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Abstract. Multilevel modeling is often used to analyze survey data col-
lected with a multi-stage sampling design. When the selection is informa-
tive, sampling weights need to be incorporated into the estimation. We
propose a weighted residual bootstrap method as an alternative to the
multilevel pseudo-maximum likelihood (MPML) estimators. In a Monte
Carlo simulation using two-level linear mixed-effects models, the boot-
strap method showed advantages over MPML for the estimates and the
statistical inferences of the intercept, the slope of the level-2 predictor,
and the variance components at level-2. The impact of sample size, selec-
tion mechanism, intraclass correlation (ICC), and distributional assump-
tions on the performance of the methods was examined. The performance
of MPML was suboptimal when sample size and ICC were small and
when the normality assumption was violated. The bootstrap estimates
generally performed well across all the simulation conditions but had no-
tably suboptimal performance in estimating the covariance component
in a random slopes model when sample size and ICCs were large. As an
illustration, the bootstrap method is applied to the American data of the
OECD’s Program for International Students Assessment (PISA) survey
on math achievement using the R package bootmlm.
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1 Introduction

Multi-stage sampling design is often used in survey data collection. For exam-
ple, in order to obtain a nationally representative sample of kindergartners, a
two-stage sample design may be used in which a representative set of schools
are sampled in the first stage and students within schools are sampled in the
second stage. Besides the advantage of cost-effectiveness and convenience, data
obtained by multi-stage sampling allow researchers to answer multilevel research
questions. For example, researchers could examine how students’ achievement is
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related to individual student socioeconomic status (SES) on average, how this
association varies across schools, how school socioeconomic composition (i.e.,
school SES) affects student achievement, and how school SES affects the asso-
ciation between student achievement and their SES. One challenge in analyzing
complex survey data is the non-independence of observations (or clustering ef-
fect) because individuals in the same cluster usually share the same environment
and tend to be more alike. Another challenge arises when there are unequal se-
lection probabilities at one or more stages of the sampling process, which is often
the case due to the necessity of oversampling certain underrepresented groups
or accounting for non-response.

To answer multilevel research questions and to handle the nested data struc-
tures, multilevel modeling (MLM) is frequently used. MLM allows researchers
to decompose the variance into the between-cluster and within-cluster compo-
nents and investigate the variability of within-cluster effects across clusters. For
example, using MLM researchers could examine not only the average association
between individual student achievement and their SES, but also how this associ-
ation may vary across schools. Established estimation methods for MLM include
maximum likelihood (ML) and iterative generalized least squares (IGLS), which
are equivalent under normality (Goldstein, 1986). When there are unequal selec-
tion probabilities in the stage of selecting schools and/or the stage of selecting
students within schools, in order to obtain accurate estimate of the mean out-
come and/or the average association between a predictor and the outcome in the
population of students, methods were developed to incorporate sampling weights
in estimation, such as multilevel pseudo-maximum-likelihood (MPML)(e.g., As-
parouhov, 2006; Rabe-Hesketh & Skrondal, 2006) and probability-weighted IGLS
(PWIGLS; Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998). It has
been shown that PWIGLS could result in biased standard error estimates for
weighted multilevel data (Asparouhov, 2005). Hence we only considered MPML
in our study.

MPML has two crucial underlying assumptions. First, it assumes that the
sample size is sufficiently large at both the within-cluster (e.g., number of stu-
dents per school) and the between-cluster level (e.g., number of schools), espe-
cially the latter. In practical research, even if it is possible to obtain a large
number of clusters, the sample size within each cluster is often small. To reduce
bias in the estimates of the standard errors of fixed effects and the estimates of
variance components due to small cluster sizes, scaling of level-1 weights has been
used as the major tool. However, the performances of the various scaling methods
depend on a host of factors such as cluster size, intraclass correlation (ICC), the
degree of informativeness of the selection mechanism, and so forth (Asparouhov,
2006). Applied researchers should select the appropriate scaling method based
on the specific sampling design of a study, which could be challenging due to the
lack of information. Second, MPML assumes that the error term and random
effects follow a distribution of a specified class. In multilevel models, each level
has its own error term and random effects; therefore the distributional assump-
tions should be met at each level. For example, in a two-level linear model, the
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level-1 errors are assumed to follow a univariate normal distribution, and the
level-2 random effects are assumed to follow a multivariate normal distribution.
It has been documented that although ML estimators for fixed effects and vari-
ance components are consistent even when the random-effects distribution is not
normal, the standard error estimated by the inverse Fisher information matrix
may be biased, especially for variance components (Verbeke & Lesaffre, 1997).
The more sophisticated Huber-White robust standard errors are more accurate
for the variance component estimates, but require at least 100 clusters (Maas &
Hox, 2004). To our knowledge, the performance of MPML with robust standard
errors under distributional misspecification has not been studied yet.

Bootstrap resampling methods for multilevel data have been developed as
an alternative to ML estimation in the case where the general assumptions
mentioned above are violated. In general, there are three main approaches to
bootstrap: (1) the parametric bootstrap, (2) the nonparametric residual boot-
strap, and (3) the case bootstrap. The parametric bootstrap has the strongest
assumptions, which require that the specifications of the functional form and
the distributions of the residuals are both correct. The residual bootstrap only
requires the correct specification of the functional form. Finally, the case boot-
strap has minimum assumptions and only requires the hierarchical structure to
be correctly specified. Van der Leeden, Meijer, and Busing (2008) provided a de-
tailed discussion of the systematic development of bootstrap resampling methods
for multilevel models. It has been shown that bootstrap methods could provide
accurate confidence intervals for fixed effect estimates when the distribution of
the residuals are highly skewed at all levels (Carpenter, Goldstein, & Rasbash,
2003). In addition, applications to small area estimation showed that the boot-
strap method could produce sensible estimates for standard errors for shrinkage
estimates of small area means based on generalized linear mixed models (e.g.,
Booth, 1995; Hall & Maiti, 2006; Lahiri, 2003).

Given the advantages of multilevel bootstrap resampling under conditions
with distributional assumption violation and small sample sizes, it is useful
to extend the method to accommodate multilevel data with sampling weights.
Research in this area is limited and existing methods only use the case boot-
strap approach (Grilli & Pratesi, 2004; Kovacevic, Huang, & You, 2006; Wang
& Thompson, 2012) . Although the case bootstrap is more robust to assumption
violations than residual bootstrap, it is typically less efficient. Some studies have
shown that case bootstrap performed worse than residual bootstrap even when
the assumptions were violated (Efron & Tibshirani, 1993; Van der Leeden et al.,
2008). Hence the purpose of this paper is to propose a weighted nonparamet-
ric residual bootstrap procedure for multilevel modeling with sampling weights.
The proposed procedure is an extension of the nonparametric residual bootstrap
procedure developed by Carpenter et al. (2003). With a Monte Carlo simula-
tion, we examined the performance of the proposed bootstrap method in terms
of parameter estimates and statistical inferences under a variety of conditions.

The outline of the paper is as follows. First, we briefly discuss sampling
weights for multilevel models, followed by a review of existing bootstrap methods
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for multilevel data. Next, we provide details of the proposed procedure followed
by a demonstration of the method using real data. Then we present the sim-
ulation study to examine the performance of the proposed bootstrap method.
Finally, the findings are summarized and discussed.

