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Abstract. The imposition of lockdowns in response to the COVID-19
outbreak has underscored the importance of human behavior in mitigat-
ing virus transmission. The scientific study of interventions designed to
change behavior (e.g., to promote physical distancing) requires measures
of effectiveness that are fast, that can be assessed through experiments,
and that can be investigated without actual virus transmission. This
paper presents a methodological approach designed to deliver such in-
dicators. We show how behavioral data, obtainable through wearable
assessment devices or camera footage, can be used to assess the effect
of interventions in experimental research; in addition, the approach can
be extended to longitudinal data involving contact tracing apps. Our
methodology operates by constructing a contact network: a representa-
tion that encodes which individuals have been in physical proximity long
enough to transmit the virus. Because behavioral interventions alter the
contact network, a comparison of contact networks before and after the
intervention can provide information on the effectiveness of the interven-
tion. We coin indicators based on this idea Behavioral Contact Network
(BECON) indicators. We examine the performance of three indicators:
the Density BECON, the Spectral BECON, and the average shortest
path length (ASPL) BECON. First, the Density BECON is based on
differences in network density, i.e., differences in the portion of realized
edges (connections) relative to all potential edges. Second, the Spectral
BECON is based on differences in the eigenspectrum of the adjacency
matrix, which capture the spreading potential of the virus. Third, the
ASPL BECON is based on differences in the mean of all the shortest dis-
tances (i.e., number of edges) between each pair of nodes in the network,
and captures the average distance between nodes. Using simulations, we
show that all three indicators can effectively track the effect of behav-
ioral interventions. Even in conditions with significant amounts of noise,
BECON indicators can reliably identify and order effect sizes of inter-
ventions. The present paper invites further study of the method as well
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as practical implementations to test the validity of BECON indicators
in real data.
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spread - Interventions

1 Introduction

The COVID-19 outbreak has underscored the importance of human behavior
in controlling virus transmission. As long as vaccines are not operational, the
only way to influence transmission rates is through behavioral interventions that
either prohibit specific kinds of behavior (e.g., attending school, visiting relatives,
leaving the house) or promote others (e.g., physical distancing, wearing masks,
complying with regulations). As such, behavior is fundamental to important
parameters in epidemiological models, such as the reproduction number (the
number of people a randomly chosen disease carrier is expected to infect): even
though virus transmission depends on biological characteristics of the virus and
the human system, its speed reflects an interaction between biology and behavior
(Delamater, Street, Leslie, Yang, & Jacobsenl [2019; [Heesterbeek et al., 2015)).
Indeed, one way of understanding the reasoning behind lockdowns is that they
try to drive down the reproduction number by changing behavioral patterns (de
Vlas & Coffeng, 2021} [Jeffrey et al.l|2020). The goal of this paper is to contribute
to our understanding of these behavioral patterns, by developing methodological
tools that can be used to study them.

To successfully monitor and control our responses to a virus outbreak like
COVID-19, we need to obtain insight into the relative effectiveness of different
behavioral interventions. Relevant behavioral interventions can either be imple-
mented at a microlevel (e.g., setting up nudges in a store to promote physical
distancing, changing the floor plan of a restaurant), or a macrolevel (e.g., imple-
menting public policy measures that promote working from home, closing public
buildings). Currently, however, methodology for estimating effects of such inter-
ventions at the behavioral level is limited to highly indirect assessments based
on measures of virus spread. For example, comprehensive assessments of inter-
ventions at the macrolevel (Chu et al.l [2020) have been estimated based on the
relation between country-level interventions (e.g., school closings, lockdowns)
and corresponding population statistics (e.g., hospital admissions, IC uptakes,
death rates; see for example [Flaxman et al, [2020); or they have been treated
as model parameters to assess the time-course of the epidemic under different
scenarios — the well-known study by [Ferguson et al.| (2020)), which has played an
important role in COVID-19-related policy, is a case in point.

There are at least three methodological reasons why indicators such as hos-
pital admissions are of limited use in assessing effects of behavioral interventions
designed to counter virus spread. The first problem is that they are lagged in-
dicators. Evaluating the effect of interventions with hospital admissions as a
dependent variable suffers from the time course of virus transmission, incuba-
tion, and disease progression, before one can assess where the intervention has
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been effective (this delay was two to three weeks for COVID-19). The second
problem concerns experimental inaccessibility. If one studies an intervention that
is strongly suspected to be effective, it is unethical to install a control group for
comparison and to wait for participants to become ill. The next best alternative
— a quasi-experimental research setup — suffers from considerable levels of con-
founding, and because interventions are almost always implemented in packages
it is hard to disentangle their effects. Third, current indicators require an active
virus. Thus, in a period in which there is no virus active, it is impossible to
study the effects of behavioral interventions. This is strategically impractical as
it would be ideal to study behavioral interventions while the virus is inactive
in order to prepare for a possible future outbreak. Moreover, the COVID-19
pandemic is unlikely to be the last global pandemic and research in effective
interventions will remain important, even after the current crisis has ended.

The scientific study of behavioral interventions thus requires indicators that
are fast, that can be assessed through experiments, and that can be investigated
without actual transmission of the virus. In the present paper, we develop a
methodological approach designed to deliver such indicators. In a nutshell, we
make use of the fact that behavioral data, obtainable through wearable devices,
camera data, or tracing apps can be used to assess contact networks (Cencetti
et al., [2020). This can either be done at the microlevel (e.g., assessing con-
tact patterns at a public gathering) or at the macrolevel (e.g., reconstructing
contact networks at the level of a city on the basis of tracing apps). We coin
indicators based on such networks Behavioral Contact Network (BECON) in-
dicators. Because BECON indicators are available in real time, they respond
to induced changes in contact networks virtually instantaneously; and because
they do not require actual transmission of the virus, they can be used to as-
sess effectiveness in healthy subjects, which in turn means they can be studied
in experiments. As such, BECON indicators are suited to make the connection
between epidemiology and behavior, and thereby allow behavioral scientists to
leverage their knowledge and skills in developing optimal interventions to control
the pandemic.

The structure of this paper is as follows. First, we will outline the theoretical
basis of our approach. Second, we discuss the methodological strategy behind
BECON indicators in more detail. Third, we present a simulation study that
serves as a proof of concept. Finally, we discuss future extensions of our work.

