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Abstract. Bayesian inference for structural equation models (SEMs) is
increasingly popular in social and psychological sciences owing to its flex-
ibility to adapt to more complex models and the ability to include prior
information if available. However, there are two major hurdles in using
the traditional Bayesian SEM in practice: (1) the information nested in
the prior distributions is hard to control, and (2) the MCMC iterative
procedures naturally lead to Markov chains with serial dependence and
the diagnostics of their convergence are often difficult. In this study, we
present an alternative procedure for Bayesian SEM aiming to address the
two challenges. In the new Bayesian SEM procedure, we specify a prior
distribution on the population covariance matrix parameter Σ and ob-
tain its posterior distribution p(Σ|data). We then construct a posterior
distribution of model parameters θ in the hypothetical SEM model by
transforming the posterior distribution of Σ to a distribution of model
parameter θ. The new procedure eases the practice of Bayesian SEM
significantly and has a better control over the information nested in the
prior distribution. We evaluated its performance through a simulation
study and demonstrate its application through an empirical example.

Keywords: Structural equation modeling · Bayesian analysis · Inverse
Wishart prior · Informative prior · Convergence diagnostics

1 Introduction

Structural equation modeling (SEM) is widely used to analyze multivariate data
with complex structures in behavioral and social sciences, due to its ability
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to identify relationships among unobserved latent variables using the observed
data (e.g., P. Bentler & Dudgeon, 1996; Bollen, 1989; Jöreskog, 1978; Lee, 2007;
MacCallum & Austin, 2000). In a typical SEM model, manifest variables, latent
variables, and measurement error can be analyzed simultaneously (e.g., Anderson
& Gerbing, 1988; Yuan, Kouros, & Kelley, 2008). The family of SEMs contains
a large variety of well-known models such as path analysis models (e.g., Boker
& McArdle, 2005; Yuan et al., 2008), confirmatory factor models (e.g., Jöreskog,
1969), and growth curve models (e.g., Grimm, Steele, Ram, & Nesselroade, 2013;
McArdle & Nesselroade, 2003). One primary purpose of fitting an SEM model
is to explain the covariance structure among variables, either latent or manifest.
Such a covariance structure is depicted by parameters in the hypothetical model
such as factor loadings, path coefficients, factor covariance matrices, and residual
variances.

Bayesian methods are increasingly used in estimating SEMs (e.g. Lee, 2007;
Palomo, Dunson, & Bollen, 2007; Van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2017). The seminal work by Lee (2007) laid the ground
for Bayesian SEM. Guo, Zhu, Chow, and Ibrahim (2012) used Bayesian Lasso
for model regularization. Zhang, Lai, Lu, and Tong (2013) introduced a ro-
bust Bayesian method to estimate growth curve models. Wang, Feng, and Song
(2016) employed the Bayesian method in estimating quantile SEMs. Muthen
and Asparouhov (2012) proposed to use small variance priors to approximate
parameters typically specified to be 0 in the frequentist framework. The increas-
ing popularity of Bayesian methods first benefits from the computer hardware
development that renders sampling techniques such as Markov Chain Monte
Carlo (MCMC) samplers (Gelfand & Smith, 1990). It is also because of the
many beneficial features of Bayesian statistics (Van de Schoot et al., 2017). For
example, it is possible to incorporate prior information into the estimation pro-
cess in data analysis, which has the analogous contribution of extra data and
is particularly useful when the sample size is small where the maximum like-
lihood (ML) method meets troubles to converge (e.g., P. M. Bentler & Yuan,
1999). It can also be computationally tractable even for very complex models
(e.g., Muthen & Asparouhov, 2012). In addition, it is especially flexible to han-
dle missing data and latent variables using data augmentation techniques (e.g.,
Z. Lu, Zhang, & Lubke, 2011; Van Dyk & Meng, 2001; Zhang & Wang, 2012).
Moreover, it treats model parameters as random variables with a more intuitive
interpretation (Van de Schoot et al., 2017). Because of the increasing popularity
of Bayesian statistical inference, the software has also been developed to facili-
tate the use of Bayesian SEM such as the R package blavaan (Merkle & Rosseel,
2015) and Mplus (Muthen & Asparouhov, 2012).

Despite the many advantages, the burden of using Bayesian SEM is also
discussed (e.g., MacCallum, Edwards, & Cai, 2012). A common criticism on
Bayesian statistics is the use of priors. First, it can be difficult to specify pri-
ors and risky to use default priors in software (Liu, Depaoli, & Marvin, 2022;
Smid, McNeish, Miočević, & van de Schoot, 2019). In an SEM, there are many
parameters including factor loadings, factor covariance matrix, unique factor
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variances, regression paths, and other parameters. Selecting priors for all those
parameters can be tedious. Although default priors are provided in most ex-
isting software, their influences are still not well understood by many applied
researchers, especially for complex models and/or small sample size studies (De-
paoli, Liu, & Marvin, 2021; Smid et al., 2019). Second, the use of informative
priors can significantly affect parameter estimates and Bayesian inference. In
order to reduce the influence of priors and obtain objective inference, Jeffreys
prior has been developed (Jeffreys, 1961). However, the derivation of Jeffreys
prior is not straightforward and therefore convenient priors such as univariate
and multivariate normal, Gamma, and Wishart priors are often used in practice
(e.g., Lee & Song, 2012; Song & Lu, 2010; Zhang, Hamagami, Lijuan Wang,
Nesselroade, & Grimm, 2007; Zhang et al., 2013). Third, some researchers have
argued that informative priors should be used to fully take advantage of Bayesian
inference (e.g., Z.-H. Lu, Chow, & Loken, 2016; Muthen & Asparouhov, 2012).
However, the specification of such priors is even more delicate. Another concern
is the use of Markov chain Monte Carlo (MCMC) techniques. The convergence
diagnostics of the Markov chains are required and can be very challenging. The
dependence among the Markov samples often suggests a long chain to provide
reliable inferences. Therefore, the specification of priors and the diagnostics of
convergence have become two major obstacles for the adoption of Bayesian SEM
in practice. Although some existing software has implemented Bayesian MCMC
techniques, it might not work well with the default settings for all models.

