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Abstract. Emotion detection AI is an emerging tool in the field of psy-
chology that enables researchers to process large batches of images of
human faces and obtain estimates of the emotions present within images.
Some algorithms, such as Py-Feat, are even capable of detecting multiple
faces within an image and providing differential estimates for each face.
However, a known problem with multiple detection algorithms is that
they sometimes mistakenly detect multiple faces when only a single face
exists. In such cases, detection of the true face is still available to users
and the false face can be ignored, but there may be artifacts of the false
face within the true face that are biasing the estimation of emotions. The
present study investigated whether the presence of a second face reduces
the accuracy of emotion estimation in the first face. Using 1,438 images
from the RAVDESS labeled emotion data set, we generated image with
multiple faces under a variety of conditions (i.e., size, opacity, emotion
similarity, and number of faces) and compared them against unaltered,
single face versions of the images. There were meaningful differences in
accuracy across between the single-face and multiple-face images, with
similarity and number of faces being the most detrimental conditions for
multiple-face accuracy. Findings suggest that it is highly important for
researchers to remove extraneous faces within images in order to maxi-
mize the accuracy of emotion detection analysis.
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1 Introduction

1.1 Introduction to emotion detection AI

Emotion detection AI (also known as emotion recognition API) is an emerging
application of artificial intelligence (AI) used to detect, label, and understand
human emotions from images and videos. The technology has been applied in
a variety of clinical and educational research settings (Wyman & Zhang, 2023).
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Within clinical research, emotion detection AI is often used to develop auto-
mated interventions, which monitor participants’ emotions and respond with
stimuli to influence behavior (Alharbi & Huang, 2020; Bharatharaj, Huang, Mo-
han, Al-Jumaily, & Krägeloh, 2017; Grossard et al., 2017; Jiang et al., 2019; Liu,
Wu, Zhao, & Luo, 2017; Manfredonia et al., 2018). Within educational research,
the technology has been used to monitor emotions in response to educational
interventions, such as online learning (Chu, Tsai, Liao, & Chen, 2017; Chu,
Tsai, Liao, Chen, & Chen, 2020), which are concurrently taking place. How-
ever, emotion detection AI is not limited to these applications. In fact, several
disciplines in the social and behavioral sciences could benefit from its implemen-
tation. Emotion detection AI itself is the integration of research across multiple
disciplines, including psychology, physiology, and computer science (Wyman &
Zhang, 2025). The technology is based on the concept of action units (AUs, Ek-
man & Friesen, 1976), which are the simplest combinations of muscles required
to produce a facial expression. For example, AU4 corresponds to the act of low-
ering one’s brow and requires the depressor glabellae, depressor supercilli, and
corrugator supercilli—three muscles located in the forehead. The Facial Action
Coding System (FACS, Ekman & Friesen, 1978) assigns basic emotions to the
combination of AUs. For example, when AU4 “brow lowerer” is combined with
“upper lid raiser” (AU5), “lid tightener” (AU7), and “lip tightener” (AU23),
the facial expression for anger is produced. The FACS traditionally included
six emotions—happiness, sadness, anger, surprise, disgust, and fear—but future
models were extended to include more emotions like contempt and confusion.

Modern emotion detection AI operationalizes the FACS through a two-step
convolutional neural network (CNN), in which the first step of the network fo-
cuses on face recognition and the second step on emotion classification. CNNs are
a class of artificial neural networks that specialize in processing grid-like topology
(Baduge et al., 2022), such as image data, which are treated as a two-dimensional
grid of pixels. CNNs are often used to identify patterns within image, such as to
detects edges in shapes (Dorafshan, Thomas, & Maguire, 2018), transcribe text
from images (Wei, Sheikh, & Ab Rahman, 2018), or recognize faces (Lawrence,
Giles, Tsoi, & Back, 1997). CNNs are uniquely suited for processing image data
because of their aptitude for handling sparsity. Neural networks are powerful
prediction models because they are able to handle multiple layers of parame-
ters that explain complex, often non-linear relationships in the data. However,
estimating thousands to millions of parameters when only tens to hundreds are
meaningful is computationally expensive (Goodfellow, Bengio, Courville, & Ben-
gio, 2016). The problem is particularly defined for image data, as traditional
neural networks are inefficient to the handle the sparse data caused by back-
ground and non-focal pixels. CNNs address this problem through a convolution
step, which obtains summaries of pixels given by their surrounding information
and prioritizes pools of pixels with the most information. In Py-Feat and similar
emotion detection AI models (Wyman & Zhang, 2025), the purpose of CNNs is
to identify the location of facial features in an image, which is fed to a secondary
neural network to determine if action units are activated. Finally, a probabilis-
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tic model is conducted, which estimates the probability that a given emotion
is being observed given the activated action units. Some emotion detection AI
models provide a discrete classification based on the emotion with the highest
probability estimate, assuming that an image can only depict one emotion at
a time. Other models assume that humans exhibit multiple emotions at once,
providing the raw probability estimates for each emotion. Although, different
emotion detection AI models use the output in different ways, they all adhere
to the same CNN architecture.

