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Abstract. Large Language Models (LLMs) are increasingly deployed
in sensitive real-world contexts, yet concerns remain about their biases
and the harms they can cause. Existing surveys mostly discuss sources
of bias and mitigation techniques, but give less systematic attention to
how bias in LLMs should be detected, measured, and reported. This sur-
vey addresses that gap. We present a structured review of methods for
detecting and evaluating bias in LLMs. We first introduce the concep-
tual foundations, including representational versus allocational harms
and taxonomies of bias. We then discuss how to design evaluations in
practice: specifying measurement targets, choosing datasets and met-
rics, and reasoning about validity and reliability. Building on this, we
review intrinsic methods that probe representations and likelihoods, and
extrinsic methods that assess bias in classification, question answering,
open-ended generation, and dialogue. We further highlight recent ad-
vances in counterfactual and certification-based evaluation, which aim to
provide stronger guarantees on fairness metrics. Beyond English-centric
settings, we survey cross-lingual and application-specific evaluations, in-
tersectional bias analysis, and meta-level issues such as evaluator reliabil-
ity, metric robustness, reproducibility, and governance. The review con-
cludes by synthesizing best practices and offering a practitioner-oriented
checklist, providing both a conceptual map and a practical toolkit for
evaluating bias in LLMs.
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1 Introduction

Large Language Models (LLMs) have achieved remarkable success across many
natural language processing tasks, but their biases–reflecting societal prejudices
present in training corpora–have become a pressing concern (Blodgett, Baro-
cas, Daumé III, & Wallach, 2020; Mehrabi, Morstatter, Saxena, Lerman, &
Galstyan, 2021). These biases can manifest as stereotypes and discriminatory
associations, leading to representational harms (reinforcing negative portrayals
of social groups) and allocational harms (unequal treatment in resource dis-
tribution) (Barocas & Selbst, 2016). Such harms are not merely theoretical:
for instance, embeddings have been shown to associate occupations with gender
stereotypes (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016; Caliskan, Bryson,
& Narayanan, 2017), and toxicity classifiers often over-flag dialectal text such as
African American Vernacular English (Hanu & Unitary team, 2020). Therefore,
it is important to understand the biases of LLM.

1.1 Prior surveys

Several comprehensive surveys have reviewed bias and fairness in natural lan-
guage processing (NLP) and large language models (LLMs). Blodgett et al.
(2020) critically examined definitions and conceptualizations of bias; Mehrabi et
al. (2021) provided a broad overview of bias and fairness across machine learning;
Gallegos et al. (2024) and Guo et al. (2024) surveyed bias origins, measurement,
and mitigation in large language models. However, these works primarily focus
on bias sources and mitigation strategies, often leaving the design and system-
atization of bias detection and evaluation methods underexplored. They also
provide limited treatment of certification-based approaches, multilingual and
sociocultural contexts, reproducibility, and governance.

1.2 Our contribution

This review complements and extends existing surveys by focusing specifically
on the methods used to detect and evaluate bias in LLMs. First, we propose
a structured framework that distinguishes intrinsic, extrinsic, and certification-
based evaluation methods. Second, we highlight counterfactual and certification-
based approaches, which are largely absent from earlier surveys but are increas-
ingly important for providing stronger guarantees about model behavior. Third,
we broaden the scope beyond standard English benchmarks by covering cross-
lingual, sociocultural, and application-specific evaluations, emphasizing the need
for inclusivity and context-awareness. Fourth, we address meta-level issues in-
cluding reproducibility, robustness, and alignment with emerging governance
frameworks. Finally, we synthesize best practices and distill them into a practi-
cal checklist for practitioners auditing LLMs in real-world settings.
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1.3 Structure of the review

The rest of the review is organized as follows. In Section 2, we introduce the core
concepts of bias in LLMs, discuss associated harms, and survey existing tax-
onomies. In Section 3, we develop principles of measurement design, including
how to identify bias targets, select datasets and metrics, and reason about valid-
ity and reliability. In Section 4, we present intrinsic bias detection methods that
operate on representations and likelihoods, while Section 5 focuses on output-
level (behavioral) evaluations in classification, question answering, open-ended
generation, and dialogue. In Section 6, we turn to counterfactual prompting and
certification-based evaluation, which aim to provide stronger guarantees on bias
metrics. Section 7 examines cross-lingual, sociocultural, and application-specific
audits, emphasizing multilingual and domain-specific considerations. Section 8
addresses meta-evaluation, reproducibility, and governance standards for bias as-
sessments. Finally, Section 9 synthesizes the surveyed methods, highlights open
challenges, and offers practitioner-oriented guidance for bias auditing in LLMs.

Section 2–3: Foundations & Measurement

Section 4–5: Intrinsic & Extrinsic Evaluation

Section 6: Counterfactual & Certification

Section 7: Cross-lingual & Application-specific

Section 8: Meta-evaluation & Governance

Section 9: Synthesis & Practitioner Guidance

Figure 1. Logical flow of the review structure. Each section builds on the previous,
moving from conceptual foundations to practical guidance.

2 Foundations: Concepts and Taxonomies

This section lays the conceptual groundwork for the rest of the review. We first
define what we mean by bias in LLMs and discuss how such bias arises from data,
modeling choices, and deployment contexts. We then distinguish different kinds
of harms, with particular emphasis on the contrast between representational and
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allocational harms, and illustrate how these harms manifest in LLM behavior.
Finally, we survey existing taxonomies of bias and fairness in NLP and LLMs and
adapt them into a working taxonomy that will structure the evaluation methods
discussed in later chapters.

2.1 Bias in LLMs: Definitions and Origins

Large Language Models (LLMs) are trained on vast corpora of human text, and
as a result they can learn and reproduce societal biases present in the data. In the
context of AI, bias generally refers to systematic differences in model behavior
that privilege or disadvantage certain groups, often reflecting historical preju-
dices. For example, prior studies found that GPT-3 and similar models embed
stereotypes, associating professions or attributes with specific genders or races,
e.g., referring to “women doctors” as noteworthy, implying the default doctor is
male (Bender, Gebru, McMillan-Major, & Shmitchell, 2021). Such biases arise
from imbalances and prejudices in the training data and the way models encode
language patterns (Blodgett et al., 2020). Bender et al. (2021) and others have
warned that without checks, LLMs can perpetuate harmful assumptions present
in text corpora. Indeed, models as advanced as GPT-3 were shown to complete
prompts involving the word “Muslim” with violent or negative language more
often than for other religions, highlighting a learned Muslim-violence bias (Abid,
Farooqi, & Zou, 2021). Even after developers attempt to filter or curate training
data, LLMs may still exhibit biased associations because they are “stochastic
parrots” that mirror the statistical patterns, including undesirable ones, of their
input (Bender et al., 2021). Bias in LLMs can pertain to numerous attributes,
such as gender, race, ethnicity, religion, sexual orientation, age, and disability,
often manifesting as offensive content or stereotyped outcomes that echo societal
inequities (Blodgett et al., 2020).

It is important to distinguish social bias in LLMs, the focus in this review,
from other forms of model bias such as preference biases or sampling bias. Here,
social bias means harmful or unfair behavior by the model with respect to sen-
sitive demographic groups (Gallegos et al., 2024). In LLM outputs, this can
mean generating text that is derogatory toward a group, making unfair assump-
tions about individuals from a group, or systematically performing worse for
queries about certain groups. These behaviors reflect issues of fairness and dis-
crimination in AI. In general, fairness is the absence of bias: a model is fair if its
outcomes do not advantage or disadvantage people on the basis of protected char-
acteristics (Barocas & Selbst, 2016). Different conceptions of fairness exist, e.g.,
individual fairness requiring similar treatment for similar individuals (Dwork,
Hardt, Pitassi, Reingold, & Zemel, 2012), versus group fairness demanding sta-
tistical parity across groups.. Bias, conversely, is often categorized as either a
case of disparate treatment—explicitly treating a protected group differently, or
disparate impact—producing different outcomes for groups even without overt
intent (Barocas & Selbst, 2016). In the LLM context, disparate treatment might
involve the model using a derogatory slur for one ethnicity but not others in the
same context, whereas disparate impact could involve the model’s toxic response
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rate being higher for prompts about a certain demographic. Bias and fairness
in LLMs thus intertwine ethical and technical dimensions, necessitating clear
definitions and careful measurement.

Recent surveys emphasize that reaching a universal definition of “fair” behav-
ior for LLMs is challenging, given the multiple facets of harm and the context-
dependent nature of bias (Gallegos et al., 2024; Mehrabi et al., 2021). Through-
out this paper, we consider a model biased if it shows systematic, unwarranted
differences in treatment or performance across demographic groups, in line with
prevailing definitions in NLP fairness research. A related interpretive caveat is
that measured “bias” in LLM outputs can conflate at least two sources. First,
an LLM may reproduce biased opinions or stereotyped associations that are al-
ready present in the population discourse and, more concretely, in the web-scale
corpora used for training. In this case, the model’s behavior can be descriptively
aligned with the data distribution while still being normatively undesirable in
many deployment settings, because reproducing harmful social attitudes can cre-
ate representational or allocational harms (Barocas & Selbst, 2016; Bender et
al., 2021; Blodgett et al., 2020; Suresh & Guttag, 2021). Second, an LLM may
deviate from population attitudes because training corpora are not representa-
tive samples of the population, and because modeling and alignment choices can
systematically reshape what the model says and refuses to say. This includes am-
plification or attenuation of associations relative to corpus baselines, as well as
safety and refusal behaviors that may unevenly affect topics or groups (Bender
et al., 2021; Solaiman et al., 2019; Suresh & Guttag, 2021; Zhao, Wang, Yatskar,
Ordonez, & Chang, 2017a). Throughout this review, we treat both “reflection”
and “distortion/amplification” as practically relevant risks for bias auditing, and
we highlight evaluation practices that make the assumed baseline explicit when
interpreting group differences.

2.2 Harms from Biased Models: Representational vs. Allocational

Bias in LLMs is not just a theoretical concern—it can lead to tangible harms.
Researchers have distinguished between two broad categories of harm caused by
biased AI systems: representational harm and allocational harm (Blodgett et al.,
2020; Suresh & Guttag, 2021).

Representational harms occur when a system portrays or treats a group
in a way that is disrespectful, belittling, or misrepresentative. This includes the
use of derogatory or stereotypical language about a group, erasure or underrep-
resentation of certain populations, and reinforcing negative tropes. These harms
primarily affect dignity, identity, and social perceptions of the group. For ex-
ample, if an LLM consistently generates sentences that associate women with
family roles and men with career roles, it reinforces gender stereotypes or bias
(Bolukbasi et al., 2016; Caliskan et al., 2017). Likewise, if a model responds to
prompts about certain nationalities or ethnicities with negative sentiments, it
denigrates those groups (Abid et al., 2021). Blodgett et al. (2020) argue that
representational biases in language technologies can perpetuate power imbal-
ances by repeatedly portraying marginalized groups in unfavorable or trivialized
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ways. Notably, representational harms are “harms in their own right” (Blodgett
et al., 2020): even if no immediate decision is made against a person, the mere
propagation of degrading or false narratives about a group contributes to societal
discrimination.

Researchers decompose representational harms into subcategories (Guo et
al., 2024): (1) Stereotyping—overgeneralized or negative attributions to a group,
e.g., associating Islam with violence, as demonstrated by GPT-3 completions
(Abid et al., 2021); (2) Denigration and Toxicity—using derogatory or hateful
language toward a group; (3) Misrepresentation—portraying a group inaccu-
rately or obscuring its existence, e.g., assuming binary gender only and eras-
ing non-binary identities (Bender et al., 2021); and (4) Underrepresentation—
ignoring or generating less content about certain groups, making them “invisible”
in outputs. Together, these subcategories contribute to a broader representa-
tional harm where marginalized groups are either negatively characterized or
not reflected in a model’s knowledge.

Allocational harms refer to unfair distributions of resources, opportuni-
ties, or outcomes across groups that result from a system’s biases (Barocas &
Selbst, 2016). A biased model might recommend fewer high-paying job listings to
women than to men, or flag tweets from minority dialect speakers as more toxic
than those from majority dialect speakers, leading to disproportionate content
removal affecting that community. Allocational harm thus involves a material or
opportunity cost to certain groups. While LLMs are often used for content gener-
ation rather than final decision-making, their biased outputs can indirectly cause
allocational harms. An LLM-powered tutoring system that misunderstands or
answers less effectively questions posed in African American Vernacular English
(AAVE) may deliver poorer educational support to those users, contributing
to allocational disparities in education. A medical advice chatbot consistently
provideing less thorough answers about women’s health conditions produces al-
locative harms in healthcare outcomes.

Table 1 illustrates examples of these harms. In the representational harm
example, the model completes the prompt “The nurse said that ” with “he”
90% of the time, implying nurses are male (stereotyping and misrepresentation
of a predominantly female profession). In the allocational harm example, an
LLM-assisted content moderation system flags slang used by a particular ethnic
group as toxic at higher rates, leading to disproportionate removal of their posts
(unequal treatment affecting opportunities for expression). These harms high-
light why bias in LLMs is a serious concern: beyond offending users, biased LLM
outputs can reinforce social hierarchies and even deprive groups of fair access to
services, information, and opportunities.

Representational harms often enable allocational consequences: when nega-
tive portrayals of a group become embedded in model outputs, they can influence
how systems or human users subsequently allocate resources to that group (Gal-
legos et al., 2024). For example, if an LLM is part of a larger pipeline, such as in
hiring or admissions screening, or loan application assistance, biases in text un-
derstanding or generation could lead to concrete discriminatory decisions. Many
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Table 1. Empirical examples illustrating the representational and allocational harms
in LLMs (illustrative; (cf. Gehman et al., 2020; Hanu & Unitary team, 2020; Hofmann
et al., 2024; Rudinger et al., 2018; Zhao et al., 2018)).

Harm type Example
scenario
(prompt/task)

Observation
(empirical bias
signal)

Likely impact
(harm category)

Representational
(stereotyping,
misrepresentation)

Prompt
completion: “The
nurse said that

.”

Model completes with
“he” in ≈ 90% of
samples, implying
nurses are male
despite real-world
demographics.
Mirrors
pronoun/coreference
skew (Rudinger et al.,
2018; Zhao et al.,
2018).

Reinforces stereotypes
and erases group
identities; can
propagate to
downstream tasks
(e.g., biased
descriptions or
summaries).

Allocational
(unequal
treatment/quality)

Moderation
pipeline using
LLM-assisted
toxicity scoring on
user posts
containing
dialectal slang.

Higher false positive
rates for posts using
specific dialects/slang
(e.g., AAE), leading
to disproportionate
removal or
downranking
(Gehman et al., 2020;
Hanu & Unitary
team, 2020; Hofmann
et al., 2024).

Unequal access to
expression and
visibility; downstream
inequities in
participation,
reputation, or
services.

anti-discrimination laws, e.g., Title VII of the U.S. Civil Rights Act (Sherry,
1965), are aimed at preventing allocational harms in employment, credit, hous-
ing, and other domains, underscoring the legal and ethical mandate to avoid
biased outcomes.

Critically, representational biases in LLMs are harmful even if they do not
immediately produce an allocative decision. They shape narratives and can influ-
ence human users’ perceptions and actions, potentially leading to biased decision-
making by those users—a phenomenon sometimes called “bias amplification”.
This is why frameworks for auditing LLM bias consider not only obvious decision-
related metrics but also the subtle ways language can cause harm (Blodgett et
al., 2020; Ferrara, 2023).

Overall, the foundation of bias evaluation in LLMs lies in understanding
these harm dimensions. In this review, we will see methods targeting both rep-
resentational issues, e.g., checking if a model’s generated text is free of slurs or
stereotypes, and allocational fairness issues, e.g., ensuring a question-answering
model performs equally well for questions about different demographics. Before
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diving into specific metrics and techniques, we next outline how researchers clas-
sify bias in LLMs and the high-level taxonomies that guide systematic study.

2.3 Taxonomies of Bias and Fairness in NLP and LLMs

Bias in LLMs can be categorized along multiple axes. A first useful distinc-
tion is between intrinsic and extrinsic bias (Cao et al., 2022; Guo et al., 2024).
Intrinsic bias refers to bias present in the model’s internal representations or
knowledge, independent of any particular downstream task. For instance, the
associations between words in an embedding space might reflect gender or racial
biases, e.g., the classic example where “programmer” is closer to “man” than
“woman” in vector space (Bolukbasi et al., 2016). Such intrinsic biases can be
revealed through analyzing word embeddings or the probabilities an LLM as-
signs to certain completions. Extrinsic bias, on the other hand, manifests in
the model’s output behavior on specific tasks or user prompts. For example, a
text-generation bias where the model produces more negative descriptions for
one group than another, or a classification bias where a toxicity detector pow-
ered by an LLM flags benign sentences from one dialect as offensive more often
than for another dialect (Hofmann et al., 2024). Intrinsic and extrinsic biases
are related—intrinsic biases often give rise to extrinsic ones, but the distinc-
tion is useful because it points to different detection methods: one can probe
the model’s latent space for bias, or evaluate actual outputs for bias. We will
later dedicate separate sections to intrinsic (representation-level) bias detection
(Section 4) and output-level bias evaluation (Section 5) in LLMs.

Another taxonomy stems from at which stage in the AI pipeline bias is intro-
duced or measured (Suresh & Guttag, 2021). Bias can originate in the training
data (data bias), be amplified or learned by the model during training (model
bias), and appear in the model’s predictions or generations (output bias). Cor-
respondingly, bias mitigation strategies are often categorized as pre-processing
(address data bias), in-training (alter the learning process to reduce bias), or
post-processing (adjust the outputs) (Gallegos et al., 2024). While our focus is
evaluation, not mitigation, these categories influence how evaluations are de-
signed. For example, if bias is suspected to come from skewed training data, one
evaluation approach is to audit the data for representation gaps or derogatory
content (a data-level analysis). If bias is thought to be model-internal, one might
use intrinsic tests or interpretability tools to find bias in the model’s parameters.
If concerned with output behavior, one uses extrinsic evaluation datasets and
metrics. A comprehensive bias audit may involve all three levels: analyzing the
corpus, probing the model, and testing outputs (Guo et al., 2024). Surveys like
Gallegos et al. (2024) explicitly organize bias evaluation literature by these lev-
els (data, embeddings, probabilities, text outputs), which we adopt as a guiding
framework in this review.

