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Abstract. Ordinal variables, such as those measured on a five-point Lik-
ert scale, are ubiquitous in the behavioral sciences. However, machine
learning methods for modeling ordinal outcome variables (i.e., ordinal
classification) are not as well-developed or widely utilized, compared to
classification and regression methods for modeling nominal and contin-
uous outcomes, respectively. Consequently, ordinal outcomes are often
treated “naively” as nominal or continuous outcomes in practice. This
study builds upon previous literature that has examined the predictive
performance of such näıve approaches of treating ordinal outcome vari-
ables compared to ordinal classification methods in machine learning.
We conducted a Monte Carlo simulation study to systematically assess
the relative predictive performance of an ordinal classification approach
proposed by Frank and Hall (2001) against näıve approaches according
to two key factors that have received limited attention in previous liter-
ature: (1) the machine learning algorithm being used to implement the
approaches and (2) the class distribution of the ordinal outcome vari-
able. The consideration of these important, practical factors expands
our knowledge on the consequences of näıve treatments of ordinal out-
comes, which are shown in this study to vary substantially according to
these factors. Given the ubiquity of ordinal measures coupled with the
growing presence of machine learning applications in the behavioral sci-
ences, these are important considerations for building high-performing
predictive models in the field.

Keywords: Ordinal classification · Machine learning · Predictive perfor-
mance · Class imbalance · Measurement scale

1 Introduction

In supervised learning, ordinal classification or equivalently ordinal regression,
refers to a classification task where classes of the categorical outcome variable
have an inherent ordering. This distinguishes it from nominal multi-class clas-
sification, where the classes are unordered. Ordinal classification is also distinct
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from regression where the outcome variable is continuous, because the numeric
labels of the ordinal classes do not indicate equal spacing between adjacent
classes. Ordinal measures are ubiquitous in a variety of disciplines, including
the behavioral sciences. For example, human response data are often captured
in Likert-type scales, such as those with response levels ranging from strongly
disagree to strongly agree or poor to excellent.

Although not as well-developed and well-studied compared to nominal clas-
sification and regression (Ben-David, Sterling, & Tran, 2009; Gutierrez, Perez-
Ortiz, Sanchez-Monedero, Fernandez-Navarro, & Hervas-Martinez, 2016), ma-
chine learning methods for ordinal classification have been developed by many
researchers. Some of these methods are modified versions of specific algorithms
developed to handle ordinal outcome variables. This has been particularly pop-
ular with support vector machines (Chu & Keerthi, 2007; Crammer & Singer,
2005; Gu, Sheng, Tay, Romano, & Li, 2015; Herbrich, Graepel, & Obermayer,
2000) and neutral networks (Cheng, Wang, & Pollastri, 2008; Deng, Zheng, Lian,
Chen, & Wang, 2010; Fernandez-Navarro, Riccardi, & Carloni, 2014). Rather
than modifying specific algorithms, researchers have also developed ordinal clas-
sification methods that can be implemented with multiple algorithms (Cardoso
& da Costa, 2007; Frank & Hall, 2001; Lin & Li, 2012). For example, Frank and
Hall (2001) proposed an approach to decompose an ordinal classification task
into multiple binary classification tasks while retaining the ordinal information
among classes, where any algorithm can be used as the base binary classifier,
making it an algorithm-independent approach.

However, in practice, without strong familiarity with ordinal classification
methods, machine learning researchers and practitioners may choose to imple-
ment a more “näıve” and easier approach to modeling ordinal outcome variables
(Gutierrez et al., 2016). This involves casting the ordinal outcome variable as
a nominal variable, in which case the task at hand reduces to nominal multi-
class classification. Similarly, the ordinal outcome variable may be cast as a
continuous variable, in which case the task at hand becomes regression. To ob-
tain integer-valued predictions in this case, some form of post-processing of the
real-valued predictions, such as rounding, may be required (Kramer, Widmer,
Pfahringer, & de Groeve, 2000). We refer to these näıve treatments of ordinal
outcome variables as näıve classification and näıve regression, respectively.

Despite the developments in the ordinal classification literature, there are sev-
eral possible reasons why researchers and practitioners may choose to implement
a näıve approach. Bürkner and Vuorre (2019) discuss how it is common practice
to treat ordinal measures as if continuous in the context of traditional statistical
methods (e.g., t-tests, ANOVA, ordinary least squares regression). They pro-
vide several reasons for this, including hesitation due to perceived complexity
in implementation or interpretation of ordinal approaches, difficulty in deciding
which ordinal model to choose, or skepticism from journal editors and reviewers
for using a “non-standard” approach (Bürkner & Vuorre, 2019). Although their
discussion was in the context of traditional statistical methods, these reasons
conceivably apply to machine learning contexts as well. Other factors may also
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include unfamiliarity or unavailability of accessible software to readily implement
ordinal classification methods.