The objective of this paper is to present an alternative Bayesian approach to
SEM that specifies prior distributions under a unified framework for all covari-
ance structures. Rather than specifying priors on individual model parameters θ,
this approach specifies a multivariate prior distribution directly on the saturated
population covariance matrix Σ. Random draws from the posterior distribution
of the population covariance matrix are then fitted to the covariance structure
to obtain posterior distributions of model parameters.

Compared to the existing procedures for Bayesian SEM, the newly proposed
procedure has two distinct features. First, priors are only required for the pop-
ulation covariance matrix and there is no need to specify a prior for each in-
dividual model parameter such as factor loadings and residual variances. This
substantially reduces the work for researchers, especially novel users of Bayesian
methods, conducting a Bayesian SEM analysis. Inverse-Wishart priors have been
adopted for the covariance matrix parameter in most of the existing Bayesian
analyses (e.g., Grimm, Kuhl, & Zhang, 2013; Liu, Zhang, & Grimm, 2016; Pan,
Song, Lee, & Kwok, 2008; Zhang, 2021; Zhang et al., 2007, 2013). In the current
study, we also use Inverse-Wishart priors becasue it is not only computationally
convenient but also practically meaningful. The prior information conveyed by
an Inverse Wishart prior IW(m,V) is the same as “additional” data with the
sample size m and the sum of squares V. As a result, we are able to control the
amount of prior information nested in the prior by adjusting the values of hyper-
parameters of an Inverse-Wishart distribution. Second, the posterior samples of
model parameters θ are independently and identically distributed. This is be-
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cause the posterior distribution of the population covariance matrix is a marginal
distribution and has a closed form. Thus, independent covariance matrices can
be sampled from the posterior distribution directly. And so are the θ′s mapped
from them. Because every obtained sample is from its posterior distribution, it
is not necessary to have a burn-in period and conduct convergence diagnostics.
Because of the independence of samples, relatively fewer samples are needed to
obtain reliable inferences compared to the conventional MCMC procedures.

The rest of this paper is organized as follows. We first provide a brief introduc-
tion to both structural equation modeling and Bayesian statistical inference.We
then present our new approach to Bayesian SEM. The use of prior distributions,
types of points estimates, and credible intervals are described. After that, we
evaluate the performance and illustrate the application of the new procedure us-
ing a confirmatory factor model. Finally, we conclude the paper with discussions
and future directions.

2 Introduction to SEM and Bayesian Inference

In this section, we provide a brief review of SEM and Bayesian inference in the
aim to explain some notations used in the rest of the paper. More details can be
found in the seminal works such as Gelman et al. (2013), Kruschke (2011), Lee
(2007) and Lee and Song (2012).

2.1 SEM

A classical SEM contains two components: a measurement model and a struc-
ture model. Using the LISREL (Jöreskog & Sörbom, 1993) notations, it can be
represented as follows,

x =Λ

[
η
ξ

]
+ ε

η =Bη + Γξ + δ

(1)

where η and ξ are latent dependent (endogenous) and independent (exogenous)
variables; x is a vector of their indicators; Λ is a factor loading matrix; B and
Γ are two coefficient matrices to represent the relationship among latent depen-
dent variables and between latent independent and latent dependent variables,
respectively; and ϵ a vector of unique factors and δ represents the residuals of
the structure model. The elements of ε are independent of the elements in δ, but
the elements in δ are allowed to be correlated with each other as in the original
LISREL model. For convenience, let Ψ be the covariance matrix of ε , Φ be the
covariance matrix of various latent independent variables so that cov(ξ) = Φ,
and Θ = cov(δ). We denote all the unknown parameters as θ that consists of
factor loadings Λ, path coefficients B and Γ , as well as Φ and Θ. The model
implied covariance matrix Σ(θ) is a function of the unknown parameters θ. In
order to estimate the parameter θ, both maximum likelihood (ML) estimation
and Bayesian estimation methods can be used.
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2.2 Maximum likelihood estimation of SEM

Following the tradition in structural equation modeling, the observed variable
X is assumed to follow a multivariate normal distribution. When the covariance
structure is of primary interests, the following discrepancy function is usually
minimized to obtain the maximum likelihood estimates of θ

FML = log |Σ(θ)|+ tr(SΣ−1(θ))− log |S| − p (2)

where p is the number of manifest variables and S is the sample covariance
matrix as defined previously. Newton-types of algorithms are often employed to
get ML estimates, which we refer to as θ̂ML in this study.

2.3 Bayesian estimation of SEM

In Bayesian statistical inference, the model parameter θ is not a fixed number,
but a random variable following a probability distribution. The joint distribution
of data X and model parameters θ is

P (X,θ) = P (X|θ)P (θ),

from which we can obtain the posterior distribution of θ conditional on n inde-
pendent observations on X : x1,x2, · · · ,xn,

P (θ|x1, · · · ,xn) =
Πn

i=1P (xi|θ)P (θ)

Πn
i=1

∫
θ
P (xi,θ)dθ

. (3)

Here, P (θ|x1, · · · ,xn) is called the posterior distribution of θ given data, and
Πn

i=1P (xi|θ) is the likelihood function, which is a function of θ. The term P (θ)
represents the prior distribution of θ, which summarizes the information on the
model parameters based on the prior knowledge. Because the denominator of
the above equation is the marginal distribution of data and it is a constant with
respect to model parameters θ, we use P (X) to represent it for convenience. The
posterior distribution is then

P (θ|x1,x2, · · · ,xn) =
1

P (X)
Πn

i=1P (xi|θ)P (θ)

∝ Πn
i=1P (xi|θ)P (θ) (4)

where the symbol ∝ means that a constant for scaling is removed. The posterior
distribution itself is the combination of the likelihood function and the prior.