Recent works also propose taxonomies specific to LLM evaluation. Gallegos et
al. (2024), for instance, introduce three intuitive taxonomies that help structure
this space. The first is a metrics taxonomy, which organizes bias metrics by
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the level of model operation at which they apply, distinguishing embedding-
level metrics, probability-level metrics, and generated text metrics; this helps
clarify which aspect of the model each metric is actually testing. The second is
a datasets taxonomy, which categorizes evaluation datasets by their structure
and purpose, such as whether they rely on counterfactual prompts or intrinsic
test sets, and by the harm types and social groups they target; this taxonomy
emphasizes the importance of matching the right dataset with the right metric.
The third is a mitigation taxonomy that classifies bias mitigation techniques by
stage, including pre-processing, in-training, intra-processing during generation,
and post-processing, with further subcategories. Although mitigation is not the
primary focus of this survey, we return to this taxonomy in Section 6 when
discussing evaluation in the context of counterfactual and certification methods,
which often interact closely with mitigation strategies.

These taxonomies highlight that bias in LLMs is a multi-faceted problem.
There is no single “bias score” that covers everything; instead, researchers have
devised numerous metrics and tests, each illuminating one facet of bias. For in-
stance, one metric might quantify bias by comparing how often a model uses
pleasant vs. unpleasant adjectives for one group versus another (a lexical bias
metric on output text), while another metric might measure direct probability
differences when the model is prompted with “He is a ” vs “She is a ” (a
fill-in-the-blank prompt test). Later in this review, we will encounter metrics like
the Word Embedding Association Test (WEAT) adapted for contextual embed-
dings (Caliskan et al., 2017; Kurita, Vyas, Pareek, Black, & Tsvetkov, 2019) for
intrinsic bias, and metrics like the Toxicity Gap or False Positive Rate difference
for extrinsic bias in classification tasks (Dhamala et al., 2021). Organizing these
into a taxonomy prevents confusion and overlap, making it clear whether a given
method is evaluating bias in model internals or in model outputs, and what kind
of bias it addresses.

Finally, when discussing foundational concepts, it is worth noting the inher-
ent trade-offs and challenges identified in fairness literature. One famous result
is that certain fairness criteria cannot all be satisfied simultaneously except in
special cases. Analogously, Anthis et al. (2024) argue an “impossibility of fair
LLMs”, implying that for complex generative models, any non-trivial definition
of fairness might conflict with other desired criteria like linguistic diversity or
context-sensitivity. This underscores that evaluating bias is not just about com-
puting numbers but also interpreting them in context of what is feasible and
desirable. Moreover, bias is context-dependent: an LLM’s output might be ap-
propriate in one setting but offensive in another. As an example, generating an
explicitly religious response might be biased if the user is assumed Christian by
default; yet avoiding any mention of religion might misrepresent a devout user’s
intent. Such nuances mean that evaluation methods often have to specify the
scenario and assumptions under which bias is measured.

In summary, the foundations of bias in LLMs rest on understanding its
sources (data and model), its manifestations (intrinsic vs extrinsic, represen-
tational vs allocational), and clear taxonomies for categorizing bias types and
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evaluation approaches. With these concepts established, we can proceed to dis-
cuss how one designs measurements to detect and quantify bias, which is the
focus of the next section.

3 Measurement Targets and Evaluation Design

A first step in any bias evaluation is deciding which aspect of the model’s behav-
ior or internals should be scrutinized. Because LLMs can encode and express bias
at multiple levels, this subsection maps out the main categories of bias targets
that evaluations typically focus on and explains how each relates to different
kinds of harms. In doing so, it sets up later discussions on dataset choice, metric
design, and evaluation protocols by clarifying the link between what we measure
and why we measure it.

3.1 What to Measure? Identifying Bias Targets in LLMs

Designing an evaluation for bias begins with pinpointing the target of measure-
ment: what specific kind of bias or harm are we looking for in the model? Because
LLMs are complex systems, there are multiple possible targets. First, one can
focus on model-internal biases, such as stereotyped associations encoded in word
embeddings or hidden representations. Second, evaluations may target behav-
ioral biases in outputs, for example systematic differences in generated text or
decisions when the input varies only in demographic attributes. Third, one can
measure performance disparities, where accuracy, helpfulness, or task success
rates differ across groups that should be treated similarly. Finally, some evalu-
ations concentrate on content biases, such as the frequency of toxic, hateful, or
stereotyped language when specific groups or topics are mentioned. The choice of
target determines which datasets, metrics, and protocols are appropriate, and it
should be aligned with the downstream harms of concern in a given application.

Each target dictates a different evaluation design. A crucial early step is
to define the protected attributes or social categories of interest: common ones
are gender, race/ethnicity, religion, sexual orientation, and nationality, but also
disability status, age, socioeconomic background, etc. For example, one might
specifically ask: “Does the model exhibit gender bias when generating profession-
related text?” or “Is the model more likely to produce toxic content when
prompted about one ethnicity versus another?” These questions identify the
axis along which bias is measured. Evaluation targets can also be application-
specific, such as bias in medical advice, e.g., differences in suggested treatments
by patient demographic, or in dialogue systems, e.g., politeness or respect to-
wards certain users.

Importantly, bias is often contextual. A model might be unbiased in one as-
pect but biased in another. For instance, an LLM might have relatively balanced
sentiment towards male vs female names, yet still produce more male than fe-
male pronouns in a translation task. Thus, evaluations typically focus on one
target at a time to isolate the issue. According to Gallegos et al. (2024), bias
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evaluation datasets are often categorized by the specific harm and group tar-
geted. There are datasets focusing on gender occupation stereotypes, others on
racial sentiment bias, others on religious toxicity triggers, etc. This specialization
is necessary because each requires different prompt design and metrics.

Another key decision is whether to measure bias at the representation level
or output level. Representation-level (intrinsic) evaluation treats the LLM as a
source of word or sentence embeddings and checks those for bias. For example,
we might extract the embedding of sentences like “This person is a doctor.” vs
“This person is a nurse.” with different gender pronouns and then see if the
distance correlates with gender in a biased way (May, Wang, Bordia, Bowman,
& Rudinger, 2019). Alternatively, we can use the LLM’s next-word probability:
e.g., feed a prompt “The nurse said: ‘I will ask my .”’ and see if the model is
more likely to fill the blank with “husband” or “wife” depending on the nurse’s
gender mentioned earlier (Kurita et al., 2019). These are intrinsic measurements
because they probe the model’s internal likelihoods or representations without
necessarily generating a full output for a user.

Output-level (extrinsic) evaluation, conversely, treats the LLM as a black box
that produces text or decisions, and examines those outputs for bias. This might
involve having the model generate a continuation for hundreds of prompts that
differ only in the demographic detail, e.g., “The man/woman went to the store
to buy . . . ”, then comparing distributions of outputs (Sheng, Chang, Natarajan,
& Peng, 2019). Another common approach is to use a classification model or
heuristic on the LLM’s outputs — for instance, using a toxicity detector to score
each output, then checking if prompts about group X yield higher toxicity on
average than prompts about group Y (Gehman et al., 2020). In classification
tasks, like sentiment analysis where an LLM might be used as a classifier via
prompting, output-level bias evaluation often takes the form of confusion matrix
comparisons: ensuring false positive/negative rates are similar across groups,
or calibration is consistent (Dhamala et al., 2021). The evaluation design must
specify which of these outputs or behaviors are being measured.

Finally, the evaluation target should be aligned with a notion of harm or
fairness concern. For example, if worried about representational harm via stereo-
typing, one target could be the co-occurrence of group identifiers with specific
descriptors in generated text. If concerned about allocational harm in informa-
tion access, a target could be the accuracy of the model’s answers for different
user groups. Clarity in what is being measured prevents misinterpretation of
results: a low bias score on one metric does not mean the model is “unbiased”
universally, only with respect to that metric’s target. Comprehensive evaluation
often entails multiple targets and metrics to build a full picture (Section 9 will
discuss how to synthesize these).

3.2 Designing Bias Evaluations: Datasets and Protocols

Once the bias type and target are identified, the next step is to design or select
an evaluation dataset and a protocol. Broadly, there are two paradigms for bias
evaluation datasets. The first paradigm uses counterfactual or paired inputs.
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These datasets provide minimal pairs of inputs that are identical except for a
demographic attribute. For example, paired sentences such as “The man reached
for the guitar.” and “The woman reached for the guitar.” differ only in the gen-
dered term (Nangia, Vania, Bhalerao, & Bowman, 2020). The underlying idea is
that a fair model should behave identically on such pairs, so any systematic dif-
ference in output (or internal scores) can be attributed to the changed attribute.
This approach is common for testing classification or fill-in-the-blank models.
CrowS-Pairs (Nangia et al., 2020) is a notable example that covers multiple bias
categories, including gender, race, and religion, with such paired sentences for
masked language models. In an LLM context, this paradigm can be extended
to prompt pairs for generation tasks. Counterfactual inputs are especially useful
for isolating direct bias and are often used to compute invariance metrics: if the
output changes significantly between the pair, that indicates bias (Sheng et al.,
2019).

The second paradigm relies on rich prompt sets or unpaired datasets. These
involve a collection of prompts or contexts and sometimes expected answers,
without being organized as minimal pairs. The BOLD dataset (Dhamala et al.,
2021), for instance, contains prompts that trigger open-ended completions about
different groups in categories such as gender, religion, and race, and the model’s
continuations are then evaluated for bias using measures like sentiment or toxic-
ity. StereoSet (Nadeem, Bethke, & Reddy, 2021) provides contexts together with
candidate continuations that are stereotyped, anti-stereotyped, or unrelated; the
model’s preference among these options is used to measure whether it tends to
favor stereotypical completions. These datasets are collections of bias-relevant
scenarios rather than simple paired inputs, and they require evaluation metrics
that aggregate results over many items, such as an overall stereotype score or a
divergence measure between distributions of words or ratings.

The dataset design also depends on whether the evaluation is static or dy-
namic. Static evaluations use a fixed set of inputs, like a fixed list of sentences
or prompts, and are easier to reproduce and compare across models (Gallegos
et al., 2024). Dynamic evaluations might generate test cases adaptively, possibly
via adversarial techniques or user interactions, e.g., red-teaming a model by in-
teractively finding a prompt that causes a biased output. Dynamic approaches
can uncover biases that static sets miss, but they are harder to standardize. For
research surveys and benchmarks, static datasets are more common.

As part of evaluation design, one should note any coverage gaps in the
dataset. For instance, early bias datasets in NLP focused on binary gender,
often ignoring non-binary identities. While recent works has expanded to in-
clude multiple religions, racial/ethnic groups and national origins, biases re-
lated to disability, age, intersectional identities, or less-studied cultures are still
under-represented in evaluation sets. A good evaluation strategy might involve
composing multiple datasets or augmenting an existing set to cover the needed
scenarios.

In addition to input design, the protocol must specify how to run the model
and collect outputs. For generative LLMs, one must choose the prompting strat-



Detecting and Evaluating Bias in LLM 13

egy and decoding settings. For example, to evaluate open-ended bias, we might
prompt the model with a sentence about a person and ask it to continue or
describe that person. We then generate outputs with a fixed random seed or
multiple samples to see variability. If measuring something like toxicity, one
might take the worst-case or average-case. For instruction-tuned model, we may
present an instruction like “Write a brief description of [Person].” where [Person]
varies by demographic. The instructions should be such that a fair model would
produce similar tone/quality irrespective of [Person]. Design decisions like the
length of output, whether to reset context each time, and how to handle ran-
domness all affect the results and should be kept consistent.

One notable approach for fairness testing is to incorporate human-like sce-
nario evaluations. For instance, the Holistic Bias benchmark by Smith, Hall,
Kambadur, Presani, and Williams (2022) uses a “descriptor dataset” where a
variety of identity descriptors and contexts are fed to the model to probe biases
that may not have been anticipated by earlier tests. The evaluation protocol
in such cases may require human annotators to label the outputs for offensive-
ness or bias, especially if automatic metrics are insufficient. Indeed, evaluation
design sometimes blends automated and human evaluation: automated scoring
is scalable, e.g., using Perspective API to rate toxicity of each output, while
human evaluation can catch subtleties, like sarcasm or context that an auto-
matic classifier might miss. In recent evaluations of LLMs, human annotators
have been employed to assess whether an output is biased or not, forming a
sort of “gold standard” to compare against automated metrics (Kotek, Dockum,
& Sun, 2023). However, human evaluation is expensive and introduces its own
biases (annotator biases), so many researchers attempt to design objective met-
rics as proxies. We will discuss the reliability of these metrics in Section 8 on
meta-evaluation.

3.3 Metric Selection and Bias Quantification

With the inputs and evaluation protocol set, the next step is to decide how
to quantify bias, that is, to specify the metric. Several families of metrics are
commonly used in the literature, each emphasizing a different aspect of model
behavior.

Difference-in-performance metrics are typically used when the task has a clear
correctness measure, such as classification accuracy or F1-score. One computes
performance separately for different groups and then takes a difference or ratio.
For example, if a question-answering LLM answers 85% of questions correctly
when the subject is male but only 75% when the subject is female, the 10-
point gap is an extrinsic bias metric. Other variants include differences in F1-
scores, calibration errors, or other reliability measures across groups (Huang et
al., 2019).

Distributional bias metrics examine the distributions of generated content.
A common example is a co-occurrence bias score, which measures how often
particular words appear near a demographic term relative to another (Bordia &
Bowman, 2019). If P (w | female) denotes the probability of word w appearing
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near female-related terms in the model’s outputs and P (w | male) the corre-
sponding probability for male-related terms, one can define a bias score for w
as

B(w) = log
P (w | female)

P (w | male)
, (1)

so that B(w) = 0 if w is equally likely in female and male contexts, while a
positive value means w appears more often with female references and a negative
value more often with male references (Gallegos et al., 2024; Nadeem et al.,
2021). By examining words such as professions or adjectives, one can quantify
skew. For instance, if w = nurse yields B(w) < 0—suggesting it appears more
often with male than female references in model outputs, contrary to real-world
demographics—that indicates a biased generation pattern. Equation (1) is an
example of a metric at the text output level, focusing on word frequency.

Invariance or counterfactual metrics test whether the model’s output remains
stable under demographic substitutions. A simple version is the Social Group
Substitution (SGS) test: the model is run on a prompt mentioning “group X” and
on an otherwise identical prompt mentioning “group Y,” and one then checks
whether the outputs are identical (Gallegos et al., 2024). A strict metric would
assign 1 if they are exactly the same and 0 otherwise, averaging over many
such pairs; this is often too strict, because even small benign changes lead to
failure. More lenient variants use embedding similarity or edit distance between
outputs (Sheng et al., 2019). A related concept is counterfactual fairness in
classification: Kusner, Loftus, Russell, and Silva (2017) define a model as fair
if, for any individual, changing a protected attribute (and nothing else) does
not change the prediction. For LLMs, Chaudhary et al. (2025) extend this idea
to generation by certifying that responses to counterfactual prompts remain
unbiased with high probability. In practice, one might measure the fraction of
prompt pairs for which the model’s responses differ in sentiment or toxicity; if a
significant fraction shows systematic differences correlated with group identity,
that indicates bias.

Score-based bias indices summarize complex behavior into scores. For exam-
ple, StereoSet computes a stereotype score, an overall language quality score,
and then a combined metric (ICAT) that penalizes models which both produce
stereotypes and low-quality text (Nadeem et al., 2021). Another example is the
bias amplification metric (Zhao et al., 2017a), which measures whether a model
amplifies bias present in the data. If the data have a 60/40 gender split for a
profession but the model’s outputs exhibit a 70/30 split, the 10-point increase
reflects bias amplification.

Human evaluation metrics use human judgments as the ground truth for
bias. One can define, for instance, the percentage of outputs marked as biased
by evaluators or the average bias severity score. A typical evaluation might
present model outputs to crowdworkers and ask, “Does this text contain any
stereotypes or unfair assumptions about [group]?” and then report the fraction
of “yes” responses per group. Although such evaluations are costly and time-
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consuming, they directly ground the metric in perceived harm and can capture
nuanced forms of bias that automatic detectors may miss.

Metric selection should match the harm of interest. For representational
harms like hateful language, metrics involving toxicity or hate-speech classifi-
cation are appropriate (Gehman et al., 2020). For allocational harms or perfor-
mance disparities, error rate differences and calibration curves are more relevant
(Krishna et al., 2022). For subtle biases like condescension or erasure, one might
need creative metrics, e.g., measuring how often the model says it doesn’t know
about a minority group versus a majority group might indicate erasure bias.

Often, multiple metrics are applied to the same outputs to get a multidi-
mensional view. For example, Dhamala et al. (2021) when introducing BOLD
not only measured toxicity differences but also used sentiment analysis and
embedding-based measures to analyze the generated texts. They found that
models have higher negativity in generations about certain groups, which was
captured by sentiment score differences (a bias metric). Another scenario: to
evaluate gender coreference bias, one could use Winogender-style sentences and
see if the model chooses the correct referent (Zhao et al., 2018); the bias met-
ric would be accuracy on pronoun resolution by gender of the antecedent. If
accuracy is worse for female pronouns, that’s a bias.

It’s critical to include confidence or significance analysis with metrics. Be-
cause many bias effects can be subtle, one should compute statistical significance
of differences or use confidence intervals. For instance, if an LLM produces toxic
content 5% of the time for one group and 4% for another, is that 1-point differ-
ence meaningful or just noise? Statistical tests, e.g., a two-proportion z-test, or
bootstrap confidence intervals (Sim & Reid, 1999), can be used to assess if bias
metrics are likely indicating a real disparity. Some works, like Chaudhary et al.
(2025), go further and produce formal certificates with high-confidence bounds
on bias measures, which will be explored this in Section 6.

We note that no metric is perfect. Each captures one perspective on bias and
may miss others. For example, exact string match invariance (SGS) is a harsh
metric that might flag even innocuous variability, whereas a softer metric could
overlook changes in nuance. Likewise, using a toxicity classifier to measure bias
assumes the classifier is itself unbiased and accurate, which might not hold true
(it might have its own bias, like being more sensitive to certain dialects (Hanu
& Unitary team, 2020)). Thus, evaluation design often involves using a suite
of metrics and interpreting them collectively. A modern bias evaluation might
report, say, the toxicity gap, the sentiment gap, and a representational similarity
measure, all together to show a consistent picture of bias.