Given that näıve treatments of ordinal outcome variables are not uncommon,
it is important to understand the consequences of implementing such näıve ap-
proaches. In the statistical literature, the consequences of treating ordinal mea-
sures as if continuous, rather than nominal, has specifically received attention.
Liddell and Kruschke (2018) found this practice to be particularly common in
psychological research, after surveying articles published in several highly ranked
psychology journals. Motivated by this finding, the authors showed how system-
atic errors in analyses can arise from treating ordinal measures as continuous,
including inflated Type I and Type II errors and misleading effect size esti-
mates, and they suggest using models that allow for a proper treatment of or-
dinal variables (Liddell & Kruschke, 2018) . In the machine learning literature,
the analogous investigation of the consequences of using näıve approaches are
perhaps studies that compare ordinal classification methods against näıve clas-
sification or näıve regression in terms of predictive performance (Ben-David et
al., 2009; Cardoso & da Costa, 2007; Chu & Keerthi, 2007; Frank & Hall, 2001;
Herbrich et al., 2000; Kramer et al., 2000). In such studies, the näıve approaches
are typically, although not always, shown to have lower predictive performance
compared to an ordinal classification method, given that näıve approaches give
a less than ideal treatment of ordinal variables by discarding the ordinal infor-
mation (näıve classification) or assuming equal spacing between adjacent classes
(näıve regression).

The present study builds upon this literature by investigating how ordinal
classification methods perform relative to näıve classification and näıve regres-
sion according to key factors, including the machine learning algorithm being
used to implement the approaches, the number of classes, and the degree of class
imbalance present in the ordinal outcome variable. We do so by conducting a
Monte Carlo simulation study to systematically evaluate predictive performance
across different treatments of ordinal outcome variables, each implemented with
multiple machine learning algorithms and crossing different levels of class im-
balance with different numbers of classes in the ordinal outcome variable. This
investigation is related to, but extends in important ways, previous studies in
this line of research. For example, Gutierrez et al. (2016) examined the perfor-
mance of näıve approaches and various ordinal classification methods on several
datasets with varying numbers of ordinal classes. However, näıve approaches were
only implemented using support vector machines, and varying degrees of class
imbalance in the ordinal outcome variable were not varied or examined system-
atically with the number of classes. Cardoso and da Costa (2007) examined the
performance of their data reduction method for ordinal classification compared
to näıve approaches, implemented with support vector machines and neural net-
works. However, their study also did not systematically examine the impact of
class distributions in the ordinal outcome variable. Similarly, Ben-David et al.
(2009) used logistic regression and support vector machines to compare the per-
formance of ordinal classification methods based on these algorithms compared



76 H. Suzuki and O. Gonzalez

to näıve classification. However, they did not examine class distributions or the
performance of näıve regression using these same algorithms.

Researchers and practitioners routinely work with multiple algorithms in a
given task, and many ordinal variables in real data tend to exhibit class imbal-
ance (Baccianella, Esuli, & Sebastiani, 2009). As such, investigating how predic-
tive performance compares across different treatments of the ordinal outcome
variables in light of these practical considerations would expand our knowledge
on the consequences of resorting to a näıve approach under various conditions
and encourage more informed choices around the treatment of ordinal variables
in practice.

2 Methods

We compared the predictive performance of three treatments of ordinal out-
come variables: as a nominal variable in näıve classification, as a continuous
variable in näıve regression, and as an ordinal variable in an ordinal classifi-
cation method. For the ordinal classification method, we chose to employ the
algorithm-independent approach proposed by Frank and Hall (2001). We chose
this approach because it can be implemented with multiple algorithms, which
allows for more intuitive comparisons in the relative predictive performance of
the ordinal classification method across algorithms. Moreover, the approach is
simple and intuitive. Given the practical barriers to employing ordinal classifi-
cation methods discussed above, it may be most useful to examine the relative
performance of an ordinal classification method that practitioners are most re-
alistically likely to implement and that does not require much heavy lifting from
näıve approaches.

2.1 Frank and Hall (2001) Approach

Given an ordinal classification task with k ordinal classes, the Frank and Hall
(2001) approach (“FH approach” hereafter) involves training k − 1 binary clas-
sifiers on k − 1 modified copies of the original dataset. The jth binary classifier
is trained on a modified outcome variable that is a binary indicator for whether
or not the original outcome is greater than the jth ordered class. The predictors
remain unchanged. For example, with k = 3 (class 1 < class 2 < class 3), two
binary classifiers are trained, where the first classifier predicts whether or not
the outcome is greater than class 1 (i.e., class 2 or 3), and the second classifier
predicts whether or not the outcome is greater than class 2 (i.e., class 3). Using
the predicted probabilities from the k − 1 binary classifiers, the predicted prob-
ability that an observation belongs to each of the k classes is obtained in the
following manner:

P (Y = Class 1|X) = 1− P (Y > Class 1|X)
P (Y = Class k|X) = P (Y > Class k|X)

P (Y = Class j|X) = P (Y > Class j − 1|X)− P (Y > Class j|X),
j = 2, . . . , k − 1
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Once the k predicted probabilities are calculated per observation, an observation
is assigned to the class with the greatest predicted probability.