1.2 Introduction to Py-Feat

Another difference between emotion detection AI models is whether the model
is open-source or commercially-based, which impacts the amount of pre-trained
data that is available and the degree of user customizability (Wyman & Zhang,
2025). The Python Facial Expression Analysis Toolbox (Py-Feat, Cheong et al.,
2023) is emerging as a valuable open-source model for emotion detection AI,
which was created by psychologists for psychologists. The toolbox features 7
emotions (happiness, sadness, anger, surprise, disgust, fear, and neutral) and
each emotion is rated continuously on a 0-1 decimal scale. It allows for multiple
emotions per image, with each emotion rating representing the proportion of the
total face that is exhibiting the given emotion. The Py-Feat architecture consists
of five building blocks, which represent different steps of the facial expression
analysis procedure. Each block is controlled by a pre-trained, open-source model
and can be exchanged by the user for a different model. By default, Py-Feat
provides one pre-trained model for face and facial pose estimation, three for facial
landmark detection, two for action unit detection, two for emotion detection, and
one for identity detection. In particular, the default emotion detection model is
the Residual Masking Network (ReMaskNet, Pham, Vu, & Tran, 2021), which
Cheong et al. (2023) demonstrated performs better on images in the wild than
some commercial emotion detection AI models like iMotions.

Most emotion detection AI models are evaluated using posed images, or im-
ages that whose lighting, positioning, and background are carefully designed as
to not disrupt the algorithm. However, posed images are not realistic representa-
tions of how emotion detection AI models are used in the field, which is why most
models have reduced accuracy for images in the wild. Py-Feat has been validated
under benchmarked datasets of images in the wild and also has completed ro-
bustness tests against common image barriers to facial expression analysis, such
as luminance, occlusion, and head rotation (Cheong et al., 2023). Luminance
describes the impact of various lighting conditions, either extreme brightness or
darkness, which may inhibit the detection of facial landmarks and AUs. Cheong
et al. (2023) found that Py-Feat was robust against issues related to luminance
on both ends of the spectrum. Occlusion describes the partial obstruction of
facial features by an object blocking the face, which similarly inhibits the de-
tection of facial landmarks and AUs. Py-Feat encounters a substantial decline
in performance in response to face occlusion (Cheong et al., 2023). Accuracy for
face detection, AU detection, and emotion detection models all declined if either
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the eyes, nose, or mouth of an image were hidden. Finally, head rotation refers
to the direction in the which face is facing the camera in an image. Models are
often trained with faces that directly face the camera, but images in the wild are
rarely facing straight forward. Models often have challenges detecting the facial
landmarks and AUs of side-facing images, which may not generalize to train-
ing data. Py-Feat demonstrated robustness against the issue of head rotation
(Cheong et al., 2023). The toolbox is a valuable resource for facial expression
analysis, as it has been trained and validated on images in the wild, which are
more representative of actual usage.

1.3 Phantom faces in emotion detection AI

Aside from traditional image distortions (i.e., luminance, occlusion, and rota-
tion), there is a rare image distortion that has been observed by users of Py-Feat
but has not been formally documented in the literature. The distortion is related
to the face and facial pose estimation component of Py-Feat and it incorrectly
identifies a secondary face within the true face of an image, often located on
the forehead of the true face. Figure 1 presents an example of the issue with
an image from a benchmarked dataset (Livingstone & Russo, 2018). Note that
Py-Feat produces confidence estimates for each face that it detects. The primary
face is detected with a confidence of 99.9%, whereas the second, false face is de-
tected with a confidence of 79.9%. The high confidence to detect a second face
is concerning given the lack of a second face altogether. No literature exists to
define the issue of two faces, nor does it offer any explanation. Hence, given its
apparitional appearance, we refer to the issue as “phantom faces”.