Before delving into the technical details of evaluation design, it is useful to
survey the most commonly used datasets and metrics in recent studies. Table 2
provides a concise overview of representative benchmarks, highlighting the type
of bias each targets and their general purpose. The aim here is not to provide a
full technical comparison, which will be developed in later sections, but rather to
give readers an initial map of the key resources that structure current practice
in bias evaluation.
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Table 2. Representative datasets and metrics for bias evaluation (overview).

Dataset or metric Bias type Brief note

WEAT / SEAT (Caliskan et
al., 2017; May et al., 2019)

Associations
(gender, race)

Embedding and sentence encoder
association tests.

CrowS-Pairs (Nangia et al.,
2020)

Multi-attribute
stereotypes

Minimal sentence pairs differing
only in a demographic term.

StereoSet (Nadeem et al.,
2021)

Gender, race,
religion

Measures preference for
stereotypical versus
anti-stereotypical continuations.

WinoBias / WinoGender
(Rudinger et al., 2018; Zhao
et al., 2018)

Gender in
coreference

Tests pronoun resolution bias in
occupation-related coreference.

Bias-in-Bios (De-Arteaga et
al., 2019)

Occupation and
gender

Biography classification
benchmark for occupational
gender bias.

RealToxicityPrompts
(Gehman et al., 2020)

Toxicity and
identity terms

Prompts containing identity
terms to test disproportionate
toxicity in continuations.

BOLD (Dhamala et al., 2021) Multiple
demographic
groups

Open-ended prompts whose
generations are scored for
sentiment and toxicity.

HolisticBias (Smith et al.,
2022)

Intersectional
identities

More than 500 descriptors
spanning diverse and
intersectional identities.

BBQ (Parrish et al., 2022) Question
answering
stereotypes

Under-specified versus
disambiguated QA contexts to
probe stereotype-driven errors.

HELM (Liang et al., 2023) Multi-
dimensional
evaluation

Framework integrating fairness
and bias evaluation within a
broader LLM benchmark suite.
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3.4 Illustrative Example: Gender Bias Evaluation Workflow

To make the abstract process concrete, consider an example workflow for eval-
uating gender bias in an LLM’s text generation. The goal is to trace how one
moves from a conceptual bias target to concrete prompts, protocols, metrics,
and summary results.

Step 1: Define the bias target. We define the bias target as gender-
based representational bias in occupation descriptions. Concretely, we want to
check whether the model associates certain jobs with a particular gender in
generated biographies, for example describing men and women differently when
they occupy the same profession.

Step 2: Construct evaluation prompts. We create a dataset of prompt
templates such as “[Name] is a [profession] who...”, where [Name] is instantiated
with either a male or a female name and [profession] is drawn from a list (for ex-
ample doctor, nurse, CEO, teacher). For each profession, we design two prompts
that are identical except for the gendered name, yielding a set of counterfactual
prompt pairs.

Step 3: Specify the evaluation protocol. For each prompt, the LLM
is asked to generate a continuation of one paragraph. We may fix the decoding
temperature, for instance, use temperature 0 for deterministic output to facilitate
direct comparison, and we ensure that the model is not explicitly instructed
about gender beyond the name given. This keeps the evaluation focused on the
model’s implicit associations rather than explicit conditioning.

Step 4: Define quantitative metrics. We apply multiple metrics to quan-
tify gender-related differences. One simple metric is a pronoun ratio: in the gen-
erated text, we check whether pronoun usage (he/his versus she/her) correctly
matches the name’s gender as a sanity check, and whether opposite-gender pro-
nouns appear erroneously, which might indicate confusion or bias. We can also
define an adjective bias metric by constructing a list of adjectives stereotypically
associated with men or women and counting their occurrences across outputs.
If a more structured task is used, we might additionally consider performance
metrics, but for open-ended biographies this is less natural. For each profes-
sion, we can also measure how often the text explicitly mentions gender or uses
gender-stereotyped language.

Step 5: Analyze gender-based differences. For each profession, we com-
pare male-name and female-name outputs along the defined metrics. For in-
stance, for prompts like “Alex is a nurse” and “Alice is a nurse”, we can check
whether the descriptions of Alex emphasize leadership more often, while descrip-
tions of Alice emphasize caring or family. Automatic tools such as sentiment an-
alyzers can be used to assess whether biographies for one gender tend to be more
positive or negative in tone. In addition, human evaluators can be asked to rate
which of the paired outputs seems more professional or competent, providing a
human-centered view of bias.

Step 6: Interpret and report results. We summarize the results in terms
of numeric bias scores and qualitative patterns. A typical outcome might be a
statement such as: “For 70% of profession prompts, the model’s outputs con-
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tained gender-stereotypical differences. For example, when the nurse was male,
50% of biographies highlighted leadership, whereas when the nurse was female,
60% highlighted caring or family.” Reporting such aggregate statistics per met-
ric, together with illustrative examples, provides a clear picture of the model’s
gender bias in this setting.

This example shows how multiple methods come together: templates (coun-
terfactual input design), automated analysis of output (counting words, senti-
ment), and possibly human judgment. It also highlights the consideration of
both what the model says and what it omits—omission of certain details might
also reflect bias, e.g., never mentioning “she is an expert in neurosurgery” if the
subject is female might indicate a subtle bias of not associating women with
certain expertise.

In practice, there are many such workflows tailored to different bias dimen-
sions. The literature provides a toolkit of datasets and metrics: from the classic
WEAT tests for embeddings (Caliskan et al., 2017), to modern holistic evalua-
tions that integrate many metrics (Liang et al., 2023). A sound evaluation design
picks the appropriate tools for the question at hand. In the following sections,
we explore in depth the methods used to detect bias intrinsically in represen-
tations (Section 4), behaviorally in outputs (Section 5), via counterfactual and
certification approaches (Section 6), and in special contexts like multilingual
or domain-specific scenarios (Section 7). Before proceeding, Table 2 provides a
quick reference list of common bias evaluation datasets and metrics used in re-
cent studies, along with the biases they target. For example, StereoSet (Nadeem
et al., 2021) – measures stereotypical bias; Winogender (Rudinger et al., 2018)
– measures coreference gender bias; and BOLD (Dhamala et al., 2021) – open-
ended generation bias for multiple categories.

3.5 Considerations in Evaluation Design: Validity and Reliability

When crafting bias evaluations, researchers must consider validity—do the tests
really measure bias?—and reliability—would repeated tests yield the same re-
sult?. Validity concerns can arise if the metric or dataset inadvertently measures
something else. For instance, a higher toxicity score for outputs about group
X could indicate model-induced disparate harm, but it could also arise because
population discourse and the reference corpus already discuss topics associated
with group X in systematically more negative contexts. Without an explicit
baseline, an evaluation may conflate corpus-level prejudice with model-induced
distortion (Blodgett et al., 2020; Suresh & Guttag, 2021). This baseline ques-
tion connects directly to the editor’s concern about distinguishing “bias of the
model” from “bias in the population values.” In many deployments, the goal is
not to faithfully reproduce the distribution of opinions in the training corpus,
but to reduce harmful and unfair group-differential outcomes (Barocas & Selbst,
2016; Blodgett et al., 2020). Nevertheless, to interpret measured gaps, it is use-
ful to report whether the model is merely reflecting a biased corpus baseline or
amplifying it. A practical reporting strategy is to compute an analogous associa-
tion or gap statistic on a reference corpus (or a dataset intended to approximate
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the relevant population discourse) and compare it with the model’s output, so
that the residual difference can be interpreted as amplification or attenuation
(Suresh & Guttag, 2021; Zhao et al., 2017a). When such corpus baselines are
unavailable, robustness checks that control prompts tightly (e.g., counterfactual
templates) and triangulation across metrics and annotators can partially reduce
confounding, but they do not eliminate the normative choice of what counts as
“unwarranted” disparity (Blodgett et al., 2020; Mehrabi et al., 2021). One way
to improve validity is to ensure that prompts are carefully controlled so that only
the attribute differs. As mentioned, counterfactual templates help with this. An-
other approach is to test for annotation artifacts or spurious cues. For example,
Nangia et al. (2020) balanced their CrowS-Pairs sentences so that the “more
biased” and “less biased” sentences are not trivially distinguishable by content
alone to ensure that a model truly has to rely on bias to choose the stereotype.

Reliability issues often stem from the stochastic nature of LLMs and the vari-
ance in natural language. Running the same test on a different day with a slightly
updated model or different random seed might give different outcomes, especially
if using small sample sizes. Therefore, evaluations usually use sufficiently large
sample sets for statistical power. Confidence intervals, as mentioned, are good
practice. In some cases, researchers use multiple runs and average results or
report variance. Particularly for generative evaluations, one might sample the
model several times per prompt and aggregate, to get a distribution of outputs
rather than a single point.

Another consideration is the dynamic range of metrics. If a bias metric yields
a number like 0.02 difference, one might ask: is that a lot? This often requires
context or baseline comparisons. One strategy is to evaluate a known “unbiased”
reference, if existing, or an earlier simpler model to have a point of comparison.
For example, if a small LSTM language model had a bias score of 0.10 and the
new LLM has 0.02, it indicates improvement. Some works normalize bias scores
by a baseline or by the maximum possible bias to yield an interpretable index.
For example, StereoSet’s ICAT score is scaled such that 100 would be ideal, and
random chance yields 50.

In summary, designing a bias evaluation for LLMs is a careful process that
involves several linked decisions. First, one must select the specific aspect of bias
to measure, including the targeted harm and groups of interest. Second, it is
necessary to craft or choose appropriate test data, whether using paired coun-
terfactual inputs or richer unpaired prompt sets. Third, the LLM must be run in
a controlled way to collect outputs under well-specified conditions. Fourth, one
or more quantitative metrics are applied to these outputs to capture relevant
disparities or patterns. Finally, the results need to be interpreted with an aware-
ness of each metric’s limitations and with appropriate attention to statistical
significance, so that apparent differences are not overinterpreted or taken out of
context.

With this general methodology in mind, we can now delve into specific cat-
egories of bias evaluation methods in the subsequent sections. The next section
(Section 4) focuses on intrinsic bias detection in LLMs, i.e. methods that exam-
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ine biases in the model’s internal representations or fundamental behavior, often
without requiring complex prompt outputs.

4 Intrinsic Bias Detection

This section examines how large language models encode bias in their internal
representations before it becomes visible in downstream behavior. We first review
embedding-based measures for static and contextualized representations, includ-
ing geometric and association-test style approaches. We then discuss probability-
based tests and probing methods that use model scores or intermediate activa-
tions to reveal latent biases. Finally, we consider how intrinsic bias measures
relate to downstream harms, how they should be interpreted, and how they can
inform mitigation strategies and the design of output-level evaluations in later
sections.

4.1 Embedding-Based Bias Measures (Static & Contextualized)

Large language models often encode societal biases directly in their vector repre-
sentations of words and sentences. Early studies on static word embeddings (e.g.,
Word2Vec and GloVe) demonstrated striking examples of gender and ethnic
stereotypes embedded in the geometry of these representations. For instance, the
famous analogy “man is to computer programmer as woman is to homemaker”
highlighted how a word embedding model trained on news text associated pro-
grammer with male terms and homemaker with female terms. Bolukbasi et al.
(2016) systematically quantified such biases by identifying a gender direction in
the embedding space—a vector axis corresponding to gender—and showed that
many profession words had significant components along this direction, correlat-
ing with gender stereotypes. They introduced metrics like direct bias, measuring
how far a word embedding lies along the gender axis, and demonstrated that
neutral words were often closer to one gender extreme, reflecting societal stereo-
types. Similarly, Caliskan et al. (2017) proposed the Word Embedding Associ-
ation Test (WEAT), an intrinsic bias metric inspired by psychological implicit
association tests. WEAT compares cosine similarities between embeddings of
target concepts e.g., male vs. female names, and attribute words, e.g., career vs.
family terms or pleasant vs. unpleasant words. A significant difference in these
associations indicates bias; indeed, Caliskan et al. (2017) showed that common
embeddings associated female names more with family-related words and male
names with career-related words, mirroring human biases. These static embed-
ding tests revealed that even without any downstream task, models can acquire
and exhibit the prejudices present in their training corpora.

With the advent of contextualized embeddings from models like BERT and
GPT, researchers adapted these techniques to probe bias in context-dependent
representations. May et al. (2019) extendedWEAT to contextual encoders, some-
times called SEAT for Sentence Encoder Association Test. Instead of individual
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word vectors, SEAT evaluates biases by comparing sentence embeddings: for ex-
ample, the embedding of “This person is a nurse.” when the sentence contains
“he” vs. “she” can reveal if the encoder encodes gender stereotypes. May et al.
(2019) found that popular sentence encoders (like ELMo and BERT) exhibited
many of the same bias tendencies as static word embeddings. Likewise, Kurita et
al. (2019) introduced a method to measure bias in masked language models by
comparing token probabilities. For instance, in a prompt like “The is a doctor,”
one can compare the model’s probability of filling the blank with a male word
(e.g., “man”) versus a female word (“woman”). Kurita et al.’s score effectively
replicates WEAT in a contextual setting, and they showed BERT had higher
likelihood for stereotypically gendered completions in such prompts. Another
study by Zhao et al. (2019) analyzed ELMo (an earlier contextual embedding
model) and found a clear gender bias subspace in its latent representation. They
demonstrated that manipulating ELMo’s embeddings along the gender direction
could shift gendered attributes in generated sentences, indicating that even deep
contextual representations encode biases.

These embedding-level analyses highlight that LLMs internalize biases in
their learned vector spaces. Notably, such intrinsic biases often correlate with
downstream behaviors: if an embedding space clusters certain words or attributes
in a biased way, the model is more likely to produce biased outputs involv-
ing those words. Detecting bias at the representation level is thus a crucial
first step. It can be done even before the model is deployed or generates any
text, and it provides insight into the model’s predispositions. Moreover, intrinsic
bias measures often inform mitigation: for example, after identifying a gender
bias direction, one could attempt to “neutralize” it in the embeddings. In sum-
mary, a range of techniques, such as vector projection methods, association tests
like WEAT/SEAT, and prompt-based likelihood measures, have confirmed that
LLMs harbor measurable biases in their embeddings. These findings lay the
groundwork for evaluating biases in model outputs, since representational bias
can be an early warning for potential harms in generated text.

4.2 Probability-Based Tests for Bias (Likelihood & Log-Prob)

Another family of intrinsic bias metrics leverages the model’s own probability
estimates to reveal biased tendencies. The core idea is to present the language
model with prompts that differ only in a sensitive attribute, such as the gender
of a pronoun or the name of a demographic group, and compare the likelihoods
it assigns to various continuations. If the model systematically prefers stereo-
typical or negative continuations for one group over another, that indicates an
internal bias. For example, one can measure if a model is more likely to pre-
dict certain occupations following “He is a” versus “She is a.” Cao et al. (2022)
employ this approach by computing probabilities P (occupation|“He is a”) vs.
P (occupation|“She is a”) across a range of jobs. They found that a model like
BERT associated certain occupations (e.g., “engineer”, “doctor”) with male pro-
nouns at much higher rates than female pronouns, quantifying a gender bias in
the model’s internal likelihoods. More broadly, template-based likelihood tests
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insert different group identifiers into a fixed context and examine the model’s
scoring of a target word or completion. If the scores diverge significantly by
group, e.g., a positive adjective is far less likely after a particular ethnicity is
mentioned, it signals bias.

Researchers have designed challenge datasets to systematically apply such
tests. For masked language models, the CrowS-Pairs benchmark (Nangia et al.,
2020) consists of sentence pairs that differ only in a protected attribute, e.g.,
“The manager said that the men worked hard” vs. “. . . the women worked hard”.
The model’s preference between each pair is evaluated by comparing pseudo-log-
likelihoods; a bias is detected if the model consistently favors the stereotypical or
prejudiced sentence over the neutral one. StereoSet (Nadeem et al., 2021) uses a
similar paradigm, measuring whether a model’s completion of a sentence aligns
with stereotypes. Kurita et al. (2019)’s method discussed earlier is a specific
case of this likelihood-ratio testing, yielding a numeric bias score akin to WEAT
but computed from model probabilities. Bartl, Nissim, and Gatt (2020) further
refine such tests for BERT by examining its predictions in stereotype-inducing
contexts and measuring how often gendered or group-identifying words appear
where they shouldn’t, e.g., inferring gender from an occupation cue.

In addition to single-word likelihoods, bias can be assessed via the log-odds
of sentiment or toxicity in completions conditioned on different groups. For in-
stance, OpenAI researchers analyzed GPT-2 and GPT-3 by prompting them
with sentences like “The <identity> person was” and found the probability of
a negative continuation was substantially higher for some identities than others.
Such analyses, as documented by Solaiman et al. (2019), quantify biases in gener-
ative models without requiring full sentence generation: the model’s next-token
probabilities already betray biased associations. Similarly, Smith et al. (2022)
introduced a “holistic bias” evaluation where the model is fed prompts describ-
ing individuals covering diverse demographics and the distribution of the model’s
continuations or attributes is measured for skew. For example, if a prompt about
a particular group more often leads the model to a harmful or apologetic re-
sponse, that imbalance is recorded as evidence of bias.

These probability-based tests are powerful because they directly interrogate
the model’s internal knowledge. They often reveal biases that mirror those found
by embedding-level methods, but in addition can capture more nuanced condi-
tional dependencies, e.g., a model might know a word’s gender association even
if the overall embedding space bias was debiased. However, a challenge with like-
lihood metrics is sensitivity to context and phrasing. Recent studies have noted
that a model’s measured bias can fluctuate if a prompt is reworded or expanded,
suggesting some brittleness in these tests. Despite this, when carefully designed,
likelihood-based bias evaluations provide a valuable window into how an LLM
might behave before we even ask it to produce full outputs. They can guide us
in choosing what bias phenomena to examine in actual generations.
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4.3 Probing and Representation Analysis for Fairness

Beyond measuring biases in isolated embeddings or output probabilities, an-
other line of work examines the model’s internal representations using auxiliary
classifiers or visualization techniques. The intuition is that if a model’s latent
representation, e.g., a sentence embedding or a hidden layer activation, encodes
sensitive attributes like gender or race, then those attributes could potentially
influence the model’s decisions. In a probing setup, researchers freeze the trained
LLM and train a simple classifier (the “probe”) to predict a known property,
such as the gender of the person mentioned in a sentence, from the model’s
embeddings. If the probe can reliably decode the property, it implies the infor-
mation is present in the representation. For instance, Ethayarajh (2019) found
that contextual embeddings from models like BERT and GPT-2 retain signifi-
cant contextual information and can reflect demographic attributes. Similarly,
if one can predict with high accuracy whether an input sentence contains, say,
a female or male name just from the sentence embedding, then the embedding
is carrying gender-specific signals that could lead to biased behavior down the
line.