In their study, Frank and Hall (2001) demonstrated this approach on many
benchmark regression datasets by discretizing the continuous outcomes into k
balanced ordinal classes. They used C4.5 as the base algorithm and evaluated
predictive performance with accuracy (1 minus misclassification rate). Using k
= 3, 5, and 10, they found higher accuracy associated with the FH approach
across most datasets, compared to näıve classification (i.e., C4.5 treating the
outcome as a nominal variable). They also found this performance gap between
the FH approach and näıve classification to increase with k. The present study
extends these evaluations by implementing the FH approach with more algo-
rithms besides C4.5, considering imbalanced ordinal classes, comparing the pre-
dictive performance of the FH approach against näıve regression in addition to
näıve classification, and considering additional performance metrics besides the
misclassification rate.

2.2 Algorithms Used

We implemented each of the three approaches (näıve classification, näıve re-
gression, and FH approach) with two machine learning algorithms: classification
and regression trees (CART; Breiman, Friedman, Olshen, & Stone, 2017) and
random forests (Breiman, 2001). These tree-based algorithms have become in-
creasingly popular among researchers in many disciplines including psychology,
due to their desirable qualities such as ease of application and interpretability
(Strobl, Malley, & Tutz, 2009). Despite their popularity, these algorithms’ per-
formance across näıve and ordinal classification methods has not been examined
as extensively compared to other algorithms, such as support vector machines
and neural networks.

2.3 Performance Metrics

Although the misclassification rate is a popular performance metric for classifi-
cation tasks, it is not ideal for ordinal classification tasks because it gives equal
penalty to all types of misclassifications (Gaudette & Japkowicz, 2009). For ex-
ample, misclassifying a strongly disagree response as disagree is not as detrimen-
tal of an error as misclassifying a strongly disagree response as strongly agree. As
such, we used two additional performance metrics besides the misclassification
rate to evaluate the approaches: mean absolute error (MAE) and Spearman’s
correlation coefficient. With observed numeric class labels y and predicted nu-
meric class labels ŷ, mean absolute error is calculated as N−1

∑N
i=1 |yi − ŷi|.

Spearman’s correlation coefficient is calculated as 1− 6
∑N

i=1 Di
2/[N(N2 − 1)],

where Di refers to the difference between the rank order of yi and that of ŷi.
These measures better account for the severity of error based on the ordinal
information by using the numeric labels of the ordinal classes. These metrics
have also been used in several studies that have examined the performance of
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ordinal classification approaches (Cardoso & da Costa, 2007; Gutierrez et al.,
2016; Kramer et al., 2000).

In addition to evaluating overall predictive performance of each approach,
we also evaluated the predictive performance of each approach at the class-level.
For class-level performance, we examined the F1 score per class. The F1 score
captures a balance of precision (proportion of true positives out of predicted
positives) and recall (proportion of true positives out of actual positives) and
can be calculated as 2∗Precision ∗Recall/(Precision+Recall). A “positive”
case in this context refers to an observation belonging to a given class, and a
“negative” case refers to an observation belonging to all other classes.

2.4 Simulation Design and Analysis Plan

To investigate our research question, we conducted Monte Carlo simulations
using the R statistical software (R Core Team, 2022). There were two simulation
factors: the number of ordinal classes in the outcome variable (k = 3, 5, 7)
and the degree of class imbalance present in the ordinal outcome variable (we
termed them balanced, slightly imbalanced, imbalanced class distributions). This
gave a total of nine conditions, and each condition contained 500 replications.
For each replication, we simulated a dataset of 2,000 observations using the
mlbench.friedman1 function from the mlbench package (Leisch & Dimitriadou,
2021). This generates a benchmark regression dataset with ten predictors (x1

through x10) from a uniform distribution bounded by 0 and 1 and an error term
from the standard normal distribution. Then, a subset of these predictors is used
to generate a continuous outcome variable y, where

y = 10 sin(x1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e

which we discretized into k balanced, slightly imbalanced, or imbalanced classes,
depending on the condition. For the balanced condition, each class contained 1/k
of the observations. For the slightly imbalanced condition, the jth class contained
1/k + [j − 0.5(k + 1)]/k2 of the observations. For the imbalanced condition, the
jth class contained

2−(k−1), j = 1
2−(k−j+1), j = 2, . . . , k

of the observations. To better visualize these proportions, Figure 1 presents the
class distributions that result from the above rules for k = 3, 5, and 7, along with
measures of skewness and kurtosis for each distribution. Note that these rules
can be used to generate imbalanced and slightly imbalanced class distributions
for any value of k.