2 Sampling Weights and Pseudo-Maximum-Likelihood
Estimation for Multilevel Models

Multilevel data are often collected using a multi-stage sampling design which
involves sampling clusters in the first stage and then sampling units within se-
lected clusters in the subsequent stages. Due to the clustering, observations in
multilevel data often have some degree of dependence among them, which makes
the traditional methods based on a simple random sample design inappropriate.
Therefore, MLM is often used to account for the dependency among the ob-
servations. More importantly, MLM not only allows researchers to examine the
average association between a predictor and an outcome, but also to address
questions on how the associations among variables within clusters vary across
clusters, such as how the association between individual student achievement
and their SES varies across schools. In this section, we consider a two-level
model with students nested within schools to provide a background for sampling
weights in multilevel models.

Let Yij be the achievement scores, Xij be the scores on the level-1 predic-
tors (e.g., individual student SES, gender, etc.) associated with student i(i =
1, . . . , nj) within school j(j = 1, . . . , J), and Xj be the scores on the level-2 pre-
dictors (e.g., school SES, school sector, etc.) associated with school j. A two-level
model can be specified as

Yij = β1Xij + β2Xj + µjZij + εij (1)

where β1 and β2 are row vectors of regression coefficients associated with student-
level and school-level predictors respectively, which represent the average effects
of the predictors in the population of students. The row vector µj contains ran-
dom effects associated with school j, which could be a random intercept, or a
random slope of a student-level predictor, or both. The design vector Zij usu-
ally includes the constant 1 (for the random intercept) and the student-level
predictors that have random slopes across schools. Finally, εij is the level-1
error. The main parameters of interest in MLM are usually the fixed effects
(i.e., β1 and β2 ) and the variance and covariance components (i.e., the vari-
ances and covariances of the random effects µj). The conventional maximum
likelihood estimates of the parameters are obtained by maximizing the likeli-
hood function L (θ) =

∏J
j=1[

∫ ∏nj
i=1 f(Yij |Xij ,µj ,β1)q(µj |Xj ,β2)dµj ] where

f
(
Yij |Xij ,µj ,β1

)
is the density function of Yij and q(µj |Xj ,β2) is the density

function of µj .
Suppose that schools and students within schools are selected with unequal

probabilities. Let the probability of selecting school j be pj and the probabil-
ity of selecting student i given that school j is sampled be pi|j . The sampling
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weight for school j is wj = 1/pj . The conditional sampling weight for student
i within school j is wi|j = 1/pi|j . The unconditional sampling weight for an
individual student is wij = wj ×wi|j . If the sampling weights are related to the
dependent variable after conditioning on the covariates in the model, they are
called informative weights (Pfeffermann, 1993). For example, if students with
lower achievement have a higher probability of being sampled controlling for the
predictors Xij and Xj , then the sampling weights are informative. Informative
sampling weights should be incorporated in statistical inferences to avoid bias
in estimates or poor performance of test statistics and confidence intervals. For
multilevel models, the sampling weights at each level need to be taken into ac-
count when they are informative, to ensure that the average association between
the predictors and the outcome in the population of students as well as the
variance and covariance components of school random effects can be accurately
estimated. One approach to incorporate the sampling weights is to use multilevel
pseudo maximum likelihood estimation (MPML), which defines the likelihood

function as l (θ) =
∏J

j=1(
∫ ∏nj

i=1 f
(
Yij |Xij ,µj ,β1

)wi|j q(µj |Xj ,β2)dµj)
wj .

Extant literature has shown that the level-1 weights should be scaled in
order to reduce the bias of variance component estimates and standard error
estimates of fixed effects when cluster sizes are not large (e.g., Pfeffermann et
al., 1998; Potthoff, Woodbury, & Manton, 1992; Stapleton, 2002). There are two
commonly used scaling methods: relative vs. effective sample size scaling. In
relative sample size rescaling, the level-1 weights wi|j are multiplied by a scaling
factor s1j =

nj∑nj
i=1 wi|j

so that the sum of the rescaled level-1 weights within

a cluster equals the actual cluster size. In effective sample size rescaling, the

scaling factor s1j =
∑nj
i=1 wi|j∑nj
i=1 w2

i|j
is used such that the sum of the rescaled level-

1 weights within a cluster equals the effective cluster size which is defined as
(
∑nj
i=1 wi|j)

2∑nj
i=1 w2

i|j
. Some simulation studies showed that relative sample size rescaling

works better for informative weights, whereas effective sample size rescaling is
more appropriate for non-informative weights (Pfeffermann et al., 1998). Some
researchers argue that non-informative weights should not be used in multilevel
analyses because they tend to result in a loss of efficiency and even bias in
parameter estimates under some conditions. For example, Asparouhov (2006)
found bias in the estimation of multilevel models when cluster sample size is
small and non-informative within-cluster weights are used.

However, in practical applications, choosing the right scaling method may
be challenging. Pfeffermann (1993) described a general method for testing the
informativeness of the weights. Asparouhov (2006) proposed a simpler method
based on the informative index, and recommended to consider both the value of
the informative index and Pfeffermann’s test, the invariance of selection mech-
anism across clusters, and the average cluster size when determining weighting
in multilevel modeling.
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3 Bootstrap for Multilevel Data

Depending on whether and what parametric assumptions are involved, there are
multiple approaches to do bootstrapping (Davison & Hinkley, 1997), and addi-
tional care is needed to address the dependencies in the data when resampling
with multilevel data (Van der Leeden et al., 2008). Below we first provide a
brief summary of the common bootstrap procedures for multilevel data in gen-
eral (i.e., the parametric bootstrap, the residual bootstrap, and the case boot-
strap) and then focus on the bootstrap method for multilevel data with sampling
weights. Readers should consult Davison and Hinkley (1997), Goldstein (2011),
and Van der Leeden et al. (2008) for more detailed reviews of the statistical
theory of multilevel bootstrapping methods.

3.1 Parametric Bootstrap

As described in Goldstein (2011), with parametric bootstrap, researchers first
fit a multilevel model to obtain fixed effect estimates, and the random effect
variance estimates, τ̂ and σ̂. Then, for each bootstrap sample, a new set of N
level-1 errors, ε∗ij , and a new set of J level-2 random effects, µ∗j , are drawn from
independent N(0, τ̂ ) and N(0, σ̂) distributions to form a new set of responses,
y∗ij . The multilevel model is then refitted to the new bootstrap data, and the
target statistics (e.g., fixed effects) are computed. The resampling process is
repeated for a large number of B bootstrap samples (e.g., B = 1, 999) to obtain
bootstrap sampling distributions of the target statistics.

3.2 Non-parametric Residual Bootstrap

The (nonparametric) residual bootstrap is similar to the parametric bootstrap
except that, when forming new responses, the new errors and random effects
were obtained by sampling with replacement the residuals of the multilevel fitted
model. In this paper, the resampled residuals were denoted as µ̃j and ε̃ij to
distinguish them from the counterparts in the parametric bootstrap. In addition,
because the sampling variance of µ̃j is generally smaller than τ̂ , and so is the
sampling variance of ε̃ij smaller than σ̂ (albeit to a lesser extent). Carpenter
et al. (2003) and Goldstein (2011) recommended to first “reflate” the residuals
so that the sample variances of the reflated residuals were exactly τ̂ and σ̂,
respectively. Finally, as in parametric bootstrap, a new set of response ỹij is
formed, and the target statistics are computed, and then the process is repeated
B times to obtain a bootstrap sampling distribution of the target statistics.