An easy solution to phantom faces is adjusting the threshold for face detec-
tion. For example, the phantom face in the example image had a confidence of
79.9%. By setting the confidence threshold to 0.8 or higher, no analysis would be
conducted for any faces below the confidence threshold. However, this solution
ignores the issue rather than solving it, as artifacts of the phantom face may
remain within the true face even after filtering it out. It is difficult to remove the
influence of the phantom face from an image without knowledge of what causes
the issue. Therefore, the priority of research should be to identify the extent to
which phantom faces bias estimation of emotions in the true faces. Moreover,
the issue of biased estimation extends to other cases of emotion detection with
multiple faces. Given the frequency of multiple faces in real-world images, often
as figures in the background of landscapes or experiments, it is important to
understand the extent to which non-focal faces bias the primary face. An empir-
ical examination of the impact of phantom faces and multiple faces on emotion
estimation would greatly improve the experimental considerations and practices
regarding emotion detection AI and improve the quality of research published
in the field.
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Figure 1. Example of “phantom face” distortion appearing within an image and its
corresponding emotion detection AI output. Note. (top left) Original image (02-01-03-
01-01-01-19) sampled from a video in the RAVDESS dataset. (top right) Image after
processing by Py-Feat, identifying two faces. (bottom) Complete Py-Feat output with
blue bars indicating the first identified face (true face) and orange indicating the second
face (phantom face). The true face is correctly identified as happy whereas the phantom
face is identified as neutral, with low probability of fear, happiness, and sadness.

1.4 Model evaluation for emotion detection AI

Given that the issue of phantom faces has not been discussed in the literature,
there is no existing framework for evaluating emotion detection AI models with
respect to phantom faces. Currently, models are evaluated using labeled im-
age datasets, which specify a correct response that emotion detection models
should be able to match. For example, the dataset may include an image labeled
“happy” and for the model is get the case correct it must also produce a “happy”
label. Models are evaluated by their accuracy, or how many labels they can cor-
rectly match, and their accuracy under various conditions. The conditions are
often artificially induced by editing the labeled image. For example, Cheong et
al. (2023) created artificial occlusion in images by editing a black bar to cover
either the eyes, ears, or mouth of the subject in the image, and manipulated the
brightness of the image with a filter to simulate luminance conditions. Yang et
al. (2021) similarly applied a Gaussian Blur to images to simulate motion blur
and noise from cameras. Some studies also evaluate emotion detection AI mod-
els using benchmarked datasets that are designed to include images containing
distortions (Kuruvayil & Palaniswamy, 2022; Mollahosseini, Hasani, & Mahoor,
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2017). The approach is simple and can be easily replicated across multiple stud-
ies. However, using a benchmarked dataset is only accessible when there exists
a large collection of images with the intended distortion. When images do not
exist, it is necessary to design an experiment and recruit participants, which can
be expensive. Moreover, the process of labeling new image data can be oner-
ous based on the large sample size necessary to make stable inferences regarding
model performance. Simulating distortions in images is more accessible to answer
certain questions related to emotion detection AI model evaluation.

1.5 Present study

Currently, there is no existing benchmarked dataset that describes phantom faces
or any issues related to multiple face detection, meaning the question of their
impact on emotion detection AI models must be evaluated through a simulated
data. The purpose of the present study is to understand the risk of phantom
faces or multiple faces in classification tasks using emotion detection AI. Distor-
tions like facial occlusion reduce the accuracy of emotion detection AI models by
blocking the estimation of AUs. Phantom faces may also block necessary facial
landmarks and interfere with AUs. Therefore, the primary hypothesis is that the
presence of phantom faces leads to a decrease in accuracy in emotion classifica-
tion. To study this, the present study develops a novel experiment for simulating
phantom faces, which may be replicated by other researchers evaluating emo-
tion detection AI models. Emotion detection AI may be a significant technology
for advancing the emotion research in the social and behavioral sciences, but its
success is dependent on the support of rigorous frameworks for model evaluation.