In each dataset, we implemented the two algorithms, CART and random
forest, using naive classification, näıve regression, and the FH approach, for a
total of six models per replication. Models were built using the caret package
(Kuhn, 2022), by calling the rpart (Therneau & Atkinson, 2022) and rf (Liaw &
Wiener, 2002) methods for CART and random forest, respectively. We trained
these models and tuned hyperparameters with five-fold cross validation using
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(a) Slightly imbalanced condition

(b) Imbalanced condition

Figure 1: Class distributions for the slightly imbalanced (Panel a) and imbalanced
(Panel b) conditions
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50% (N = 1,000) of the dataset and evaluated their predictive performance on
the remaining 50% (N = 1,000) of the dataset. Note that for näıve regression,
real-valued predictions were rounded to the nearest class. For CART, we tuned
the complexity parameter, which is the factor by which any additional split
attempted in the tree must decrease the prediction error. For random forests, we
tuned the number of predictors that are randomly selected as split candidates at
each split in a tree. For each of the six models per replication, we recorded the
misclassification rate, MAE, and Spearman’s correlation as measures of overall
predictive performance, and we recorded the F1 score for each of k classes as a
measure of class-level performance.

Within each algorithm in each condition, we examined the mean difference in
overall predictive performance (for each of the three overall performance metrics)
between the FH approach and näıve classification and between the FH approach
and näıve regression. We first qualitatively examined the patterns by plotting the
distributions of the performance metrics via boxplots. We then conducted paired
samples t-tests and calculated effect sizes of the paired differences in performance
across the approaches for each algorithm and condition to quantitatively exam-
ine patterns. We similarly calculated effect sizes for the paired differences in
class-level performance between the FH approach and näıve approaches for each
algorithm and condition.

In addition to the simulation study, we demonstrate the practical implemen-
tation of the FH approach in Appendix A, which contains step-by-step R code
to carry out the FH approach using CART and random forests (but can easily
be adapted to use any other algorithm) with an empirical example, as well as
the resulting overall and class-level performance of the FH and näıve approaches
on this empirical dataset.

3 Results

The overall performance results using Spearman’s correlation and MAE led to
largely the same conclusions. For brevity, we focus our discussion on the results
using Spearman’s correlation. There were a few differences in results when eval-
uating overall performance using the misclassification rate, which we summarize
towards the end of this section. Results based on MAE and the misclassification
rate can be found in Appendix B.

3.1 CART Implementation

The CART implementation produced results that extend Frank and Hall’s (2001)
findings well. Figure 2 presents the distribution of the six models’ predictive per-
formance in terms of Spearman’s correlation across the 500 replications. Each
square subplot represents a condition defined by the number of classes k and the
degree of class imbalance. Qualitatively, Figure 2 shows that with CART, the FH
approach outperformed (i.e., higher Spearman’s correlations) both näıve classi-
fication and näıve regression across all nine conditions, including the imbalanced
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and slightly imbalanced conditions. Further, the performance gaps between the
FH and näıve approaches generally appear to grow with a larger k within each
level of class imbalance.

To examine these observations quantitatively, we conducted paired samples
t-tests within each set of 500 replications (i.e., within each of the nine conditions)
per algorithm to compare the overall performance of the FH approach to each of
the naive approaches. The mean paired difference (and standard deviation of the
difference) in Spearman’s correlation for each algorithm in each condition are
presented in Table 1, as well as the effect sizes in Cohen’s d for those differences
(Cohen, 1988). Differences were calculated as Spearman’s correlation of the FH
approach minus Spearman’s correlation of the näıve approaches. Thus, a positive
mean difference and effect size indicate the FH approach performing better, and
a negative mean difference and effect size indicate the FH approach performing
worse compared to the näıve approaches. Effect sizes are also visualized in Figure
3.

Table 1: Mean paired differences (and standard deviations) in overall predictive
performance in terms of Spearman’s correlation between the FH approach and
naive approaches for each algorithm in each simulation condition; effect sizes of
the paired differences
k Degree of class balance CART

Näıve Classification Näıve Regression
Balanced .015 (.023)*; .674 .035 (.025)*; 1.388

3 Slightly Imbalanced .021 (.024)*; .850 .037 (.027)*; 1.384
Imbalanced .023 (.028)*; .797 .038 (.027)*; 1.425

Balanced .047 (.023)*; 2.079 .061 (.022)*; 2.788
5 Slightly Imbalanced .049 (.022)*; 2.209 .048 (.019)*; 2.534

Imbalanced .033 (.028)*; 1.170 .058 (.025)*; 2.267

Balanced .066 (.026)*; 2.527 .059 (.015)*; 3.836
7 Slightly Imbalanced .069 (.026)*; 2.681 .063 (.018)*; 3.547

Imbalanced .036 (.029)*; 1.212 .065 (.027)*; 2.386

Random Forest
Näıve Classification Näıve Regression

Balanced -.003 (.010)*; -.315 -.001 (.012); -.068
3 Slightly Imbalanced -.002 (.010)*; -.179 .003 (.011)*; .297

Imbalanced .002 (.011)*; .218 .006 (.014)*; .426

Balanced -.001 (.008)*; -.167 -.027 (.008)*; -3.234
5 Slightly Imbalanced .000 (.008); -.014 -.023 (.008)*; -2.737