2 Behavioral interventions and the contact network

To understand the relation between behavior and epidemiology, it is important
to introduce an essential mediator in this relation: the contact network. A con-
tact network encodes which people have been sufficiently close to each other to
transmit the virus (Newman| 2018} [Pastor-Satorras, Castellano, Van Mieghem,
& Vespignani, [2015)). In contact networks, individuals (or groups of individuals)
are represented as nodes, similar to the representation used in well-known social
networks. Two nodes are connected by a link if the corresponding individuals
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have been in sufficiently close prolonged contact for virus transmission to occur,
and disconnected otherwise. Exactly what “sufficiently close” means depends
on the virus in question. For Ebola, which is only transmissible through bodily
fluids (Drazen et al.| |2014), a link in the contact network would mean that the
corresponding individuals were in direct physical contact. For SARS-CoV-2, a
link could be present when two individuals have been within a distance of 1 or 2
meters of each other for some time, given its airborne transmission (CDC]| [2020).

Virus spread on a contact network can be conceptualized as a process in which
nodes infect each other via the links in the contact network (Pastor-Satorras et
al.l |2015)). Usually, a closed population is divided into epidemiological “compart-
ments”: each individual of the population can be only in one compartment at a
time and the compartments describe stages of the disease. Typical examples of
compartments include S (susceptible), E (exposed), I (infectious), R (removed,
i.e., either cured or deceased) (Keeling & Rohani, [2011)). Mathematically, virus
spread is a probabilistic process that operates on the contact network topology
(Grimmett} |2018; Van Mieghem) 2014) and that specifies infection and curing
events, i.e., how long a person is infectious and when the person is cured or
deceased. The time distribution of these events, and the local rules at the host
(i.e., what happens if a person is in state S, E, I, or R), depend on specifics
of the virus in question; for instance, for COVID-19, the consensus during the
SARS-Cov-2 variants operative in 2020 held that people were infectious for an
average of about 6-7 days (Backer, Klinkenberg, & Wallingal [2020]).

Once the structure of the contact network and the compartment model is
specified, the probability or average fraction of individuals in each compartment
can be computed per unit time (Sahneh, Scoglio, & Van Mieghem) 2013). If
the contact graph does not change too much over time, other global properties
of the virus spread can be determined. An important property is the epidemic
threshold, which is related to the basic reproduction number R (Pastor-Satorras
et al 2015), and describes the conditions under which outbreaks can occur. If
the contact network changes over time, then we enter a complicated situation
in which computer simulations are necessary to study virus spread. Another
approach is to map the contact graph into a certain class, similar as the classes
of Erdés—Rényi or Barabasi-Albert random graphs, and properties of such a
contact graph class can be deduced, in principle, analogously (Newmanl 2018).
Thus, we assume that the time-dependent network has similar properties as the
properties of the class and thus abstract the temporal changes in time. Finally,
novel approaches based on the analysis of time series data can be used to include
the dynamic changes of the network in the analysis (Dekker et al.,2021)). In the
current paper, we focus on the simplest case, namely one in which the contact
network is stable over time so that it can be characterized by a single network
structure.

Behavior, contact networks, and compartmental epidemiological models are
strongly related: behavior controls the structure of the contact network, the
contact network directs the spread of the virus, and the spread of the virus
determines population statistics of the epidemiological compartments. Figure
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Figure 1. Different levels of analysis that are used in the scientific study of infec-
tious diseases like COVID-19. At the microlevel, human behavior determines physical
distances between individuals that are crucial to virus transmission. The resulting pat-
tern of physical distances can be aggregated into a contact network at the mesolevel,
in which nodes represent individuals and edges represent physical contacts that make
virus transmission possible. These transmission processes determine how many people
get infected and at what rate; at the macrolevel, mathematical models based on differ-
ential equations are used to model these quantities.

represents this hierarchy of levels visually. This has ramifications for how we
should think about behavioral interventions: interventions (e.g., instructing peo-
ple to practice physical distancing) lead to behavior change (e.g., people will
keep more distance), which causes contact networks to change (e.g., the number
of links in the network may decrease). These changes cascade into population
level statistics (e.g., the value of R will go down) that eventually determine
policy success (e.g., number of hospital intakes will stay within limits defined in
policy considerations). In accordance, a central idea underlying our framework is
that, in order to connect interventions to epidemiological models, they should be
represented as operations that transform the contact network (Pastor-Satorras
et al., |2015)); the present paper applies this idea to behavioral interventions.
This analysis opens up an important methodological possibility: if behavioral
interventions operate through changes in the contact network, then measures of
that contact network could in principle be used to assess the effect of such
interventions. Such an approach would address each of the problems highlighted
in the introduction. First, assessment of the contact network can be executed
instantaneously, addressing the lagging indicator problem. Second, because the
contact network depends only on whether individuals are sufficiently close to each
other, and not on whether they actually infect each other, we can potentially pick
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up changes in the contact network in the absence of actual virus transmission (of
course, applications of insights gained would still require knowledge of how active
transmission works). Third, as a consequence of these two properties, assessments
of the contact network can be implemented in experimental designs without
raising ethical concerns of exposing individuals to virus spread. As a result, the
study of interventions would no longer be limited to assessments of policy effects
at the societal level (Chu et al., 2020; [Flaxman et al., 2020) but could also
be used to study manipulations at a much smaller microlevels (e.g., in specific
locations like public buildings, restaurants, or concerts). Implementation at the
microlevel in turn facilitates the type of controlled experimental research that
characterizes psychology (e.g., the implementation of interventions in factorial
designs). In the next paragraph, we show how contact networks may be assessed
to construct indicators that allow for such approaches.

3 BECON indicator methodology: Strategy and rationale

The idea behind BECON indicators is to assess (functions of) the contact net-
work on the basis of behavioral observations. In the current paper, we will focus
on assessments of the contact network using wearables or contact tracing apps
that are designed to register whether a person has been within a certain distance
(e.g., 1.5 meters) of another person. This methodology has the advantage that
it measures a proxy to actual behavior (rather than, e.g., relying on self-reports)
and that it does not require a controlled environment, so that it can in principle
be used in daily life, enhancing ecological validity.