Other representation analysis techniques look for explicit bias subspaces or
directions in hidden layers. Building on the static embedding work of (Bolukbasi
et al., 2016), researchers attempt to identify analogous bias dimensions in con-
textual models. One approach is to use principal component analysis (PCA) or
other dimensionality reduction on the difference between representations of sen-
tences that only differ in a demographic detail. If a principal component emerges
that separates, for example, all embeddings of sentences about men vs. women,
that component can be interpreted as a gender bias dimension. Bolukbasi et
al. (2016) originally demonstrated this concept in word2vec; subsequent meth-
ods like the Iterative Nullspace Projection (INLP) of Ravfogel, Elazar, Gonen,
Twiton, and Goldberg (2020) apply a similar idea to sentence representations
by iteratively removing components predictive of a protected class. Dev and
Phillips (2019) also explored using two-means clustering to define a bias direc-
tion for words, which can extend to sentences. In practice, these analyses have
shown that even after “debiasing” procedures, traces of bias sometimes remain
in later layers of an LLM, indicating the resilience of encoded bias.

Attention-based analysis provides another angle. Vig et al. (2020) examined
the attention patterns in Transformer models and used causal interventions to
measure how much certain attention heads contributed to biased outcomes. For
example, they identified specific attention heads in GPT-2 and BERT that at-
tend disproportionately to gender-indicative words; ablating or modifying these
heads could reduce gender bias in the model’s output. Such findings suggest
that bias isn’t uniformly distributed in a network but may concentrate in cer-
tain components or representations.

Overall, probing and interpretability studies offer granular insight into where
and how bias is represented inside LLMs. These methods go beyond single-word
associations, examining entire sentence or context representations for differences.
One key finding is that representational biases often align with known societal
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biases: for example, internal neuron activations might systematically differ for
sentences about different races, reflecting learned stereotypes. A caution, how-
ever, is that the mere presence of information (like gender) in a representation
is not always harmful—models may need to encode some group information for
legitimate reasons (e.g., coreference resolution). The challenge is distinguishing
between necessary encoding and encoding that leads to unfair behavior. Prob-
ing helps flag potential bias issues early, but it must be combined with output
analysis to fully understand their impact.

4.4 Interpreting Intrinsic Bias Measures

Intrinsic bias evaluations provide useful insights, but interpreting their results
requires care. In general, finding a bias in a model’s representations, as in the
preceding sections, often suggests the model may produce biased outputs, but
the correspondence is not one-to-one. Cao et al. (2022) directly compared intrin-
sic bias metrics, like embedding bias scores and likelihood tests, with extrinsic
metrics—actual task performance differences and found they are related yet cap-
ture different aspects of bias. For example, a model might show a strong gender
bias according to embedding-based metrics, but when evaluated on a specific
downstream task the bias could appear weaker, or vice versa. This means an
intrinsic test can sometimes overestimate bias that never fully materializes in
generated text, or conversely, it might underestimate biases that only emerge in
complex contexts.

One reason for these discrepancies is that intrinsic metrics abstract away
context and usage. They measure potential bias “in principle”, e.g., how a word is
encoded or a prompt is completed in isolation. However, an LLM can have biased
internal associations that are later masked or moderated by other components,
such as a decoding strategy or a instruction-following mechanism in a chat-
oriented model. Conversely, a model might not seem heavily biased in a simplified
intrinsic test, yet when interacting with users or chaining multiple sentences,
subtle biases amplify into a noticeable effect. Because of this, researchers like
Blodgett et al. (2020) caution that intrinsic bias measures should not be taken
as definitive indicators of real-world harm without complementary evidence from
behavioral tests.

Another consideration is that reducing an intrinsic bias (say by “debiasing”
embeddings) does not guarantee fair model behavior in practice. Several studies
have shown that simply removing a detectable bias subspace from embeddings
only partially mitigates biased outputs, and sometimes the model finds alternate
ways to encode the information (a phenomenon known as bias regenerating or
“hidden” bias). This aligns with the broader theoretical point made by Anthis et
al. (2024): for complex models like LLMs, it may be fundamentally impossible
to satisfy all fairness criteria simultaneously. There are always trade-offs, and
a model that appears fair under one metric or definition might still exhibit
unfairness under another. Intrinsic metrics usually target one definition, often a
form of group fairness in associations, so they provide a narrow view.
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In summary, intrinsic bias detection is a valuable tool, especially because it
can be done at low cost and early in the model development cycle; but it has lim-
itations. These metrics are best used to flag potential issues and to understand
the sources of bias. They are not a substitute for evaluating the model’s actual
behavior. A prudent strategy is to use intrinsic evaluations in conjunction with
extrinsic evaluations: if both indicate a bias, one can be more confident the issue
is real and should be addressed. If they diverge, it prompts deeper investigation
into when and why the model’s bias manifests. Having discussed intrinsic meth-
ods, we now turn to extrinsic or output-level bias evaluations, to see how biases
emerge, or fail to, in the model’s generated responses and task performance.

5 Output-level (behavioral) Bias Evaluation

This section shifts the focus from internal representations to observable behav-
ior, examining how bias manifests in the discrete and generative outputs of large
language models. We begin with classification and question-answering settings,
where fairness metrics from supervised learning can be applied to discrete deci-
sions. We then turn to open-ended generation and dialogue, where stereotypes,
toxicity, and other forms of biased content appear in free-form text. Finally,
we review the main datasets and benchmarks used for output-level bias evalua-
tion and provide a comparative synthesis that links these behavioral assessments
back to intrinsic measures and forward to counterfactual and certification-based
methods.

5.1 Bias in Classification and QA Tasks (Discrete Outputs)

Building upon the intrinsic (representation-level) evaluations in Section 4, we
now shift attention to output-level bias, where disparities and stereotypes mani-
fest directly in generated text or task decisions. While intrinsic analyses uncover
potential predispositions in model representations, output-level assessments pro-
vide evidence of how such biases translate into user-facing harms, making them
indispensable for practical auditing.

When an LLM is used for classification or question-answering (QA) tasks,
bias often manifests as differences in performance or decision outcomes across
demographic groups. In these settings, the model produces a discrete output,
like a class label or a specific answer, and traditional fairness metrics from the
classification literature can be applied. A straightforward evaluation is to check
for parity in error rates: for example, is a toxicity classifier possibly powered by
an LLM more likely to flag harmless content from dialect A as toxic than similar
content from dialect B? Hanu and Unitary team (2020) highlight this issue by
showing that a toxicity detection model had significantly higher false-positive
rates on tweets written in African-American English, indicating a bias against
that dialect. Similarly, one can measure metrics such as equal opportunity—are
true positive rates similar across groups?—or equal false negative/positive rates
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for different demographics in a classification task. If these metrics diverge, the
model may be unfairly favoring or disfavoring a group.

Several benchmarks target bias in specific classification scenarios. Zhao et al.
(2018) introduce the WinoBias dataset and a related WinoGender test, which
evaluates gender bias in coreference resolution. In this task, a model must iden-
tify the referent of a pronoun in sentences constructed to expose bias, e.g., “The
doctor asked the nurse a question. She replied...” A biased model might incor-
rectly resolve “she” to nurse due to gendered assumptions. WinoBias provides
paired examples to assess whether a coreference system is equally accurate re-
gardless of gender roles; performance differences directly indicate bias. Another
example is the Bias-in-Bios dataset (De-Arteaga et al., 2019), which consists of
thousands of bios of individuals with labels for their occupation and gender. It
allows evaluation of an occupation classification model for biases like systemati-
cally predicting “nurse” as female more often than male. By measuring precision,
recall, or calibration for each gender, one can quantify biases in how the model
makes decisions about people’s careers.

In question-answering tasks, bias may appear in the correctness or content of
answers related to different groups. The BBQ benchmark (Bias Benchmark for
QA, Parrish et al., 2022) presents the model with under-specified questions that
could tap into stereotypes, e.g., “What is this person good at?” without clarifying
who the person is, but with context implying a certain ethnicity or gender.
The model’s tendency to give a stereotype-consistent answer(versus a correct or
neutral answer when more context is provided is evaluated. A biased QA system
might, for instance, less accurately answer questions about people from a certain
group or might rely on stereotypes when unsure, as measured by BBQ’s two-level
test with or without disambiguating context. Another evaluation by Huang et
al. (2019) uses a counterfactual approach: they assess sentiment analysis models
by feeding identical texts where only the demographic descriptor is changed,
e.g., “He is a manager.” vs “She is a manager.” and checking if the sentiment
or classification changes. Ideally, a fair model’s output should remain the same;
systematic changes indicate bias.

The key in these evaluations is that the “ground truth” or correct output
is known, or ideally invariant to certain changes, which makes biases easier to
quantify than in open-ended generation. If a model performs worse for one group
than another with lower accuracy or higher error rate, this is an allocational or
quality bias: the model is less effective for that group, which can lead to unfair
outcomes. Many studies report such performance gaps. For example, commercial
sentiment analyzers were found to assign more negative sentiment to sentences
mentioning one race vs. another even when the content was otherwise identical.
By using classification fairness metrics and challenge sets, researchers can pin-
point these disparities. A positive development is that some LLMs fine-tuned
for fairness show nearly equal performance across certain demographics on these
benchmarks, yet achieving consistent parity remains challenging, especially as
task complexity grows.
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5.2 Open-Ended Generation Bias (Toxicity, Stereotypes in Text)

Evaluating bias in open-ended text generation is more challenging because there
is no single “correct” output to compare against. Instead, researchers use a
variety of strategies to assess whether the distributions of generated text differ
in systematic ways for different demographic contexts. A common approach is to
design sets of prompts that are identical except for a demographic detail, have
the LLM generate continuations for each, and then analyze those continuations
for indicators of bias such as toxicity, sentiment, or the presence of stereotypes.

One influential benchmark is RealToxicityPrompts (Gehman et al., 2020).
It consists of thousands of prompts, some of which include identity terms, e.g.,
“Two gay men walked into a bar and...” and others that are neutral. An LLM is
asked to continue each prompt, and each continuation is scored for toxicity using
an external classifier. By comparing the fraction of toxic outputs for identity-
laden prompts versus neutral prompts, one can quantify biases in toxic content
generation. Gehman et al. found that models like GPT-2 and GPT-3 would
produce significantly more toxic or derogatory content when prompts contained
certain minority identity terms, revealing a risk of disparate harm.

Another line of evaluation focuses on stereotypical associations in genera-
tion. Sheng et al. (2019) demonstrated that when prompting a language model
with sentences like “The person was known for”, the model’s completions often
reflected societal stereotypes, for instance, completing “The Black person was
known for” with criminal or lazy stereotypes more frequently than “The white
person was known for”. Metrics here include the sentiment or regard score of
generated text conditioned on different groups (Sheng et al., 2019), or the fre-
quency of certain adjectives or actions following group identifiers. The BOLD
dataset (Dhamala et al., 2021) operationalizes this by providing prompts across
categories (gender, religion, race, etc.) and measuring biases in continuations via
sentiment analysis. For example, it checks if prompts about certain groups yield
more negative language or if occupations mentioned in generations align with
gender stereotypes. If a model more often generates words like “angry” or “vio-
lent” in contexts involving a particular ethnicity than it does for others, BOLD
will surface that bias.

Case studies of specific LLM behaviors further illustrate generation biases.
Kotek et al. (2023) found that a large chat-oriented model produced markedly
different styles of responses depending on the inferred gender of the user asking
the question; for instance, questions that appeared to come from a female persona
received slightly more apologetic and hedging answers than those from a male
persona. Hofmann et al. (2024) showed that when presenting identical queries
in different English dialects, an LLM-based system would sometimes generate
less favorable or respectful answers for the dialect associated with marginalized
groups, indicating a dialect bias. In a stark example, Abid et al. (2021) revealed
that GPT-3 would often complete a prompt containing the word “Muslim” with
references to violence or terrorism, whereas it did not do so for other religious
groups, underscoring how training data biases can surface as offensive stereotypes
in outputs.
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To robustly evaluate these phenomena, bias researchers often use automated
detectors and statistical measures. They also inspect qualitative patterns in gen-
erated text. Smith et al. (2022) for example introduced a HolisticBias evaluation
where an LLM is prompted with a wide range of descriptors for people (cov-
ering numerous demographics) and the outputs are analyzed for latent biases.
Their findings uncovered some previously unreported biases, such as the model
adopting an apologetic tone disproportionately when certain identities were men-
tioned, as if the model was over-correcting or unsure, signifying potential bias in
training. Because evaluating free-form text is difficult, recent work has proposed
creative metrics. For example, Meade, Poole-Dayan, and Reddy (2022) suggest
embedding the model’s output and comparing it to the embedding of an ideal,
unbiased reference response, as a way to gauge how far the generation strays
toward bias.

Overall, open-ended generation evaluations reveal that LLMs can reproduce
and even amplify toxic or stereotypical associations present in their training
data. They emphasize the need for thorough testing across many prompt types.
Importantly, these evaluations are ongoing – as new models, often with safety
finetuning, are released, researchers have noted improvements on certain bench-
marks, e.g., toxicity gaps narrowing, yet other subtler biases persist. Continuous,
multi-faceted testing is necessary to paint a full picture of an LLM’s behavioral
biases.

5.3 Bias in Dialogue and Interactive Settings

As LLMs are increasingly used in interactive chatbots and personal assistants,
new bias evaluation challenges arise. In multi-turn dialogue, the model’s re-
sponses can depend on conversational context, user attributes (explicit or in-
ferred), and prior turns. Evaluating bias here often means checking whether the
model treats users or topics differently based on sensitive characteristics in ways
that are unfair or inappropriate.

One methodology is persona-based prompting. For example, evaluators might
prepend a statement like “I am a [identity] user...” to a query and observe how
the assistant responds. If a user says, “I am a Muslim seeking career advice,”
does the model give fundamentally different, perhaps less helpful or more cau-
tious, advice than if the user said “I am a Christian seeking career advice”?
Ideally, the assistance should be equally helpful regardless of the user’s stated
background. Any systematic divergence, e.g., the model provides shorter or less
detailed answers to one group, would indicate a bias in treatment. Detecting
such subtle biases often requires careful experiment design and sometimes hu-
man evaluation, because the quality of responses must be judged in context.

Another aspect is stylistic or tone bias. A well-designed chatbot should main-
tain a consistent tone across users. If a chatbot is found to be notably more curt
or formal with users who mention certain demographics, that could reflect a bi-
ased behavior. Lee, Hartmann, Park, Papailiopoulos, and Lee (2023) suggest that
biases can creep in at various stages of a modular dialogue system. For instance,
a toxicity filter might over-suppress content when certain groups are mentioned,
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leading to the bot unnecessarily refusing harmless queries about those groups.
This phenomenon of over-refusal has been documented: some safety-tuned mod-
els were observed to decline or avoid questions about marginalized groups under
the guise of avoiding controversy, even if the questions were legitimate. Such
behavior can marginalize those users by denying them information. To quantify
this, Cui, Chiang, Stoica, and Hsieh (2025) developed OR-Bench, a benchmark
specifically designed to test if and when an LLM refuses to answer prompts that
it should answer, because they are not actually against any policy. By including
demographic details in a wide array of prompts, OR-Bench can reveal if a model
disproportionately refuses requests related to certain groups.

Industry model reports also increasingly scrutinize dialogue biases. For ex-
ample, Anthropic’s Claude model and OpenAI’s ChatGPT undergo evaluations
on whether they respond differently based on user profile or phrasing of sensi-
tive topics. These evaluations often use controlled conversation scenarios. One
scenario might involve the user adopting different personas (e.g., indicating a
particular nationality or gender) and asking for emotional support or policy
information – auditors check if the model’s empathy and thoroughness remain
consistent. In Anthropic’s 2024 system card, the developers note that their model
showed “minimal bias” on standard tests like BBQ even in conversational mode,
but they still flag that continuous monitoring is needed because nuanced biases
can appear in complex interactions.

Ultimately, bias evaluation in dialogue settings is about ensuring consistency
and fairness in how the model treats users. The model should neither unjus-
tifiably prefer nor penalize any group through its tone, content, or willingness
to comply. While progress has been made, with some modern models showing
improvements in standardized bias tests for dialogue, the rich, unpredictable na-
ture of human conversation means that careful, ongoing bias audits are essential
in deployment.

5.4 Datasets and Benchmarks for Output Bias

A number of standardized datasets and benchmarks have been developed to
facilitate bias evaluation in LLM outputs. Each is designed with specific bias
phenomena and target groups in mind.

CrowS-Pairs (Nangia et al., 2020) is challenge set of sentence pairs that
differ only by a protected attribute, e.g., race, gender, religion, and age. Each
pair contains one “stereotypical” sentence and one “anti-stereotypical” or neutral
sentence. This dataset is primarily used with masked language models: one can
measure if the model assigns higher probability to the biased sentence than the
unbiased one. CrowS-Pairs is valuable for probing direct stereotypical biases in
a controlled way.

StereoSet (Nadeem et al., 2021) is a larger benchmark which evaluates bi-
ases in two modes. (1) In a completion task, the model must choose between a
stereotyped continuation, a non-stereotyped continuation, or an unrelated one
for a given context. A bias score is computed based on how often it prefers the
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stereotyped option. (2) In a generation task, the model’s free-form continua-
tions are analyzed for biased content. StereoSet covers four categories—gender,
profession, race, religion and provides an overall metric called “StereoScore”
that balances bias tendency with language modeling ability. It was one of the
early benchmarks showing that even large pre-trained models significantly prefer
stereotype-aligned continuations.

BOLD (Bias in Open-Ended Language Generation, Dhamala et al., 2021)
contains text generation prompts divided into demographic categories, like gen-
der, race, religion, and others such as professions. After prompting an LLM
to generate a continuation, various metrics such as sentiment and toxicity are
applied to the outputs to quantify bias. For instance, BOLD might prompt the
model with “The ethnicity man was known for” and analyze whether the continu-
ation skews negative. BOLD introduced the idea of using existing NLP classifiers
to evaluate generated content for bias indicators, and it demonstrated that mod-
els like GPT-2 exhibited measurable differences in sentiment when generating
content about different groups.

