool which
facilitates the application of this method, limitations, and future directions.

2 A Simulation Study

2.1 Data Generation

In order to determine the effectiveness of the proposed data permutation method
and to compare our method with a common model comparison procedure (i.e.,
DIC), a simulation study was conducted using the R programming language and
OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009; R Core Team, 2013).
Each simulation generated data from one of two models: model A or model B.
Data simulated from models A and B were also used to study the effectiveness
of DIC values relative to the proposed data permutation method.

Model A is a model including a random slope term and is parameterized as:

Yij = 5 + 2Tj + u0i + u1iTj + ϵij ,

u0i ∼ Gaussian(0, 1),

u1i ∼ Gaussian(0, σ2
u1
),

Cov(u0i, u1i, ϵij) =

1 0 0
0 σ2

u1
0

0 0 1

 .

Parameter values of 5 and 2 for β0 and β1, respectively, and Tj = j − 1, j =
1, . . . , 5 were chosen as simple examples of positive linear growth. The variance
of parameter u0i was set to 1 for all simulated data sets. As the proposed permu-
tation method is a test of random slopes and not random intercepts, the variance
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of parameter u0i is arbitrary. The covariance between parameters u0i and u1i

was set to 0 as any covariance between u0i and u1i would necessitate variance of
u1i, thus increasing the effectiveness of the proposed permutation method3. The
variance of the error term was held constant at 1 across all time points (Grimm
& Widaman, 2010). Finally σ2

u1
was varied across simulations, σ2

u1
= .1, .2, . . . , 2.

Model B is simply model A without a random slope term where u1i = 0:

Yij = 5 + 2Tj + u0i + ϵij ,

u0i ∼ Gaussian(0, 1),

u1i ∼ Gaussian(0, σ2
u1
),

Cov(u0i, ϵij) =

[
1 0
0 1

]
.

For data generated from model A and B, σ2
u1

∈ [0, .1, .2, . . . , 2]. This creates σ2
u1

(signal) to σ2
ϵ (noise) ratios ranging between 0% and 200% across both models

A and B. Thus, in total 21 data generating models were used.

The choice of specific values for this simulation are mostly arbitrary as u1 is
independent from β0 and β1, u0, and ϵij . Thus any value choices for these terms
should have no effect on the validity of this method as the proposed method is a
comparison of only the similarity of σ2

u1
estimated from the observed data to only

σ2
u1

of the same data organized in such a way that minimizes σ2
ϵ versus the same

data organized in a way to increase σ2
ϵ . Theoretically no other parameter values

should influence our proposed method in the case that there is no covariance
between random intercept and random slope terms.

2.2 Simulation Methods

For each round of simulation, N ∈ [50, 200, 500] individuals data were simulated
from each of the 21 data generating models, σ2

u1
∈ [0, .1, . . . , 2]. Each round of

simulation generated 1,000 instances giving a total of 63,000 (3 x 21 x 1000)
data sets. Using Equation (2), Bayesian growth curves were fit to data gener-
ated by models A and B. Model A represents data which has individual slope
variation and thus can be used to compute statistical power and type-II error
rates. Similarly, model B represents data with no individual slope variation and

3 A smaller simulation was conducted with data simulated from a model with a mean-
ingful covariance between u0i and u1i. This smaller simulation showed an increase
in both statistical power and specificity, and a decrease in type-I and type-II error
rates. This increase made detection of random slope variation nearly perfect for all
DIC and permutation methods as any covariance between u0i and u1i would imply
meaningful variation of u1i as covariance is conditional on variance. As such, this
simulation is not reported.
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thus can be used to compute specificity and type-I error rates4. Using DIC and
the proposed data permutation method, guesses were made at each simulation
step to determine if data were simulated from a process with fixed slope growth
trajectory across individuals or with a growth trajectory whose slope varied
per individual. These guesses were compared to known random effect structures
to determine statistical power and specificity rates. Each model was run with
20,000 MCMC iterations and a burn-in period of 15,000 iterations using Open-
BUGS and the R2OpenBUGS package in R (Lunn et al., 2009; Sturtz, Ligges,
& Gelman, 2005). All models were checked for convergence with a Kolmogorov-
Smirnov test (Brooks, Giudici, & Philippe, 2003). To ensure this method was not
statistical package specific, we ran a similar simulation study using the MCM-
Cglmm R package and found identical results (Hadfield, 2010).