A schematic of the proposed methodology is represented visually in Figure
The interactions between people in the baseline situation (i.e., the situation
without the behavioral intervention of interest being implemented) give rise to
the true baseline contact network (left bottom).

The true contact network is most likely not directly observable. First, as
noted, the presence of a link depends on a theory of virus transmission, which
is approximate. For example, in the case of COVID-19, the presence of aerosol
transmission or infection via surfaces can create links between people who are at
a greater distance than 1.5 meters, or between people who were present at the
same place at distinct time points (e.g., because the aerosols remain present in
bathrooms after the infectious person has left). Second, if the network integrates
contacts over time (e.g., by taking the union of all contact networks at each
time point, which registers during a certain time interval who has ever been in
contact with who, but not when), the representation will contain false positive
connections; for instance, when A and B were in contact, and subsequently B and
C were in contact, then the patterns of links suggests that both A — B — C and
C — B — A are possible infection routes, while only the former route is possible
(see also Dekker et al.| (2021)). Third, various kinds of measurement errors can
yield false positives and false negatives. In a situation in which tracking devices
are used, examples of mechanisms that can lead to measurement errors may
include hardware failures, signal failures, and failures in data processing.
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Figure 2. Schematic plan of the proposed methodology. Prior to intervention, the con-
tact network (lower left panel) generates app data that are used to partially reconstruct
the network structure (left top panel). Under the intervention, the density of the con-
tact network decreases (lower right panel). This network is also reconstructed on the
basis of app data (upper panel). The difference between the reconstructed networks is
used to construct a BECON indicator to assess the effect of the intervention.

Thus, the true baseline contact network is generally not observable and diffi-
cult to assess adequately. In the present paper we therefore represent this network
as a latent structure. To assess this latent structure, we can use observations,
as for instance obtained through smartphone apps, video footage analysis, or
wearable sensors. For instance, a simple starting point may be to have a group
of people use wearable devices that track their location. Measured location data
may then be used to decide whether two people have been in contact. Thus,
the structure of the data required to construct a contact network is of the form
[AB,BC,...,YZ] which encodes that persons A and B, B and C, ..., and Y’
and Z have been within 1.5 meters of each other for the amount of time specified
in the definition of a contact. This is called an edge list in network science, which
can be transformed into an adjacency matrix. From this matrix, many impor-
tant metrics in network analysis can be computed (Newman) |[2018). We denote
the network encoded in the empirically derived adjacency matrix the observed
baseline contact network (top left in Figure [2)).

Next, we implement a behavioral intervention. For example, we might in-
struct people to keep their distance, put up signposts, install an alarm on their
phones that sounds when they get too close, or use a variety of nudges that
promote physical distancing. If effective, the intervention changes people’s be-
havior, and as such induces changes in the contact network. We denote the
resulting network as the true experimental contact network. Like the baseline
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contact network, the true experimental contact network is not directly observ-
able, but can be assessed indirectly through location measurements. Such data
may again be obtained by letting people use wearables in the experimental situ-
ation, after which the results can be used to arrive at an observed experimental
contact network.

Recall that a behavioral intervention effect is, in essence, a transformation of
the contact network. Hence, if we could directly assess the baseline and exper-
imental contact networks, we could precisely determine the effect of the inter-
vention and, given a dynamical regime, we could also assess the degree to which
the intervention should be expected to mitigate virus spread. Unfortunately,
however, we cannot directly compare the baseline and experimental networks,
as these are only indirectly observable. However, we can directly compare the
observed networks created through measurements. For example, one could com-
pute the number of links in the observed experimental contact network, and
compare that quantity to the number of links in the observed baseline network.
This way, one could assess whether, on average, people keep more distance in
the experimental condition. From a bird’s eye perspective, observational studies
have shown a substantial decline in average mobility after lockdowns have been
enforced (e.g., [Jeffrey et all [2020)). However, one could also utilize a variety
of more advanced network metrics which can provide a detailed picture of the
changes that the intervention has produced. For example, one could compare the
networks for their density, diameter, average shortest path lengths, etc. to assess
the effect of specifically targeted interventions (e.g., interventions that target
specific individuals central in the contact network, like doctors and teachers).

The function that is chosen to assess the difference between networks defines
a Behavioral Contact Network indicator; a BECON. In this paper, we develop
three BECONS: The Density BECON, the Spectral BECON, and the ASPL BE-
CON. To facilitate interpretation, each of the BECON indicators is constructed
in such a way that a higher value on the indicator implies that the experimental
network has changed the network in a direction that would in typical circum-
stances be expected to limit the potential for a virus to spread. The indicators
studied here are are defined as follows.

The Density BECON uses the relative change in network density. Network
density is defined as the ratio of the number of links to the total number of pos-
sible links in the network. This measure is epidemiologically relevant, because
denser networks indicate that more people have been in close proximity to each
other. The Density BECON is constructed by dividing the density of the ob-
served baseline contact network by that of the observed experimental contact
network, where higher values indicate larger experimental effects. In essence, this
measure simply tracks the extent to which the number of contacts reduces in the
experimental condition. This measure would be most relevant in microlevel ap-
plications, where people for instance use wearables during a public event, because
in this case only the direct contacts are relevant. This is because for COVID-19,
a person will take several days from infection to being infectious; hence, indirect
connections that would lead to transfer from one person to another via a third
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person (A — B — C) are not possible on such short time-scales. This metric
is particularly suitable in microlevel applications when the period from infec-
tion to being infectious takes multiple days, as was the case with COVID-19. In
this situation, indirect connections that would leads to transfer from one person
to another via a third person (A — B — () are not possible and, hence, the
(dynamical) contacts can be concatenated into a single contact network.