HolisticBias (Smith et al., 2022) is a comprehensive benchmark with over
500 diverse prompts covering a wide range of identities and intersectional groups.
Rather than focusing on one type of bias, like toxicity or stereotypes, HolisticBias
encourages examination of many potential biases at once. Evaluators look at the
model’s full responses to these prompts and use a taxonomy of possible biases,
e.g., marginalization, erasure, negative sentiment, to tag them. This dataset
helped uncover subtle biases in GPT-3 and other models that may not trigger
overt toxicity or stereotyping but still show detectable skew or differential be-
havior. It’s especially useful for discovering biases that were not anticipated by
the creators of earlier benchmarks.

BBQ (Bias Benchmark for Question Answering, Parrish et al., 2022) focuses
on biases in a QA context, as described earlier. BBQ provides question sets that
test whether a model’s answer is influenced by stereotypes when the question
is under-specified versus when the context clarifies the answer. It’s a specialized
resource for measuring how bias can creep into tasks that require reasoning with
potentially biased assumptions.

HELM (Holistic Evaluation of Language Models, Liang et al., 2023) is not
a dataset per se, but a large-scale evaluation framework that includes bias eval-
uation as one component. HELM is a collaborative effort providing a suite of
benchmarks and metrics across many aspects of LLM performance from accu-
racy to robustness to fairness. Within HELM, bias is evaluated using subsets of
the above datasets and others, and results are reported in model leaderboards.
The inclusion of bias metrics in HELM underscores the importance of assessing
fairness alongside traditional performance metrics.

These benchmarks collectively cover a spectrum of bias manifestations. By
using multiple datasets, researchers can get a more complete picture: a model
might perform well on one bias test yet falter on another due to differences in
the type of bias or the evaluation method. Notably, most of these benchmarks
focus on English language text and on a relatively limited set of demographic
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attributes, often those most discussed in Western contexts, while less work has
been done on biases in other languages or on intersectional and less studied
groups. Efforts are underway to extend bias evaluation beyond English (Section 7
will address multilingual and cross-cultural bias evaluation) and to continually
update benchmarks as societal understanding of bias evolves.

In conclusion, the landscape of bias benchmarks provides crucial tools for
auditing LLMs. They serve as yardsticks to compare models and track improve-
ments or regressions in fairness over time. However, no single benchmark is
sufficient; deploying LLMs responsibly entails evaluating on a diverse set of bias
tests to ensure that seemingly “solved” biases in one setting have not simply
gone undetected in another.

5.5 Summary and comparative synthesis

In this section, we reviewed extrinsic (output-level) bias evaluation techniques,
complementing the intrinsic (representation-level) methods discussed in Sec-
tion 4. While intrinsic evaluations are efficient for early-stage audits and highlight
how biases are encoded in representations, extrinsic evaluations capture biases as
they manifest in actual outputs and task behaviors, thus aligning more closely
with user-facing harms. Each approach has strengths and limitations, and in
practice they should be used together for triangulation.

Figure 2 offers a comparative overview of intrinsic and extrinsic evaluation
families and schematizes their respective pipelines. These visual summaries syn-
thesize insights from Sections 4 and 5 and serve as a bridge toward Section 6,
which introduces counterfactual and certification-based evaluations that aim to
establish rigorous guarantees on bias metrics.
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Intrinsic lane

Input templates /
tokenized text

LLM encoder /
masked-LM head

WEAT/SEAT,
log-prob gaps,

probing classifiers

Bias indicators
(effect sizes,

likelihood ratios, probe AUC)

Extrinsic lane

Paired prompts /
benchmark items

LLM generation /
task inference

Toxicity/regard/
sentiment scorers,

task metrics

Bias indicators
(toxicity gaps,

performance parity)

Pros: low cost, scalable, early detection.
Cons: distal from harm; template sensitiv-
ity.

Pros: close to user harm; task-grounded.
Cons: cost/variance; scorer bias risk.

Figure 2. Two evaluation pipelines. Intrinsic methods interrogate embeddings/likeli-
hoods to surface association biases; extrinsic methods score generated content or de-
cisions for disparities. Use both for triangulation and to connect representation-level
signals to user-facing harms.

6 Counterfactual and Certification-based Evaluation

This section considers evaluation approaches that go beyond observational met-
rics toward more structured guarantees about model fairness. We first discuss
counterfactual prompting and large-scale paired testing, which systematically
compare model behavior across minimally different inputs that vary only in
sensitive attributes. We then examine emerging certification-style frameworks
that aim to place probabilistic bounds on bias under specified distributions and
metrics. Finally, we analyze how these methods complement conventional evalu-
ations, highlighting their strengths, limitations, and implications for regulation
and high-stakes deployment.
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6.1 Counterfactual Prompting and Paired Testing at Scale

Having examined both intrinsic and output-level bias evaluations in Sections 4
and 4, we now turn to approaches that move beyond empirical observation to
provide stronger assurances. Counterfactual evaluations probe fairness under
controlled attribute substitutions, while emerging certification frameworks (e.g.,
LLMCert-B) aim to establish probabilistic guarantees that models remain within
acceptable bias bounds. These methods represent a shift from measurement to
verification, pushing toward more rigorous standards of accountability. Most
bias evaluations rely on relatively small, manually-curated sets of examples. An
emerging trend is to scale up bias testing by generating or using very large
collections of prompts, including adversarial or randomized prompts, to stress-
test an LLM’s fairness. The goal is to simulate a broad distribution of scenarios
and check whether the model remains unbiased on average and in the worst
cases. This approach is inspired by the notion of counterfactual fairness from
traditional machine learning (Kusner et al., 2017): roughly, a model is fair if its
output would be the same in a counterfactual world where a sensitive attribute
such as race or gender is different. Applying this idea to LLMs often means
automatically creating many prompt pairs that differ only in the demographic
detail, and then evaluating the model’s outputs across those pairs.

One way to generate such prompt pairs is to use template expansion or
heuristics to replace group identifiers in a wide range of contexts beyond what
a human could easily curate by hand. This can produce hundreds of thousands
of test cases covering varied topics. Another approach is adversarial prompting:
using algorithms to find inputs that maximize the model’s biased behavior. For
instance, T. Liu et al. (2024) developed techniques to “jailbreak” LLMs, i.e.,
finding sequences of instructions or contexts that evade the model’s safety filters.
While their primary aim was to expose any kind of undesired behavior, this
method can surface latent biases as well. If a model normally avoids making a
derogatory statement, a cleverly crafted adversarial prompt might trick it into
revealing a bias, for example, by role-playing scenarios. By generating many
such adversarial prompts, researchers can identify the conditions under which
the model is most prone to biased outputs, which provides insight into how to
mitigate those failures.

Using large-scale prompt testing moves bias evaluation closer to a statistical
sampling approach. Instead of reporting that “on our 500 example benchmark,
the model had a 10% bias rate,” one can attempt to estimate bias rates over a
distribution of situations. This is especially useful for uncovering biases that are
rare or context-dependent. For example, a model might only exhibit a certain
religious bias if asked about a very specific topic in a certain tone. A massive
random or adversarial search is more likely to hit upon that combination than a
small fixed benchmark. Some researchers have proposed Monte Carlo simulations
where random prompt perturbations are applied to see if the model’s outputs
change in biased ways, effectively treating the model as a black box to be probed
extensively (Rupprecht, Ahnert, & Strohmaier, 2025).
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The downside of scaling up in this manner is the need to interpret a huge
volume of outputs. Automated metrics such as toxicity detectors and stereo-
type classifiers become essential to summarize results, but they themselves can
have biases or errors. Moreover, ensuring coverage of all important scenarios
is challenging—random sampling might miss important cases, while adversarial
search might fixate on a few extreme cases. Nevertheless, this direction greatly
expands our view of model behavior beyond tidy benchmarks. It acknowledges
that LLMs will be used in an open-ended fashion, so we must cast a wide net
when auditing them. Figure 3 illustrates the logic of counterfactual (paired)
testing pipelines. By constructing two prompts that differ only in a sensitive
attribute, e.g., “He is a doctor.” vs. “She is a doctor.”, we can directly mea-
sure the model’s internal or output response gap. The diagram highlights the
stages: (i) input design, (ii) model evaluation, (iii) score extraction such as log-
probabilities or toxicity scores, and (iv) calculation of the counterfactual gap ∆.
This workflow embodies the concept of counterfactual fairness (Kusner et al.,
2017), making the evaluation transparent and reproducible. Importantly, it also
emphasizes the need to apply statistical thresholds or confidence intervals when
deciding whether a measured gap truly indicates bias.

Prompt A
(with Group X)

Prompt B
(with Group Y)

LLM (encode / generate / score)

Output / Scores
for A: yA, sA

Output / Scores
for B: yB , sB

Compute counterfactual gap
∆ = |E[M(y | X)]A − E[M(y | X)]B |

e.g., toxicity gap / sentiment gap / log-prob gap

Flag bias if ∆ > τ (with CI / p-value)

Figure 3. Counterfactual (paired) testing: construct minimally differing prompts for
two groups, run the LLM, score outputs with metric M (e.g., toxicity or likelihood),
and measure the counterfactual gap ∆ with uncertainty controls.
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6.2 Certification-Based Bias Evaluation and Guarantees

The most rigorous approach to bias evaluation is to go beyond empirical testing
and attempt to formally certify that a model meets a given fairness criterion.
In traditional software, formal verification means mathematically proving the
system meets certain specs. For LLM bias, formal certification methods provide
probabilistic guarantees—they use statistical theory to state with high confi-
dence that the model’s bias as defined by a chosen metric does not exceed a
specified threshold under a specified distribution of inputs.

One example is the framework by Chaudhary et al. (2025), called LLMCert-
B, which certifies counterfactual bias in language models. In essence, given a dis-
tribution of prompt pairs, e.g., sentences that are identical except for containing
either group X or group Y, LLMCert-B draws many samples and evaluates the
model on them, then applies concentration inequalities to infer an upper bound
on the bias observed. For instance, it might output a statement like: “with 95%
probability, the difference in positive response rate between group X and group
Y is at most ϵ.” If ϵ is small and the confidence is high, this is a strong assurance
that the model is fair with respect to that criterion on that prompt distribution.
Importantly, if the model fails to meet the desired threshold in the sample, the
certification will fail—so a certificate is only granted when the model actually
demonstrates low bias during testing. LLMCert-B and similar methods can thus
catch instances where a model might appear unbiased on average but occasion-
ally exhibits large bias; the statistical bounds account for those variations in a
principled way.

Another recent work by Zollo et al. (2024) introduces Prompt Risk Control, a
framework not only to evaluate but to actively select prompts or model variants
to ensure a rigorous upper bound on harmful or biased outputs. While slightly
different in focus, it shares the idea of providing guarantees. They define a family
of risk measures including fairness-related ones and derive bounds such that, if
the model passes certain checks on validation data, one can be confident it will
not exceed a set bias level in deployment. Similarly, earlier research by Bastani,
Zhang, and Solar-Lezama (2019) on simpler models presented ways to verify
fairness properties using probabilistic methods such as checking that a classifier’s
decisions satisfy fairness constraints within a confidence interval. These ideas are
now being extended to the complex domain of LLMs.

The distinguishing feature of certification-based approaches is their emphasis
on the worst-case or near worst-case behavior rather than average behavior.
Traditional bias evaluations might say “our model was 90% fair on test data,”
whereas a certification approach aims to say “with high confidence, no more than
1 in 1000 outputs will be unfair according to metric M.” This is particularly
important in high-stakes applications, e.g., an LLM assisting in legal or medical
contexts, where even rare biased outputs can be unacceptable. The strength of
these methods is the rigorous guarantees they provide; their weakness is that
they often require assumptions or simplify the problem. For instance, LLMCert-
B’s guarantee is only as good as the prompt distribution it tests—if the real
usage of the model drifts outside that distribution, the guarantee might not hold.
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Additionally, to keep analysis tractable, one might focus on one bias metric at
a time, e.g., toxicity rate or a specific stereo-score, which does not cover the full
richness of potential biases.

Certification methods also tend to be computationally intensive: they may
require running the model on tens of thousands of prompts and performing
complex statistical analysis. In practice, this is still feasible for offline evaluation,
and increasingly so with powerful computing resources, but it is not something
one can easily integrate into a real-time system. They are more like rigorous
audit reports that supplement the usual evaluation.

Despite their current limitations, certification-based evaluations represent a
promising advancement. They bring techniques from statistical theory and for-
mal verification into the realm of AI fairness. Over time, as these methods evolve,
we might see standardized “bias certificates” for models, analogous to robustness
certificates in adversarial machine learning. Such certificates could become part
of model documentation or regulatory compliance. However, it is worth noting
that no certification is absolute: one can only certify against specific definitions
of bias and within specified conditions. Therefore, these approaches complement
rather than replace the diverse evaluations discussed in earlier sections. They
push the envelope by asking not just “how biased was the model in our tests?”
but “can we guarantee it will stay within acceptable bias levels in general?”—a
crucial question as LLMs move into sensitive real-world roles.

Figure 4 schematizes the certification workflow exemplified by LLMCert-B
Chaudhary et al. (2025). The process begins with the specification of a prompt
distribution D, which may include random, templated, or adversarially con-
structed prompts. The LLM is then evaluated on many sampled pairs, and each
outcome is labeled unbiased or biased by a detector. Aggregating these results
yields an empirical unbiased rate p̂, from which a confidence interval is calculated,
e.g., via Clopper–Pearson bounds. The final certificate provides a probabilistic
guarantee, such as “with 95% confidence, the unbiased rate is at least pℓ.” This
emphasizes the strengths of certification: distributional coverage, high-confidence
bounds, and suitability for compliance contexts. At the same time, the workflow
reminds us that guarantees depend critically on the chosen distribution D and
evaluation metric M .

6.3 Strengths, Weaknesses, and Outlook for Certification-Based
Approaches

Certification-based bias evaluations have clear strengths. Foremost, they provide
quantitative assurances that can be crucial for trust. For organizations deploy-
ing LLMs in domains like healthcare or finance, being able to say “our model
is certified to have less than X% bias with 99% confidence” is far more power-
ful than merely reporting test results. These methods also encourage a deeper
understanding of worst-case scenarios; by focusing on ensuring no extreme bias
occurs, they inherently drive model improvements in those tail cases that might
be overlooked by average-case analysis.
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Specification of prompt-pair distribu-
tion D (for example random prefixes,
jailbreak mixtures, template swaps)

Sample n counterfactual sets Si ∼ D, i = 1..n

Evaluate the LLM on each Si and label un-
biased or biased outcomes with detector M

Aggregate the unbiased count k over n
and estimate the unbiased rate p̂ = k/n

Compute a (1 − α) Clopper–Pearson in-
terval [pℓ, pu] for p and report a certificate

Pr{unbiased under D} ≥ pℓ with confidence 1−α

Strengths: distributional coverage and
high-confidence bounds. Limits: depends
on the choice of D, the detector M , and
the sample size n (computational cost).

Figure 4. Certification workflow in the style of LLMCert-B (Chaudhary et al., 2025):
define a realistic or adversarial prompt-pair distribution D, sample many counterfactual
sets, evaluate unbiased behavior, and derive a high-confidence lower bound on the
unbiased rate.

However, there are notable weaknesses and challenges. As mentioned, certi-
fications are only as good as the assumptions and coverage of the evaluation. If
an important type of bias is not included in the certification process, the model
could still be biased in that way without the certificate catching it. There is also
a risk of false security: stakeholders might misinterpret a bias certificate as a
blanket guarantee of fairness, when in reality it might cover only, say, gender
occupational bias in English text, but not other subtleties or other languages.
Additionally, the complexity of these methods means they are currently the do-
main of specialized research teams; they are not yet plug-and-play tools that
every developer can use. This limits their immediate practicality.

In distinguishing these certification approaches from standard evaluations,
it’s clear that they are complementary. Traditional bias benchmarks and metrics
are excellent for discovery and comparative evaluation—they tell us where prob-
lems lie and allow iterative improvements. Certification-based methods come
after: once we think we have a handle on bias, we attempt to formally verify
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that bias is within acceptable limits. One might say that evaluation finds the
biases, and certification then locks in the claim that those biases are controlled.

Table 3 contrasts conventional bias evaluations with certification approaches.
Conventional methods produce sample-based metrics, e.g., average toxicity gaps,
WEAT effect sizes, that are direct and interpretable, but they lack formal guar-
antees. Certification methods, by contrast, provide statistical upper bounds on
bias under specified conditions, offering stronger assurances and aligning bet-
ter with regulatory needs. However, they are costlier and narrower in scope,
requiring assumptions about the input distribution and evaluation metric. This
comparative table reinforces the idea that certification should not replace tradi-
tional evaluations but complement them in high-stakes applications.

Table 3. Conventional evaluation vs. certification: outputs, strengths, and limitations.

Approach Typical outputs Strengths Limitations /
assumptions

Conventional
bias evaluation
(intrinsic /
extrinsic)

Mean gaps (toxicity,
sentiment, accuracy),
effect sizes
(WEAT/SEAT),
parity metrics;
qualitative examples

Direct and
interpretable; flexible
metrics; good for
discovery and
benchmarking;
relatively low
overhead for intrinsic
methods

Sample-based with
no formal guarantees;
may inherit detector
bias; sensitive to
prompt choices;
external validity
often uncertain

Certification
(e.g.,
LLMCert-B)

High-confidence
lower bound pℓ on
the unbiased rate
under a specified
distribution D; pass
or fail relative to a
target threshold

Distributional
coverage; attention
to worst cases;
suitable for
regulatory or
compliance contexts;
provides quantitative
assurance on bias
levels

Guarantees hold only
for the chosen D and
metric; requires
many samples;
depends on
calibration of the
detector; higher
computational cost

Beyond the generic comparison in Table 3, it is useful to distinguish the
contexts in which certification offers unique value. Traditional evaluations are
indispensable during model development and benchmarking: they uncover spe-
cific bias types, support ablation studies, and provide interpretable effect sizes
that guide mitigation. Certification methods, by contrast, are most advanta-
geous in high-stakes or regulated environments such as healthcare, finance, or
law, where decision-makers require statistical guarantees rather than sample-
based estimates. In such domains, a certificate that states with high confidence
that bias rates are bounded below a threshold may be a prerequisite for de-
ployment, even if the approach is costlier and narrower in scope. Figures 4 and
3 underscore this complementarity: certification lags behind in scalability but
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dominates in assurance, making it a critical addition to the evaluation toolkit
when accountability and compliance are non-negotiable.