Imbalanced -.002 (.013); -.127 -.018 (.015)*; -1.211

Balanced -.001 (.008); -.082 -.038 (.007)*; -5.149
7 Slightly Imbalanced .001 (.009); .130 -.036 (.008)*; -4.343

Imbalanced -.003 (.014)*; -.178 -.024 (.017)*; -1.471

Note. *p < .05
36

(Bonferroni-corrected); bold indicates moderate or large effect size
(|d| > 0.5). Positive mean differences and effect sizes indicate the FH approach per-
forming better than the näıve approach.
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Table 1 shows that for the CART implementation, as qualitatively observed
in Figure 2, the FH approach had significantly better performance than both
näıve approaches. This is indicated by the mean differences in predictive perfor-
mance being positive and significant (p < .05

36 ; Bonferroni-corrected alpha level
for multiple testing) for both näıve classification and näıve regression in all nine
conditions. Further, effect sizes were all at least in the moderate range (d > .5),
and effect sizes grew more positive with a larger k, as illustrated in Figure 3.
Overall, we observed comparable effect sizes between balanced and slightly im-
balanced classes, while imbalanced classes tended to have smaller effect sizes.
These results indicate that with CART, the FH approach resulted in improved
predictive performance over both näıve approaches, and that this performance
boost was most prevalent in conditions with more classes and more class balance.

Figure 2: Distribution of overall predictive performance (Spearman’s correlation)
of the six models across replications in each simulation condition

Figure 4(a) plots the effect sizes of the paired differences in class-level F1
scores between the FH and näıve approaches for the CART implementation in
each condition. It is interesting to note that in all conditions, not all class-level
effect sizes were positive and at least moderate (d > .5), meaning class-level
performance was only higher for the FH approach in some classes, even though
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overall performance was higher. For example, there appeared to be a pattern
in nearly all conditions, where there was a negligible difference in performance
between the FH approach and näıve classification for the “end” classes (i.e.,
classes 1 and k), as indicated by near-zero effect sizes, but the FH approach out-
performed näıve classification for the “middle” classes (i.e., classes 2, . . . , k− 1),
as indicated by positive effect sizes. There were no such apparent patterns for
näıve regression, but there were similarly some classes where the FH approach
outperformed näıve regression and other classes where there were negligible dif-
ferences. These class-level effect sizes indicate that the improvement in overall
predictive performance associated with the FH approach in a given condition
did not necessarily come from a uniform improvement in performance across all
classes, but only in some.

Figure 3: Effect sizes for the paired difference in overall predictive performance
(Spearman’s correlation) between the FH approach and näıve approaches for
each algorithm in each simulation condition. Dashed lines appear at |d| = 0.5.
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3.2 Random Forest Implementation

The random forest implementation produced less intuitive results compared to
the CART implementation. First, Figure 2 shows that when comparing the FH
approach to näıve classification, there were virtually no differences in overall
predictive performance between these two approaches in all conditions, meaning
that the FH approach did not perform any better than näıve classification. Sec-
ond, Figure 2 shows that when comparing the FH approach to näıve regression,
in conditions with k = 3, these two approaches also performed similarly, mean-
ing the FH approach did not perform any better than näıve regression, either.
However, in conditions with a larger k, näıve regression outperformed the FH
approach. The mean differences and effect sizes in Table 1 corroborate these
observations. While we did observe some significant mean differences (p < .05

36 )
in certain conditions for näıve classification, all effect sizes were small (|d| < .5).
For näıve regression, we observed negative and significant mean differences with
large effect sizes in conditions with k = 5 and 7. Figure 3 also illustrates these
patterns. The green (näıve classification) effect sizes hovered around zero in all
conditions, indicating no difference in overall performance between the FH ap-
proach and näıve classification. The orange (näıve regression) effect sizes, under
k = 3, also hovered around zero, but with a larger k, they were negative. These
effect sizes grew more negative with more class balance, indicating that näıve
regression increasingly outperformed the FH approach with more class balance.

Figure 4(b) plots the effect sizes for the paired differences in class-level F1
scores between the FH approach and näıve approaches for the random forest
implementation in each condition. For näıve classification, effect sizes generally
hovered around zero in most conditions, indicating no difference in class-level
performance between the FH approach and näıve classification. For näıve regres-
sion, there appeared to be a pattern in nearly all conditions where the “end”
classes (i.e., classes 1 and k) had positive effect sizes, indicating that the FH
approach outperformed näıve regression, but the “middle” classes (i.e., classes
2, . . . , k−1) had negative effect sizes, indicating that the FH approach performed
worse than näıve regression. These class-level effect sizes show that the relative
class-level performance of these approaches can differ according to class and may
not all be in the same direction as the overall relative performance.