For DIC comparison, two models were conducted at each simulation, one
with a fixed slope growth trajectory across individuals and one with a growth
trajectory whose slope varied per individual. If the model with a growth trajec-
tory whose slope varied per individual had a DIC value 10 points lower than the
model with a constant rate of change, data from this simulation were considered
to have a growth trajectory whose slope varied per individual. Otherwise the
simulated data for said simulation were considered to have a trajectory with
constant rate of change across individuals. We compared two criterion for DIC
selection: DIC > 10 and minimum DIC value(Spiegelhalter et al., 1998).

For data permutation comparison, at each simulation step a model with a
growth trajectory whose slope varied per individual was run on the data for that
simulation step and the average value of σ2

u1
was recorded. Data was then sorted

by column in descending order and a second model was run on the sorted data,
storing σ2

u1
for this model. Finally data were randomly shuffled per column and

a third model was run on this shuffled data, again storing σ2
u1

for this model.
The three σ2

u1
values were then compared using the proposed data permutation

algorithm. We compared two criterion for our permutation method: only one
shuffle and the average of 10 shuffles.

4 For this simulation study, statistical power is defined as the proportion of simula-
tions in which the proposed data permutation method determined the existence of
meaningful slope variation when data was generated from a model that included a
variable slope. Similarly, specificity is defined as the proportion of simulations in
which the proposed data permutation method was unable to determine the exis-
tence of meaningful slope variation when data was generated from a model that
did not include a variable slope. Type-I and type-II error rates are defined as the
proportion of simulations in which the proposed data permutation method detected
the existence of meaningful slope variation when data was generated from a model
that did not include a variable slope, and the proportion of simulations in which
the proposed data permutation method was unable to determine the existence of
meaningful slope variation when data was generated from a model that included a
variable slope, respectively.
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2.3 Simulation Results

Table 1 shows the statistical power and specificity for both the DIC methods
and the proposed data permutation algorithm for all sample sizes studied. For
signal:noise ratios less that 1:1, DIC outperforms our proposed permutation
method in terms of statistical power. However as sample size increases and/or
signal:noise ratio increases these two methods quickly become equal in their
statistical power. When comparing specificity, our proposed permutation method
shows an improvement of approximately 10 percentage points over the DIC
method across all sample sizes. Thus, in situations where signal:noise ratios
are at least equal, our permutation method performs just as well as DIC based
model comparison in terms of statistical power, but has a substantially reduced
type-I error rate.

Table 1. Permutation Test vs. DIC Simulation Comparing Statistical Power and Speci-
ficity

Statistical Power

DIC 10 DIC Min Permutation Test Permutation Test 10

Effect:Error Ratio N = 50 N = 200 N = 500 N = 50 N = 200 N = 500 N = 50 N = 200 N = 500 N = 50 N = 200 N = 500

1:10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2:10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3:10 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0%
4:10 0% 4% 5% 1% 7% 10% 0% 0% 3% 1% 4% 4%
5:10 45% 82% 88% 61% 88% 92% 14% 15% 20% 16% 19% 22%
6:10 86% 100% 100% 92% 97% 100% 22% 38% 41% 25% 44% 46%
7:10 100% 100% 100% 99% 100% 100% 34% 51% 63% 34% 58% 66%
8:10 100% 100% 100% 100% 100% 100% 81% 90% 84% 88% 93% 89%
9:10 100% 100% 100% 100% 100% 100% 85% 91% 92% 94% 99% 99%

10:10 100% 100% 100% 100% 100% 100% 92% 95% 97% 99% 100% 100%
11:10 100% 100% 100% 100% 100% 100% 97% 98% 100% 100% 100% 100%
12:10 100% 100% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100%
13:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
14:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
15:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
17:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
18:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
19:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Specificity 89% 87% 93% 82% 83% 83% 99% 100% 100% 100% 100% 100%

Note. Results of a simulation study comparing statistical power and specificity
for DIC and the proposed permutation testing algorithm across three sample sizes.
Effect:error ratio is a measure of true population variance in slope to error variance
added at each time point. Each percentage is based on 1000 simulations.