In SEM, there are latent variables involved. To obtain Bayesian inference,
the data augmentation technique is usually adopted (Rubin, 1987; Tanner &
Wong, 1987). Instead of working on the posterior marginal distribution of the
unknown parameters, one could choose to work on the joint posterior distribution
of unknown parameters and latent variables. For instance in a LISREL model,
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the joint posterior distribution is as follows

P (Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ|x1,x2, · · · ,xn)

∝P (x1,x2, · · · ,xn|Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ)

× P (Λ,B,Γ ,Φ,Θ, σ2
k,η, ξ)

=P (x1,x2, · · · ,xn|Λ, σ2
k,η, ξ)P (η|ξ,B,Γ ,Θ)

× P (ξ|Φ)P (Λ,B,Γ ,Φ,Θ, σ2
k, k = 1, · · · , p)

with P (Λ,B,Γ ,Φ,Θ, σ2
k) being the joint prior distribution of unknown param-

eters. The adoption of such a technique does not only make the inference on
model parameters easier analytically, but also provides Bayesian inference on
latent variables directly.

In most existing Bayesian SEM studies, independent priors are used (e.g.,
Lee, 2007; Muthen & Asparouhov, 2012; Zhang et al., 2013) such that

P (Λ,B,Γ ,Φ,Θ, σ2
k) = P (Λ)P (B)P (Γ )P (Φ)P (Θ)P (σ2

k, k = 1, · · · , p) (5)

For example, the following are the types of priors used as the default priors in
the existing software such as Mplus and blavaan,

σ2
k ∼ Inverse Gamma(α0k, β0k)

Λk ∼ N(Λ0k, H0k)

Bk ∼ N(B0k, J0k)

Γ k ∼ N(γ0k,K0k)

Φ ∼ IW(T0, β0)

Θ ∼ IW(R0, ρ0)

in which σ2
k is the error variance of the kth observed variable;Λk,Bk,Γ k

are the kth row of the factor loadings and path coefficients matrices, respec-
tively; and α0k, β0k, Λ0k, H0k, B0k, J0k, γ0k,K0k, T0, β0, R0, and ρ0 are the hyper-
parameters of the prior distributions, whose values are designated based on the
prior information.

To obtain samples from the posterior distribution, Markov Chain Monte
Carlo (MCMC) iterative procedures such as Gibbs samplers are used in existing
Bayesian SEM. With the given starting values Λ0,B0,Γ 0,Φ0,Θ0, (σ2

k)
0,(η0, ξ0),

at jth iteration, sample

1. Φj from P (Φ|ξj−1,Λj−1, (σ2
k)

j−1,ηj−1,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)
2. ξj from P (ξ|Φj ,Λj−1, (σ2

k)
j−1,ηj−1,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)

3. ηj from P (η|Φj ,Λj−1, (σ2
k)

j−1, ξj ,Bj−1,Γ j−1,Θj−1, z1, z2, · · · , zn)
4. Bj from P (B|Φj ,Λj−1, (σ2

k)
j−1,ηj , ξj ,Γ j−1,Θj−1, z1, z2, · · · , zn)

5. Γ j from P (Γ |Φj ,Λj−1, (σ2
k)

j−1,ηj , ξj ,Bj ,Θj−1, z1, z2, · · · , zn)
6. Λj from P (Λ|Φj ,Γ j , (σ2

k)
j−1,ηj , ξj ,Bj ,Θj−1, z1, z2, · · · , zn)

7. Θj from P (Θ|Φj ,Γ j , (σ2
k)

j−1,ηj , ξj ,Bj ,Λj , z1, z2, · · · , zn)
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8. (σ2
k)

j from P (σ2
k|Φ

j ,Γ j ,Λj ,ηj , ξj ,Bj ,Θj , z1, z2, · · · , zn), for k = 1, 2, · · · , p.

In SEM, the above conditional posterior distributions very often do not have
analytically closed forms. Obtaining samples from the conditional distributions
can be very complex and sampling schemes, such as the Metropolis–Hastings al-
gorithms, are usually used within each step to draw samples from the conditional
posterior distributions. Let θ be the vector of all model parameters; by repeating
the above Gibbs procedure B times, where B is usually a large number, we will
obtain a chain of posterior samples θ1,θ2, · · · ,θt, · · · ,θB .

Convergence diagnostics of the Markov chains are required in Bayesian anal-
ysis (e.g., Brooks & Roberts, 1998). This is because only the part of chains
that has reached the stationary status would be representative of the posterior
distribution. However, the diagnostics logically cannot guarantee representative-
ness. In addition, the successive draws by MCMC are correlated. Although the
existence of auto-correlations does not necessarily mean bad point estimates,
but correlated samples provide much less information than the same amount of
uncorrelated ones. Higher auto-correlations usually suggest that longer chains
are needed to have reliable inferences.

To summarize, in conventional Bayesian SEM, priors are specified on individ-
ual unknown parameters. MCMC procedures are used to obtain samples from
the posterior distributions of model parameters. Convergence diagnostics of the
Markov chains are required. Athough these can be done by software through
default settings, it might lead to serious problems if researchers are not familiar
with Bayesian methods. Hence, it is still not easy to conduct Bayesian SEM in
general.