3.3 Summary of Results

With the CART implementation, the FH approach had significantly better over-
all performance than both näıve classification and näıve regression across all nine
conditions, including those with imbalanced and slightly imbalanced class dis-
tributions. The overall performance gap between the FH approach and näıve
approaches grew with k. With the random forest implementation, the FH ap-
proach did not perform differently from näıve classification in any meaningful
way across all nine conditions. However, the FH approach performed significantly
worse compared to näıve regression in conditions with a larger k, and the perfor-
mance gap increased with more class balance. In both CART and random forest
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(a) CART

(b) Random forest

Figure 4: Effect sizes for the paired difference in class-level predictive perfor-
mance (F1 score) between the FH approach and näıve approaches for CART
(Panel a) and random forests (Panel b) in each simulation condition. Dashed
lines appear at |d| = 0.5.
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implementations, we found that in a given condition, class-level performance was
not uniformly better or worse for the FH approach across classes according to
the overall performance results. For example, even when overall performance was
substantially higher for the FH approach than a näıve approach in a given condi-
tion, this did not mean that the FH approach had accordingly higher class-level
performance in each class for that condition.

Using the misclassification rate as the overall performance metric led to
largely the same findings as Spearman’s correlation throughout the CART and
random forest implementations. The exception was that in the random forest
implementation, the FH approach had comparable overall performance to both
näıve classification and näıve regression across all conditions, rather than näıve
regression outperforming the FH approach in some conditions. Given that the
misclassification rate is an unsuitable performance metric for ordinal classifica-
tion tasks, we do not expand on these findings. However, this does reveal that
different conclusions can be made from using different overall performance met-
rics, highlighting the importance of using a metric that is most suited to the
task at hand.

4 Discussion

Ordinal measures are ubiquitous, but given limitations in familiarity or availabil-
ity of machine learning methods for ordinal classification, they may not always
be treated as an ordinal variable in practice. In this study, we aimed to expand
our understanding of the impacts of treatments of ordinal outcome variables on
predictive performance across various conditions. Specifically, we used Monte
Carlo simulations to examine the relative predictive performance of an ordinal
classification method, namely the FH approach, against näıve classification and
näıve regression according to the machine learning algorithm being implemented,
the number of classes in the ordinal outcome variable, and the degree of class
imbalance in the ordinal outcome variable.

Our results differed substantially across algorithms. With the CART im-
plementation, results aligned well with and extended Frank and Hall’s (2001)
findings. The FH approach was associated with a higher overall predictive per-
formance compared to both näıve classification and näıve regression, and this
pattern held across all conditions, even in the presence of class imbalance. The
overall performance gap increased with the number of classes and was largest
among balanced classes, indicating that the benefit of treating the outcome as
an ordinal variable by implementing the FH approach is greatest when there are
many, balanced classes.

On the other hand, we found some divergent results with the random forest
implementation. The FH approach had comparable overall performance to naive
classification in all conditions, and the FH approach performed worse than naive
regression in conditions with more classes and more class balance. One possible
explanation for this could be tied to the fact that random forests are ensemble
learners that, in general, tend to have better predictive performance than weak
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learners like CART and C4.5. Thus, it is possible that the näıve approaches im-
plemented with random forests already provided decent predictive performance
that there may not have been as much to be gained from the implementation
of the FH approach. Further, with a larger number of classes, the ordinal out-
come variable might become better approximated as a continuous outcome, and
perhaps that is why we observed näıve regression to perform particularly well
in those conditions. In a similar study that examined the performance of vari-
ous algorithm-independent ordinal classification methods, Hühn and Hüllermeier
(2008) theorized that algorithms with more complex and flexible decision bound-
aries benefit less from incorporating the ordinal information among the classes
of the outcome variable. This is consistent with findings from our study, as the
random forest implementation of the FH approach, treating the outcome as an
ordinal variable, did not result in increased predictive performance over the näıve
approaches, whereas the CART implementation did.

In sum, these findings illustrate that the relative predictive performance of
the different treatments of ordinal outcome variables varies across algorithms
and conditions. In other words, the gain in overall predictive performance from
treating an ordinal outcome properly as an ordinal variable by implementing the
FH approach can depend on the number of classes, the degree of class imbalance
present, and the algorithm being used. There is not always an improvement in
overall predictive performance associated with the FH approach, and sometimes,
näıve approaches may perform better than the FH approach. As such, there is
no one approach that is always best, suggesting a need for careful and deliber-
ate choices in the treatment of ordinal outcomes to achieve optimal predictive
performance in machine learning.

