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Abstract. This tutorial introduces readers to latent class analysis (LCA)
as a model-based approach to understand the unobserved heterogeneity
in a population. Given the growing popularity of LCA, we aim to equip
readers with theoretical fundamentals as well as computational tools.
We outline some potential pitfalls of LCA and suggest related solutions.
Moreover, we demonstrate how to conduct frequentist and Bayesian LCA
in R with real and simulated data. To ease learning, the analysis is bro-
ken down into a series of simple steps. Beyond the simple LCA, two
extensions including mixed-model LCA and growth curve LCA are pro-
vided to aid readers’ transition to more advanced models. The complete
R code and data set are provided.
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1 Introduction

Latent class analysis (LCA) is a powerful mixture model that can be used to
group individuals into homogeneous classes, types, or categories based on the
responses to a set of observed variables or items. An important usage of LCA is
to develop typologies based on the characteristics of the identified classes. LCA
has been applied in a variety of substantive fields, such as profiles of personality
(Merz & Roesch, 2011), differential diagnosis among mental disorders (Cloitre,
Garvert, Weiss, Carlson, & Bryant, 2014), and dietary patterns among older
adults (Harrington, Dahly, Fitzgerald, Gilthorpe, & Perry, 2014). Overviews of
LCA can be found in Collins and Lanza (2010) and Depaoli (2021). Related and
more complex models are discussed in Hancock, Harring, and Macready (2019).

In this tutorial, readers will learn how to perform LCA and two of its ex-
tensions using Bayesian methods. Real and simulated examples are adopted for
illustration. The platform that will be used is R with the JAGS program in-
stalled. The reminder of the tutorial includes the following main sections. In
Section 2, we provide a more formal introduction to LCA, where the LCA for
binary items will be described in particular. Three fundamental issues associated
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with LCA are covered in Section 3. In Section 4, a real dataset used for illustra-
tion will be briefly introduced. The conventional LCA process is introduced in
Section 5, which is followed by its Bayesian counterpart in Section 6. Section 7
provides readers with two related extensions. Section 8 displays a guidance for
wrapping up the LCA results. The tutorial ends with a brief discussion.

2 Model and Notation

The LCA models are under the umbrella of finite mixture models (McLachlan
& Peel, 2000), where observations are assumed to have arisen from one of the
components, each being modeled by a density function from a parametric family
(e.g., exponential). A K-component mixture density of a J-dimensional random
vector yi can be expressed as

f (yi;θ) =

K∑
k=1

P (ci = k) f (yi | ci = k) =

K∑
k=1

wkf (yi;λk) ,

where wk indicates the mixing proportion1 of the k-th component with
∑

k wk =
1, λk the vector of unknown parameters of the k-th component, and f (yi;λk)
the k-th component density. Also, we introduce a latent classification variable,
ci, to represent the i-th individual’s class membership, where ci takes on discrete
values 1, ...,K, so that ci = k indicates that the i-th observation belongs to the
k-th class.

Although not realistic, there is one primary assumption, local independence,
that needs to be met in the traditional LCA. This assumption implies that
the items are independent of each other given latent class, meaning that latent
class membership explains all of the shared variance among the items. The
advantage of making the assumption is that it simplifies the component-level
density function to a product of item-level probability densities as follows

f (yi | ci = k) =

J∏
j=1

f (yij | ci = k) .

With the estimates, the posterior probability that an individual belongs to class
k can be calculated using Bayes’ rule

f̂ (ci = k | yi) =
ŵkf

(
yi; θ̂k

)
∑K

v=1 ŵvf
(
yi; θ̂v

) .
Now, let’s consider an LCA for binary items. Suppose we observe J dichoto-

mous variables, each of which contains {0, 1} possible outcomes, for individ-
uals i = 1, . . . , N . We denote as w1, . . . , wK the K mixing proportions with

1 The terms mixing proportions, weights, and class sizes are used interchangeably in
this tutorial.
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k=1 wk = 1. Let yij be the observed value of the j-th variable such that

yij = 1 if individual i endorses the j-th item, and yij = 0 otherwise. Let πjk

denote the item response probability (IRP) representing how likely an individual
in class k endorses the j-th item. Then the probability that an individual i in
class k produces a particular set of J outcomes on the items, assuming local
independence, is the product

f (yi | ci = k) =

J∏
j=1

π
yij

jk (1− πjk)
1−yij .