3 Proposed Bayeian SEM Approach: Prior on the
Covariance Matrix Parameter

3.1 The general framework

In this work we propose a different framework for Bayesian SEM. In this ap-
proach, a prior distribution is imposed on the space of saturated covariance
matrices:

Σ ∼ π(Σ)

The choice of prior distribution π will be discussed shortly. As usual, the obser-
vations are assumed to independently follow a multivariate normal distribution.
This implies

S|Σ ∼ W(Σ/(n− 1), (n− 1))

where n is sample size and S is the usual unbiased estimator of Σ.
It should be noted that the parameters in the covariance structure are not

explicit in the formulation above; rather, they are considered implicit functions
of variances and covariances in Σ:

θ∗ = argmin FML(Σ,Σ(θ))
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In addition, the discrepancy between the true population covariance matrix Σ
and the model implied covariance matrix Σ∗ = Σ(θ∗) is also a function of Σ:

F ∗ = min
θ

FML(Σ,Σ(θ)) = FML(Σ,Σ(θ∗))

3.2 Prior and posterior distributions of Σ

The Wishart likelihood function of Σ is given by

L(Σ|S) ∝ |Σ|−n/2 exp[−1

2
tr(nSΣ−1)]

The posterior distribution is therefore

π(Σ|S) ∝ |Σ|−n/2 exp[−1

2
tr(nSΣ−1)]π(Σ). (6)

Many different priors can be used for Σ, this study focuses on the use of Jeffreys
prior and the inverse Wishart prior.

Jeffreys prior Jeffreys prior (e.g., Gelman et al., 2013; Jeffreys, 1946) is a type
of noninformative prior, for it does not incorporate extra information other than
that from the data to the posterior distribution. For a model with a vector of
parameters ζ, its Jeffreys prior is defined through

πJ(ζ) ∝
√
det(I(ζ)) (7)

where I(ζ) is the Fisher-information matrix. A Wishart likelihood is thus

πJ(Σ) = |Σ|−(p+1)/2 (8)

where p is the number of variables. This prior distribution was firstly developed
by Jeffreys (1961) for p = 1, 2, and later was generalized to arbitrary p (e.g.,
Geisser, 1965; Geisser & Cornfield, 1963; Villegas, 1969).

With the Jeffreys prior, the posterior distribution of Σ is

π(Σ|S) ∝ |Σ|−(n+p+1)/2 exp[−1

2
tr(nSΣ−1)], (9)

which is an Inverse Wishart (IW) distribution with degrees of freedom n and
scale matrix nS, denoted as IW(n,nS) in this study.

Inverse Wishart prior The Inverse Wishart prior is a conjugate prior and is
widely used in practice. The Inverse Wishart prior IW(m,V) has the following
probability density function,

P (Σ|V,m) =
|V|m/2

2mp/2Γp(
m
2 )

|Σ|−
m+p+1

2 exp[−1

2
tr(VΣ−1)]. (10)
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Note that with Jeffreys prior, the posterior distribution of the population covari-
ance matrix is an Inverse Wishart distribution with the degrees of freedom being
the sample size n and the scale matrix being the sums of squares nS. Comparing
the form in Eqn (10) to that in Eqn (9), we notice the use of an Inverse Wishart
prior IW(m, V) in an analysis is theoretically equivalent to provide m additional
observations with sums of squares V to the estimation of Σ.

With the Inverse Wishart prior IW(m,V), the posterior distribution is also
an Inverse Wishart distribution with the following kernel,

P (Σ|S) ∝ |Σ|−n/2 exp[
1

2
tr(nSΣ−1)]|Σ|−

m+p+1
2 exp[−1

2
tr(VΣ−1)]

= |Σ|−
n+m+p+1

2 exp(−1

2
tr[(nS+V)Σ−1)]. (11)

Thus it is the Inverse Wishart distribution IW(n+m,nS+V) with the degrees
of freedom n+m and the scale matrix nS+V. Note that if we set V = mS, then
the prior represents 100m

n % of information of the data. Therefore, the amount of
information in the prior can be easily quantified.

The posterior mean and mode are nS+V
n+m−p−1 and nS+V

n+m+p+1 , respectively. For a
fixed m, both the posterior mean and mode as well as the sample covariance ma-
trix S will converge to the population covariance matrix Σ asymptotically. Thus,
when the sample size is large, all three estimates S, nS+V

n+m−p−1 , and
nS+V

n+m+p+1 are
similar. For a given n, a larger m indicates that the prior influences the posterior
distribution more.

In the existing Bayesian SEMs using an Inverse Wishart prior, the scale
matrix V is often chosen to be an identical matrix I. However, we could change
the Inverse Wishart prior to an informative prior by using a specific scale matrix
V. For instance, if we know the estimated sums of squares from another study,
we can use it as our scale matrix in the Inverse Wishart prior. In addition, if
one does not want to use prior information, one can set m = 0 and V = 0.
Note that the density function is not proper any more but the prior becomes
the Jeffreys prior. In this sense, the Jefferys prior can be regarded as a special
case of Inverse Wishart prior. Hence, in the rest of the paper, we only focus
on the Inverse Wishart prior. Thus, the posterior distribution of the population
covariance parameter is an inverse-Wishart distribution IW(n+m,nS+V).

3.3 Posterior distribution of θ

With the posterior distribution of Σ, i.e., IW(n + m,nS + V), we can further
get a posterior distribution of model parameters. Let g be a function that maps
a Σ to a θΣ . Among the so many possible candidates, we define g(Σ) as the θ
that minimizes the distance between Σ(θ) and Σ,

θΣ = g(Σ) = argmin(log |Σ(θ)|+ tr(ΣΣ−1(θ))− log |Σ|) (12)

This step is analogous to the maximum likelihood (ML) estimation of SEM
models, in which the sample covariance matrix S is used as the estimate of
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the population covariance matrix Σ. However, in Bayesian SEM, the population
covariance matrix Σ is a random variable and can take values from the space
ΩΣ . We therefore obtain a θΣ for a covariance matrix from the space ΩΣ .