4.1 Limitations and Future Directions

There are several limitations associated with this study. First, the ordinal out-
come variable in our simulated datasets were not “real” ordinal data, as the
outcome variable was originally a continuous variable which was discretized. As
such, the ordinal class structure may have been artificially accentuated compared
to what is conceivable in naturally occurring ordinal data (Hühn & Hüllermeier,
2008). We used such simulated outcomes in order to be able to systematically
manipulate and examine the influence of the number of classes and the degree
of class imbalance in the ordinal outcome variable, which was a main goal of
the study. Second, our findings are limited to the two specific algorithms, CART
and random forest, that we implemented in this study. We chose these two algo-
rithms as they have not received as much attention in the ordinal classification
literature. However, there are many other binary classifiers that can be imple-
mented with the FH approach, as this is an algorithm-independent approach.
Given the surprising results we found with the random forest implementation, it
would be interesting to study whether the same holds for other related methods,
such as boosted trees (Hastie, Tibshirani, & Friedman, 2009). Similarly, we only
examined one ordinal classification method to compare against näıve classifica-
tion and näıve regression. Future studies should examine how other algorithm-



88 H. Suzuki and O. Gonzalez

independent ordinal classification methods provide similar or divergent results.
Another direction for future study is to examine different shapes of class dis-
tributions. In this study, we only examined three levels of class imbalance, and
the skewness of the imbalanced and slightly imbalanced distributions were in
the same direction (i.e., all upwards sloping, where the most frequent class was
class k). It would thus be interesting to examine how results may change with
different shapes (e.g., downwards sloping with class 1 being the most frequent
class, or a random pattern where class frequencies do not increase or decrease
uniformly with class labels) and how this may impact class-level performance.
Lastly, while Spearman’s correlation and MAE provide more suitable overall per-
formance metrics for ordinal classification tasks than the misclassification rate,
they are not the only metrics available, nor are they free of flaws themselves.
A major limitation of MAE and Spearman’s correlation as performance met-
rics of ordinal classification tasks is that they are influenced by the choice of
the numeric label given to the ordinal classes (Cardoso & Sousa, 2011). Other
measures have been suggested that are not influenced by the numeric label of
ordinal classes (Cardoso & Sousa, 2011), but we have maintained the use of these
metrics for this study for ease of computation and readers’ familiarity.

4.2 Conclusions

This simulation study highlighted the variability in relative predictive perfor-
mance of common treatments of ordinal outcome variables in machine learning
according to key factors, including the algorithm being used to implement the
approaches and the degree of class imbalance in the ordinal outcome. The con-
sideration of these important, practical factors extends the previous literature
on ordinal classification and provides further knowledge on the consequences of
näıve treatments of ordinal outcomes, which are shown to vary substantially
according to these factors. Given the ubiquity of ordinal measures in the behav-
ioral sciences coupled with the growing use of machine learning in the behavioral
sciences, these are important considerations for building high-performing models
in the field.
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Appendix A Sample R Code

Below, we provide sample R code to demonstrate the implementation of the FH
approach using CART and random forests on an applied dataset. The dataset (N
= 1,014) contains predictors of maternal health risk among pregnant patients,
including age, systolic and diastolic blood pressure, blood glucose levels, body
temperature, and heart rate. The task is to predict maternal mortality risk
level, an ordinal outcome variable with k = 3 classes of low, mid, and high risk.
These classes are distributed in the following manner: low risk (40.0%), mid risk
(33.1%), and high risk (26.8%). The dataset is publicly available from the UCI
Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
Maternal+Health+Risk+Data+Set). Note that the code can easily be adapted to
implement the FH approach using other algorithms besides CART and random
forests and on datasets with different values of k. The models are trained using
the caret package, which streamlines the model training and hyperparameter
tuning processes and provides a unified syntax for fitting different algorithms.

The dataset is saved in a data.frame object called data. The outcome vari-
able is a column in data called RiskLevel.

First, we code the outcome variable as an ordinal variable. We save the
class labels and the number of classes into respective objects to be referenced
throughout the rest of the program.

data$RiskLevel = factor(data$RiskLevel ,
levels = c("low risk",

"mid risk", "high risk"),

ordered = TRUE)

classes = levels(data$RiskLevel)
k = length(classes)

Next, we split the dataset into a training (50%) and test (50%) set.

set.seed (12345)

train = sample(seq_len(nrow(data)),

size = floor(nrow(data )/2), replace = FALSE)

dtrain = data[train , ]

dtest = data[-train , ]

To implement the FH approach, we generate k – 1 modified copies of the
training set and save each one into a list called dtrain modified. The jth train-
ing set has a modified outcome variable that is a binary indicator for whether the
original outcome is greater than the jth class. The predictors remain unchanged.

dtrain_modified = list()

for (j in 1:(k -1)){

dt = dtrain

dt$RiskLevel = as.factor(ifelse(dtrain$RiskLevel >

classes[j], 1, 0))

https://archive.ics.uci.edu/ml/datasets/Maternal+Health+Risk+Data+Set
https://archive.ics.uci.edu/ml/datasets/Maternal+Health+Risk+Data+Set
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dtrain_modified [[j]] = dt

}

We initialize two Ntestset by (k – 1) matrices, one for each algorithm, to store
the predicted probabilities from the k – 1 binary classifiers.

probsCART = probsRF = matrix(ncol = k-1,

nrow = nrow(dtest ))

We are using the caret package to train the CART and random forest models.
Below, we set up a control parameter for conducting 5-fold cross validation
during training for hyperparameter tuning.