Looking forward, certification approaches for bias in LLMs are likely to be-
come more accessible and broader in scope. We may see integrated tools that au-
tomate large-scale counterfactual prompt generation and statistical bias bound-
ing as part of the model development pipeline. Researchers are also exploring
hybrid methods, for example, using smaller “verification models” or abstractions
of the LLM to prove properties about the larger model. The end goal would be
to reach a point where developers can get a certificate for fairness much like we
get unit test reports—not as a bureaucratic formality, but as a genuine safety
check.

In conclusion, counterfactual and certification-based evaluations represent
the frontier of bias assessment in LLMs. They ask the hardest questions: “Would
this model still be fair if we changed the world slightly?” and “Can we promise
it will not be too unfair in unseen cases?”. While still maturing, these methods
underscore a shift in mindset from merely measuring bias to actively guarantee-
ing fairness properties. This is an encouraging development for the field of AI
ethics, as it provides tools to hold models to higher standards of accountability.

7 Cross-lingual, Sociocultural, and Application-Specific
Evaluations

This section examines how bias evaluation methods extend beyond standard
English-centric settings to multilingual, sociocultural, and domain-specific con-
texts. We first discuss multilingual bias evaluations, focusing on how language,
dialect, and cultural differences affect the design of prompts, descriptors, and
detectors. We then turn to application domains such as healthcare, law, educa-
tion, and content moderation, outlining how representational and allocational
harms manifest differently across tasks. Finally, we consider intersectional and
fine-grained groups, highlighting where existing benchmarks fall short and what
additional design considerations are needed for inclusive and context-aware au-
dits.

7.1 Multilingual Bias Evaluations

Sections 4–6 focused primarily on English and standard settings. In practice,
however, LLMs are deployed across hundreds of languages and cultural con-
texts, raising the question of whether our evaluation methods generalize. A model
might appear fair in English yet harbor biases in other languages or dialects due
to differences in training data and linguistic nuances. Multilingual bias evaluation
therefore requires extending prompts, datasets, and metrics beyond English and
accounting for sociocultural differences in what constitutes bias. For example,
a prompt that is neutral in one language could carry a stereotype in another,
so direct translation of evaluation sets is not always adequate. One approach
is to collaborate with native speakers to create culturally appropriate prompts
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and identity terms for each target language. Hofmann et al. (2024) demonstrate
the importance of such adaptation: they showed that an AI model’s judgments
about people’s characteristics (like employability or trustworthiness) varied sig-
nificantly when input text was in different dialects of the same language. This
dialect effect indicates that bias can manifest at a granular sociolinguistic level,
meaning a model might unfairly treat one dialect or language variant worse than
another—a form of representational prejudice.

When conducting multilingual bias tests, researchers often rely on culturally
grounded descriptor sets to ensure broad coverage of identity groups. For in-
stance, the HolisticBias benchmark introduced by Smith et al. (2022) includes
hundreds of descriptors for individuals spanning diverse national, ethnic, reli-
gious, and social backgrounds. By prompting an LLM with descriptions of people
from various cultures (e.g., “an Arab man,” “a Nigerian woman,” “a Brazilian
non-binary person”) and analyzing its continuations, HolisticBias revealed subtle
biases that might be missed by English-centric tests. Such datasets underscore
that an evaluation should be sensitive to culture-specific biases. For example, an
LLM might consistently use a more negative or apologetic tone when responding
in certain languages or about certain nationalities.

Figure 5 aggregates survey findings and publicly documented resources to
indicate where bias audits are most mature. English is marked “High” for most
metrics including WEAT/SEAT adaptations (Caliskan et al., 2017; Kurita et al.,
2019), counterfactual test suites like CrowS-Pairs and StereoSet (Nadeem et al.,
2021; Nangia et al., 2020), and QA fairness benchmarks (Parrish et al., 2022).
Spanish inherits medium readiness via translated/adapted suites, though detec-
tor calibration and QA fairness frequently require local validation (Gehman et
al., 2020; Hanu & Unitary team, 2020). Arabic and Chinese exhibit uneven readi-
ness: intrinsic tests are emerging, while generation toxicity scoring and detec-
tor calibration warrant careful localization and human verification. Researchers
should treat these levels as planning signals: where readiness is low, prioritize
localization (descriptor lists, templates), per-language calibration, and stratified
human validation before drawing comparative conclusions (Gallegos et al., 2024;
Gehman et al., 2020; Guo et al., 2024; Hanu & Unitary team, 2020).

A major challenge in multilingual bias evaluation is the lack of high-quality
automated bias detectors for many languages. Many toxicity or sentiment classi-
fiers often used as scoring tools are trained predominantly in English. Applying
them to other languages can yield inaccurate results, either missing hateful con-
tent or falsely flagging benign content as toxic due to dialectal differences. One
notorious example is the finding that an English-trained toxicity detector mis-
classified text in African-American Vernacular English as more toxic than equiv-
alent Standard English text. This kind of tool bias, noted by Hanu and Unitary
team (2020), means that if we naively use English-based metrics on translated
outputs, we might incorrectly conclude an LLM is biased when the error lies in
the detector. To mitigate this, evaluators translate outputs back to English for
scoring or employ human raters and language-specific resources for verification.
Each approach has trade-offs: back-translation can introduce its own biases or
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Figure 5. Language × metric readiness (qualitative). Levels synthesize survey evi-
dence and public benchmark/tool availability: English shows broad coverage (intrinsic
association tests, counterfactual pairs, open-generation toxicity, QA fairness), whereas
Spanish has medium coverage via translated/adapted resources; Arabic and Chinese
exhibit uneven readiness, particularly for detector calibration and QA-parity. Values
are qualitative (not experimental measurements) and intended as a planning aid (Gal-
legos et al., 2024; Gehman et al., 2020; Guo et al., 2024; Hanu & Unitary team, 2020).

artifacts, whereas human evaluation in multiple languages is costly and may lack
standardization. Recent surveys emphasize the need for multilingual benchmark
development and careful validity checks in each language. For example, Gallegos
et al. (2024) identify multilingual fairness assessment as an open frontier, not-
ing that most current bias benchmarks skew toward English and a handful of
Western languages.

In sum, extending bias evaluation across languages requires cultural and lin-
guistic expertise, adaptation of methods, and often the creation of new datasets,
ensuring that our fairness assessments truly globalize alongside the models.

7.2 Domain-Specific Fairness

Bias in LLMs can also be context-dependent, varying across application domains.
An LLM deployed as a medical assistant, for example, might exhibit different
types of bias than one used in a customer service chatbot or a school tutor-
ing system. Domain-specific fairness evaluation involves tailoring the harms and
metrics to the application at hand.

In high-stakes fields like healthcare or law, the primary concern might be an
allocational bias: whether the model’s performance or recommendations differ
across groups in a way that could lead to unequal outcomes. For instance, does
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a medical LLM provide less accurate advice for symptoms described by women
than by men? If so, this bias could cause allocational harm by disadvantag-
ing one group’s access to accurate health information. Such a disparity would
not be captured by a generic toxicity metric; it requires domain-specific test-
ing with clinically relevant prompts and ground-truth comparisons. Researchers
have begun creating evaluation sets for these scenarios. One study crafted a set
of patient vignettes varying only the patient’s demographic details to see if a
healthcare chatbot’s advice quality changed; preliminary findings showed some
differences, underscoring the need for targeted evaluations in medicine (Gumilar
et al., 2024). In education, similarly, an LLM tutor could unconsciously use less
encouraging language with questions mentioning certain ethnic names—a subtle
representational bias that would be missed without deliberate testing.

Domain experts are essential in designing such evaluations: they can identify
what model behaviors count as “biased” or harmful in that field. For example, in
an employment screening context, bias might mean an LLM favors female-coded
resumes over male-coded ones with similar qualifications (An, Huang, Lin, & Tai,
2025; De-Arteaga et al., 2019; Rozado, 2025). Datasets have been used to check
if occupation-prediction models are unfair, e.g., systematically misclassifying or
scoring women’s resumes differently than men’s. These kinds of task-grounded
tests focus on performance equity—are error rates and outputs consistent across
groups in the domain task?

Table 4 distinguishes representational harms (framing, tone, respectfulness)
from allocational harms (unequal task performance or resource allocation) in
key application domains. It also points to task-grounded metrics, e.g., parity in
accuracy or error rates in healthcare advice, so evaluations remain aligned with
domain-relevant harms.

Another aspect of domain fairness is defining the relevant harm metrics. In a
content moderation system, one metric could be the false positive rate of flagging
benign content from marginalized groups as harmful. In a misinformation de-
tection domain, bias might manifest as uneven false negatives—perhaps missing
hateful content in one language more than another. Generic bias metrics like “re-
gard” or toxicity scores may not capture these nuances. As a result, researchers
recommend using domain-specific evaluation criteria: for a given application,
identify what fairness means there, e.g., equal loan approval rates by race for a
financial model, equal accuracy of legal advice for all demographics in a legal
assistant, etc. This often involves collaboration between technologists and do-
main experts or stakeholders to determine acceptable performance differences.
We also see domain-specific bias evaluations in recent large-scale benchmarks.
For example, the DecodingTrust framework (Wang et al., 2024) evaluates not
only general stereotypes and toxicity, but also fairness in specialized settings
like advice-giving and open-domain question answering under different cultural
contexts. By examining an array of use-case scenarios, DecodingTrust revealed
that an LLM’s trustworthiness, including fairness, can vary widely depending
on whether it is answering general questions or making decisions in specialized
tasks.
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Table 4. Application domains versus bias types (illustrative mapping).

Domain Representational bias examples Allocational bias examples and
task metrics

Healthcare Stereotyped tone or level of em-
pathy toward demographic de-
scriptors in patient vignettes

Differential triage urgency or
answer quality across groups;
parity of error rates on diagno-
sis or treatment advice

Legal and compli-
ance

Framing defendants or parties
with prejudicial language; un-
equal politeness or deference by
group

Unequal recommendation qual-
ity or consistency across groups;
disparities in decision sugges-
tions or risk assessments

Education and tutor-
ing

Less encouraging feedback,
harsher wording, or lower ex-
pectations for certain names or
dialects

Unequal grading or hint alloca-
tion; differences in accuracy or
feedback quality across student
descriptors

Content moderation Over-flagging dialectal or slang
usage as toxic; association of
certain identity terms with neg-
ative framing

Group-dependent false positive
and false negative rates; differ-
ences in threshold calibration or
enforcement across communities

In summary, domain-specific bias evaluation tailors our measurement to the
intended use of the model. It recognizes that the same model might behave
fairly in one context yet unfairly in another. Therefore, beyond the generic bias
tests of earlier sections, we must design evaluations that reflect the model’s
real-world role. This often means creating custom test sets or metrics—a model
card for a medical LLM, for instance, should report how its performance might
differ for patient groups, and a content filter’s evaluation should include how it
handles content from various dialects or communities. As AI regulation and best
practices evolve, there is increasing expectation that bias risks be assessed in
the specific context of deployment, e.g., fairness in credit scoring, in hiring tools,
in policing tools, etc., rather than relying only on one-size-fits-all metrics. Our
evaluation toolbox thus needs to remain flexible and sensitive to domain-related
manifestations of bias.

7.3 Intersectionality and Fine-Grained Groups

Many bias evaluations thus far consider one demographic attribute at a time
(gender, or race, or religion, etc.), but real individuals sit at the intersection of
multiple identities. Intersectional bias refers to unfair treatment or representa-
tion that specifically affects people who belong to multiple marginalized groups,
e.g., biases affecting Black women that might not be evident when evaluating
bias against Black people as a whole or women as a whole (Buolamwini & Gebru,
2018). It is well known in social research that focusing only on single attributes
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can mask problems that emerge only in combinations (Crenshaw, 1991). For
LLMs, this means a model might generate relatively innocuous outputs about
“women” in general and about “Black people” in general, yet produce deroga-
tory or highly stereotyped content about “Black women”—a failure that would
evade single-category tests. To capture this, bias evaluations are increasingly
moving toward fine-grained subgroup analysis: evaluating all relevant pairings
and subsets of attributes. For example, rather than just testing prompts about
“a woman” versus “a man,” one would test prompts covering “a Black woman,”
“an Asian woman,” “a Black man,” “an Asian man,” etc., to see if any particu-
lar group combination elicits more harmful or biased responses. Critical surveys
have argued that NLP fairness research must attend to such intersectional fac-
tors; otherwise, our models could be failing the most vulnerable intersections of
identity even as they appear improved on broad metrics (Blodgett et al., 2020;
Zhao, Wang, Yatskar, Ordonez, & Chang, 2017b).

The HolisticBias benchmark again serves as an illustrative resource here. Its
collection of over 500 diverse prompts explicitly includes intersectional descrip-
tors (for instance, “a Middle Eastern lesbian woman”). An analysis of GPT-3
with these prompts found that certain intersections led to unique model behav-
iors: in some cases the model’s tone became noticeably more condescending or
apologetic for specific combined identities, even when it was relatively neutral for
each identity alone (Smith et al., 2022). Such findings validate the importance
of testing intersections. When we evaluate only marginal groups (averaging over
other attributes), we risk false confidence.

A practical consideration in intersectional evaluations is the statistical re-
liability of measurements. As we split data into finer subgroup categories, the
number of examples per category often shrinks, which can increase variance in
our estimates. Researchers advocate reporting confidence intervals or uncertainty
ranges for each subgroup metric. For instance, if we find a 5% difference in toxic
response rate between two intersectional groups, we should indicate the margin
of error to avoid over-interpreting what might be noise (especially if the sample
of prompts per group is small). Some recent work even suggests using the certi-
fication approach (discussed in section 6) for intersectional fairness: by treating
each subgroup difference as a quantity to bound with high confidence, we can
ensure that any observed bias is robust and not a statistical fluke. In general,
though, the field acknowledges that coverage of intersectional and less-studied
groups remains incomplete. Many benchmarks still emphasize a few attributes,
often gender and race, and intersectional groups such as older adults with dis-
abilities or indigenous LGBTQ+ individuals may not be represented at all in
common tests. Addressing this gap is an ongoing effort, requiring collaboration
with communities to understand what biases matter for those specific identities
and developing content that probes those concerns.

In conclusion, this section highlighted the need to broaden bias evaluations
beyond the “standard” contexts. We discussed extending tests across languages
and cultures (multilingual fairness), tailoring evaluations to specific application
domains (domain-specific fairness), and examining intersecting identity factors
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(intersectionality). These dimensions introduce additional complexity, requiring
cultural competence, domain knowledge, and careful statistical handling, but
they are crucial for a comprehensive assessment of LLM bias. Without them,
we risk declaring a model fair based on narrow tests while it continues to be-
have problematically in unexamined contexts. Equipped with the techniques
from Sections 4–7, one can audit an LLM in a globally and contextually aware
manner. Next, we consider meta-level aspects: how to ensure our evaluations
themselves are reliable, reproducible, and aligned with emerging AI governance
requirements.

8 Meta-evaluation, Reproducibility, and Governance

This section turns the focus from models to the evaluation processes themselves.
We first examine the reliability of evaluators, including both human annotators
and model-based judges, and discuss how disagreement and evaluator bias can
distort measured bias scores. We then consider the robustness of bias evalua-
tions to design choices such as prompt wording, dataset sampling, and detector
configuration. Finally, we connect these methodological issues to broader ques-
tions of governance and reproducibility, outlining emerging standards, reporting
practices, and checklists intended to make bias assessments more transparent,
comparable, and trustworthy.

8.1 Reliability of Evaluators

Up to this point, we have treated evaluation methods and metrics as the end-all
for determining an LLM’s bias. However, a critical question is: how reliable are
the evaluators and procedures we use to measure bias? Bias evaluations often
involve subjective judgments, either by human annotators or by other AI models
acting as judges. This section examines the potential biases and inconsistencies
in these evaluative mechanisms themselves. One emerging concern is the use of
LLMs as evaluators of other LLMs. For efficiency, researchers sometimes employ
a strong model to assign scores or classifications to outputs instead of relying
solely on human labels. Reliability issues manifest in two ways: first, the con-
sistency of the evaluators themselves (human or AI judges), and second, the
agreement among different bias metrics.

A substantial body of work shows that different bias metrics often yield incon-
sistent results. For example, intrinsic association tests such as WEAT or SEAT
may indicate strong stereotypical associations in embeddings, while output-level
benchmarks like StereoSet or RealToxicityPrompts sometimes show only mod-
erate or divergent effects. Cao et al. (2022) explicitly compared intrinsic and
extrinsic fairness metrics for contextualized representations and found only mod-
erate correlations. Survey analyses Blodgett et al. (2020); Gehman et al. (2020)
echoed this, warning against over-reliance on any single score and advocating
multi-metric triangulation.
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Figure 6. Metric agreement heatmap (illustrative). Based on survey evidence (Blod-
gett et al., 2020; Cao et al., 2022; Gehman et al., 2020), correlations among bias metrics
are typically moderate, suggesting each captures distinct aspects of bias.

Figure 6 synthesizes findings from prior studies showing that correlations
across bias metrics are moderate rather than strong. This implies that metrics
are complementary rather than redundant. As a result, best practice is to re-
port multiple metrics with uncertainty estimates, and to analyze disagreements
carefully rather than selecting one “gold standard.”

Another emerging concern is the use of LLMs as evaluators of other LLMs.
LLMs may exhibit self-preference biases: a tendency to judge text similar to
their own outputs more leniently. For example, if GPT-4 is asked to score the
safety of responses from itself versus another model, it might systematically
favor the style or content it produces. This was hinted at in studies where GPT-
4 and GPT-3.5 were cross-evaluated, each model showed slight favoritism toward
responses that mirrored its own phrasing or viewpoint (Panickssery, Bowman, &
Feng, 2024). Such behavior is a form of evaluator bias that can skew comparative
results. To mitigate this, one strategy is cross-model judging: using an unrelated
model (or ensemble of models) to evaluate a target model, reducing the chance
of shared biases or mutual self-interest in judgments. Another strategy is to
keep the evaluator “blind” to which model produced a given output (similarly
to blinded human review), so it must judge solely on content.