By aplplying the mapping function g(·) to the posterior distribution P (Σ|S),
we could get a posterior distribution of θ called P (θ|S). Although we do not
know the exact form of P (θ|S),we could draw samples from it. To do so, we first
drawn B independent samples of Σ denoted by Σ1, Σ2, · · · , ΣB from P (Σ|S).
We then map each of such Σbs to θbs using the function g defined in (12).

θ-mean estimate With B samples θ1,θ2, · · · ,θB obtained using the procedure
described above, an estimate of posterior mean, called θ-mean, is defined as the
average of samples of θ,

θ̂mean =
1

B

B∑
b=1

θb. (13)

In addition to the θ−mean estimate, there are some other parameter esti-
mates of practical interest. Depending on how the estimates of the population
covariance matrix is constructed from its posterior distribution, we can have
different forms of estimates as discussed below.

Σ-mode estimate and Σ-mean estimate In Bayesian inference, the maxi-
mum a posteriori (MAP) estimate is of great interest, because it is the mode of
a posterior distribution. With an Inverse Wishart prior IW(m,V), the posterior
mode of Σ is Σmode=

nS+V
m+n+p+1 . We then find its corresponding θ using Equation

(12). The resulted θ is an estimate for the parameter θ and is called Σ-mode
estimate in this study.

Similarly, we can also get the posterior mean of Σ, Σmean = ns+V
m+n−p−1 and

then finds out its corresponding θ.We will call it the Σ-mean estimate in the
rest of this study. It is interesting to note that when the IW(V = 0,m = p+1),
the Σmean is the same as the sample covariance matrix and Σ−mean estimate
will concide the ML estimates of the model parameters.

Highest posterior density (HPD) credible intervals Besides the point
estimates, the posterior credible intervals can also be formed using the posterior
samples θb, b = 1, . . . B. For each element θ in the vector of parameters θ and
a desired level α between 0 and 1, the 100α% HPD credible interval is denoted
by [Lα, Uα] as the one with smallest width among all the intervals containing α
proportion of samples.

So far, we have explained how to specify priors on the population covariance
parameter, how to obtain posterior samples for model parameters θ. To obtain
posterior statistics, we introduced three point estimates and the HPD credible
intervals. Since the proposed approach specifies prior on the population covari-
ance matrix, we call it “Covariance matrix prior Bayesian SEM (CP-BSEM)” in
contrast to the traditional Bayesian SEM approaches (T-BSEM)
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4 Comparison of CP-BSEM and T-BSEM

The CP-BSEM approach has several distinct features from the T-BSEMmethod.
The first one is the prior specification. While using the CP-BSEM approach, we
specify a prior on the population covariance matrix parameter Σ. The posterior
distributions of model parameters are transformed from the posterior distribu-
tion of the population covariance matrix P (Σ|data). We can notice that the
CP-BSEM approach reduces the burden of specifying priors and posterior diag-
nostics.

However, an essential question that arises is whether the CP-BSEM approach
can lead to comparable posterior inference on θ as to a T-BSEM approach. While
using a T-BSEM approach, an implict assumption is that the model is a correct
model and there is no model misfit. In the following, we will show that the
CP-BSEM is coupling to a T-BSEM approach with a certain prior specification
when the model is a true model.

Let PIW(Σ) be the density function of the Inverse Wishart prior IW(m,V)
for the population covariance matrix parameter Σ and g(·) be a function that
maps a Σ to a θ as defined by Equation (12). When applying the g function to
the entire space of Σ, i.e., ΩΣ ,with the probability density function PIW(Σ), we
could get a probability distribution function on θ. Specifically,

g :
(
ΩΣ , PIW

)
→

(
Ωθ, PIW(Σ(θ))

)
where PIW(Σ(θ)) is the probability distribution on model parameters θ that is
transformed from PIW by the mappling function g(·).

Let P (Σ|data) be the posterior distribution and it is still an Inverse Wishart
distribution IW(m + n, nS + V). We can transform it to a distribution on θ,
named as PΣ(θ|data), using the mapping function g(·),

PΣ(θ|data) = P (g−1(θ)|data)
= P (Σ|data)
= P (data|g(Σ))PIW(Σ)

= P (data|Σ(θ))PIW(Σ(θ))

(14)

where P (data|Σ(θ)) is the likehood for given θ and PIW(Σ(θ)) is a prior dis-
tribution on model parameter θ. Therefore, the distribution on θ transformed
from the posterior distribution of Σ is actually a posterior distribution of θ with
the given prior distribution PIW(Σ(θ)) using the T-BSEM approach.

As discussed above, the proposed CP-BSEM approach can be coupled to
a T-BSEM, therefore it can achieve comparable inference with the T-BSEM
approach. Moreover, it eases up the burden of prior specification and has better
interpretation of the prior information, and it does not need posterior diagnosis.

5 Empirical Study

To show how to use the newly proposed CP-BSEM approach, we analyzed the
data from Holzinger and Swineford (1939), which includes measures on 19 tests
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from 145 eighth grade students in the Grant-White School and 156 students from
the Pasteur School. As an illustration, we focus on the analysis of the data from
the Grant-White School. The 19 tests were intended to measure four attributes:
spatial ability, verbal ability, process speed, and working memory. Therefore, we
fitted a four-factor confirmatory factor model shown in Figure 1. In identifying
the model, we fixed one factor loading for each factor to be 1 and freely estimated
the factor variances and covariances as shown in the path diagram.

Figure 1. Path diagram of the CFA model fitted to the Holzinger data. The factor
loading of each factor to its first indicator is fixed to be 1 and the factor variances are
freely estimated.

For the purpose of illustration, we analyzed the data using two different
priors. The first one is a noninformative prior IW(19, I). The second prior was an
informative prior formed based on the data from the Pasteur school. With the
noninformative prior, the posterior distribution for the population covariance
matrix is IW(145 + 19, 145SGW + I), with SGW being the sample covariance
matrix of the data from Grant-White School.