3 Application to Real Data

As an example of our proposed method on a real data set, a Bayesian growth curve
modeling was conducted on a sample of 185 individuals (90 Male, 95 Female) from the
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National Longitudinal Study of Adolescent to Adult Health (Add Health) who were age
17 and had reported drinking in the past 12 months5. At each wave of measurement,
participants were asked ”Think of all the times you have had a drink during the past 12
months. How many drinks did you usually have each time? (A “drink” is a glass of wine,
a can of beer, a wine cooler, a shot glass of liquor, or a mixed drink.).” This value was
recorded in 1994-95, 1996, 2001-02, and 2008. If a participant reported drinking more
than 20 drinks, his/her data was dropped from this analysis to remove individuals
who might have been excessive drinkers or may not have properly understood the
question. The proposed data permutation method was then applied to this data in
order to test for the presence of meaningful interindividual differences in intraindividual
change across time in drinking behavior, table 2. All models used uninformative Poisson
priors for all mean components and uninformative inverse gamma priors for all variance
components.

Table 2. Bayesian Growth Curve Analysis of Add Health Drinking Behaviors

Parameter Effect Estimate 95% CI - Lower 95% CI - Upper

Intercept Mean 5.06 4.61 5.50
Variance 6.06 4.30 8.24

Slope Mean -0.10 -0.15 -0.04
Variance 0.07 0.05 0.10

Permutation Test Results: No Significant Variance for Slope

Note. Results of a Bayesian growth curve analysis of the average number of alcoholic
drinks individuals reported drinking each time he/she drank alcohol. A permutation
test showed no significant slope variation between individuals indicating a common

downward trend across all individuals.

Significant fixed-effects for both the intercept and slope term were found for this
model. At age 17, on average individuals reported drinking 5.06 alcoholic drinks with
a standard deviation of 2.46. Each year after, individuals reported drinking 0.10 fewer
drinks with a standard deviation of 0.26. When individuals reached age 31, on aver-
age they reported drinking 3.66 drinks. These results align with previous findings on
alcohol consumption trajectories for the general population (Fillmore et al., 1991; Har-
tika et al., 1991). A permutation test found no meaningful interindividual differences in

5 From the National Longitudinal Study of Adolescent to Adult Health website: This
research uses data from Add Health, a program project directed by Kathleen Mul-
lan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen
Mullan Harris at the University of North Carolina at Chapel Hill, and funded
by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development, with cooperative funding from 23 other
federal agencies and foundations. Special acknowledgment is due Ronald R. Rind-
fuss and Barbara Entwisle for assistance in the original design. Information on
how to obtain the Add Health data files is available on the Add Health website
(http://www.cpc.unc.edu/addhealth). No direct support was received from grant
P01-HD31921 for this analysis.
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intraindividual change across time in drinking behavior for these individuals. This indi-
cates that the slopes of individuals’ growth trajectories in alcohol use behavior did not
reliably vary at the individual level, figure 2. That is, a single general downward trend
is sufficient to describe how individuals drinking behaviors change across time, given
that we can not reject the null-hypothesis that there is no variation between individuals
in slope values. Although table 2 shows a 95% credible interval with positive values
for the variance of the random slope term, this may be due to the boundary problem
induced by utilizing gamma distributed priors used for the variance term. Additionally,
the Effect:Error ratio for this data as assessed by our model was approximately 4:10.
This indicates that our proposed method would have low statistical power in this case
to pick up meaningful slope variation if it existed (as with using the DIC). As such
these findings should be taken as only an example of our proposed method used on a
real data set.

Figure 2. Permutation test for random slopes parameter of a Bayesian growth curve
model modeling the average number of alcoholic drinks individuals reported drinking at
each drinking occasion. The red/bold line is the result of each model. Plot (a) displays
data in a sorted form. In this form the downward trajectory in drinking across time is
evident. Plot (b) displays data in its original form. Plot (c) displays data in its shuffled
form. Notice that (b) appears more similar to (c) than to (a), indicative of a random
effect that may be indistinguishable from noise.

3.1 A Web Tool Implementation

In order to facilitate the use of our proposed data permutation method, we have de-
veloped a web application for Bayesian analyses of unconditional growth curve mod-
els. See Figure 3 for the interface of the web application. This web application in-
corporates our proposed data permutation method and is made available for free at
https://robertgm111.shinyapps.io/bayesiangrowthcurveapp/.