2 Methods

2.1 Materials and procedures

The present study utilized image data from the publicly available Ryerson Audio-
Visual Database of Emotional Speech and Song (RAVDESS, Livingstone &
Russo, 2018) dataset. RAVDESS contains 7,356 video and audio recordings.
The dataset contains both speech and song recordings, but the present study
only utilizes the subset of speech recordings. There are 4,320 speech recordings
available, which are divided into full audio-video, video only, and audio only
recordings. Only the 1,440 video only recordings were relevant to emotion detec-
tion. During the experiment, actors were instructed to vocalize two statements
(“Kids are talking by the door”, “Dogs are sitting by the door”) with eight emo-
tional intentions (neutral, calm, happy, sad, angry, fearful, surprise, and disgust)
and two emotional intensities (normal, strong); however, conditions involving the
neutral emotion were only vocalized with normal intensity. Actors repeated each
vocalization twice, resulting in 60 total trials per actor (N = 24).

Actors were recruited from the Toronto, Canada area with ages ranging from
21 to 33. Odd-numbered actors were male (n = 12) and even-numbered actors
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were female (n = 12). Additionally, actors represented Caucasian (n = 20), East-
Asian (n = 2), and multiracial (n = 2) ethnic backgrounds. Actors did not have
any distinctive facial features, such as facial hair or tattoos, and were instructed
not to wear glasses, in order to ensure minimal interference with face detection
algorithms. There are multiple benchmarking datasets available for emotion de-
tection AI, but the RAVDESS dataset was selected as an appropriate dataset
because of its highly structured system of labeled data, which allow researchers
to evaluate the accuracy of models at various conditions (e.g., statement, inten-
sity).

The RAVDESS dataset only includes videos of participants. Images were
extracted as frames from each trial using the “av” package in R (Ooms, 2024a),
sampling at a frame rate of three frames per second. The sampling produced
an average of 11 images per video with a standard deviation of one image.
Although all images in a video share the same label, the images may not be
equally representative of the label. For example, a video may contain the emotion
anger but the actor may not be presenting anger the entire time, as there may
be resting emotions also captured on camera before or after. Therefore, it is
important to isolate the most representative frame of the target emotion (i.e.,
the emotion labeled by the dataset). Py-Feat emotion estimates were obtained
for each image within a trial. The image with the maximum estimate for the
target emotion was selected as the most representative frame of the video and
used for the present analysis. The final sample contained 1,246 images, which
consisted of the most representative frames from the 1,440 videos excluding the
trials labeled as “calm”, given that Py-Feat is not able to detect calm emotions.

2.2 Simulation design

The present study created control and experiment sets of images based on the
RAVDESS sample. The set of control images were unedited from the original
RAVDESS images, depicting a singular face. The set of experiment images were
identical to the control set except that they were edited to include an additional
face. Within the experiment set, the control image was the primary focus of the
camera and an additional face was selected from the RAVDESS sample to ap-
pear somewhere in the background close to the face, but without occlusion of the
face. Phantom faces were inserted into the experiment set using the “magick”
package in R (Ooms, 2024b) and were edited according to a variety of conditions:
size, opacity, number, and sameness. The size condition describes the size of the
phantom face in the image, with the phantom face appearing as either 25% or
50% of the size of the focal image. The opacity condition describes the lack of
transparency of the phantom face, with the phantom face appearing fully visible
at 0% opacity, half visible at 50% opacity, and near completely transparent at
75% opacity. The number condition describes the number of phantom faces that
appears in the image. The number condition 1 inserts a first phantom face into
the top left corner of the image, 2 inserts a second phantom face in the top right,
3 inserts the third face in the bottom left, and 4 inserts the fourth in the bottom
right. A location condition is somewhat nested within the number condition, but
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the location of phantom face should not matter as long as the phantom face is
equally obstructing the primary face in all four conditions. Phantom faces are
carefully positioned as to avoid occlusion; therefore, location is not a meaningful
condition. Finally, the sameness condition determines whether the phantom face
exhibits the same emotion as the primary face and, if the emotions are different,
which emotion is exhibited. The values of the sameness condition are “same”,
“anger”, “disgust”, “fear”, “happiness”, “neutral”, “sadness”, and “surprise.” In
the “same” condition, phantom faces inserted were identical to the primary face.
In the remaining emotion conditions, phantom faces that were most representa-
tive of the target emotion were inserted. The most representative images were
again identified from RAVDESS and were selected by which image the maximum
target emotion estimates in the sample. The present study explored 192 total
simulation conditions.