3.3 Case Bootstrap

With the case bootstrap, each bootstrap sample consisted of observations (i.e.,
“cases”) sampled with replacement from the original data. When there are two
levels in the data so that a case can mean a cluster or a unit within a cluster,
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there are two variants of the case bootstrap (Davison & Hinkley, 1997): (a) to
resample with replacement intact clusters but no resampling within a cluster,
and (b) to first resample the clusters, and within each cluster resample with
replacement the units. Both Davison and Hinkley (1997) and Goldstein (2011)
recommended (a) over (b).

A few previous studies have examined these three bootstrap methods for
multilevel analyses. Seco, Garćıa, Garćıa, and Rojas (2013) showed that the
residual bootstrap produced more precise estimates, in terms of smaller root
mean squared errors, for fixed effects than restricted maximum likelihood. On
the other hand, because the case bootstrap makes fewer assumptions than the
parametric and the residual bootstraps, it requires more information from the
data. As such, previous literature found that its performance was poor compared
to the other two methods, even when the assumptions for the latter two meth-
ods were violated (Efron & Tibshirani, 1993; Van der Leeden et al., 2008). On
the other hand, Thai, Mentré, Holford, Veyrat-Follet, and Comets (2014) found
that in longitudinal linear-mixed models where cluster size is constant, residual
bootstrap and case bootstrap performed similarly when there were at least 100
individuals (i.e., J = 100).

3.4 Bootstrap for Multilevel Data with Sampling Weights

For multilevel data with sampling weights, the extant literature documents two
types of bootstrap methods, both of which can be viewed as modifications to
case bootstrap. One type involves generating a pseudo (or artificial) population
that mimics the population from which the original sample is selected, and then
selecting bootstrap samples from the pseudo population based on the sampling
weights in the original sample (Grilli & Pratesi, 2004; Wang & Thompson, 2012).
As described in Grilli and Pratesi (2004), when generating the pseudo popula-
tion, the ith unit (i = 1, . . . , nj) in the j th cluster (j = 1, . . . , J) is duplicated
wi|j times, rounding the weight to the nearest integer to form J artificial clus-
ters. Then each of the J artificial clusters is replicated wj times, rounding the
weight to the nearest integer, to obtain the artificial population. From the ar-
tificial population, bootstrap samples are obtained by first selecting J clusters
with probability proportional to 1/wj and then selecting nj units with probabil-
ity proportional to 1/wi|j from the j th resampled cluster. Wang and Thompson
(2012)’s procedure is similar except that they added an additional step to ac-
count for the potential biases caused by rounding the weights when generating
the pseudo population.

The other type of bootstrap for multilevel data with sampling weights in-
volves a two-stage resampling and rescaling of weights at each level. As described
in Kovacevic et al. (2006), J−1 clusters are first drawn from the original sample
using simple random sampling with replacement (SRSWR). Then wj is rescaled
to obtain the cluster bootstrap weights w∗j = wj

J
J−1 tj where tj is the number of

times that cluster j is included in the bootstrap sample. From each resampled
cluster, nj − 1 units are drawn using SRSWR and the unadjusted conditional
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bootstrap weights are calculated for level-1 units as b∗i|j = wi|j

(
nj

nj−1

)(
ti|j
tj

)
where ti|j is the total number of times that the ith unit is resampled. Based
on the rescaled cluster bootstrap weights and the unadjusted conditional boot-
strap weights, the unadjusted unconditional bootstrap weights are computed as
b∗ij = b∗i|jw

∗
j . The adjusted unconditional bootstrap weights (w∗ij) are obtained af-

ter applying all the same adjustments done in the process of calculating the orig-
inal full sample unconditional weights. If no adjustment is made, then w∗ij = b∗ij .
Finally, the within-cluster conditional weights are calculated as w∗i|j = w∗ij/w

∗
j .

Both Grilli and Pratesi (2004) and Kovacevic et al. (2006) noted that the
steps concerning the level-1 units in their procedures can be omitted when the
sampling fraction is low at the cluster level. Kovacevic et al. (2006) also showed
that the accuracy and stability of variance estimation improved when using the
relative within-cluster weights (i.e., the sum of the rescaled level-1 weights within
a cluster equals the actual cluster size) as compared to the original unscaled
within-cluster weights. However, to the best of our knowledge, these methods
have not been developed into statistical packages that can be easily accessed by
applied researchers.

4 The Proposed Weighted Residual Bootstrap

4.1 Algorithm

The weighted residual bootstrap method was developed based on an idea simi-
lar to the one outlined in Goldstein, Carpenter, and Kenward (2018). Without
loss of generality, we present the weighted nonparametric residual bootstrap
algorithm for a two-level model. An extension to a model with more levels is
straightforward.

Step 1: Obtain parameter estimates for model 1 (i.e., β̂1 and β̂2) based
on sample data using unweighted maximum likelihood and restricted maximum
likelihood, and compute level-1 residuals εij and level-2 residuals µj .

Step 2: Obtain reflated level-1 and level-2 residuals (ε
′

ijand µ
′

j) using Car-
penter et al. (2003)’s procedure.

Step 3: Sample independently with replacement from the set of reflated level-1
residuals using level-1 unconditional weights and from the set of reflated level-
2 residuals using level-2 weights, obtaining two new sets of residuals ε

′b
ij and

µ
′b
j , where b is the index of bootstrap samples. It is noted that the level-1

unconditional weights are used instead of the conditional weights to resample
level-1 residuals, because the new set of level-1 residuals are selected from the
entire sample across clusters rather than within clusters. This approach makes
it unnecessary to scale the within-cluster weights.

Step 4: The new response of the bth bootstrap sample is then obtained by
Y

′b
ij = β̂1Xij + β̂2Xj + µ

′b
j Zij + ε

′b
ij .

Step 5: Refit the model to the bootstrap sample to obtain one set of bootstrap
parameter estimates using either unweighted maximum likelihood or restricted
maximum likelihood.



Weighted Residual Bootstrap Method for Multilevel Models 97

Step 6: Repeat steps 2-5 to obtain B set sets of bootstrap parameter esti-
mates.

4.2 Illustration

As a demonstration, we applied the proposed procedure to examine the as-
sociations between student math achievement and student gender and school
SES among 15-year-old students in the United States using the 2000 PISA
data Organization for Economic Co-operation and Development (2000) . PISA
used a cluster sampling design with unequal selection probabilities. Specifically,
schools with more than 15% of minority students were oversampled, and minor-
ity students were oversampled within those schools. The data include weights at
the school level (named WNRSCHBW) and unconditional weights at the stu-
dent level (named W FSTUWT). We used a two-level random intercept model
with students’ math test scores (Yij) as the dependent variable, student gender
(Genderij = 0 for females and 1 for males) and school mean ISEI (ISEI m) as
the school-level predictor (Equation 2),

Yij = β0 + β1Genderij + β2ISEI mj + u0j + eij (2)

where i indexes students and j indexes schools, u0j represents random effects
associated with the intercept. The main parameters of interest are the average
effects of gender (β1) and school SES (β2) on students’ math achievement in
the population of 15-year-old students in the United States. Although we used a
random intercept model in this demonstration, researchers could further examine
whether the association between student gender and achievement varies across
schools by adding a random effect associated with the slope of gender that varies
across schools (i.e., a random slope model).

The US sample consists of 2135 students from 145 schools. 74% students had
complete data on both ISEI and Math while 26% had at least one missing value
on the two variables. After removing cases with missing data, the final sample
of analysis consists of 1578 students from 145 schools. The cluster size ranged
from 1 to 20, with the first quartile of 8, median of 12, and the third quartile of
14. To determine the degree to which the weights were informative, we followed
the recommendation by Asparouhov (2006) and computed the informative index
by |µ̂w − µ̂0| /

√
υ0 where µ̂w is the weighted mean of the dependent variable, µ̂0

is the unweighted mean, and υ0 is the unweighted variance. The informative
index for math was 0.03, indicating that the sampling weights were very slightly
informative.