The informative prior distribution was specified as the posterior distribution
obtained based on the data from the Pasteur School with 156 participants. In
the analysis of the Pasterur School data, suppose the same noninformative prior
IW(19, I) was used, which led to the posterior distribution IW(156+19,156SP +
I), with SP being the sample covariance matrix of the data from Pasteur School.
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Using it as the prior distribution for the Grant-White school data analysis, we
redid the analysis of the Grant-White School data and the resulting posterior
distribution is IW(145 + 156 + 19, 145SGW + 156SP + I). Note that in practical
data analysis, the raw data to form the prior are often not available. Therefore,
the current way for incorporating prior information is even more practical to
substantive researchers.

The model parameter estimates using the two priors based on Σ-mean to-
gether with the 95% HPD credible intervals and the width of the intervals are
summarized in Table 1. Note that the unique factor variances are not reported to
save space. Clearly, all the 95% HPD intervals excluded 0 and, therefore, one may
conclude all the parameters were statistically significant from 0 in the frequentist
hypothesis testing sense. The parameter estimates obtained using noninforma-
tive and informative priors were quite different. In addition, the HPD intervals
using the informative prior were narrower consistently than those from using the
noninformative prior. According to our simulation, when the IW(19, I) was used,
the estimates should be close to MLE. Therefore, the difference was because of
the use of prior information in the Bayesian estimation process. The choice be-
tween the two sets of estimates depends on whether we wanted to use the prior
information or not. If the inference was supposed to be based on only the data
from the Grant-White School, the noninformative prior should be used. If the
inference was designed to also combine the information from the Pasteur School,
the informative prior should be adopted. This empirical example illustrated that
it is possible either to use or not to use prior information.

6 Simulation Study

The purpose of the simulation study are twofold. First, we would like to evaluate
the performance of the CP-BSEM approach. We will compare the three types
of point estimates in terms of how well they could recover the true parameter
values. We will also evaluate the HPD credible intervals to see whether it has
good coverage rates. Second, we will compare the CP-BSEM approach with two
other competing approaches: The ML approach and the T-BSEM approach.
Therefore, we will also report the results of the ML method and the C-BSEM
approach with default settings, which are implemented in R packages lavaan
(Rosseel, Oberski, Byrnes, Vanbrabant, & Savalei, 2013) and blavaan (Merkle &
Rosseel, 2015).

6.1 Simulation design

The simulation study is designed based on the 4-factor confirmatory factor model
with 19 normally distributed indicators as used in the empirical data analysis
presented later. Let Z be the normally distributed random vectors of 19 variables
with mean 0 and the four latent factors be f = (f1, f2, f3, f4)

′. The factor model
is

Z = Λf + ε (15)
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where Λ is a 19 by 4 factor loading matrix, and ε = (ε1, ε2, · · · , ε19)′ is the
unique factor score. The factor loading matrix has the following form,

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


with λ1 = (1, .693, .785, .978)′ , λ2 = (1, 1.015, 1.036, 0.861, 1.043)′, λ3 = (1, 1.069,
1.075, 1.149)′, λ4 = (1, 1.004, 1.156, 1.218, 1.259, 0.936)′. The covariance matrix
of the latent factors is

Φ =


.473 .328 .260 .224
.328 .646 .243 .205
.260 .243 .420 .201
.224 .205 .201 .264

 ,

and the uniqueness factor covariance matrixΨ is a diagonal matrix with diagonal
elements (0.517, 0.763, 0.699, 0.537, 0.344, 0.325, 0.297, 0.511, 0.287, 0.570, 0.511,
0.505, 0.436, 0.726, 0.724, 0.637, 0.598, 0.572, 0.759). All parameter values are
chosen to reflect the parameter estimates in the empirical data analysis.

Based on the population model, we generate 1000 data sets for each of the
following sample sizes: 100, 150, 250, 300 and 500. Then, we fit the model to the
generated data using ML, two-stage Bayesian, and traditional Bayesian meth-
ods. In the two-stage Bayesian method, the “noninformative” prior IW(19, I)
is used since we want to evaluate the parameter bias and estimation efficiency.
In addition, 10000 covariance matrices are sampled independently from the pos-
terior distribution of Σ to form the credible intervals. For traditional Bayesian
estimates, the R package blavaan is used and the following default priors are
adopted in the estimation:

factor loadings λj,k
iid∼ N(0, 104)

factor covariance matrix Φ ∼ IW(5, I)

unique factor variances σ2
k

iid∼ IG(1, 0.5)

where λj,k represents the factor loading from the jth factor to the kth indicator;
σ2
k is the unique factor variance of the kth indicator. Finally, MLE is obtained

using the R package lavaan.

6.2 Evaluation criteria

To evaluate the performance of each method, we report the relative bias, coverage
rates of the HPD credible intervals/confidence intervals, and mean squared errors
for the model parameters.
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Relative bias Let θ represent a parameter or its true value. The relative bias
is defined as the percent ratio of the discrepancy between the estimate and the
true value with respect to the true value of a parameter:

relative biasθ =

{
θ̄−θ
|θ| × 100% if θ ̸= 0

(θ̄ − θ)× 100% otherwise
, (16)

where θ̄ is the average of the estimates in R, which is 1000 successful replications
in our simulation,

θ̄ =
1

R

R∑
r=1

θ̂r.

with θ̂r denoting the parameter estimate in the rth replication.

Mean squared error (MSE) The mean squared errors (MSE) are calculated
as,

MSEθ =
1

R

R∑
r=1

(θ̂r − θ)2

=
1

R

R∑
r=1

(θ̂r − θ̄)2 +
1

R

R∑
r=1

(θ̄ − θ)2

(17)

which is the sum of the variance and squared biases of the parameter estimates.