This web tool was made to give researchers a simple to use interface for conduct-
ing Bayesian analyses of unconditional growth curve models. A researcher interested
in using this tool would need to have data in a 3-column long format with column 1
being participant ID, column 2 being measurement occasion, and column 3 being the

https://robertgm111.shinyapps.io/bayesiangrowthcurveapp/
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Figure 3. Screenshot of a web tool implementing the proposed data permutation
test. This tool generates parameter estimates for unconditional bayesian growth curve
models for data in the ”long” format. Different tabs are available for model results,
data viewing, MCMC chain veiwing, permutation test results, and citing information.

quantity of interest. Researchers can then select if the outcome is continuous (modeled
by an uninformative normal prior) or count (modeled by an uninformative Poisson).
Additionally researchers may select to run the proposed permutation test for the ex-
istence of variable slopes at the cost of increased computation time. After specifying
the number of MCMC samples, burn-in period, and thinning, a researcher can obtain
parameter estimates under the “Model Summary” heading and a plot of the data with
a fitted line based on the model under the “Model Results Plot” heading. Additional
tabs in this web tool allow for data viewing, MCMC chain viewing and download,
results of the proposed permutation test (if selected), and citing information in an
“About” section. Missing data points are sampled from posterior distributions during
the MCMC updating process.

4 Discussion

The data permutation method shown in this article is a simple to use and widely
applicable method for testing for the existence of interindividual differences in intrain-
dividual change across time when these differences are modeled as gamma distributed
variance components. Although itself not a Bayesian derived test, our method was able
to perform on par with the DIC metric for most cases. Unlike more complicated meth-
ods such as DIC calculation and Bayes factors our permutation method requires little
technical ability to implement, save for initial model specification. If a researcher is
analysing data with a signal:noise ratio that is at least 1:1 then our method preforms
just as well as common DIC comparison methods in terms of statistical power and out-
performs DIC in terms of specificity. We do not believe this is an unreasonable ratio for
many areas of psychological/behavioral sciences (Cooper & Findley, 1982; Wilson &
Sherrell, 1993). Although other methods have been proposed for testing the existence
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of meaningful random slope variation, our proposed method is simple to use and we
offer a direct software implementation (Saville & Herring, 2009).

Beyond ease of use, the permutation method displayed in this article represents an
alternative method for model comparison in a Bayesian framework that is data driven.
Many methods such as DIC and Bayes factors are manipulations of a model such that
plausible models are pitted against one another so as to determine a model best fitting
to a given data set. In such a model comparison framework, a given model is typically
compared to a constrained version of itself (Kruschke, 2011; Spiegelhalter et al., 2002).
These constrains represent a researcher’s qualities of interest, or unique hypotheses,
regarding a specific data set. As opposed to constraining a specific parameter to test
for the existence of a specific effect, our data driven method targets a quality if interest
within the data itself. Instead of comparing a model with a given effect to a model
without a given effect, our permutation method compares an estimated parameter
(slope variation) from a given data set with the same parameter from both a modified
data set in which this parameter has been destroyed and a second modified data set
in which this parameter was amplified. That is, while model comparison asks ”Which
model was more likely to generate this data?”, our proposed permutation method
asks ”Is the parameter I am interested in modeling in this data different from data
in which this parameter is just noise?”. Framing hypothesis testing in this manner is
then a stepping stone to further data driven analyses in which a targeted permutation
method is used to study a specific quality of interest.

4.1 Limitations

Firstly, the support for our proposed method comes from our simulation study. Al-
though we have attempted to model realistic circumstances given our specific random
effects structure, our results can not be generalized outside of simulated parameteri-
zations. Future work should focus on understanding the analytical properties of our
test given that our test works on a bounded classification framework. This includes
extending the results of this simulation to more time points, however we see no reason
this method would not work on more than four time points.