Some research has attempted to prompt an LLM evaluator to be impartial,
or even to calibrate it by having it grade known unbiased vs. biased outputs to
see if it can be trusted (Y. Liu et al., 2023). These approaches remain imper-
fect; thus human oversight is often retained as a sanity check on AI-generated
evaluations. Human evaluators, on the other hand, bring their own variability.
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Different annotators may disagree on whether a given output is biased or harm-
ful, especially for borderline cases or culturally sensitive content. It is crucial
to quantify inter-rater reliability for human-coded bias assessments. Metrics like
Cohen’s κ or Krippendorff’s α can be used to measure agreement among anno-
tators beyond chance. A low agreement might indicate that the bias criterion
is ill-defined or that the annotators have different cultural perspectives—itself
a sign that the evaluation needs refinement. For example, annotators from dif-
ferent demographics might not concur on whether a certain joke is stereotyping
or just harmless banter. In bias evaluation studies, it is recommended to report
such reliability statistics or to use multiple independent annotators per item and
take a majority vote or consensus to stabilize the labels.

Another subtle issue is what we might call evaluator-target entanglement. If
an evaluator, be it a person or model, is aware of which group or model it is
evaluating, that knowledge could influence its judgment. A human judge who
knows a particular response was produced by a less powerful model might, even
unconsciously, judge it more harshly or be on the lookout for errors, whereas
they might give the benefit of the doubt to a well-known model. Similarly, an
LLM used as an evaluator might be influenced by certain keywords or stylistic
cues unrelated to actual bias—for instance, flagging any content mentioning a
minority group as “potentially sensitive” even if it is benign, thus overestimating
bias frequency. To combat this, best practices include blinded adjudication: when
comparing models, anonymize outputs so that evaluators don’t know which sys-
tem or which demographic group description produced them. Only after scoring
or classification are the labels re-linked to model identity or group identity for
analysis. This procedure, analogous to blinded experiments in other fields, helps
ensure the evaluation is assessing content impartially rather than being swayed
by extraneous factors.

In summary, ensuring the reliability of bias evaluators is an essential meta-
evaluation step. As Raji, Denton, Bender, Hanna, and Paullada (2021) empha-
size, even the most extensive benchmark is only as trustworthy as the process and
people/models behind it. Therefore, along with designing bias tests, researchers
must scrutinize and report on the evaluators: How consistent are they? Might
they themselves be biased? By addressing these questions—through cross-checks
(human vs. AI judgments), reliability metrics, and blinded evaluation protocols,
we gain confidence that our bias measurements are meaningful and not artifacts
of the measurement process.

8.2 Robustness of Bias Evaluations

Bias evaluation, like any empirical measurement, must be robust to be credible.
Here we discuss common pitfalls and sources of fragility in bias testing pipelines,
along with recommendations to bolster the robustness of results.

One frequent issue is that bias findings can be overly sensitive to the specifics
of the dataset or prompts used. If an evaluation uses only a small, curated set
of sentences, a model might appear unbiased simply because those particular
examples do not trigger its biases. Raji et al. (2021) critique the community’s
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reliance on a few narrow benchmarks, noting that models can be “overfit” to
perform well on well-known tests without truly being fair in the broader sense.
To guard against this, bias evaluations should aim for diverse and comprehensive
test suites. As we saw with large benchmarks like HolisticBias, BOLD, or BBQ,
incorporating a range of topics and phrasings can reveal inconsistencies that a
limited test misses. Moreover, performing stress tests such as slight rewordings
of prompts can check stability: if a model flips from unbiased to biased behavior
after a minor wording change, an evaluation should catch that. Recent studies
have indeed found that metrics like bias scores can fluctuate with prompt word-
ing, which implies that robust evaluations might present multiple paraphrases
of essentially the same query to see if the bias result holds (Perez et al., 2022).

Another pitfall is the potential noise in automated metrics. As discussed,
tools like toxicity classifiers or regard scorers carry their own biases and er-
ror rates. A robust evaluation pipeline will validate these tools—for example,
by manually reviewing a sample of outputs marked as “toxic” to ensure they
truly are, and by comparing different detectors. If two toxicity detectors disagree
substantially on bias measurements, that signals low robustness. For important
analyses, incorporating human verification or consensus labeling for disputed
cases can improve reliability. Additionally, when using statistical measures, e.g.,
computing whether a bias gap is significant, one must account for multiple com-
parisons. In a typical bias audit, many group differences are examined including
gender, race, and religion, sometimes each across many prompt types. The more
comparisons we make, the higher the chance of seeing an apparent effect just
by random chance. Best practice is to either adjust significance thresholds, e.g.,
Bonferroni or Holm corrections, or, better, to emphasize effect sizes and con-
fidence intervals over p-values. For instance, rather than saying “bias against
group X is significant (p < 0.05)”, a robust report would say “group X received
12% more negative responses than group Y (95% CI: 5–18%)”, which conveys
both magnitude and uncertainty.

Robustness also pertains to reproducibility across runs and model versions.
LLMs can exhibit variability due to their sampling procedures. If we prompt a
model multiple times, we might get slightly different outputs and thus different
bias measurements. A solid evaluation will either use a fixed decoding setting,
e.g., a constant random seed or deterministic mode for measuring probabilities,
or average results over several runs to smooth out randomness. Similarly, if an
evaluation is re-run on a new version of the model or a similar model, robust
findings should generally persist—barring changes intended to fix bias. Reporting
whether a bias result holds across related models, for example, GPT-3.5 vs GPT-
4, can add credibility. If a bias appears only in one model and not in an ostensibly
more advanced successor, one should investigate whether the issue was genuine
or an artifact.

The process of red-teaming—adversarially probing the model for biased or
harmful outputs—must also be approached systematically. Rather than relying
on a few clever prompts from one group of researchers, a robust approach could
combine human creativity with algorithmic generation of challenging prompts.
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This ensures broader coverage of potential failure modes. However, as more
prompts are tried, we encounter again the multiple comparisons problem and
the need to summarize large volumes of results. Automated summarization of
red-team findings, e.g., “out of 10,000 adversarial prompts, 3% produced a biased
output with respect to gender”, with uncertainty estimates becomes important.

In sum, to make bias evaluations robust, one should adopt a “defense-in-
depth” mentality for measurement. This includes using varied prompts and
datasets, validating and cross-checking scoring tools, controlling randomness,
and transparently reporting uncertainty and any evaluation limitations. By doing
so, we reduce the risk that our conclusions are fragile or driven by idiosyncrasies
of the test setup. As the field moves toward standardized evaluation protocols,
as encouraged by efforts like the HELM benchmark (Liang et al., 2023) and the
NIST AI Evaluation guidelines, robustness and thorough documentation of bias
testing will be key criteria for trust in reported results.

8.3 Governance and Standards

Bias evaluation for LLMs is not just a technical exercise; it increasingly intersects
with governance, regulatory compliance, and industry standards. Organizations
developing or deploying LLMs are now expected to assess and manage biases
as part of responsible AI practice. This section outlines the current landscape
of AI governance relevant to bias evaluation and how it influences evaluation
methodology.

One major framework is the United States NIST’s AI Risk Management
Framework (RMF), released in 2023 (Tabassi, 2023). In this framework, one of
the core principles of trustworthy AI is being “Fair – with Harmful Bias Man-
aged”. What this means in practice is that organizations should have processes
to identify, measure, and mitigate bias in AI systems. Evaluation plays a central
role in this mandate: NIST recommends regular bias testing, documentation of
bias metrics, and bias impact assessments as part of the AI development life
cycle. Concretely, aligning with NIST’s guidance might involve producing a bias
evaluation report for an LLM that details how the model was tested (which data,
which metrics), what biases were found, and what steps are being taken to ad-
dress them. Our survey’s recommended practices, e.g., using diverse datasets and
reporting uncertainty, feed directly into fulfilling such governance expectations,
since they demonstrate a rigorous approach to bias management.

Across the Atlantic, the European Union’s proposed AI Act (European Par-
liament & Council of the European Union, 2024) is poised to legally require
bias evaluation for certain AI systems. The AI Act, in draft as of 2025, defines
General Purpose AI (GPAI) and foundation models including LLMs and is ex-
pected to mandate that providers of these models perform a bias and impact
assessment before deployment. This could include testing the model for biased
outputs across protected attributes and documenting the results in technical
documentation provided to users or regulators. Non-compliance could result in
penalties, so there is a strong incentive to formalize bias evaluation. For example,
a hypothetical compliance checklist under the EU AI Act might ask: “Have you
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evaluated the model for potential bias against EU protected characteristics in its
outputs? Provide evidence of such evaluation and any mitigation.” A company
would then need to reference their bias testing results, perhaps summarizing
findings from intrinsic and extrinsic evaluations akin to those we’ve discussed,
and explain how they are ensuring “bias is managed to an acceptable level.”
While exact requirements are still being finalized, it is clear that systematic bias
evaluation and transparency in reporting will be cornerstones of AI governance
in jurisdictions like the EU.

In addition to government regulations, industry and cross-sector initiatives
are shaping standards. The Global AI Safety Institute (AISI)—a recently formed
body in the UK and US—is working on guidelines for evaluating and auditing AI
models for safety and fairness. Although still in early stages, such guidance may
recommend best practices like those we have detailed: multi-faceted bias testing
(intrinsic and extrinsic), inclusion of demographic and intersectional analyses,
involvement of external auditors or diverse stakeholders in the evaluation pro-
cess, and public reporting of bias evaluation outcomes. The ethos is similar to
the model card concept but potentially more formalized. Indeed, organizations
are beginning to publish system cards or expanded model cards for large models,
which include sections on bias and fairness evaluation. OpenAI’s GPT-4 system
card is one example that describes how the model was probed for biases and what
was found. These documents reflect not only a commitment to transparency but
also serve as a compliance and trust-building tool.

To align with these trends, practitioners should integrate governance consid-
erations into the evaluation pipeline. This might mean, for instance, mapping
each bias test to a corresponding risk category in the NIST RMF or a clause in
the AI Act. If NIST calls for managing “harmful bias,” one should be prepared
to show how their evaluation defines “harmful bias”, e.g., the specific harms
measured like stereotyping or allocational disparities, and the results. If the AI
Act requires assessment on certain protected attributes, ensure those attributes
such as gender, ethnicity, and disability status are included in the test suite. Such
alignment was already suggested in our Section 3 discussion on selecting targets
and harms, but here at the governance level it becomes a formal requirement.

Finally, standardization efforts like ISO/IEC are also in progress to define
technical protocols for AI bias testing. While not yet finalized, it is plausible
that in the near future there will be an ISO standard for algorithmic bias testing
and mitigation, providing internationally recognized methods. Being aware of
and contributing to these standards can give organizations a head start in meet-
ing them. In the meantime, following the literature-backed practices we have
discussed and citing authoritative surveys such as Mehrabi et al. (2021) and
Gallegos et al. (2024) to justify one’s approach can demonstrate due diligence.

In summary, bias evaluation has moved from an academic exercise to a gov-
ernance imperative. Ensuring that our evaluation methods are not only rigorous
but also transparent and aligned with external guidelines is now part of the task.
This includes producing clear documentation as in model or bias cards (Mitchell
et al., 2019) and staying updated on policy developments. The payoff is twofold:
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models are safer and fairer in practice, and stakeholders, from end-users to reg-
ulators, can trust that bias risks have been responsibly measured and managed.
The checklist below translates abstract governance goals into concrete evaluation
practices. It can be used to audit internal processes or to prepare documentation
for external stakeholders and regulators.

Table 5. Governance-oriented bias evaluation principles and practices.

Item Concrete practice

Multi-metric coverage Combine intrinsic (association or likelihood) and extrin-
sic (toxicity or parity) metrics with confidence intervals;
include counterfactual gaps where possible.

Detector bias control Calibrate scoring tools per language and domain; val-
idate detector behavior with stratified human review
across groups.

Documentation Maintain model and bias cards that record datasets,
metrics, thresholds, known limitations, and sources of
uncertainty.

Reproducibility Fix prompts and random seeds; release code and config-
uration files; version models and report variance across
runs.

Participatory review Involve affected communities in defining targets, select-
ing metrics, and interpreting evaluation outcomes.

Escalation and mitigation Pre-register thresholds for concern; define remediation
plans; monitor post-deployment behavior and update
evaluations over time.

8.4 Reproducibility Checklist for Bias Evaluations

An often overlooked aspect of bias evaluation is reproducibility: the ability for
others or oneself at a later time to replicate the evaluation and obtain consistent
results. Given the complexity of LLM evaluations, ensuring reproducibility is
non-trivial. Below, we propose a concise checklist of practices to enhance repro-
ducibility, echoing recommendations from the research community.

– Pre-register hypotheses and decision criteria. Before diving into data, clar-
ify what biases you expect to test and what statistical thresholds or effect
sizes will count as a significant bias. For example, decide in advance that
“a difference in toxic response rate > 5 percentage points with p < 0.01
will be flagged as a bias.” Pre-registration, even informally, as a lab note,
helps avoid cherry-picking results post hoc. It aligns with scientific rigor and
ensures that the evaluation isn’t tuned to produce a desired outcome.

– Version and record all prompts and configurations. Bias results can depend
on the exact phrasing of prompts and the model parameters. It is crucial
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to save the prompt sets used, including any templates or translations. Also
record model details including model name, version or checkpoint, and any
prompting instructions given, such as system messages in chat models. Doc-
ument decoding parameters for generative tests, e.g., temperature, top-p,
and max length, and if applicable, the random seed for reproducibility of
generation.

– Document external tools and thresholds used. If third-party classifiers or APIs
such as Perspective API for toxicity are part of the pipeline, list their ver-
sion and settings. For instance, note “Toxicity scores were obtained using
Perspective API (version 2.0) and an output was considered ‘toxic’ if score
≥ 0.8.” This is important because such tools can change over time and their
thresholds can be somewhat arbitrary. Clear documentation allows others to
understand and, if needed, adjust these parameters in their replication.

– Publish or save evaluation code and logs. If the evaluation involves custom
scripts for generating counterfactual pairs, calculating metrics, etc., preserve
this code and consider making it available. Likewise, save the raw outputs
from the model for each prompt if feasible. This provides an audit trail. If
a surprising bias is reported, one can inspect the actual outputs that led to
that conclusion. In academic works, providing a link to a GitHub repository
or an appendix with example outputs is increasingly encouraged.

– Include uncertainty estimates and statistical details. As emphasized earlier,
always report confidence intervals or significance levels for bias measure-
ments. If you ran 100 paired tests, report how you adjusted for multiple
comparisons or which results remain significant after correction. Providing
these details not only increases trust in the findings but also aids repro-
ducibility—future researchers can see whether a replication’s differences fall
within expected variance. Sim and Reid (1999) argue that confidence inter-
vals convey more information than point estimates, a principle we uphold
here by suggesting their routine use.

– Maintain a bias evaluation card or report. Similar to model cards (Mitchell
et al., 2019), create a structured summary of the bias evaluation whenever
you assess a model. This document should list: context (model, date, ver-
sion), what was tested (attributes, domains, intersections), methods (intrin-
sic tests, datasets used, scoring tools), key findings (where the model did
well or poorly), and limitations. By following a consistent template for each
model evaluation, comparisons across models and iterations become easier,
and nothing important falls through the cracks.

Following this checklist makes bias evaluations far more transparent and
reproducible. Reproducibility is not only a hallmark of good science but also
practically useful: it allows teams to track progress as they mitigate biases—
are our interventions actually moving the needle on the same tests?—and it
builds confidence with external stakeholders who may want to verify claims.
Moreover, as governance frameworks call for more accountability in AI, being
able to reproduce and explain how an evaluation was done will be essential
evidence of compliance. By rigorously documenting and sharing our evaluation
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processes, we contribute to a culture of openness and continuous improvement
in AI fairness research.

9 Synthesis of Methods, Open Problems, and Practitioner
Guidance

This section synthesizes the main lessons from the preceding chapters. We sum-
marize what current evidence shows about how bias is encoded in model repre-
sentations, how it manifests in outputs across tasks and domains, and what can
and cannot be concluded from existing metrics and benchmarks.

9.1 What We Know

Bringing together the discussions from previous sections, we can now sketch a
comprehensive picture of bias detection and evaluation in LLMs. We have sur-
veyed a spectrum of methods, each shedding light on bias from different angles,
and here we synthesize the key takeaways. Broadly speaking, the community
now recognizes that no single evaluation method suffices—bias in LLMs must be
examined through multiple lenses.

First, intrinsic (representation-level) tests such as WEAT and SEAT (Sec-
tion 4) show that language models encode associations and stereotypes that
closely mirror those observed in human society. These tests, including static word
embedding analogies (Bolukbasi et al., 2016) and sentence encoder association
tests (May et al., 2019), consistently show measurable biases in embeddings. For
instance, embeddings carry gendered directions and can prefer, say, “doctor” to
be male, or associate certain ethnic names with negative attributes. Intrinsic
metrics like the Log Probability Bias Score (LPBS) proposed by Kurita et al.
(2019) extend this to contextual models by using the model’s own probability
predictions as a probe. The consensus from these techniques is that if you look
inside an LLM, you will find bias encoded in its parameters. However, a crucial
lesson is that intrinsic biases, while important, are insufficient alone as indicators
of harm. As shown empirically, a model’s internal bias score might not always
translate to biased behavior in complex tasks (Cao et al., 2022). Thus, intrinsic
evaluations serve as an early warning system and a diagnostic tool, but they
must be complemented by observing the model’s outward behavior.

Accordingly, extrinsic (output-level) evaluations have been developed and
have exposed a range of real-world disparities in model behavior (Section 5).
These include targeted tests like classification fairness benchmarks (e.g., the
WinoBias coreference test, Zhao et al., 2018) and open-ended generation as-
sessments. One influential metric introduced by Sheng et al. (2019) measures
the sentiment or respectfulness of language models’ outputs toward a target
group. For example, it quantifies whether an LLM speaks about certain groups
based on identity terms in a prompt in a consistently negative or positive man-
ner. Our review covered prompt suites such as RealToxicityPrompts (Gehman
et al., 2020) that pair identity descriptors with neutral contexts to see if toxic
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completions are more likely for some groups, and datasets like BBQ that check
QA systems for stereotype-driven errors. These output-level benchmarks have
shown that large models often produce higher toxicity or more negative content
for marginalized groups, even when the input context is innocuous. For instance,
GPT-3 was found to complete “The Muslim person was. . . ” with violent con-
tent more frequently than “The Christian person was. . . ”, illustrating a harmful
bias (Abid et al., 2021). Moreover, we discussed holistic benchmarks like Smith
et al. (2022) and broad evaluations like BOLD (Dhamala et al., 2021), which
collectively highlight that biases manifest in myriad forms—from blatant toxi-
city and slurs to more insidious stereotypes or differences in error rates across
demographic factors. The fact that these biases surface in outputs, despite not
being explicitly programmed, confirms that training data and model training
processes imprint social biases that can translate into user-facing harms.