The bootstrap estimates were obtained using researcher developed R package
bootmlm (see Appendix for the R code). As a comparison, the model was also
estimated using unweighted ML, and MPML with relative and effective weights
respectively. The MPML estimates were obtained using Mplus 8.2 Muthén and
Muthén (1998, see Appendix B for the Mplus code). The ML estimates were
obtained using the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2015).
Percentile confidence intervals were computed in the bootstrap method (i.e., α/2
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and 1−α/2 quantiles of the bootstrap distribution), profile likelihood confidence
intervals were computed in lme4 for the ML estimates, and the delta method3

was used to construct approximate confidence intervals for the MPML variance
component estimates. The MPML results based on relative weights were almost
identical to those based on effective weights, thus we only reported the latter.

Table 1. ML, MPML, and Bootstrap Results Based on the PISA Data

Estimate SE 95% CI

Unweighted ML

Intercept 74.33 2.49 [69.45, 79.20]
Gender -1.6 0.66 [-2.88, -0.31]
ISEI m 0.16 0.05 [0.06, 0.26]
Variance
School 9.43 3.02 [4.35, 16.48]
Residual 162.4 6.06 [151.07, 174.87]
Conditional ICC 0.06

MPML Effective Weights

Intercept 80.42 5.52 [69.59, 91.24]
Gender -2.43 1.16 [-4.70, -0.16]
ISEI m 0.06 0.12 [-0.17, 0.28]
Variance
School 10.86 9.03 [2.12, 55.41]
Residual 152.47 24.3 [111.56, 208.38]
Conditional ICC 0.07

Bootstrap

Intercept 74.94 2.51 [70.17, 80.18]
Gender -1.56 0.67 [-2.85, -0.17]
ISEI m 0.16 0.05 [0.05, 0.26]
Variance
School 7.42 2.68 [2.23, 13.02]
Residual 162.51 9.95 [144.5, 184.0]
Conditional ICC 0.04

Before looking at the parameter estimates, we examined the distribution of
the residuals. The level-1 residuals based on the ML estimates were slightly
non-normal with skewness of -1.45 and kurtosis of 6.77. The distribution of
the level-2 residuals was close to normal with skewness of -0.46 and kurtosis
of 3.39. Table 1 shows the parameter estimates, standard error estimates, 95%
confidence intervals, and conditional ICCs. There was little difference between
the ML estimates and the bootstrap estimates. However, the MPML results
showed different point estimates and standard error estimates, especially for
the slope of school mean ISEI (i.e., ISEI m). As a result, the statistical inference
also reached different conclusions regarding the slope of school mean ISEI, which

3 The 1- α confidence interval of a variance component θ is given by

exp

[
ln

(
θ̂
)
± z1−α

2

√
V ar(θ̂)
θ̂

]
where θ̂ is the MPML estimate of θ, V ar

(
θ̂
)

is the

asymptotic variance of θ̂.
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was statistically significant based on the ML and the bootstrap results, but non-
significant based on MPML.

From this particular sample and model, we obtained inconsistent results from
the bootstrap and the MPML methods. We suspected that the MPML results
might not be trustworthy because the specific condition of this sample (i.e.,
small cluster size, low ICC, and very slight informativeness) has been shown
to be unfavorable to MPML (e.g., Asparouhov, 2006). However, it is unknown
whether the performance of the bootstrap method is acceptable, thus a Monte
Carlo simulation is needed to assess the performance of these methods under
various conditions.

5 Simulation

5.1 Data Generation

To evaluate the performance of the weighted bootstrap procedure in accounting
for nonrandom sampling, we used R 3.5.0 (R Core Team, 2018) to simulate
two-level data mimicking the data structure of students nested in schools. The
population models were either (a) a random intercept model or (b) a random
slopes model. The models include one level-1 predictor such as student SES
(denoted as X1ij) and one level-2 predictor such as school SES (denoted as X2j).
Because multilevel modeling is a model-based technique usually justified by a
superpopulation model (Cochran, 1977; Lohr, 2010), the data generating model
is treated as the superpopulation, and in each replication, we first generated a
finite population with Jpop = 500 clusters and npop = 100 observations for each
cluster.

When generating a finite population based on the random intercept model
(see Equation 2), we simulated X2j from N (0, 1) distributions and the cluster-
level random intercept effect u0j from either normal distributions or scaled χ2(df
= 2) distributions with mean 0 and variance τ , depending on the simulation
condition described in the next section. We then simulated npop × Jpop values
of X1ij from N (0, 1) distributions and eij from either normal distributions or
scaled χ2(df = 2) distributions with mean 0 and variance σ, depending on the
simulation condition. For all simulation conditions, we set β0= 0.5, β1 = β2 = 1,
and the total variance τ+σ = 2.5. The outcome was computed based on Equation
(2).

When generating a finite population based on the random slopes model, the
following equation was used

Yij = β0 + β1X1ij + β2X2j + u0j + u1jX1ij + eij (3)

where u0j and u1j represent the random effects associated with the intercept and
the slope of X1ij respectively. We simulated u0j and u1j from a bivariate normal

distribution with mean of 0 and variance-covariance of

[
τ00
τ01 τ11

]
in which τ00

represents the variance of the random intercept, τ11 the variance of the random
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slope of X1ij , and τ01 the covariance between the random intercept and the
random slope. The magnitude of τ00 depends on the simulation condition, and
the magnitude of τ11 is half of τ00 because the variance of random slopes is
typically smaller than the variance of random intercepts. The covariance τ01
is computed as ρ

√
τ00τ11 where ρ denotes the correlation between the random

intercepts and the random slopes and was set at 0.5 to represent a moderate
correlation.

After simulating the finite populations, we first sampled J clusters with a
sampling fraction f according to a certain selection mechanism depending on the
simulation condition. Then in each cluster we randomly sampled n observations
with the same sampling fraction f according to a certain selection mechanism
depending on the simulation condition.

5.2 Design Factors

We considered 5 design factors to generate a variety of experimental conditions.
First, the variance of the random intercepts: 0.125, 0.5, and 1.25. They corre-
spond to small, medium, and large conditional ICCs (i.e., ICC = 0.05, 0.2, and
0.5) commonly seen in multilevel data. Second, sampling fraction (f): 0.1 and
0.5. Similar levels were used in previous simulations such as 0.12 in Grilli and
Pratesi (2004) and 0.6 in Rabe-Hesketh and Skrondal (2006). Under the 0.1 sam-
pling fraction condition, the cluster size was 10 and the number of clusters was
50. This was considered a small sample size condition. Under the 0.5 sampling
fraction condition, the cluster size was 50 and the number of clusters was 250,
which was considered a large sample size. Third, normality of random effects.
For the random intercept model, we considered the normal distribution vs. the
scaled χ2(df = 2) distribution for the random effects and the level-1 errors. The
χ2(df = 2) distribution has skewness =

√
8/2 = 2 and kurtosis = 12/2 = 6. For

the random slopes model, we only considered normal distribution.
Fourth, between-cluster selection mechanism: non-informative vs. informa-

tive. For non-informative selection, simple random sampling (SRS) was used.
For the random intercept model with informative sampling, we first divided the
clusters into two strata: µ0j > 0 (stratum 1) and µ0j < 0 (stratum 2), and then
sampled without replacement in each stratum such that the sampling probabil-
ity of each cluster is 1.4f for stratum 1 and 0.6f for stratum 2. In other words,
it was expected that for each replication, 70% of the sampled units came from
stratum 1, and 30% of the sampled units came from stratum 2. For the random
slopes model with informative sampling, we divided the clusters into four strata:
µ0j > 0 and µ1j > 0 (stratum 1), µ0j > 0 and µ1j < 0 (stratum 2), µ0j < 0
and µ1j > 0 (stratum 3), and µ0j < 0 and µ1j < 0 (stratum 4), with sampling
probabilities of 1.96f, 0.84f, 0.84f, and 0.36f, respectively. It was expected that
for each replication, 49% of the sampled units came from stratum 1, 21% from
stratum 2, 21% from stratum 3, and 9% from stratum 4.