2.3 Data analysis

The present study examined the difference in performance of Py-Feat on images
in the control set and experiment set. Performance was primarily measured by
the overall classification accuracy of each image set, parameter bias in emotion
estimation, and the conditional classification accuracy within each simulation
condition. Differences in overall accuracy were evaluated using a paired t-test.
Given the similarity of images in the control and experiment set, a paired t-test is
appropriate because the difference in accuracy is approximately normal at large
samples and sample variances are approximately equal. A similar t-test approach
was used to evaluate parameter bias in emotion estimates for each emotion label
across the 192 conditions. Finally, differences in conditional accuracy were eval-
uated using an Analysis of Variance (ANOVA) model to investigate the main
effects of each variable and their two-way interaction effects. All analyses were
conducted in R version 4.4.1.

3 Results

Py-Feat correctly identified labeled emotions in 81.3 percent of control set im-
ages. Since the control set was not subjected to any simulation conditions, the
control set accuracy was consistent across all conditions. Py-Feat demonstrated
substantially lower accuracy in the experiment set of images. The average accu-
racy for the experiment set was 54.7 percent with a standard deviation of 18.5
percent. The average difference in accuracy between the control and experiment
set was 26.6 percent, which the paired t-test demonstrated was statistically sig-
nificant, t(191) = 19.9, p < .001. Moreover, Cohen’s d was 1.44, indicating that
the presence of phantom faces in images substantially impacts Py-Feat’s overall
classification accuracy.

Py-Feat’s classification accuracy is also impacted by the condition of phan-
tom face images. The main effect of size on the difference in accuracy between
control and experiment sets of images was statistically significant, F (1, 190) =
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89.8, p < .001. Py-Feat performed worse at labeling emotions with phantom faces
that were 50% of the size of the primary face (Mean difference = 0.37, SD = 0.18)
than phantom faces that were 25% (M = 0.16, SD = 0.12). The main effect of
sameness on accuracy difference was also significant, F (7, 184) = 37.5, p < .001.
When phantom images exhibited the same emotion as the primary face, there
was a small difference in accuracy between the control and experiment set (M
= 0.05, SD = 0.06). However, there were more pronounced differences when the
primary and phantom faces exhibited different images. The largest difference was
observed when the phantom face exhibited happiness (M = 0.49, SD = 0.15),
followed by anger (M = 0.42, SD = 0.15), fear (M = 0.37, SD = 0.13), disgust
(M = 0.25, SD = 0.09), neutral (M = 0.23, SD = 0.04), surprise (M = 0.18,
SD = 0.16), and sadness (M = 0.13, SD = 0.12). The interaction effect of size
and sameness was also statistically significant, F (7, 176) = 41.6, p < .001, indi-
cating that the magnitude of bias caused by the size of phantom images varied
depending on the emotion of the phantom face. Table 1 presents a summary of
the Tukey Honest Significance Difference test comparisons, which examined the
simple effects of the interaction. The difference between the 25% and 50% con-
ditions was greatest within the happiness and surprise conditions, but the 50%
condition performed significantly worse across the different levels of the sameness
condition. In contrast, the main effects of opacity, F (2, 189) = 0.5, p = 0.542,
and number, F (3, 188) = 0.1, p = 0.985, were not statistically significant and nor
were their interaction effects with any of the other variables. Table 2 presents
the highest and lowest differences in accuracy conditions, corroborating the claim
that phantom face accuracy is largely determined by size and sameness.

Table 1. Tukey Honest Significance Difference test contrasts among size conditions
within sameness conditions.

Emotion Mean difference (SE) t statistic

Same -0.076 (0.014) -5.25 ***
Anger -0.274 (0.014) -18.79 ***
Disgust -0.172 (0.014) -11.81 ***
Fear -0.256 (0.014) -17.58 ***
Happiness -0.303 (0.014) -20.78 ***
Neutral -0.071 (0.014) -4.89 ***
Sad -0.22 (0.014) -15.06 ***
Surprised -0.30 (0.014) -20.71 ***

Note. *** p < .001. All t statistics were obtained with 176 degrees of freedom.

Differences in continuous emotion estimates between images in the control
and experiment set were also examined to examine the effect of phantom faces
on parameter estimation. Each emotion was examined separately. All means are
expressed in units of Py-Feat estimates, which range from 0-1. The largest differ-
ence was observed among anger estimates, d = −0.15. There was a -0.04 mean
difference in anger estimates, t(276095) = −77.6, p < .001, indicating that Py-
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Table 2. Best case and worst case scenarios for phantom face conditions.