Therefore, the overall likelihood function across the K classes for yi is the
weighted sum

f (yi) =

K∑
k=1

wk

J∏
j=1

π
yij

jk (1− πjk)
1−yij ,

and the posterior classification probability can be written as

p̂ (ci = k | yi) =
ŵk

∏J
j=1 π̂

yij

jk (1− π̂jk)
1−yij∑K

v=1 ŵv

∏J
j=1 π̂

yij

jv (1− π̂jv)
1−yij

.

3 Fundamental Issues in LCA

3.1 Local Maxima

The basic idea of parameter estimation is to find the parameter estimates that
maximize the log-likelihood function; i.e., find those that yield the greatest like-
lihood of having generated the observed data. Therefore, we are usually looking
for the global maxima. However, finding the global maximum can be particularly
challenging for a gradient ascent algorithm (e.g., EM) when the log-likelihood
function of a LCA model is non-concave and has multiple local maxima.

To avoid arriving at a local maximum, it is always preferable to estimate the
model a couple of times with different sets of random initial values. The solution
that the majority of the sets converge to can then be considered the maximum
likelihood solution (McLachlan & Peel, 2000). Many software packages, such as
the poLCA R package, have implemented the use of multiple sets of random
initial values.

3.2 Boundary Parameter Estimates

It frequently occurs that one or more maximum likelihood (ML) estimates of
LCA models lie on the boundary of the parameter space, i.e., the estimates are
0 or 1. This issue not only results in numerical problems in the computation
of the variance-covariance matrix, but renders the provided confidence intervals
and significance tests for the parameters meaningless. Nonetheless, boundary
estimates can be readily avoided by imposing priors in Bayesian inference.
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3.3 Label Switching

For a mixture model with K components, there are K! possible permutations of
the labels. Label switching refers to the phenomenon where the likelihood of a
mixture model is invariant for any permutations of its component labels.

Let PK be the set of K! permutations of {1, . . . ,K}. If for some ρ ∈ PK ,
define θρ := (wρ(1), . . . , wρ(K),λρ(1), . . . ,λρ(K)), then for any ρ, ν ∈ PK ,

p(yi | θ
ρ) =

K∑
k=1

wρ(k)f
(
yi | λ

ρ(k)
)

=

K∑
k=1

wν(k)f
(
yi | λ

ν(k)
)

= p(yi | θ
ν).

In frequentist mixture models, label switching arises when working with resam-
pling methods (e.g., bootstrap) and simulation studies. Label switching is a well-
known and fundamental issue in Bayesian mixture analysis as well. In Bayesian
inference, if there is no prior information that distinguishes between the mix-
ture components, and the prior distribution is the same for the permutations of
θ, then the posterior distribution will be symmetric. When such information is
available, we can use a prior that imposes a constraint that makes the compo-
nents unique. However, such a prior might no longer be conjugate, and the Gibbs
sampler could lose its simplicity. In addition, the fact that label switching occurs
both within and between Markov chains further complicates label switching.

Fortunately, ample relabeling approaches are available for correcting the label
switching problem in different scenarios. Approaches proposed for frequentist
inference can be found in Yao (2015) and O’Hagan et al. (2019). For Bayesian
inference, Papastamoulis (2016) provides ad-hoc procedures relabeling MCMC
samples.

In the following example, we demonstrate the issue in a Markov chain. Plotted
are MCMC traces for the class weights of a four-class solution using a simulated
dataset. In the plot, one color indicates one parameter. The left-hand panel
displays the trace plot of the class weights before relabeling, where signs of label
switching are presented by the iterations drifted to different classes; whereas
the right-hand panel represents the trace plot after relabeling, where no drifted
iterations are found. Illustrative R code for solving label switching is available
in the supplementary materials.
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Figure 1. Illustration of the label switching issue based on a simulated dataset.

4 Real Data: National Youth Risk Behavior Survey 2019
(YRBS2019)

The National Youth Risk Behavior Survey (YRBS) is a school-based cross-
sectional survey that has been conducted biennially by the Centers for Disease
Control and Prevention (CDC) since 1991 to collect data on health habits and
experiences among high school students across the United States.