Finally, within-cluster selection mechanism: non-informative vs. informative.
For non-informative selection, within-cluster units were sampled using SRS. For
informative selection, units in each cluster were first divided into two strata: eij >



Weighted Residual Bootstrap Method for Multilevel Models 101

0 (stratum 1) and eij < 0 (stratum 2), and then sampled without replacement
according to the 7:3 ratio of sampling probability. The informative index was
about 0.17 when informative selection occurred at level-1 only, 0.09 when at level-
2 only, and 0.27 when at both levels based on the random intercept models. These
values represent slight to moderate informativeness according to Asparouhov
(2006).

Combining the five design factors, there are a total of 48 data conditions
(3 ICCs × 2 sampling fractions × 2 distributions × 2 between-cluster selection
mechanisms × 2 within-cluster selection mechanisms) for the random intercept
models and 24 conditions (3 ICCs × 2 sampling fractions × 2 between-cluster
selection mechanisms × 2 within-cluster selection mechanisms) for the random
slopes models. We conducted 500 replications for each simulation condition. For
each generated data set, three estimators were applied: the proposed bootstrap
method (using the R package bootmlm), MPML with effective weights (using
Mplus 8.2 for the random intercept models and Stata 16 for the random slopes
models), and unweighted maximum likelihood (using the R package lme4 ).

5.3 Analysis

For each parameter in the models (including both fixed effects and variance com-
ponents), we examined the relative bias of the point estimate and the coverage
rate of the 95% confidence intervals. For the bootstrap method, we used the 2.5
and 97.5 percentile of the empirical sampling distribution as the lower and upper
boundaries of the 95% confidence interval. Following Hoogland and Boomsma
(1998), relative biases of point estimates are considered acceptable if their mag-
nitudes are less than 0.05. The coverage rate of a 95% confidence interval should
be approximately equal to 95%, with a margin of error of 1.9% based on 500
replications. Hence coverage rates between 93% and 97% are acceptable.

5.4 Results

5.4.1 Random intercept models Tables 2 to 5 show the relative bias and
coverage rate for parameter estimates under all conditions based on the random
intercept models. The relative biases for the slope of the level-1 predictor X1
and the slope of the level-2 predictor X2 are not shown in the tables because
they were close to zero for all conditions. In addition, the coverage rate for the
slope of X1 was close to 95% under all conditions, therefore it was not included
in the tables.

Intercept. As shown by the relative biases of the ML estimates, ignoring
sampling weights when the selection mechanism was informative caused moder-
ate to large relative biases, ranging from 0.14 to 1.38 (see Table 2 and 3). As a
result of biased point estimate, the coverage rates of the confidence intervals for
the ML estimates were also poor under those conditions ranging from 0.00 to
0.85 (see Table 4 and 5).

MPML successfully reduced the relative biases to an acceptable level under
the majority of conditions, however, there were still small to moderate relative
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biases under 11 conditions where the sample size was small and the selection
mechanism was informative at level 1 or both levels (relative bias ranging from
0.07 to 0.13). As a result, there was slight under-coverage (ranging from 0.88
to 0.92) in about half of those conditions (6 out of 11), mainly when there was
informative selection at both levels.

The bootstrap method performed the best in terms of relative biases because
they were below 0.05 under all conditions. However, the advantage of the boot-
strap method over MPML was less obvious in terms of the coverage rate because
the bootstrap method also had slightly low coverage rate (ranging from 0.88 to
0.92) under similar conditions.

Slope of X2 . The relative bias of the estimated slope of X2 was acceptable
for all methods under all conditions. However, the MPML confidence intervals
suffered from slight under-coverage (89%-92%) in 18 conditions, mainly when
sample size was small and selection was informative at level 2 or both levels.

Variance component of the random intercepts (τ). ML estimates had
small relative biases under 18 conditions when there was informative sampling
at level-2 or at both levels. The biases were negative ranging from -0.07 to -0.11
when the distribution was normal, and were positive ranging from 0.10 to 0.12
when the distribution was skewed. MPML suffered from small to moderate biases
(-0.10 to 0.27) under 10 conditions when small sample size was combined with
small to moderate ICCs. It was noted that the two moderately large relative
biases (i.e., 0.25 and 0.27) both occurred when there was informative selection
at level-1 or at both levels. The bootstrap method performed better with only
small positive biases (0.08 to 0.11) under 5 conditions where both ICC and
sample size were small. It was noted that out of the 5 conditions where relative
biases were obvious, one was under the normal distribution and four under the
skewed distribution, indicating that the performance of the bootstrap method
might be sensitive to skewed distributions.

In general, all three methods tended to have under-coverage, with ML being
the worst and bootstrap being the best. Where the distribution was normal, 15
conditions had under-coverage ranging from 0.87 to 0.92 for ML, 14 conditions
ranging from 0.86 to 0.92 for MPML, and 11 conditions ranging from 0.89 to
0.92 for bootstrap. When data were skewed, 23 conditions had under-coverage
ranging from 0.67 to 0.92 for ML, 22 conditions ranging from 0.76 to 0.92 for
MPML, and 15 conditions ranging from 0.81 to 0.92 for bootstrap. For both
MPML and bootstrap, the coverage rate tended to worsen as the sample size
decreased. In addition, when data were skewed, larger ICCs led to lower coverage
rate for MPML.

Level-1 residual variance (σ). Only ML estimates had small negative
relative biases when there was informative selection at level-1 or at both levels.
As a result, ML estimates had severe under-coverage under those conditions,
especially when sample size was large. The performance of ML deteriorated
when the distribution was skewed as there were severe under-coverage across all
conditions.
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Although MPML and bootstrap estimates had minimum relative biases, both
had slight under-coverage under certain conditions. Specifically, when the distri-
bution was normal, under-coverage mainly occurred when sample size was small
combined with informative selection at both levels. When the distribution was
skewed, under-coverage mainly occurred when sample size was small and when
the selection was non-informative or only informative at level-2.