library(caret)

trnCntrl = trainControl(method =’cv’, number = 5)

Below is the for-loop where we train the k – 1 binary classifiers per algorithm.
In the jth iteration (there are k – 1 iterations) of the loop, we train a CARTmodel
and a random forest model on the jth modified training set. After training each
model per iteration, we obtain predicted probabilities on the test set and save
them into the jth column of the matrix we initialized above. To use a different
algorithm, simply change the method argument inside of the train function.

for (j in 1:(k -1)){

# CART

modCART_j = train(RiskLevel ~ .,

data = dtrain_modified [[j]],

method = ’rpart ’,

tuneLength = 10,

trControl = trnCntrl)

pred = predict(modCART_j$finalModel , dtest ,

type = "prob ")[ ,"1"]

probsCART[,j] = pred

# random forest

modRF_j = train(RiskLevel ~ .,

data = dtrain_modified [[j]],

method = ’rf ’,

tuneLength = 5,

trControl = trnCntrl)

pred = predict(modRF_j$finalModel , dtest ,

type = "prob ")[ ,"1"]

probsRF[,j] = pred

}
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Next, we combine the k – 1 predicted probabilities from the k – 1 binary
classifiers to obtain predicted probabilities for each of the k classes. We initialize
two Ntestset by k matrices, one for each algorithm, to store these probabilities.

probsCART_k = probsRF_k = data.frame(matrix(ncol = k,

nrow = nrow(dtest )))

colnames(probsCART_k) = colnames(probsRF_k) = classes

The k – 1 predicted probabilities are combined according to the rules de-
scribed in the Methods section of the study to obtain the k predicted probabili-
ties.

probsCART_k [,1] = 1 - probsCART[, 1]

probsCART_k[,k] = probsCART[, (k-1)]

probsRF_k [,1] = 1 - probsRF[, 1]

probsRF_k[,k] = probsRF[, (k-1)]

for (i in 2:(k -1)){

probsCART_k[,i] = probsCART[, (i-1)] - probsCART[, i]

probsRF_k[,i] = probsRF[, (i-1)] - probsRF[, i]

}

Finally, each test set observation is assigned to the ordinal class with the
largest predicted probability. We store the predicted class labels into a vector
for each algorithm, which can be used to compute overall performance metrics,
such as the mean absolute error and Spearman’s correlation.

predclassCART = colnames(probsCART_k )[max.col(probsCART_k ,

ties.method = "random ")]

predclassCART = factor(predclassCART , levels = classes)

predclassRF = colnames(probsRF_k )[max.col(probsRF_k ,

ties.method = "random ")]

predclassRF = factor(predclassRF , levels = classes)

# Mean absolute error

mean(abs(as.integer(predclassCART)

- as.integer(dtest$RiskLevel )))
mean(abs(as.integer(predclassRF)

- as.integer(dtest$RiskLevel )))

# Spearman

cor(as.integer(predclassCART), as.integer(dtest$RiskLevel),
method = "spearman ")

cor(as.integer(predclassRF), as.integer(dtest$RiskLevel),
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method = "spearman ")

Class-level performance can conveniently be obtained using the confusionMatrix
function of the caret package.

# class -level performance

cmCART = confusionMatrix(predclassCART , dtest$RiskLevel)
cmRF = confusionMatrix(predclassRF , dtest$RiskLevel)

cmCART$byClass
cmRF$byClass

In the table below, we summarize the empirical performance results of the
FH approach using CART and random forests on this applied dataset, along
with the performance of the näıve classification and näıve regression approaches.
Näıve classification and näıve regression can be implemented by simply convert-
ing data$RiskLevel into an unordered factor and into an integer, respectively.
These results show that the FH approach generally outperformed both näıve ap-
proaches, although the improvement is minimal, especially for the random forest
implementation.

CART

Performance metric FH Näıve classification Näıve regression

Overall performance
Spearman’s correlation .73 .67 .69
Mean absolute error .30 .35 .33
Misclassification rate .29 .32 .33

Class-level performance (F1)
Low risk class .73 .70 .68
Mid risk class .57 .53 .58
High risk class .85 .83 .80

Random forest

FH Näıve classification Näıve regression

Overall performance
Spearman’s correlation .80 .80 .78
Mean absolute error .20 .22 .24
Misclassification rate .19 .20 .23

Class-level performance (F1)
Low risk class .82 .81 .76
Mid risk class .75 .71 .70
High risk class .90 .89 .88
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Appendix B Additional Results

FigureB.1: Distribution of misclassification rate of the six models across repli-
cations in each simulation condition
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FigureB.2: Effect sizes for the paired difference in misclassification rate between
the FH approach and näıve approaches for each algorithm for each simulation
condition
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FigureB.3: Distribution of mean absolute error of the six models across replica-
tions in each simulation condition
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FigureB.4: Effect sizes for the paired difference in mean absolute error between
the FH approach and näıve approaches for each algorithm for each simulation
condition
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