Case Number Difference Size Opacity Number Emotion

1 0.006 25% 0% 1 Same
2 0.007 25% 0% 2 Same
3 0.007 25% 0% 4 Same
190 0.651 50% 50% 3 Happiness
191 0.651 50% 50% 2 Happiness
192 0.652 50% 0% 3 Happiness

Feat overestimates the anger of images when phantom faces are present. A 0.04
mean difference in neutral estimates was observed, t(276095) = 43.7, p < .001.
The effect size was positive, d = 0.14, indicating that Py-Feat underestimates
neutral emotions in the presence of phantom faces. There was a -0.03 mean
difference in happiness estimates, t(276095) = −47.2, p < .001, with an effect
size of d = −0.09. There was a 0.02 mean difference in surprise estimates,
t(276095) = 43.7, p < .001, with an effect size of d = 0.08. There was a 0.01
mean difference in sadness estimates, t(276095) = 33.3, p < .001, with an ef-
fect size of d = 0.06. There was a -0.01 mean difference in fear estimates,
t(276095) = −23.9, p < .001, with an effect size of d = −0.04. Finally, there
was a 0.008 mean difference in disgust estimates, t(276095) = 14.8, p < .001,
with an effect size of d = 0.03. All differences were statistically significant, but
were classified as small effect sizes.

4 Discussion

4.1 Findings and implications

Py-Feat demonstrated lower accuracy at classifying images in the experiment
set than the control set, and the difference was statistically significant. How-
ever, it is a known property of statistical tests that as sample size becomes
increasingly large, statistical tests will always converge toward a statistically
significant result, regardless of how menial the practical significance of the result
is (Meehl, 1967). Therefore, we should prioritize the effect size of results because
it is unaffected by sample size. The effect size of the first paired t-test was 1.44,
which is substantially larger than Cohen’s threshold for a large effect size (0.8).
Therefore, we are confident that the observed difference in accuracy between
the control and experiment set is practically significant as well. The difference
in overall classification accuracy is sufficient to claim that phantom faces are a
valid threat to the inference of emotion detection AI. Py-Feat users that con-
duct analysis on images that contain phantom faces can expect a substantial
reduction in accuracy.

However, the effect of bias was not uniformly distributed across the simu-
lation conditions. Some phantom faces conditions, such as 25% size and same
emotion, resulted in less than a 1 percent difference in accuracy between the
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control set and experiment set. Other conditions, such as 50% size and happi-
ness, resulted in a massive 65 percent difference in accuracy. Opacity had no
main or interaction effects with accuracy difference, suggesting that Py-Feat’s
algorithm is sophisticated enough to detect facial landmarks and AUs regardless
of how transparent the image is. It seems that as long as Py-Feat is able to
detect the phantom face at all, the phantom face biases the image. Similarly,
neither the number main effect nor its interactions were significant, suggesting
that there is no multiplicative impact of multiple phantom faces. The presence
of one phantom face alone is enough to bias the image. The lack of a significant
effect associated with number also suggests that there is no significant effect of
phantom face location, as long as the phantom face is not directly obstructing
the primary face. However, it is important to note that there were no safe con-
ditions observed. The presence of a phantom face in the experiment set always
produced lower accuracy than their control set baseline, yet various conditions
determined the severity of the bias that was observed.