Table 2. Relative Bias for the Random Intercept Model Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept TAU SIGMA

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 -0.01 -0.01 -0.01 0.03 0.07 -0.07 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.93 0.01 0.10 -0.04 0.00 0.25 -0.08 0.00 -0.02
0.5 0.70 0.00 0.01 0.01 0.01 0.02 -0.05 0.00 0.00

Informative
at level-2

0.1 0.22 -0.04 0.01 -0.07 0.00 -0.10 0.01 0.01 0.00
0.5 0.16 -0.02 0.00 -0.05 -0.01 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.15 -0.02 0.12 -0.10 -0.03 0.27 -0.09 0.00 -0.02
0.5 0.86 -0.02 0.01 -0.05 -0.01 0.01 -0.05 0.00 0.00

0.2

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 0.01 -0.05 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.85 0.02 0.09 -0.01 -0.01 0.02 -0.08 0.00 -0.02
0.5 0.63 -0.01 0.00 0.00 0.00 0.00 -0.05 0.00 0.00

Informative
at level-2

0.1 0.44 -0.04 0.03 -0.09 -0.02 -0.06 0.01 0.01 0.00
0.5 0.32 -0.01 0.00 -0.05 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.30 -0.01 0.13 -0.11 -0.04 0.01 -0.09 0.00 -0.02
0.5 0.97 -0.01 0.01 -0.05 -0.01 -0.01 -0.05 0.00 0.00

0.5

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 0.01 -0.04 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00

Informative
at level-1

0.1 0.67 0.02 0.07 0.00 0.00 -0.03 -0.08 0.00 -0.02
0.5 0.49 -0.01 -0.01 0.00 0.00 0.00 -0.05 0.00 0.00

Informative
at level-2

0.1 0.70 0.00 0.05 -0.09 -0.01 -0.05 0.01 0.01 0.00
0.5 0.51 0.00 0.00 -0.05 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.38 0.03 0.13 -0.10 -0.02 -0.04 -0.09 -0.01 -0.02
0.5 1.02 0.00 0.01 -0.05 0.00 -0.01 -0.05 0.00 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)

5.4.2 Random slopes models Tables 6 to 9 show the relative biases and
coverage rates for parameter estimates under all conditions based on the ran-
dom slopes models. Notably, while convergence was not an issue for ML and
the bootstrap method, MPML estimation suffered from a low convergence rate
(ranging between 0.59 and 0.76) when both ICC and sample size were small.

Intercept. Similar to the pattern under the random intercept models, ML
estimates of the intercept suffered from moderate to large relative biases (ranging
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Table 3. Relative Bias for the Random Intercept Model Under χ2(2) Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept TAU SIGMA

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 .00 .00 .00 0.03 0.07 -0.07 0.00 0.00 0.00
0.5 .00 .00 .00 0.00 0.00 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.81 0.01 0.08 0.04 0.09 -0.05 0.12 0.01 0.02
0.5 0.60 0.00 0.00 0.00 0.00 -0.04 0.10 0.00 0.00

Informative
at level-2

0.1 0.18 -0.04 0.01 0.12 0.11 -0.09 -0.01 -0.01 -0.01
0.5 0.14 -0.02 0.00 0.10 0.02 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.00 -0.02 0.10 0.11 0.10 -0.08 0.11 0.00 0.01
0.5 0.75 -0.02 0.01 0.10 0.03 -0.04 0.10 0.00 0.00

0.2

Non-
informative

0.1 -0.01 -0.01 -0.01 0.00 -0.01 -0.06 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 -0.01 0.01 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.74 0.01 0.07 0.01 0.01 -0.05 0.12 0.01 0.02
0.5 0.55 -0.01 0.00 -0.01 -0.01 -0.02 0.10 0.00 0.00

Informative
at level-2

0.1 0.37 -0.04 0.01 0.11 0.03 -0.06 -0.01 -0.01 -0.01
0.5 0.28 -0.01 0.00 0.10 0.01 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.12 -0.02 0.10 0.10 0.03 -0.05 0.11 0.00 0.01
0.5 0.83 -0.01 0.01 0.10 0.01 -0.04 0.10 0.00 0.00

0.5

Non-
informative

0.1 -0.01 -0.01 -0.01 -0.01 0.00 -0.05 0.00 0.00 0.00
0.5 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 0.00 0.00 0.00

Informative
at level-1

0.1 0.57 0.01 0.05 0.00 0.00 -0.04 0.12 0.01 0.02
0.5 0.43 -0.01 0.00 -0.01 -0.01 -0.02 0.10 0.00 0.00

Informative
at level-2

0.1 0.58 -0.02 0.02 0.11 0.01 -0.04 -0.01 -0.01 -0.01
0.5 0.44 0.00 0.00 0.10 0.00 -0.01 0.00 0.00 0.00

Informative
at both levels

0.1 1.17 0.00 0.09 0.11 0.02 -0.04 0.11 0.01 0.01
0.5 0.88 -0.01 0.01 0.10 0.00 -0.01 0.10 0.00 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)
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from 0.23 to 1.64) when the selection mechanism was informative (see Table
6). The relative biases based on MPML estimates were acceptable under the
majority of conditions, except for 6 conditions where the sample size was small
and the selection mechanism was informative at level 1 or both levels (relative
bias ranging from 0.12 to 0.14). The bootstrap method performed the best in
terms of relative biases because there were only 3 conditions where small biases
were found (ranging from -0.06 to -0.10).

Table 6. Relative Bias for Fixed Effects Estimates from the Random Slopes Model
Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept X1

ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 0.01 0.01 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.93 0.04 0.12 0.00 0.00 0.01
0.5 0.70 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.30 -0.06 0.00 0.11 0.06 0.00
0.5 0.23 -0.03 0.00 0.08 0.02 0.00

Informative
at both levels

0.1 1.23 -0.03 0.13 0.11 0.06 0.01
0.5 0.92 -0.03 0.01 0.08 0.02 0.00

0.2

Non-
informative

0.1 0.00 0.01 0.00 0.00 0.00 0.00
0.5 -0.01 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.85 0.04 0.13 0.00 0.00 0.01
0.5 0.64 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.61 -0.10 0.00 0.22 0.06 0.00
0.5 0.45 -0.02 0.00 0.16 0.01 0.00

Informative
at both levels

0.1 1.46 -0.07 0.14 0.22 0.06 0.01
0.5 1.09 -0.02 0.01 0.16 0.01 0.00

0.5

Non-
informative

0.1 0.00 0.01 0.01 0.00 0.00 0.00
0.5 -0.01 0.00 0.00 0.00 0.00 0.00

Informative
at level-1

0.1 0.66 0.03 0.13 0.00 0.00 0.01
0.5 0.50 0.00 0.01 0.00 0.00 0.00

Informative
at level-2

0.1 0.96 -0.07 0.00 0.35 0.04 0.00
0.5 0.71 -0.01 0.00 0.25 0.01 0.00

Informative
at both levels

0.1 1.64 -0.04 0.14 0.35 0.04 0.01
0.5 1.22 -0.01 0.01 0.25 0.01 0.00

Note. Values in bold represent unacceptably large relative bias (i.e., absolute value >
0.05)

As a result of the biased point estimate based on ML, the coverage rates of
the confidence intervals for the ML estimates were also poor (ranging from 0.00
to 0.61) under informative selection mechanisms (see Table 6). On the other
hand, both MPML and the bootstrap method had the issue of over-coverage
(coverage rate above 0.98) in the majority of the conditions, indicating that the
estimated confidence intervals were wider than expected.
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Table 7. Coverage Rate for Fixed Effects Estimates from the Random Slopes Model
Under Normal Distribution

ICC Selection
Mechanism

Sampling
Fraction

Intercept X1 X2

ML BOOT MPML ML BOOT MPML ML BOOT MPML

0.05

Non-
informative

0.1 0.96 0.99 0.98 0.96 0.96 0.96 0.95 0.95 0.93
0.5 0.96 1.00 1.00 0.97 0.99 0.99 0.95 0.95 0.96

Informative
at level-1

0.1 0.00 0.97 0.89 0.96 0.97 0.95 0.94 0.95 0.91
0.5 0.00 1.00 1.00 0.96 0.99 0.98 0.95 0.95 0.94