To discover the unobserved types of health behaviors, we follow a previous
study (Xiao, Romanelli, & Lindsey, 2019) and conduct an LCA on 13 health-
behavior items in YRBS2019 that encompass four domains including: 1) diet
(consumption of breakfast, fruits, juices, vegetables, milk, water, and soda), 2)
physical activities (moderate and vigorous physical activity [MVPA], muscle-
strengthening exercise [MSEs], and sports team participation [STP]), 3) sleeping
time, and 4) media use (television [TV], computer/video games).

The items are dichotomized to 0 and 1, in which three items are reverse
coded including television, computer/video games, and consumption of soda. A
sample of 1,000 complete cases will be used for the analysis.

5 The Conventional LCA

5.1 Class Enumeration

Determining the number of classes is always a challenging task in practice. The
decision of how many classes to retain in LCA is conventionally made through
the so-called class enumeration process. Class enumeration includes fitting a
series of LCA models with increment of one in K and selecting the “best” model
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via certain criterion (e.g., information criteria) or a set of criteria. To compare
the criteria across the fittings, we often tabulate or plot the fit information for
each model fitting, and study patterns to pick the optimal K. This process will
be illustrated in Section 5.4. For a more detailed introduction to model fit and
model selection in LCA, interested readers can refer to Section 4.3 of Collins and
Lanza (2010).

5.2 Classification Uncertainty

A popular approach to summarizing uncertainty in posterior classification is
entropy. In LCA, the entropy can be expressed as

EN(α) = −
n∑

i=1

K∑
k=1

αik logαik,

where αik represents the posterior classification probability of individual i de-
fined as

α̂ik =
ŵkfk

(
yi; θ̂k

)
∑K

v=1 ŵvfv

(
yi; θ̂v

) .
A normalized version of EN , called relative entropy (RE), that scales EN to
the interval [0, 1] has been commonly used in LCA and is defined as

RE = 1− EN/(N logK),

with RE closer to 1 indicating less classification uncertainty and clearer as-
signment of individuals to latent classes. A RE greater than 0.6 is generally
considered to be satisfactory class separation (Asparouhov & Muthen, 2014).

5.3 Interpretation of Latent Classes

The last step of an LCA analysis is the interpretation of the retained solution,
which involves more human judgement. The researchers need to examine the
class-specific parameter estimates and then label each of the individual classes.
Such labels should be related to the included items. It is beneficial to display
the estimates in a plot (e.g., line plot). However, if a large number of classes is
identified, it is more sensible to number the classes instead of assigning labels
that cannot be easily distinguished verbally anymore. Another issue that may
merit consideration is when the emergent classes differ merely quantitatively.
In other words, the plotted lines are generally parallel. This phenomenon could
indicate that a single sample was coerced into K levels, such as low, medium,
and high severity. When confronted with such classes, the solution should be
interpreted cautiously.
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5.4 Software

LCA can be performed using a variety of commercial statistical packages, in-
cluding Mplus (Muthen & Muthen, 1998-2017), SAS (SAS, 2016), STATA
(STATA, 1985-2019), and Latent GOLD (Vermunt & Magidson, 2016). These
commercial packages are user-friendly, can handle a wide range of mixture mod-
els, and offer cutting-edge approaches to handling missing data, covariates, and
distal outcomes.

Various free R packages pertinent to mixture modeling are listed on the Cran
Task Views: Psychometric Models and Methods and Clusters (https://cran.r
-project.org/web/views), such as poLCA (Linzer & Lewis, 2011),MCLUST
(Scrucca, Fop, Murphy, & Raftery, 2016), and tidyLPA (Rosenberg, Beymer,
Anderson, van Lissa, & Schmidt, 2018). Haughton et al. (2009) provides a review
of three packages, namely, Latent GOLD, MCLUST, and poLCA.

In this tutorial, we demonstrate the implementation of the frequentist LCA
with poLCA, and the Bayesian LCA with JAGS.