The Spectral BECON is based on the spectral radius. The spectral radius is
the largest eigenvalue of the adjacency matrix. The spectral radius is epidemi-
ologically important, because the inverse of the spectral radius is equal to the
so-called mean-field epidemic threshold, which is in turn a lower bound to the real
epidemic threshold (Van Mieghem & Van de Bovenkamp) [2013; [Van Mieghem
& van de Bovenkamp, 2015). The epidemic threshold plays a central role in net-
works and copes with structural heterogeneity, because a viral strength above
the epidemic threshold will endemically infect a non-zero fraction of the nodes
in the network. In the limiting case of a complete graph on N nodes, where
all nodes are connected to each other, the epidemic threshold is approximately
equal to 1/N and the strength of the virus divided by the epidemic threshold is
approximately equal to the reproduction number, whose critical value is equal to
one (for a reproduction number larger than one, the model predicts the virus to
be endemic, while for values below one it predicts that the virus will eventually
disappear). Moreover, one may control and tune the contact network so that its
spectral radius is minimized and the vulnerability for infections (virus spread) is
maximized (Van Mieghem et al.l [2011)). The Spectral BECON is constructed by
dividing the largest eigenvalue of the adjacency matrix of the observed baseline
contact network by that of the observed experimental contact network, such that
a larger value indicates a larger intervention effect. The Spectral BECON would
not be relevant in microlevel research (e.g., tracking people in a location over
several hours), but rather would apply to measures taken over days, as could be
gained using contact tracing apps. A specific example would be contact tracing
within the workspace, where the same group of people met each other over longer
periods of time. Different set-ups and interventions could be tried out (e.g., dif-
ferent ‘bubbles’ of employees, different organisation of common spaces, walking
routes), and their effectiveness could be assessed using the Spectral BECON.
The Spectral BECON is thus useful to assess intervention effects that involve
changes in the network structure that not only affect the number of links per
node, but work on the architecture of the network as a whole.

The ASPL BECON uses the average shortest path length (ASPL) between
pairs of nodes in the network. The shortest path length (SPL) between two nodes
equals the minimum number of edges that one has to traverse to travel from one
node to the other; the ASPL is the average value of all SPLs between all pairs of
network nodes. The ASPL is relevant to virus transmission, because the shorter
the paths that connect nodes in a contact network are, the easier the virus can
spread from one person to randomly chosen other person. The ASPLL BECON is
constructed by dividing the ASPL of the observed experimental contact network
by that of the observed baseline contact network. Like the Spectral BECON,
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the ASPL BECON could be applied in research where contacts are traced over
a period of days, in which indirect connections (A — B — C') are relevant. For
calculation of the ASPLL BECON we ignore any infinite shortest path lengths
that arise from disconnected graphs (i.e., in the case when some nodes or groups
of nodes are unconnected). Thus if there was more than one single connected
component (which happened in less than 3% of the cases), paths between nodes
in different connected components did not exist. We hence ignored these when
computing the ASPL, BECON.

The fact that each is expressed as a ratio allows one to interpret the BECON
values directly: for instance, if the Density BECON equals 2, this means that the
density of the observed baseline contact network is twice as large as that of the
observed experimental contact network. Other things being equal, a higher BE-
CON value would indicate that the intervention would likely be more successful
in mitigating virus spread (naturally, this should be considered in the light of
a theory about the virus transmission process). In research at the microlevel,
where people are traced over periods of hours, the Density BECON would be
most relevant.

An important methodological question is whether we can use BECON indi-
cators to assess the effect of interventions in realistic circumstances, where our
assessments of the contact network will be distorted in various ways. Thus, the
question that arises is whether the setup sketched in Figure [2| can be used to
assess the effect sizes of experimental manipulations in realistic conditions. For
example, can one order the effects of a set of behavioral interventions in terms of
effect size? How does the methodology fare in the presence of realistic amounts
of measurement error? To assess whether this is indeed possible, we now turn to
a simulation study.

4 Simulation study

The simulation study is designed to evaluate whether the BECON methodology
is indeed able to pick up effects of interventions if these are present. To show
this, we vary the size of intervention effects on the true contact network, and
subsequently assess the corresponding BECON values in the observed contact
network which is subjected to various levels of noise. If the method is reliable, we
expect the BECON values to be higher if the effects are stronger. We evaluate
this by computing the correlation between the size of the simulated intervention
effect and the observed BECON values: the higher the correlation is, the more
reliable the BECON is as an indicator of intervention effects.

In the simulation, we vary the number of nodes in the network n € [100, 200,
500, 1000], specifying the architecture of the contact network as a small world
structure (Watts & Strogatzl [1998) and generate it using the R package igraph
(Csardi & Nepuszl, 2006]), with a neighborhood size of K = 5 and a rewiring
probability of p = 0.10. We use this specification because it leads to a network
structure with a high degree of clustering yet small average shortest path lengths,
which is qualitatively similar to the structure of some social networks found in
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empirical research, where links may e.g., encode whether individuals work at the
same place or visit the same sports club. This network serves as our baseline
contact network (Figure [2] left bottom).

Next, we simulate a measurement process (Figure 2| left arrow). The process
generates imperfect measures of the baseline contact network. We simulated a
measurement function with a false negative rate of fn = [0.10,0.20,0.30] (e.g.,
fn = 0.30 implies that only 70% of the network links were successfully picked
up) and false positive rate fp = [0.10,0.20,0.30] (e.g., fp = 0.10 implies that
10% of the links that are absent in the true contact network will be present in the
observed network). We emphasize that, in the present paper, our interest is not
to retrieve the actual network structure by correcting for these distortions or to
recover the dynamical processes that it supports. Instead, our primary interest
here lies in the pragmatic goal of assessing the effect of interventions, so as to
develop an indicator that can serve to bridge the gap between epidemiology and
behavioral science.

Subsequently, we assess the observed baseline contact network using the ob-
tained data (Figure |2} top left). This network can be quite severely distorted as
a result of the probabilistic nature of the measurement function. For instance,
as is visible in the figure, the observed network is much denser than the true
contact network, even though the false positive rate is much lower than the
false negative rate. This is because the true contact network is relatively sparse,
which means it contains more absent than present links: the small world net-
works we generated for n = 100 individuals have n x (n —1)/2 = 4,950 possible
links, of which on average only K x n = 500 are actually present. Hence, a false
positive rate of 10% generates about 0.10 x (4,950 — 500) = 445 false positive
links, while the false negative rate of 30% means that on average only 350 of the
500 actual links are successfully identified. In other words, the observed baseline
contact network contains about 445 + 350 = 795 links, of which only 350 are
true positives. Because links feature such a low base rate, the probability that
two nodes that are connected in the observed network are actually connected in
the true contact network is only 350/795, i.e., about 0.44. This effect is stronger
in larger networks, because in larger networks there are more opportunities for
false positives; for example, in a network of 1000 individuals, the probability that
an observed link is actually present in the true network is only 0.07. Thus, the
actual assessment of the network in itself may be largely unsuccessful, especially
in larger networks. We think that similar results would be expected in actual em-
pirical work if the studied contact networks are sparse. However, as we will see,
the lack of success in assessing the contact network itself does not preclude the
possibility of assessing intervention effects by comparing the observed networks.