Informative
at level-2

0.1 0.61 0.95 0.98 0.72 0.85 0.95 0.95 0.95 0.86
0.5 0.01 0.97 0.99 0.02 0.86 0.98 0.96 0.96 0.95

Informative
at both levels

0.1 0.00 0.90 0.89 0.70 0.84 0.96 0.95 0.96 0.89
0.5 0.00 0.97 0.99 0.02 0.88 0.99 0.96 0.96 0.95

0.2

Non-
informative

0.1 0.95 0.99 0.99 0.96 0.97 0.97 0.94 0.94 0.92
0.5 0.96 1.00 1.00 0.97 1.00 1.00 0.96 0.96 0.95

Informative
at level-1

0.1 0.06 0.99 0.96 0.95 0.99 0.98 0.94 0.94 0.91
0.5 0.00 1.00 1.00 0.96 1.00 1.00 0.95 0.95 0.95

Informative
at level-2

0.1 0.23 0.97 0.99 0.36 0.88 0.96 0.94 0.95 0.88
0.5 0.00 1.00 1.00 0.00 0.98 1.00 0.97 0.97 0.95

Informative
at both levels

0.1 0.00 0.94 0.93 0.33 0.86 0.96 0.94 0.96 0.88
0.5 0.00 1.00 0.99 0.00 0.98 1.00 0.96 0.96 0.95

0.5

Non-
informative

0.1 0.94 0.99 0.99 0.97 1.00 1.00 0.94 0.94 0.91
0.5 0.95 1.00 1.00 0.96 1.00 1.00 0.96 0.96 0.95

Informative
at level-1

0.1 0.49 1.00 0.99 0.94 1.00 1.00 0.94 0.94 0.91
0.5 0.07 1.00 1.00 0.96 1.00 1.00 0.95 0.97 0.95

Informative
at level-2

0.1 0.14 0.98 0.99 0.17 0.96 0.98 0.94 0.94 0.87
0.5 0.00 1.00 1.00 0.00 1.00 1.00 0.96 0.97 0.95

Informative
at both levels

0.1 0.00 0.96 0.97 0.18 0.95 0.98 0.95 0.96 0.88
0.5 0.00 1.00 1.00 0.00 1.00 1.00 0.97 0.97 0.96

Note. Values in bold represent under-coverage or over-coverage (i.e., coverage rate <
0.93 or > 0.97)
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Slope of X1 . As expected, the ML estimates of the slope of X1 were biased
when the selection mechanism was informative at level 2 or both levels (relative
bias ranging between 0.08 and 0.35). The magnitude of the biases increased as
ICC increased. On the other hand, both the MPML and the bootstrap estima-
tion methods successfully reduced the biases to an acceptable level, although
the MPML method performed slightly better than the bootstrap method when
sample size was small and the selection mechanism was informative at level 2 or
both levels.

Similarly, due to the biased point estimates, the coverage rates of the con-
fidence intervals for the ML estimates were also poor (ranging from 0.00 to
0.72) under informative selection mechanisms. The MPML confidence intervals
demonstrated over-coverage, especially when sample size and ICC were large.
The bootstrap confidence intervals demonstrated slight under-coverage (ranging
between 0.84 and 0.88) when informative selection occurred at level 2 or both
levels, but showed a similar over-coverage pattern as the MPML confidence in-
tervals in the other conditions.

Slope of X2 . The relative bias of the estimated slope of X2 was acceptable
for all methods under all conditions. However, the MPML confidence intervals
suffered from slight under-coverage (0.86 to 0.92) in about half of the condi-
tions, mainly when sample size was small. The performance of the ML and the
bootstrap confidence intervals was acceptable under all conditions.

Variance of the random intercepts (τ00). ML estimates had small rela-
tive bias (-0.09 to -0.18), mainly when there was informative sampling at level-2
or at both levels. MPML suffered from moderate to large biases (-0.34 to -0.87)
when ICC was small. The magnitude of the relative biases decreased as ICC or
sample size increased, but was still more than 0.12 when ICC and sample size
were large. The bootstrap method showed small negative biases (-0.08 to -0.13)
across all conditions consistently and had the greatest advantages over MPML
when ICC was small.

The coverage rates of the confidence intervals based on the three methods
showed similar patterns. The ML-based confidence intervals had slight under-
coverage (0.79 to 0.85) when there was informative sampling at level-2 or at
both levels. The MPML-based confidence intervals suffered from severe under-
coverage (0.09 to 0.20) under conditions where small ICCs were combined with
large sample sizes. The bootstrap confidence intervals had slight under-coverage
(0.75 to 0.90) in the majority of the conditions. It is noted that when ICC was
large, MPML and bootstrap confidence intervals performed similarly.

Variance of the random slopes (τ11). Similar to τ00, ML estimate of
τ11 showed small to moderate relative bias (-0.16 to 0.17), mainly when there
was informative sampling at level-2 or at both levels. The MPML estimates had
large positive biases (0.55 to 1.61) when ICC and sample size were both small,
and mostly small negative biases (-0.08 to -0.10) under the other conditions.
The bootstrap estimates had small positive biases (0.19 to 0.26) when ICC and
sample size were both small, and moderate negative biases (-0.23 to -0.40) when
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ICC was moderate and large. Comparing the three methods, ML showed the
least amount of bias across all conditions.

In terms of the confidence intervals, MPML had the worst performance be-
cause of the severe under-coverage (0.10-0.46) when sample size was large. The
bootstrap confidence intervals had somewhat under-coverage (0.77-0.92) across
the conditions. The ML confidence intervals had the best performance, show-
ing slight under-coverage (0.81 to 0.91) when there was informative sampling at
level-2 or at both levels.

Covariance of the random intercepts and the random slopes (τ01).
The ML estimate of τ01 showed small to moderate negative biases (-0.09 to -0.36)
when there was informative sampling at level-2 or at both levels. The MPML
estimates showed moderate negative biases across all conditions, ranging from -
0.37 to -0.61. The bootstrap estimates showed small to moderate negative biases,
with the magnitude decreasing from -0.34 to -0.09 as ICC increased from 0.05
to 0.5.

The ML confidence intervals had slight under-coverage (0.77 to 0.92) when
there was informative sampling at level-2 or at both levels. Despite the moderate
negative biases in the point estimates, MPML confidence intervals only showed
slight under-coverage in most of the conditions (0.66 to 0.92). In general, the
bootstrap confidence intervals suffered from under-coverage (0.17 to 0.92), and
the degree of under-coverage was severe (0.17 to 0.31) when sample sizes were
large and ICCs were moderate to large.

Level-1 residual variance (σ2). ML estimates had small negative relative
biases (-0.09) when there was informative selection at level-1 or at both levels.
The bootstrap estimates showed small positive relative biases (0.07 to 0.12) when
sample size was small and ICC was moderate to large. MPML estimates had the
best performance with little bias across all conditions.

The ML-based confidence intervals showed under-coverage when there was
informative selection at level-1 or at both levels. The degree of under-coverage
was severe (0.02 to 0.03) when sample size was large. The bootstrap confidence
interval had moderate under-coverage across all conditions, ranging from 0.50
to 0.88. The MPML confidence intervals had slight under-coverage across all
conditions, ranging from 0.84 to 0.91.