Coverage rate (CR) The coverage rate of the 95% HPD credible interval
for Bayesian and confidence interval for MLE represents the proportion of the
intervals covering the true parameter value. Mathematically, if [Lr

0.95, U
r
0.95] is

the interval in the rth replication, the coverage rate (CR) is calculated as

CRθ =
1

R

R∑
r=1

I(θ ∈ [Lr
0.95, U

r
0.95]).

where I(·) is the index function with value 1 if the interval covers the true
value and 0, otherwise. A CR around 0.95 implies that the defined 95% interval
performs well.

6.3 Simulation results

We now present the results on relative biases, coverage rates, and mean squared
errors from our simulation. There are 44 parameters grouped into three types –
15 factor loadings, 19 unique factor variances, and 10 factor covariances. Since
we found that the influence of estimation methods on each type of parameters
is similar, we only report the average relative biases, coverage rates, and mean
squared errors for the three types of parameters to save space. For relative bias,
we calculate the average based on the absolute values because bias can be positive
or negative.
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Average absolute relative bias The average absolute relative biases for factor
loadings, factor covariance matrix and unique factor variances are provided in
Table 2. For the two-stage Bayesian, the three types of parameter estimates
are presented. For the traditional Bayesian, the posterior mean and median are
obtained using blavaan.

Overall, the bias decreased as the sample size increased for parameter esti-
mates. For the factor loadings, the bias for Σ-mean estimates was small even
when the sample size was 100 and was almost the same as the ML estimates.
θ-mean had larger bias than Σ-mean estimates but overall was better than the
traditional method. Although Σ-mode estimates had small bias for factor load-
ings but had large bias for factor covariance and unique factor variances. This
indicates that in using the two-stage Bayesian for parameter estimates, either
Σ-mean or θ-mean estimates should be preferred.

Comparing the two-stage method with the traditional Bayesian method, it
was clear that the two-stage method provided less biased parameter estimates
using the chosen prior. This is because we had better control of the prior infor-
mation in the two-stage method.

Table 2. Absolute relative biases for factor loadings, factor covariances, and unique
factor variances

CP-BSEM T-BSEM

N ML Σ-mode Σ-mean θ-mean Mean Median

Factor loading
100 2.421 2.419 2.419 8.300 8.691 6.87
150 1.357 1.357 1.357 3.329 6.246 4.969
200 0.926 0.926 0.926 2.306 4.941 3.949
250 0.958 0.958 0.958 1.992 4.295 3.483
300 0.748 0.748 0.748 1.579 3.626 2.940
500 0.461 0.461 0.461 0.924 2.354 1.933

Factor covariance
100 1.263 28.694 0.733 1.853 9.706 12.613
150 1.101 20.181 1.366 1.885 6.37 8.393
200 0.99 16.882 0.690 1.142 6.228 7.752
250 0.698 13.764 0.598 0.891 4.969 6.199
300 0.441 11.575 0.435 0.712 4.086 5.118
500 0.342 7.115 0.403 0.535 2.502 3.124

Unique factor variance
100 2.352 28.294 0.915 1.069 2.292 1.242
150 1.573 20.813 0.607 0.858 1.535 0.968
200 1.165 16.447 0.542 0.621 1.199 0.774
250 0.993 13.655 0.329 0.439 0.921 0.57
300 0.703 11.53 0.378 0.321 0.896 0.493
500 0.49 7.315 0.228 0.258 0.503 0.364

Note. A bold numbers means an average absolute relative bias larger than 10% and an
Italic number represents an average absolute relative bias larger than 5% but smaller
than 10%.
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Mean squared error The mean squared errors for the parameters are pro-
vided in Table 3. Similar to the bias, the MSE also decreased as the sample size
increased for all parameters regardless of the estimation methods. The mean
squared errors were mostly comparable with two notable observations. First, the
MSE for MLE and Σ-mean were almost identical. This again suggested the con-
trol of prior information. Second, the MSE from the traditional Bayesian method
was smaller than MLE. This is because the use of the prior information. There-
fore, in terms of both bias and MSE, the two-stage method has better control of
the influence of the prior information.

Table 3. Mean squared errors for factor loadings, factor covariances, and unique factor
variances

MSE×100 CP-BSEM T-BSEM

N ML Σ-mode Σ-mean θ-mean Mean Median

Factor loading
100 5.742 5.737 5.737 20.775 5.271 4.765
150 3.555 3.553 3.553 4.377 3.415 3.147
200 2.466 2.466 2.466 2.792 2.517 2.343
250 2.027 2.027 2.027 2.220 2.078 1.951
300 1.636 1.635 1.635 1.763 1.687 1.592
500 0.941 0.941 0.941 0.979 0.984 0.942

Factor covariance
100 0.953 1.517 0.972 0.970 0.816 0.859
150 0.672 0.940 0.679 0.682 0.593 0.613
200 0.497 0.698 0.500 0.501 0.463 0.477
250 0.388 0.528 0.391 0.392 0.362 0.372
300 0.332 0.426 0.335 0.336 0.313 0.319
500 0.197 0.236 0.198 0.198 0.190 0.194

Unique factor variance
100 0.935 3.061 0.935 0.910 0.924 0.891
150 0.608 1.783 0.608 0.602 0.605 0.590
200 0.459 1.196 0.459 0.453 0.456 0.449
250 0.367 0.874 0.366 0.364 0.365 0.360
300 0.306 0.667 0.307 0.304 0.306 0.303
500 0.179 0.328 0.180 0.179 0.179 0.179

Note .The reported numbers are the average MSEs multiplied by 100.

Coverage rate The coverage rates for model parameters are displayed in Table
4. Overall, the coverage rates were close to the nominal level 0.95 except for the
factor covariances when the traditional Bayesian method was used.