We now implement an intervention on the network (Figure 2} bottom arrow).
A typical intervention would be intended to, e.g., improve physical distancing,
and hence should lead to a lower connectivity in the experimental contact net-
work (Figure |2} bottom right). We model such an intervention by deleting links
uniformly at random (a process known as bond percolation in the network lit-
erature; Newman, [2018). The proportion of links deleted from the baseline con-
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tact network then defines the effect size of the intervention. We vary this effect
size in steps of 10%, from an ineffective intervention, which deletes no links, to
the strongest intervention, which deletes 90% of the links. We implement this
intervention in two ways: the deterministic intervention removes the specified
proportion of links exactly, by randomly deleting links until this proportion is
reached, while the probabilistic intervention removes each link with a probability
equal to the specified proportion. Thus, in an intervention setting with effect size
of, say, 0.40, the deterministic intervention results in a network where exactly
40% of the links are deleted, while the probabilistic intervention removes each
link with a probability of 0.40, so that the expected percentage of removed links
equals 40% while each realization may be different. The probabilistic intervention
thus implements a situation in which the interventions are represented as a ran-
dom effect that differs across experimental settings, leading to more uncertainty.
Importantly, these interventions are but two of the many alternative and possi-
bly directed interventions that one may study (Trajanovski, Martin-Hernandez,
Winterbach, & Van Mieghem)| 2013).

Finally, we implement the same measurement function as before on the ex-
perimental contact network. This way, we arrive at the observed experimental
network (Figure |2 top right). As was the case for the baseline contact network,
this assessment is dominated by false positives, which leads to a significant over-
estimation of the network density. In addition, the fact that the experimental
contact network is sparser than the baseline contact network implies that the
probability of a link being present in the experimental network, given that it is
present in the observed experimental network, has diminished even more.

Table 1. Simulation results across conditions for a small world graph. The table re-
ports correlations (means and sd) between BECONs and intervention effect sizes for
deterministic and probabilistic interventions across simulation runs for multiple net-
work sizes. The results are averaged over the false negative rates.

n FP Deterministic Probabilistic
Density Spectral ASPL  Density Spectral ASPL
rSD rSD rSD r SDr SD r SD

100 0.1 1 01 01 0.97 0.03 0.96 0.04 0.97 0.03
100 0.2 1 01 01 0.92 0.05 0.92 0.06 0.92 0.05
100 0.3 1 01 01 0.86 0.10 0.86 0.10 0.85 0.11
2000.11 01 01 0.97 0.03 0.96 0.03 0.97 0.02
200 0.2 1 01 01 0.92 0.06 0.91 0.06 0.91 0.06
200 0.3 1 01 01 0.86 0.10 0.85 0.10 0.85 0.11
500 0.11 01 01 0.96 0.03 0.96 0.03 0.97 0.02
500 0.2 1 01 01 0.92 0.07 0.92 0.06 0.91 0.07
500 0.3 1 01 01 0.850.11 0.84 0.11 0.84 0.11
1000 0.1 1 01 01 0.96 0.03 0.96 0.03 0.96 0.03
1000 0.2 1 01 01 0.91 0.06 0.91 0.06 0.91 0.06
1000 0.3 1 01 01 0.85 0.10 0.85 0.10 0.85 0.10

OO OO OO OO0 OO0




The Lighting of the BECONs 13

As a measure of the accuracy of the BECONs in ordering the intervention
effect sizes, we compute the average correlation between the estimated BECONs
and the actual intervention effect across simulation runs. A correlation of unity
then means that the BECONSs order the interventions perfectly, while a correla-
tion of 0 means that the BECONs do no better than chance.

Results of the simulations are given in Table 1. As can be seen from the
table, despite the fact that the networks used to compute the BECONs were
poor representations of the actual contact networks, the difference between the
observed networks tracks the intervention effect size reliably. To illustrate how
these effects arise, Figure |3| gives a detailed representation of results for one
specific BECON in the simulation design, i.e., the ASPL BECON performance
with fp = 0.20 and fn = 0.20. Detailed representations of simulation results
for all BECONs across all conditions are given in the Appendix. As shown in
detail in the Appendix, the results in Figure [3| are representative of the behavior
of all three BECONSs, which uniformly varied as a monotonic function of effect
size, in the sense that the probability distributions of these statistics stochas-
tically order the interventions. The separation of effect sizes is in fact perfect
for all deterministic intervention simulations. In the probabilistic intervention
simulation, results are somewhat more attenuated, but the correlation between
true and estimated intervention effects does not drop below 0.80. Thus, even
with sizeable false positive and false negative rates, the methodology still works
extremely well.

As can be seen in Figure [3] and the extended results in the Appendix, BE-
CONSs are monotonically related to intervention effect sizes, such that stronger
effects result in higher BECONs. Yet, for larger networks, the increase in BE-
CON attenuates (i.e., the slope becomes smaller). This can be explained by
the small world structure of the networks, which makes larger networks rela-
tively more sparse compared with smaller networks. As a result, a fixed false
positive rate in the measurement process (e.g., 20% false positives) has a more
pronounced effect in the larger networks. This is because the number of present
links grows linearly with the number of nodes, while the number of possible links
grows quadratically, and therefore larger networks feature a smaller percentage
of present links. For example, a neighborhood size of 5 results in the presence of
about 1% of the possible links in a network of 1000 people (5,000 out of 449, 500),
but the presence of about 10% of the possible links in a network of 100 people
(500 out of 9,900). As this measurement process applies to both the observed
baseline network and to the observed experimental network, the false positive
rate will make larger networks relatively more similar to each other than smaller
networks. Consequently, it is more difficult to detect an effect in larger networks,
which is reflected in the BECONs. However, as is evident from Table 1, BECON
performance is robust against this effect across the conditions simulated.