6 Discussion and Conclusion

We proposed a weighted residual bootstrap method for multilevel modeling
of data from complex sampling designs. Unlike previously proposed bootstrap
methods (e.g., Grilli & Pratesi, 2004; Kovacevic et al., 2006; Wang & Thompson,
2012), our method does not require generating a pseudo population or rescaling
weights. The performance of the proposed bootstrap method for linear two-level
models was investigated under various conditions, and compared with the mul-
tilevel pseudo maximum likelihood (MPML) approach and the unweighted ML
approach using Monte Carlo simulations.
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In general, the proposed weighted bootstrap method performed similar to
or better than the MPML method in random intercept models and had mixed
results in random slopes models. As expected, for the random intercept model,
unweighted ML resulted in biased intercept estimate when there were informa-
tive selections. Both the bootstrap and the MPML estimates of the slopes for the
level-1 and level-2 predictors (X1 and X2 ) had acceptable performance. How-
ever, the bootstrap showed advantages over MPML for the estimate of the level-2
variance component when sample size is small (i.e., 50 clusters and 10 units per
cluster), selection mechanism is informative, and ICC is low (i.e., 0.05). As a
result, the confidence interval of the slope of the level-2 predictor (X2 ) based
on the bootstrap method also had a better coverage rate compared to MPML
under those conditions. It has been demonstrated in the literature that MPML
estimates have increased biases as ICC decreases (Asparouhov, 2006; Kovacevic
& Rai, 2003). As Asparouhov (2006) explained, the weakness of MPML is in
the estimation on the individual level, therefore as ICC decreases the individual
level becomes more influential, which exacerbates the problem.

For the random slopes model, the ML estimates of both the intercept and the
slope of the level-1 predictor (X1 ) showed moderate to severe biases when there
are informative selections. The bootstrap and the MPML approaches performed
similarly in terms of the estimates of the fixed effects, with the bootstrap method
slightly better for the estimate of the intercept and the slope of the level-2 pre-
dictor, while the MPML slightly better for the slope of the level-1 predictor.
While convergence was not an issue for the bootstrap method, MPML suffered
from a high rate of non-convergence when ICC is low. As a result, MPML had se-
vere biases in the estimates of the level-2 variance components when ICC is low.
The performance of the bootstrap estimate of the variance components was not
ideal either as small to moderate biases existed across the conditions. However,
the bootstrap confidence intervals performed much better than the MPML ap-
proach, especially when sample size is large. The only drawback of the bootstrap
method is in the estimation of the covariance between the random intercept and
the random slope, which showed severe under-coverage when sample size is large.

Another advantage of the bootstrap method is that it is more robust to
the distributional violation. Previous simulation studies on MPML for linear
models only considered normally distributed random effects and residuals. Our
findings showed that when the normality assumption was violated, the coverage
rate of the MPML confidence interval for the level-2 variance component in a
random intercept model became much worse with 8 more conditions showing
under-coverage. The bootstrap method was also affected by the distributional
violation, but to a lesser degree because only 4 more conditions showed under-
coverage when the distributions were skewed.

As a demonstration, the weighted residual bootstrap method was applied to
the American 2000 PISA data on math achievement. Based on the random in-
tercept model, the bootstrap and the MPML results showed some inconsistency,
especially for the slope of the level-2 predictor. We believe that the bootstrap
results were more trustworthy in this case because conditions in the simulation
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study that were similar to the specific condition of this sample (i.e., small cluster
size, low ICC, very slightly informative, and slight distributional violation) have
shown favorable results in the bootstrap than the MPML method.

6.1 Implications

The weighted residual bootstrap method provides a robust alternative to MPML.
Applied researchers can use the bootstrap approach when the traditional MPML
estimation fails to converge or when there is severe violation of the normal-
ity assumption. In analyses of random intercept models, the weighted residual
bootstrap method is preferred to MPML when the effect of level-2 predictors
(e.g., school SES), or the variance of the random intercept (e.g., variance of
school mean achievement) are of interest and when both sample sizes and ICCs
are small. In random slopes models, the bootstrap method has advantages over
MPML in the point estimates and the confidence interval estiamtes of the slopes
of level-2 predictors, as well as the variance component estimates associated with
the random intercept and the random slopes (e.g., variance of the association
of student SES and student achievement across schools). However, the statisti-
cal inferences for the covariance component (e.g., the covariance between school
mean achievement and the slope of student SES and student achievement) based
on the bootstrap method might not be trustworthy.

It is recommended that researchers conduct sensitivity analyses using differ-
ent methods. Discrepancies among the results may indicate that the conditions
for MPML to work properly are not satisfied. The weighted residual bootstrap
method is implemented in the developmental version of the R package bootmlm,
which has the capacity to analyze two-level linear random intercept and random
coefficients models with sampling weights.

6.2 Limitations and Future Directions

The findings of the study should be interpreted in light of the limitations. First,
there is still room for improvement in terms of the bootstrap confidence interval
for level-2 variance and covariance components. We used percentile confidence in-
terval for its simplicity. Future research may be conducted to investigate whether
more sophisticated methods such as bias-corrected and accelerated confidence in-
tervals and studentized intervals could further improve the performance. Second,
the proposed bootstrap method was only applied to multilevel linear models. Al-
though it is possible to extend it to generalized multilevel models (Goldstein et
al., 2018), Monte Carlo experiments should be conducted to examine the perfor-
mance of the method for generalized multilevel models such as multilevel ordinal
and binary models. Third, this study only compared the performance of the pro-
posed method with MPML. Future studies could compare the proposed method
with other bootstrap methods for multilevel data with sampling weights.
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Appendix A. R Code for the Analysis of PISA Data using
Weighted Residual Bootstrap

# Check if devtools were installed

if (! require (" devtools ")) {

install.packages (" devtools ")

}

# Install developmental version of the bootmlm package

devtools :: install_github (" marklhc/bootmlm",

ref = "weighted_boot ")

# Load required packages

library(bootmlm)

library(boot)

library(lme4)

# Unweighted ML

m1 <- lmer(SC17Q01 ~ ISEI_m + male + (1 | Sch_ID),

data = PISA , REML = FALSE)

# Weighted semi -parameteric bootstrap

boo <- bootstrap_mer(

m1 ,

FUN = function(x) {

c(x@beta ,

c(x@theta ^ 2, 1) * sigma(x) ^ 2)

},

nsim = 999L,

type = "residual_cgr",

w1 = PISA$ W_FSTUWT ,

https://doi.org/10.1016/s0167-9473(96)00047-3
https://doi.org/10.1016/s0167-9473(96)00047-3
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w2 = unique(PISA[c(" Sch_ID", "WNRSCHBW ")]) $WNRSCHBW
)

# Print the output

boo # bootstrap results

colMeans(boo$t) # parameter estimates

apply(boo$t , 2, sd) # bootstrap SE

# Percentile intervals for the six parameters

boot.ci(boo , type = "perc", index = 1L)

boot.ci(boo , type = "perc", index = 2L)

boot.ci(boo , type = "perc", index = 3L)

boot.ci(boo , type = "perc", index = 4L)

boot.ci(boo , type = "perc", index = 5L)

boot.ci(boo , type = "perc", index = 6L)

Appendix B. Mplus Code for the Analysis of PISA Data
using MPML

Data: File=pisa.csv;

Variable: Names are math ISEI_m male Sch_ID

W_FSTUWT WNRSCHBW lv1_con_wt;

Usevariables are math ISEI_m male;

Between = ISEI_m;

Within = male;

Cluster = Sch_ID;

Weight = lv1_con_wt; !lv1_con_wt=

W_FSTUWT/WNRSCHBW;

Bweight = WNRSCHBW;

Analysis: Type = twolevel;

Model: %within%

math on male;

%between%

math on ISEI_m;

Output: Cinterval;
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