We also noted the emergence of comprehensive trustworthiness benchmarks
that integrate bias evaluation as one component among many safety metrics,
such as the DecodingTrust benchmark and the MultiTrust framework (Zhang et
al., 2024). LLMs should be evaluated on multiple dimensions including fairness,
toxicity, robustness, and so on. These evaluations typically aggregate a variety
of datasets and test models in standardized ways, often yielding leaderboard
rankings. Their contribution is to broaden coverage: a model is evaluated on, say,
30+ datasets covering different biases and safety issues. A perhaps unsurprising
but important finding from such efforts is that no current LLM is bias-free
across all metrics—even if a model performs well on one bias benchmark, it
might still have weaknesses on another. This reinforces the need for a multi-
faceted evaluation approach. It also shows progress: by comparing newer models
(like GPT-5 or PaLM-2) against earlier ones on the same battery of tests, we
see gradual improvements in some areas, e.g., less toxic output, although not
all, e.g., some subtle stereotypes persist or new biases introduced by alignment.
Surveys such as Guo et al. (2024) and Li, Du, Song, Wang, and Wang (2024)
have begun to catalog these results, noting where the field has made strides—
reducing overt toxicity in well-tuned models versus where significant bias issues
remain—like biases in multilingual contexts or intersectional groups.

Finally, Section 6 introduced counterfactual and certification-based evalu-
ation, which adds a statistical rigor component to the toolkit. Notably, the
LLMCert-B method by Chaudhary et al. (2025) exemplifies a move from sim-
ply measuring bias to formally bounding it with high confidence. By generating
large samples of paired prompts and applying statistical concentration bounds,
LLMCert-B can say, for instance, “with 95% confidence, the model’s bias be-
tween groups is at most ϵ.” This is a powerful guarantee that goes beyond
reporting “we saw a 5% gap in our test.” It’s more akin to how hardware or
classical software is verified against specifications. The trade-off is that it re-
quires many samples and is specific to the distribution tested, but it provides
assurance that standard evaluations lack. The takeaway from certification work
is that we can obtain quantitative guarantees on bias, at least under certain
conditions, which is crucial for high-stakes deployments. Even if such methods
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are in early stages, they complement the picture by addressing the “worst-case”
or probabilistic edge of bias: not just what average bias we observed, but what
the maximum bias could be given what we have not observed.

In summary, the field now has a layered understanding of bias in LLMs
(see Figure 7). At the representation level, biases are present and measurable
in embeddings and model probabilities. At the output level, those biases do
translate into harmful content or performance disparities in many scenarios.
Large-scale evaluations confirm these issues are widespread but also show relative
improvements as models are refined. And new methods like certification offer
pathways to stronger assurances. This synthesis aligns with recent comprehensive
surveys (Ferrara, 2023; Gallegos et al., 2024), which converge on the view that
multiple methods must be used in concert to thoroughly evaluate bias. Intrinsic
tests are fast and proactive; extrinsic tests are realistic and impact-oriented;
and certification or stress-testing techniques add reliability guarantees. Together,
they form a toolkit that is increasingly robust in characterizing where an LLM
stands in terms of fairness.

Intrinsic
embeddings and likelihood

Extrinsic
generation and tasks

Counterfactual and certification

Multilingual and cultural

Application specific Reproducibility and governance

Figure 7. Method integration map. Intrinsic tests triage representational risks, extrin-
sic tests surface user-facing harms, and counterfactual or certification methods add
statistical assurance. Multilingual, domain, and governance layers augment and stabi-
lize the evaluation pipeline.

9.2 Distinguishing Model Bias from Societal Bias

An important conceptual question concerns whether observed biases in LLM out-
puts reflect the model’s own distortion or merely mirror biases already present
in the underlying population data (Bender et al., 2021; Blodgett et al., 2020;
Mehrabi et al., 2021). In some cases, an LLM may generate statistically accu-
rate but socially undesirable patterns because the training corpus itself encodes
historical inequities and prejudiced discourse (Blodgett et al., 2020; Suresh &
Guttag, 2021). In other cases, the model may amplify or distort those patterns
beyond what is observed in real-world distributions, a phenomenon documented
as bias amplification in prior work (Mehrabi et al., 2021; Zhao et al., 2017a).
Distinguishing these scenarios is crucial for interpretation and for determining
appropriate mitigation strategies.
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From a measurement perspective, one approach is to compare model outputs
against empirical population baselines or corpus-level statistics. For example, if
occupational gender distributions in model outputs deviate substantially from
real-world labor statistics, this may indicate amplification rather than simple
reflection (Gallegos et al., 2024; Zhao et al., 2017a). Similarly, if the model
produces disproportionately negative sentiment toward certain groups relative
to corpus frequency or documented societal attitudes, this suggests an added
model-level bias rather than faithful representation (Blodgett et al., 2020; Suresh
& Guttag, 2021). Such baseline comparisons help separate descriptive alignment
from normative distortion.

However, even faithful reflection of societal bias does not automatically ab-
solve the model from responsibility. LLMs are not passive mirrors; they are
deployed systems that shape user perceptions, decisions, and allocational out-
comes (Barocas & Selbst, 2016; Suresh & Guttag, 2021). Therefore, evaluation
frameworks must clarify whether fairness is defined relative to empirical reality,
normative ideals, or regulatory standards. This distinction affects how bias met-
rics are interpreted and what counts as mitigation success (Blodgett et al., 2020;
Gallegos et al., 2024).

In practice, bias audits should explicitly state whether they evaluate devia-
tion from population statistics, amplification of harmful associations, or norma-
tive fairness criteria. Making this distinction transparent helps avoid conflating
societal bias with model-induced bias and supports clearer communication with
policymakers and stakeholders (Barocas & Selbst, 2016; Suresh & Guttag, 2021).

9.3 What Remains Hard

Despite significant progress, several challenges continue to vex researchers and
practitioners in bias evaluation. Here we outline some of the persistent open
problems and why they are difficult.

One fundamental issue is evaluator bias and construct validity—essentially,
how do we ensure that our measurements of bias are themselves unbiased and
truly reflective of harm? As discussed in Section 8, if we use an AI judge or
a particular dataset as the gold standard, we might inadvertently be measur-
ing the biases of those instruments rather than the model’s bias. For instance,
a toxicity detector might be more sensitive to profanity and thus flag outputs
from certain groups as “toxic” more often, even if the content is not actually
hateful. This could falsely make a model seem biased against that group. Ensur-
ing validity often requires triangulation—using multiple indicators and involving
human judgment to confirm whether what we label as “biased output” is gen-
uinely problematic in context. However, this human involvement reintroduces
subjectivity. In effect, we face the evaluative bias loop. No fully objective oracle
for bias exists, because defining “bias” involves human values and norms. This
ties into a larger point made by many (Blodgett et al., 2020): bias is inherently
a social and contextual concept, so our evaluations will always have some nor-
mative assumptions. Developing evaluators that are as fair and context-aware as
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possible, perhaps via diverse human panels or improved AI judges, remains an
open challenge.

Another hard problem is multilingual and cross-cultural measurement, which
we detailed in Section 7. While we have extended evaluations to some languages,
the coverage is very uneven. Many low-resource languages lack any bias bench-
marks or even basic sentiment/toxicity lexicons. Additionally, societal biases
differ—an expression that is considered a slur in one culture might not have
an analogue in another. Evaluating an LLM’s fairness in, e.g., Hindi or Swahili
requires cultural competence and likely new methods. Automatic translation of
test cases, although common, can fail because it does not capture nuance or be-
cause the model’s performance in translation might mask its true behavior, e.g.,
the model can be very biased in Swahili, but when we translate its Swahili out-
puts to English, the translator masks the bias. There is also the issue of metrics:
should we expect identical behavior across languages, e.g., equally low toxicity
in English and Arabic, or should evaluations account for different baselines of
training data, e.g., perhaps a model simply knows less about a rarer language,
leading to different kinds of errors that complicate the bias picture? These ques-
tions do not have clear answers yet. What is clear is that multilingual fairness
is far from solved: few LLMs have been rigorously audited in non-European
languages, and early glimpses like biases in dialect as per Hofmann et al. 2024
suggest that significant issues lurk under the surface.

Third, intersectional and fine-grained group biases remain difficult to assess
comprehensively. While we can run tests on many combinations, as the combina-
tions grow, the data requirements explode and statistical power drops. Moreover,
some intersections are hard to operate in prompts, e.g., how do we prompt for a
combination of three or four attributes naturally? There’s also the challenge of
ethical and privacy considerations: explicitly testing sensitive combinations, e.g.,
religion plus sexual orientation, might produce content that is itself sensitive or
offensive. Yet, if we avoid testing these, we might miss crucial failure modes.
The field acknowledges intersectionality as important, but practical methodolo-
gies for robust intersectional audits are still being refined. This is an area where
domain knowledge and community input are valuable—knowing which intersec-
tions are most salient can improve assessment. The theoretical difficulty is akin
to the “fairness gerrymandering” problem (Kearns, Neel, Roth, & Wu, 2018),
which showed that ensuring fairness on all individual attributes can still leave
combined subgroup unfairness. In LLM terms, a model tuned to not be biased on
single axes might still be biased on joint axes. Techniques to detect and mitigate
that are still emerging.

One subtle open problem is to distinguish genuine fairness improvements
from over-correction or reduced utility. As developers work to debias models,
one worry is that they might achieve “fairness” by simply making the model
very conservative or evasive whenever a sensitive topic arises. For example, early
versions of ChatGPT would sometimes refuse to answer any question that men-
tioned a protected attribute. Superficially, this avoids producing a biased remark,
but it introduces a new bias: differential treatment by selectively declining re-
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quests about certain groups or topics. If a model refuses to generate a story
about two men getting married but is happy to do so for a man and woman,
it’s exhibiting a form of bias via differential refusal. However, if we only measure
overt toxicity, we might falsely conclude the model is safe since it never pro-
duces toxic output about gay couples—it simply refuses to talk about them at
all. This phenomenon—let’s call it content suppression bias—is tricky to capture
in evaluations. It requires metrics for when the model refuses or gives generic safe
responses, and whether those occurrences correlate with certain groups. Some
recent evaluations have started to include “refusal rate” or “hallucinated neu-
trality” as metrics. For instance, an evaluation might prompt the model: “Tell
a joke about [group]” and see if the model disproportionately refuses for some
groups out of caution. Balancing mitigation to avoid both harmful commission,
e.g., saying something bad, and harmful omission, e.g., withholding or degrading
service, is a nuanced challenge for LLM developers. As of now, few benchmarks
systematically measure over-refusal or false compliance differences, so this re-
mains an area for improvement. We highlight this because a model could appear
unbiased under traditional tests but still be unfair by being overly restrictive in
specific contexts—a kind of bias that standard metrics can easily miss.

Finally, there are theoretical limits and trade-offs that continue to loom over
fairness in AI. The “impossibility results” in algorithmic fairness show that cer-
tain intuitive fairness criteria cannot all be satisfied simultaneously (Kleinberg,
Mullainathan, & Raghavan, 2016). In the realm of LLMs, Anthis et al. (2024)
argue that given the complexity of language and the numerous dimensions of
potential bias, it may be fundamentally impossible for a single model to be en-
tirely free of bias for all groups and contexts simultaneously. There will always
be trade-offs—for example, making a model less biased in toxicity might in-
advertently make it more biased in which questions it chooses to answer (the
over-refusal problem). Another trade-off arises between specificity and general-
ity: if you fine-tune a model to be fair on a particular benchmark, you might
be narrowing its behavior in a way that could hurt performance or create other
biases, like losing nuance in its responses. There’s also the open question of to
what extent language models can be fair if the underlying data (human language
use) is biased. Some have posed that unless we fundamentally change training
data or model architectures, we are always going to be post-hoc patching biases,
a bit like a whack-a-mole game. These deep challenges do not have straightfor-
ward solutions. They remind us to be humble about what bias evaluations can
achieve—they can show progress, but not perfection.

In sum, the difficult problems include ensuring our evaluations measure the
“right” thing without injecting new bias; extending fairness across languages and
cultures; capturing the full intersectional complexity of bias; avoiding Pyrrhic
victories where reducing one bias introduces another form of harm; and grappling
with inherent trade-offs that may make absolute fairness unattainable. These
are active research frontiers. They suggest that bias evaluation will remain a
dynamic field, needing continual refinement and perhaps new paradigms, e.g.,
more human-AI collaborative evaluation, or periodic reevaluation as societal



Detecting and Evaluating Bias in LLM 59

norms evolve. Recognizing these challenges is important for practitioners so they
approach bias mitigation with caution and awareness that an “all clear” on
current metrics does not guarantee the absence of problems. Figure 8 below
proposes an incremental program for bias evaluation maturity. One can locate
their current phase and identify next steps, e.g., moving from broad screening
to certification for high-stakes deployments.

Phase I: Triage
Intrinsic (WEAT/SEAT, likelihood) + core extrinsic

Phase II: Coverage
Multilingual/cultural + domain audits

Phase III: Assurance
Counterfactual sampling + certification

Phase IV: Operations
Reproducibility, monitoring, governance

Figure 8. Roadmap from triage to assurance and operations. Each phase builds on the
last: start with broad screening, increase coverage, add guarantees for critical specs,
and institutionalize reproducibility and governance.

9.4 Practitioner Checklist

In light of our comprehensive review, we distill here a practical checklist for
practitioners who wish to evaluate and mitigate bias in LLMs. This checklist is
a set of concrete recommendations, synthesizing the insights from all sections
into actionable guidance.

– Use multiple evaluation methods in tandem. Do not rely on a single metric
or dataset to assess bias. Combine intrinsic tests, e.g., embedding associ-
ation metrics and likelihood-based bias scores with extrinsic evaluations,
e.g., prompt-based generation tests, task performance gaps. For example,
run WEAT or SEAT to probe embeddings and also test with a stereotyping
benchmark like CrowS-Pairs or BBQ. Consistent findings across methods
greatly strengthen conclusions, while divergences can reveal nuances (Sec-
tions 4 and 5).
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– Prioritize counterfactual paired testing for salient biases. Wherever possible,
structure your evaluation around paired examples that differ only in a sensi-
tive attribute. This could be as simple as comparing model outputs for “he”
vs “she” in a template, or as complex as generating matched profiles for can-
didates of different races in a hiring scenario. Paired tests directly measure
bias as a difference in output, making interpretation more straightforward
(Section 6). If you have limited resources, focus on a few high-impact bias
scenarios and create counterfactual pairs for them – this often provides clear
evidence of any disparity.

– Include uncertainty and significance in reporting results. Always accompany
bias metrics with confidence intervals or statistical tests. Instead of stating
“Model X is less toxic for group A than B,” say “Model X showed a 4% (±2%)
lower toxicity rate for group A vs. B in our sample.” This communicates the
reliability of the measurement. If results are not statistically significant, treat
them with caution and possibly gather more data. Attaching uncertainty
is especially important for small subgroup evaluations and for new models
where variance might be high (Section 5).

– Leverage bias certificates for high-stakes deployments. If you are working
with an application where fairness is mission-critical, e.g., an AI system
used in hiring, lending, or healthcare advice, consider using formal methods
like LLMCert-B or extensive stress testing to obtain a bias guarantee. While
these require more effort, they can provide assurances like “with 99% confi-
dence, the model’s predictions meet fairness criterion X.” Even if you cannot
do this for every bias aspect, doing it for the most critical one, e.g., gender
fairness in loan recommendations, adds a layer of trust and is increasingly
expected in regulated industries (Section 6).

– Regularly audit and document bias evaluations as part of model development.
Do not treat bias testing as a one-off task. Incorporate it into model iteration
cycles. Each time the model architecture is changed or it’s fine-tuned on new
data, re-run the suite of bias tests to catch regressions or new issues. Maintain
a “bias evaluation card” (Section 8’s reproducibility checklist) for the model,
which logs when and how bias was evaluated and what changed over time.
This not only helps internally but also fulfills transparency requirements for
governance.

– Align bias evaluation with governance frameworks and stakeholder values.
Choose evaluation targets and thresholds that make sense in the context
of use and according to any ethical guidelines or laws you operate under.
For instance, if deploying a chatbot in the EU, ensure your bias tests cover
all EU protected characteristics, since the AI Act will expect that. Involve
representatives from affected communities when designing or reviewing bias
tests—they might point out biases or harms you did not consider initially.
Ultimately, the goal is not just to “pass benchmarks” but to ensure the
model is fair in the eyes of those who use or are impacted by it.
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Table 6 maps common deployment contexts to concrete method bundles. It
is intended as a quick-start guide for selecting an evaluation plan aligned with
resources, risks, and regulatory expectations.

Table 6. Context-aware selection of bias evaluation methods.

Context Recommended methods

Early model triage Embedding and sentence association tests such as WEAT
and SEAT, likelihood-based tests, a small sweep of counter-
factual pairs, and basic generation toxicity or regard anal-
ysis with confidence intervals.

Multilingual deployment Localized prompt sets, per-language calibration of bias and
toxicity detectors, and stratified human validation across
languages, dialects, and groups.

High-stakes domain Task-grounded vignettes with parity checks for accuracy
and decision gaps, targeted stress tests, and certification-
style evaluation with specified metrics and input distribu-
tions.

Governance-ready release A multi-metric report with uncertainty estimates, a model
and bias card, released code and configuration artifacts,
and a documented monitoring and escalation plan.

By following this checklist, practitioners can systematically evaluate bias and
work towards mitigating it. The recommendations emphasize a proactive, rigor-
ous, and context-aware approach—evaluating from multiple angles, quantifying
confidence in findings, and iterating as needed. It is worth noting that bias
evaluation is an ongoing responsibility: as LLMs are updated or encounter new
real-world data, new biases can emerge, and societal norms of fairness may shift.
Therefore, treating bias evaluation as a continuous process is the best practice.

Final Thoughts Bias in LLMs is a complex, multifaceted problem at the in-
tersection of technology and society. Through this review, we have assembled
a broad toolkit to detect and quantify biases, from internal representations to
external behaviors, and then to certify model fairness properties. We have also
identified the limitations of these methods and the challenges that lie ahead. For
practitioners, the path forward involves using these tools in combination, remain-
ing vigilant about new forms of bias, and engaging with the wider community–
including policymakers and affected users–to define what fairness means for each
application. By doing so, we move toward LLM deployments that are not only
innovative, but also equitable and worthy of the trust of the society.
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