Finally, we find essentially the same results for a scale-free network, that is, a
network whose degree distribution follows a power law, and for an Erdés—Rényi
random graph, which has a binomial degree distribution. Results for these net-
work structures as well as code to reproduce them are available at https://
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Figure 3. ASPL BECON indicator values as a function of intervention effect sizes.
Plots display the range that contains 95% of the observed BECON values in the relevant
condition. The true network structure is a small-world network. This figure displays
results for a setting with false positive and false negative rate of 0.20

gitlab.com/science-versus-corona/becon. Performance is broadly consis-
tent across network structures. The reason for this may lie in the noisy mea-
surement process: the false positive rate results in a substantial amount of new
links, which obscure the original structure and thereby may counter effects of
network structure.

5 Discussion

In this paper, we have introduced a behavioral data science methodology to
study interventions designed to counter virus spread, and have shown in simu-
lations that this methodology is both feasible and effective. BECON indicators,
constructed to pick up changes in the contact network that are induced by inter-
ventions, were shown to track intervention effects reliably under realistic mea-
surement conditions that are characterized by substantial levels of noise. Thus,
BECON indicators offer a promising methodological approach to studying in-
terventions designed to mitigate virus spread in COVID-19 and other infectious
diseases.
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Because BECON indicators are instantaneous and can be constructed in the
absence of actual virus spread, they address the main problems that plague
widely used indicators, such as hospital admissions and death rates. In contrast
to current indicators, BECON indicators do not suffer from lags and can be
used in experimental designs; in addition, if used in the absence of actual virus
transmission, the use of BECON indicators need not put participants in control
conditions at risk. Therefore, BECON indicators have the important advantage
that they can be used when viruses are not present, i.e., they allow us to maxi-
mize our defenses and to prepare for new outbreaks. Of course, the interpretation
of the results does depend on details of the virus transmission process, and an
important question is how to relate changes in the observed contact networks to
this process.

As indicated, the study of which BECON is best suited for a given research
question depends on a combination of factors including characteristics of the
virus, properties of the research design, and the goals of the research program.
One important issue, highlighted throughout this manuscript, involves the time
scale at which the research program runs in relation to the time scale at which
a virus spreads. In cases where people are observed for a shorter time than that
needed for the virus to incubate and become infectious, the Density BECON
is always best, because the virus cannot travel more than a single step in the
network. In cases where people are followed for a period that exceeds this pe-
riod, the Spectral and ASPL BECONSs become feasible alternatives. If one wants
to study effects of generic interventions (e.g., lockdowns or school closures) on
virus spreading potential, then the Spectral BECON is indicated due its close
relation to the epidemic threshold (Van Mieghem & Van de Bovenkamp) 2013;
Van Mieghem & van de Bovenkamp), |2015)). Finally, in cases where one has inter-
ventions that are specifically targeted at the path lengths in the network (e.g.,
interventions targeted to limit interactions based on a previous interaction his-
tory), one can use the ASPL BECON. Thus, generally, we would recommend the
Density BECON in all situations where the research design observes behavior
at a duration below that needed for the virus to spread, and the Spectral and
ASPL BECONSs in research designs that observe behavior for longer durations;
the choice between Spectral and ASPL BECONs then depends on specifics of
the research question.

The Density BECON offers a simple metric to be used in small scale experi-
ments, where one for instance wants to test the effectiveness of office designs in
a company, or where one desires to assess the relative effect of different nudges.
We performed a study in which we applied the BECON methodology in practice.
During an art fair, we implemented different nudges and evaluated its effect on
the contact network. This way we could for example show that walking direc-
tions positively impacted physical distancing and reduced the number of con-
tacts, demonstrating the effectiveness of the proposed methodology in practice
(Blanken et al.,|2021; Tanis et al.|2021)). Simulations indicate that even for small
networks the indicators are reliable. However, BECON indicators are potentially
also applicable to large scale research. For example, using contact tracing apps,



16 D. Borsboom et al.

it should be possible to assess contact networks at the scale of neighborhoods,
cities, or even countries. Thus, BECON indicators could be implemented in a
dashboard used by policy makers to assess the degree to which current policies
are on track. Because they are much faster than traditional indicators, they may
also be highly useful in contributing to alarm systems that indicate that policy
action is required.

While our approach aims to change the network structure by deleting links,
a closely related notion is the removal of nodes (known as site percolation; [New-
man), 2018). This is especially important in vaccination campaigns, especially if
vaccinating an individual leads to a situation where the vaccinated individual
cannot receive nor spread the disease (Y. Liu et al.| 2021)E| Strictly speaking,
vaccinating an individual does not change the network structure. For the pur-
poses of disease spreading, however, one may reformulate it as such: in cases
where vaccinating an individual ensure that the individual will no longer be able
to spread the disease, this implies that all links going into and out of the node
will be removed. Although it focuses on node rather than link removal, research
done on animal populations is related to the approach we propose here. |Carne,
Semple, Morrogh-Bernard, Zuberbuehler, and Lehmann| (2013)), for example, use
simulations to study how targeted vaccination (e.g., vaccinate the most central
nodes) outperform random vaccination in a network derived from observations
of orangutans and chimpanzee populations, respectively. They used cluster size
and shortest paths of the network as measures to assess the effect of interventions
(see also |Albert, Jeong, & Barabasi, 2000)). Relating the network structure to
the final outbreak size, |[Rushmore et al.| (2014) find in simulations that vaccinat-
ing the most connected chimpanzees can reduce the outbreak size considerably.
While these articles focus on node removal, we expect that our approach can
learn from such approaches; future research may explore this line more fully.

Several limitations to the present work should be noted. For example, as we
have emphasized throughout this paper, observed networks will ordinarily be
poor representations of the contact networks of interest unless contact network
assessments are augmented by more advanced measurement methods. Therefore,
one should be very careful in using observed contact networks as proxies for the
underlying contact networks. For example, the fact that observed networks are
likely to be much more dense than the underlying contact networks suggests
that it would not be a good idea to use these observed networks naively in, e.g.,
simulations of virus transmission. However, our primary interest in this paper
was not in the reconstruction of contact networks per se, but in the comparison of
contact networks across experimental conditions. Standard experimental wisdom
holds that errors in observations need not form an insurmountable problem as
long as the structure and size of the induced distortions is comparable across
experimental conditions; in this case, systematic errors will be invariant across
conditions, and random errors will average out as the number of observations

3 Here it is important to note that for COVID-19, vaccination does not preclude an
individual from receiving or spreading the virus, although transmission rates among
vaccinated individuals were reduced. (Eyre et al. 2022)
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grows. This indeed is shown to be the case in our simulations. It should be
noted that more advanced reconstruction methods may lead to biases if they
are differentially effective across conditions, so a better reconstruction need not
imply a better signal of intervention effectiveness.