In summary, our two-stage Bayesian method can obtain results similar to
ML method by controlling the prior information. Comparing to the T-BSEM
method, it also offers better control of prior information.
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Table 4. Average coverage rates for factor loadings, factor covariance parameters, and
unique factor variances

N ML CP-BSEM T-BSEM

100 94.29 95.21 94.43
150 94.43 95.03 94.48

Factor loading 200 94.85 95.03 94.54
250 94.61 94.98 94.60
300 94.86 94.90 94.57
500 95.41 95.18 95.01

100 92.70 94.71 90.34
150 93.36 94.47 91.27

Factor covariance 200 93.41 94.33 91.30
250 94.35 95.21 92.68
300 93.82 94.39 92.28
500 94.73 94.93 93.61

100 92.22 94.53 95.30
150 93.31 94.72 95.35

Unique factor variance 200 93.65 94.70 95.35
250 93.87 94.52 94.97
300 94.10 94.67 95.08
500 94.46 94.86 95.18

Note. A bold number represents an average coverage rate smaller than 92.5%.

7 Discussion and Conclusion

In traditional Bayesian SEM, a prior needs to be specified for each individual
or individual set of model parameters. Due to the complexity of SEM models
and the diverse features of different types of model parameters, specifying priors
is not an easy task, especially if one would like to control or utilize prior infor-
mation. To get parameter estimates, MCMC procedures are often used and the
convergence diagnostics of MCMC samples are always required, which is usually
hard for researchers conducting applied researches.

In the present study, an alternative Bayesian procedure, i.e., CP-BSEM, is
proposed to assist researchers conducting Bayesian statistical inference of SEMs.
It has several distinct benefits over the traditional Bayesian procedures. First, the
prior information is only required for the population covariance matrix parameter
Σ. Using the Inverse Wishart prior, we can control the prior information ranging
from noninformative to very informative. The information can be conveniently
controlled by varying its degrees of freedom and scale matrix. For instance, when
both the degrees of freedom and scale matrix are set at 0, it becomes the Jeffreys
prior for covariance matrix analysis with normal data. Increasing the degrees of
freedom and/or using a special scale matrix, we could make the Inverse Wishart
prior informative. The amount of information can also be directly compared to
the data at hand.

Unlike the traditional Bayesian SEM, the CP-BSEM procedure does not re-
quire convergence diagnostics. With the use of the Inverse Wishart prior, the
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posterior of the population covariance matrix still follows an Inverse Wishart
distribution. Therefore, independently and identically distributed samples of co-
variance matrix can be drawn from the posterior distribution directly. The corre-
sponding samples of parameter estimates are thus independently and identically
distributed, too. Since the samples are identically distributed, convergence diag-
nostics are not needed any more. The independence among the samples enables
us to use relatively fewer samples to get reliable inferences than the traditional
Bayesian SEM.

Results from our simulation study show that the CP-BSEM procedure works
well in estimating structural equation models in general. Among the three point
estimates, the Σ-mean estimates, obtained by fitting the SEM model to the
posterior mean of the covariance matrix, is recommended. They have ignoble
relative biases (< 5%) with results close to MLE. In addition, the credible inter-
val has good coverage rates. We also notice that the traditional Bayesian SEM
had slightly smaller MSEs than our two-stage procedure and MLE. This is due
to more prior information involved in their prior distributions. By changing the
prior distribution, traditional Bayesian SEM can also reduce the influence of
prior distributions. However, as we have pointed out, controlling the prior in-
formation in traditional Bayesian analysis can be difficult, especially for applied
researchers.

Compared to the traditional Bayesian method, the performance of the CP-
BSEM procedure is less affected by the model complexity. Because the prior
information is put on the population covariance matrix, it is independent to the
model structure. Therefore, we could extend our results to a more general SEM
model.

The CP-BSEM procedure is flexible to control prior information. In our em-
pirical example, we demonstrated the use of informative prior, which was the
posterior distribution of the covariance matrix from another study, also an In-
verse Wishart distribution. Hence, the CP-BSEM approach can be used to con-
duct meta-analysis by combining several related studies in the SEM framework.
Instead of combing model parameter estimates of every single study, one could
combine the covariance matrices of different studies, in which the posterior dis-
tribution of the previous study will work as the prior distribution in the new
study. One immediate benefit is that the inference will focus on the overall co-
variance matrix, but not the individual model parameters in each study. As a
result, it has special advantages in combining studies without a common model
structure.

The CP-BSEM approach is closely related to the parametric bootstrap tech-
nique for SEM. Covariance matrices are drawn from its posterior distribution
repeatedly, and samples of parameter estimates are obtained by minimizing the
descrepancy between the model implied covariance matrix to the sampled co-
variance matrices. The HPD credible intervals formed based on the samples of
model parameters are, therefore, have the similar meaning to the bootstrap con-
fidence intervals. However, in bootstrap, no prior information is allowed but the
CP-BSEM approach can easily utilize prior information. Therefore, it could be
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particularly useful, when the original data set has a small sample size and the
actual model parameters estimates are hard to obtain.

Even with the advantages, we want to note that the CP-BSEM approach can
still not replace the traditional Bayesian SEM. For example, currently, missing
data and non-normal data cannot be handled yet. Therefore, to increase the
impact of the CP-BSEM and to help the adoption of the Bayesian methods,
the CP-BSEM approach can be expanded in the following aspects. First, the
present version of CP-BSEM procedure focuses on SEMs without mean struc-
tures. Extending the method to include the mean structure can make it possible
to conduct growth curve analysis and multiple group analysis. Second, how to
handle missing data in the CP-BSEM procedure should be investigated. Third,
ways should be evaluated to handle non-normal data in the CP-BSEM proce-
dure. Fourth, in traditional Bayesian SEM, deviance information criterion and
posterior predictive p-values have been used for model fit evaluation. They can
also be incorporated in the CP-BSEM approach.
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