Although simulation showed our method to have exceptional statistical power and
specificity under conditions of relatively equal signal:noise ratios, there are still lim-
itations to this method. One such limitation is that our proposed method showed
inadequate statistical power of signal:noise ratios of 7:10 or less. Thus, our proposed
method should not be used in situations in which variation in individual slopes is sub-
stantially less than error variance. In such a case DIC based model comparison is more
appropriate. However, we believe that most longitudinal studies will easily be able to
exceed this threshold, reducing the impact of this limitation. In situations in which
significant covariance exists between intercept and slope values, our proposed method
performs as well as DIC based model comparison. This is due to the necessity of the
existence of slope variation prior to the existence of covariance between intercepts and
slopes. In many realistic data sets, if significant slope exists then a significant covari-
ance between intercept and slope is also likely to exist. This is due to ceiling effects,
floor effects, regression to the mean, and other phenomenon common in behavioural
data.

Our proposed method may also be limited in its usefulness beyond testing for sig-
nificant slope variation. That is, our proposed method capitalizes on the fact that
sorting data and shuffling data preserves intercept values and only changes error vari-
ance about slope estimates. Due to this capitalization, this permutation method is
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not applicable for testing for the existence of meaningful intercept variation and more
research is needed to discover such a test. In practice however, researchers interested
in longitudinal processes are generally more concerned with slope parameters as slope
parameters represent change over time.

Additionally, this method only works for cases in which all participants have been
sampled at the same discrete bins. That is, this method is not applicable for continuous
sampling designs (Bolger & Laurenceau, 2013) In this case, alternative sorting and
shuffling strategies must be employed so as to maintain the same structural changes
int he data as would have occurred if the data was in discretely sampled bins at from
the same time points. This also extends to cases of missing data. Missing data is
common in longitudinal research and must be expected to occur more in studies over
longer periods of time. In this case, multiple imputation may be used as a method
for creating multiple possible tests using our algorithm. The most selected state (i.e.,
random effect or no random effect) across these imputations would then be chose as
the best state to describe the data given the model.

4.2 Future Directions

One possible extension of the proposed data permutation method would be to test
for nonlinear effects. Growth curve models are not limited to modeling solely linear
growth, but may be extended to model curves of higher order polynomials (McArdle &
Nesselroade, 2003). We do not see any reason for permutation testing to be ineffective
for polynomial growth curve models, however this testing should still be conducted for
purposes of understanding statistical power and specificity.

We also note the usefulness of plots of sorted data for understanding trajectories
over time. Figures 1(a) and 2(a) show sorted data compared to original data in figures
1(b) and 2(b). Any linear trend is easier to visualize in the sorted data as opposed
its associated original data. We attempted this same plotting method with non-linear
effects as well and ac hived a similar ease of trend visualization, as sorting preserves
intercept and slope values. Future research may specifically look at data sorting as a
viable means of plotting data for model selection in growth curve analysis.

Other measures of distributional qualities besides the mean may also increase the
power of our proposed method to detect significant slope variation across individuals.
We conducted a relatively small simulation study testing the efficacy of using median
estimates above mean estimates and obtained similar results to using means. Other
metrics may prove to be more useful however, and should be tested in order to further
refine our proposed data permutation method.

Another possible future direction would be to continue to create permutation tests
targeting specific parameters of interest. According to Wolpert and Macready (1997),
no single method for optimization of a problem is the best possible method for solving
all problems. According to this No Free Lunch Theorem, the better a single optimizer
gets at solving a specific problem, the worse it gets at solving all other problems. This
suggests two things. Firstly, for every global method for optimizing a problem (e.g.,
DIC based model comparison), there exists a more targeted method that will yield a
more optimal solution to a problem. Secondly, every problem may have its own ”best”
solution. That is, every problem that is attempted to be optimized, may have its own
best, and targeted, way to be optimized. While this second point implies that perhaps
researchers should find targeted methodology for every possible effect in which they
are interested, this would quickly spiral into many tests and would most likely create
more confusion for individuals wishing to test specific effects.
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Although targeted, our proposed method is easy to implement and solves the
boundary problem for testing gamma/inverse gamma distributed random effects. This
ease of implementation will allow more researchers to test for significant individual
differences in intraindividual change. Additionally, our method offers one of the first
steps for a paradigm shift of model comparison in a Bayesian framework. One where
data is modified to destroy qualities of interest, as opposed to models being formed
with/without qualities of interest. Indeed there may in fact be a hybrid form of these
two methods that may prove more viable than either method in isolation. We hope our
proposed permutation method spurs other researchers to consider data modifications
for testing individual effects, leading to relatively uncomplicated methods that other
researchers may use for testing whatever effects in which he/she is interested.
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