Our approach invites improvements at several points. First, we study a sim-
ple measurement process. In the real world, it is likely that the observed network
is not biased in a manner as we study here (i.e., by adding false positives and
false negatives), but that more complicated biases occur as would, for example,
arise when the structure of missing data depends on the network structure itself.
Such biases can be addressed by adding an intermediary network reconstruction
step. In particular, before computing the BECONSs, one can use network recon-
struction algorithms to first arrive at a better representation of the true network
(e.g., |Clauset, Moore, & Newman) [2008; |Ghasemian, Hosseinmardi, Galstyan,
Airoldi, & Clauset} [2020; Goyal & Ferrara, 2018; |Guimera & Sales-Pardo, [2009)).
Similarly, the use of additional sources of information deliverable through mobile
phones (e.g., geographical location data, WIFI data, ultra wide-band technology)
could enhance the precision of the signal (Trofimenko, Mukhina, & Visheratin|
2016). In addition, if the amount of bias in the measurement function is not
equal across experimental conditions, the presented methodology would likely
lead to incorrect conclusions. Because of the sparsity of the contact networks,
even differences in random noise could potentially lead to bias in the effect sizes
under certain conditions. For example, if the experimental intervention increases
the percentage of false negatives, it can seem effective while it is not. Statisti-
cal corrections could be developed on the basis of latent variable models, which
are able to accommodate violations of measurement invariance to some extent
(Meredith), [1993; Van De Schoot et al.| [2013)).

Another open question is whether the validity of BECONSs is symmetric; can
we pick up interventions that make the network more densely connected as easily
as interventions that prune it? This is an important question in the process of
monitoring lifting regulations, which is expected to create increasingly connected
contact networks. BECON methodology could be used to assess the relative risk
of different lifting interventions experimentally, and as such may inform exit
strategies.

Given that the value of the BECON methodology especially lies in its ability
to tap into actual (distancing) behavior, we hope the present paper contributes
to experimental research into the effectiveness of behavioral interventions in this
domain. However, the interventions we have studied in this paper are very sim-
ple, as they delete links at random. One may interpret such an intervention as
reducing contacts at random. It would be interesting to investigate what hap-
pens if an intervention does not randomly delete links, but affects the structure
of the network in a different way (as for example in|Trajanovski et al.,|2013)). For
example, one could examine what happens if interventions selectively take out
shortest paths, but keep clusters (e.g., groups of friends) intact. This would prob-
ably change not only the density, but also the structure of the contact network
after intervention; for example, selectively targeting nodes with high centrality
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may lead the network to lose its small world character. These interventions would
have considerable effect on epidemic spread. One such investigation was recently
provided by [Block et al.| (2020). The authors study three types of interventions
— limiting social interactions to a few individuals, seeking similarity across con-
tacts, and strengthening communities — that change the contact network. They
subsequently simulate virus spread and find that all three interventions sub-
stantially flatten the infection curve compared to no intervention, as well as to
an intervention that makes actors randomly reduce their contacts (i.e., removes
links at random). As suggested above, this shows that more thoughtful inter-
ventions can have a more drastic effect on virus transmission. Since different
interventions change the contact network in different ways, it is important to
choose the right BECON. In addition, such thought experiments suggest that
the question under which conditions which BECONs can adequately track virus
transmission is open for future research; one could imagine, for instance, imple-
menting different interventions and running epidemiological virus spread models
on the resulting networks to understand how different interventions change the
epidemiological course of the virus. Finally, the current setup ignores dynami-
cal information about interventions (e.g., the duration of effects), and extending
measurements and models in this direction could augment the signal consider-
ably (Dekker et al., [2021)). Such information could then be used to assess these
interventions in a more precise fashion.

Not all interventions are amenable to the BECON approach. For instance,
certain interventions may be highly effective in controlling the virus spread with-
out implementing large changes in the network. A salient example arises when
interventions are directed at interrupting processes that run on specific parts
of the contact network, rather than at changing the network structure globally.
Such interruptions are, for instance, the goal of contact tracing (Cencetti et al.,
2020} [Kojaku, Hébert-Dufresne, Mones, Lehmann, & Ahnl 2021 [Kretzschmar et
al., 2020)). Interventions based on contact tracing provide highly local and surgi-
cal interventions on the network (namely, by isolating potentially infected cases,
such procedures delete the corresponding links from the contact network). It is
unlikely that global measures like BECONs would be able to pick up such subtle
effects, especially if cases are rare so that relatively few links are deleted. Also,
it would be important to study whether contact tracing interventions invariably
lead to structures that diminish the potential for virus transmission; one can
imagine situations where alarm systems based on contact tracing may instigate
behavior that increases virus transmission. This would especially be relevant if
alarm systems are unreliable or are activated too late, which underscores the
importance of accurate prediction.

In the future, network theory may assist behavioral scientists in developing
novel interventions. For example, if advanced reconstruction of the contact net-
work to a high level of precision becomes feasible, interventions could be shaped
by the analysis of the baseline network itself. In such an approach, one could
first analyze the baseline contact network, and then explicitly design interven-
tions to target particular aspects of the contact network to induce maximal
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change, analogous to the use of targeted vaccinations in epidemiology (Q. Liu,
Zhou, & Van Mieghem| 2019; |Pastor-Satorras & Vespignani, [2002)). Similarly,
interventions could be explicitly targeted to decrease the spectral radius of the
contact network (Van Mieghem et al., 2011)), because this controls the potential
for outbreaks (Van Mieghem & Van de Bovenkamp),|2013;|Van Mieghem & van de
Bovenkampl, 2015)). In accordance, targeted evaluations of changes in the contact
network after intervention could be used to assess whether the intended changes
have indeed been accomplished. This approach potentially defines an extensive
research program, in which behavioral data scientists, epidemiologists, psychol-
ogists, computer scientists, and statisticians could profitably work together to
construct, implement, and monitor optimal interventions.
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Appendix
A Simulation results

Additional tables and figures reporting the simulation results across all condi-
tions. Complete results are available at https: //gitlab.com/science-versus-corona/becon.