Py-Feat consistently performed better in the presence of smaller phantom
faces than larger phantom faces, but the impact was differentially observed for
different clusters of emotions. The smallest difference was observed for same and
neutral emotions, which is an intuitive result. In the same condition, the phantom
face was a duplicate of the primary face, except smaller, and therefore, it was
only capable of biasing the primary face with its own AUs. The only bias that
could be produced by the same condition is that which is caused by occlusion,
which was intentionally limited in the experiment design. The neutral emotion
is unique from other motions in the FACS because it is defined by the lack of
any AUs activated at all. Therefore, AUs from a neutral phantom face were not
able to interfere with the AUs of the primary face, as the phantom face AUs did
not exist. The larger accuracy difference due to happiness can also be explained
by AUs. Happiness is one of the simplest facial expressions to explain by AUs,
consisting of only two AUs: “cheek raiser” (AU6) and “lip corner puller” (AU12).
Additionally, the two AUs are not repeated in any other emotion, making the
presence of the two AUs with any combination of other AUs an easy decision to
label the image as happiness. Consequently, emotion detection AI models tend to
have the highest accuracy classifying happiness labels, with some models even
achieving 100 percent accuracy in benchmarked datasets (Yang et al., 2021).
Therefore, it is likely that Py-Feat defaults to classifying happiness emotions,
which it has the highest accuracy for, when it detects the necessary AUs in the
phantom face, even if they do not appear in the primary face. The next large
decrease in accuracy was caused by the surprise condition, which is an emotion
that shares multiple AUs with fear and anger—two other emotions that resulted
in a large decrease. It is likely that Py-Feat confused the three emotions because
of their similarity, as it combined AUs from both the primary face and phantom
face. The difference between the three emotions may have been more pronounced
at larger phantom face sizes than smaller because the AUs were available in a
higher resolution, making them easier to detect.
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Paired t-test results for the continuous estimates were all statistically sig-
nificant, but it is not recommended to rely on statistical significance given the
large number of simulation cases (N = 276095). The effect size estimates paint
a different story, finding that the true differences in emotion estimates were all
approximately 0. The small effect is likely due to the aggregation across all sim-
ulation cases, including cases in which neither primary face nor the phantom
face exhibited the emotion of interest. However, it is important to note that the
difference in continuous estimates was not unidirectional. Anger, happiness, and
fear were overestimated by Py-Feat in the presence of phantom faces, whereas
neutral, surprise, sadness, and disgust were underestimated. The results cor-
roborate the previous claims that happiness estimates are detected more often
because of their AUs and that anger and fear are often mistaken for surprise in
phantom faces. However, the effect of phantom faces conditions on continuous
estimates remains unknown, which may influence the severity of bias.

4.2 Limitations and future directions

The present study contributed a novel experiment design framework for eval-
uating the issue of phantom faces in emotion detection AI; however, there are
multiple limitations to the current design. Phantom faces cannot be directly
replicated in an image because what causes phantom faces to appear naturally
is unknown. Therefore, it is uncertain whether the experiment set of images is
representative of phantom faces encountered in the wild, but it certainly is gener-
alizable to the broader problem of multiple faces in emotion detection. Multiple
faces appear in images under a variety of circumstances, whether they are a
passing figure in the background or an active backdrop of an experiment (e.g.,
classrooms). The present study identified the risk of including any non-primary
face in the background of emotion detection tasks, which results in a substan-
tial decrease in classification accuracy and an increase in bias for continuous
emotion estimation. Researchers conducting emotion detection AI work should
prioritize removing the influence of any non-primary faces from the image before
conducting any analysis.

The present study introduced the issue of phantom faces and examined its
risks, but it did not provide any empirical solutions for addressing the problem.
Researchers could crop images around the primary face to remove the influence
of other faces. However, cropping images would not address phantom faces that
appear within the primary face. Additionally, cropping images may not be feasi-
ble when important information is contained within the background of an image.
Future research should investigate other methods for removing the influence of
other faces, such as background blurring or targeted face blurring, which may
not have such tradeoffs.

Another limitation of the present simulation design is that the experiment
set of images was only evaluated under four variables, some of which containing
only 2 or 3 levels. Future research may want to investigate other size and opac-
ity parameters than the ones selected in the present simulation. Additionally,
there may be other factors that influence the severity of phantom faces, which
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were not considered in the present study. Future research should identify these
factors and expand the simulation paradigm of emotion detection AI to evaluate
its robustness across a diversity of conditions. Finally, this study only evaluated
the performance of Py-Feat but several other emotion detection AI models are
available, such as Amazon Rekognition and Google Cloud AI, and can be investi-
gated in the future. Future research should observe how the problem of phantom
faces replicates across other models and the novel solutions that may emerge.

4.3 Conclusion

Emotion detection AI is an emerging technology in the social and behavioral
sciences, which may transform the accessibility of multimodal designs in emo-
tion research; however, the current technology is limited by the lack of rigorous
methodology for AI model evaluation. Simulation studies using edited images
revealed insight into the problem of phantom faces and multiple faces, but they
may provide insight into other challenges with emotion detection AI models as
well. The paradigm of simulation studies has bolstered quantitative methodology
by elucidating the circumstances in which methods flounder or flourish. It can
be applied just as eagerly to AI model evaluation, provided that at ground truth
is known, such as with labeled data sets. The present simulation introduced the
presence of phantom faces as a substantive issue, which we hope motivates other
researchers to identify possible solutions. Through the continuation of rigorous
evaluation work, emotion detection AI may become a valuable tool for emotion
research.
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