A.1 Small world graph
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Figure 4. ASPL BECON indicator values as a function of the network size, the inter-
vention effect sizes, the false positive rate, and the false negative rate. The true network
structure is a small-world network. A fixed number of false positives and negatives were
added in each run to create the observed network.
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Figure 5. ASPL BECON indicator values as a function of the network size, the inter-
vention effect sizes, the false positive rate, and the false negative rate. The true network
structure is a small-world network. In the observed network, each absent edge in the
true network had a probability, FP, of becoming a false positive of and each present
edge a probability, FN, of becoming a false negative.
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Figure 6. Density BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a small-world network. A fixed number of false positives and
negatives were added in each run to create the observed network.
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Figure 7. Density BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a small-world network. In the observed network, each absent edge
in the true network had a probability, FP, of becoming a false positive of and each
present edge a probability, FN, of becoming a false negative.
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Figure 8. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a small-world network. A fixed number of false positives and

negatives were added in each run to create the observed network.
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Figure 9. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a small-world network. In the observed network, each absent edge
in the true network had a probability, FP, of becoming a false positive of and each
present edge a probability, FN, of becoming a false negative.
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A.2 Scale-free graph

Table 2. Simulation results across conditions for a scale free graph. The table reports
correlations (means and sd) between BECONs and intervention effect sizes for deter-
ministic and probabilistic interventions across simulation runs for multiple network
sizes. The results are averaged over the false negative rates.

n FP Deterministic Probabilistic
Density Spectral ASPL.  Density Spectral ASPL
rSD r SD rSD r SD r SD r SD

1000.110 10 10 0.97 0.02 0.98 0.02 0.97 0.02
1000210 10 10 0.92 0.06 0.93 0.06 0.92 0.07
100 0.310 10 10 0.86 0.1 0.870.1 0.850.1
2000.110 10 10 0.97 0.03 0.98 0.02 0.97 0.03
2000.210 10 10 0.92 0.06 0.93 0.06 0.91 0.06
2000310 10 10 0.850.1 0.860.1 0.840.11
5000.110 10 10 0.97 0.03 0.97 0.02 0.97 0.03
5000.210 10 10 0.92 0.06 0.92 0.05 0.92 0.06
5000.310 10 10 0.86 0.1 0.86 0.09 0.86 0.1
1000 0.110 10 10 0.97 0.03 0.97 0.02 0.97 0.03
1000 0.210 10 10 0.92 0.06 0.92 0.05 0.92 0.06
1000 0.31 0 10 10 0.86 0.1 0.860.1 0.860.1
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Figure 10. ASPL BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. A fixed number of false positives and negatives
were added in each run to create the observed network
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Figure1l. ASPL BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. In the observed network, each absent edge
in the true network had a probability, FP, of becoming a false positive of and each
present edge a probability, FN, of becoming a false negative.
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indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. A fixed number of false positives and negatives
were added in each run to create the observed network.
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Figure 13. Density BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. In the observed network, each absent edge
in the true network had a probability, FP, of becoming a false positive of and each
present edge a probability, FN, of becoming a false negative.
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Figure 14. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. A fixed number of false positives and negatives
were added in each run to create the observed network.
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Figure 15. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is a scale free network. In the observed network, each absent edge
in the true network had a probability, FP, of becoming a false positive of and each
present edge a probability, FN, of becoming a false negative.
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A.3 Erd6és—Rényi random graph

Table 3. Simulation results across conditions for a Erdés—Rényi graph. The table
reports correlations (means and sd) between BECONs and intervention effect sizes
for deterministic and probabilistic interventions across simulation runs for multiple
network sizes. The results are averaged over the false negative rates.

n FP Deterministic Probabilistic
Density Spectral ASPL.  Density Spectral ASPL
rSD r SD rSD r SD r SD r SD

1000.110 10 10 0.97 0.02 0.97 0.02 0.97 0.02
1000210 10 10 0.92 0.06 0.92 0.06 0.92 0.06
100 0.310 10 10 0.850.11 0.85 0.11 0.84 0.11
2000.110 10 10 0.97 0.02 0.97 0.03 0.97 0.02
2000.210 10 10 0.92 0.05 0.92 0.05 0.92 0.06
2000310 10 10 0.850.09 0.85 0.1 0.85 0.09
5000.110 10 10 0.97 0.03 0.97 0.03 0.97 0.03
5000.210 10 10 0.92 0.06 0.92 0.06 0.92 0.06
5000.310 10 10 0.850.1 0.850.1 0.850.1
1000 0.110 10 10 0.97 0.03 0.97 0.03 0.96 0.03
1000 0.210 10 10 0.91 0.06 0.91 0.06 0.91 0.06
1000 0.31 0 10 10 0.850.11 0.85 0.11 0.85 0.11
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Figure16. ASPL BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erdés—Rényi random network. A fixed number of false positives
and negatives were added in each run to create the observed network
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Figure17. ASPL BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erd6s—Rényi random network. In the observed network, each
absent edge in the true network had a probability, FP, of becoming a false positive of
and each present edge a probability, FN, of becoming a false negative.
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Figure 18. Density BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erdés—Rényi random network. A fixed number of false positives
and negatives were added in each run to create the observed network.
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Figure 19. Density BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erd6s—Rényi random network. In the observed network, each
absent edge in the true network had a probability, FP, of becoming a false positive of
and each present edge a probability, FN, of becoming a false negative.
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Figure 20. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erdés—Rényi random network. A fixed number of false positives
and negatives were added in each run to create the observed network.
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Figure 21. Spectral BECON indicator values as a function of the network size, the
intervention effect sizes, the false positive rate, and the false negative rate. The true
network structure is an Erd6s—Rényi random network. In the observed network, each
absent edge in the true network had a probability, FP, of becoming a false positive of
and each present edge a probability, FN, of becoming a false negative.



	The Lighting of the BECONs: A Behavioral Data Science Approach to Tracking Interventions in COVID-19 Research