5.5 Demonstration of LCA on YRBS2019 Using poLCA Package

The following chunk of code loads required packages for the entire tutorial.

library("poLCA") # To use poLCA function

library("label.switching") # To address label switching

library("runjags") # To use JAGS via R

library("glue") # To insert R code within strings

library("gt") # For pretty tables

library("knitr") # To use the "kable" function

library("kableExtra") # For more about kable

library("cowplot") # For pretty plots

library("scatterplot3d") # For 3-D plot

library("ggpubr") # To use the "ggarrange" function

library("coda") # To use Geweke’s diagnostic test

library("MASS") # To use the "mvrnorm" function

library("tidyverse") # For everything else...

This chunk of code loads saved datasets and outputs for the following sections
to reduce knitting time.

load("C:/Users/Chris/Desktop/LCA/objects.RData")

Step 1: Conduct class enumeration To use the poLCA() function, the items
must be coded as integer values starting at one for the first outcome category, and
increasing to the maximum number of outcomes for each variable. Consequently,
we add one to all the responses resulting in binary outcomes of {1, 2}.

dat <- dat.yrbs + 1 # poLCA only allows positive integers

https://cran.r-project.org/web/views
https://cran.r-project.org/web/views
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Notice that a specific R function lca re() is created for computing relative
entropy. The reason is that poLCA defines entropy as a measure of dispersion
(or concentration) in a probability mass function, which is different from the
widely used definition (e.g., in Mplus). For computational details, readers can
refer to the help document of poLCA.entropy() function.

# Function for computing relative entropy

lca_re <- function(x) {

nom <- (sum(-x$posterior*log(x$posterior)))

denom <- (nrow(x$posterior)*log(ncol(x$posterior)))

re <- 1 - (nom/denom)

if (is.nan(re) == TRUE) re <- NA

return(re)

}

To specify an LCA model, poLCA() requires users to provide a model formula.
For the basic LCA model without covariates, the formula takes the following
form:

f <- cbind(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13)

~ 1

where the observed variables or items are bound together within cbind(Y1,

Y2, Y3, ...), and the 1 indicates the LCA model without covariates. For LCA
with covariates, one must substitute the 1 with a function of covariates as follows:

f <- cbind(Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13)

~ X1 + X2 + X3

When there are a large amount of items, as in our example, we can define
the formula with the following code to save line space and typing time:

J <- ncol(dat) # number of items

f <- as.formula(paste("cbind(",paste(paste0("Y",1:J),collapse=","),

")","~1"))

# This is equivalent to: f <- cbind(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,

# Y11,Y12,Y13) ~ 1

To estimate the desired LCA model via the poLCA() function, users need to
pass the model formula, the dataset stored as a data frame, and the number of
classes to the formula, data, and nclass arguments, respectively. Information
about the remaining optional arguments of the function can be obtained by
entering the command help(poLCA) or simply ?poLCA at the R console window.
Nevertheless, we would like to place an emphasis on the nrep argument, which
specifies the number of times to estimate the model using different sets of random
starting values. As discussed in Section 3.1, this is desirable to prevent solutions
from converging to local instead of global maxima of the likelihood function. For



Bayesian Latent Class Analysis 135

example, we set nrep to 20 in the following code. Complex models often require
more replications, especially in high-stakes applications.

In addition, it should be noted that poLCA() only provides two fit indices,
AIC and BIC, by default. Other fit indices (e.g., aBIC) can be calculated man-
ually based on the model results as shown in the code below.

# Class enumeration from K=1 to K=6

out_lca <- list() # container of model fittings

npar <- ll <- bic <- abic <- caic <- awe <- re <- c() # containers

# of other information

set.seed(123)

for(k in 1:6){

fit <- poLCA(formula=f, data=dat, nclass=k, maxiter=10000,

tol=1e-5, nrep=20, verbose=F, calc.se=T)

out_lca[[k]] <- fit

npar[k] <- fit$npar

ll[k] <- fit$llik

bic[k] <- fit$bic

abic[k] <- -2*(fit$llik) + fit$npar*log((fit$Nobs+2)/24)

caic[k] <- -2*(fit$llik) + fit$npar*(log(fit$Nobs)+1)

awe[k] <- -2*(fit$llik) + 2*(fit$npar)*(log(fit$Nobs)+1.5)

re[k] <- round(lca_re(fit), 3)

}

class <- paste0("Class-", 1:6)

# Store information in a data frame

poLCA.tab <- data.frame("Class"=class, "Npar"=npar, "LL"=ll,

"BIC"=bic, "aBIC"=abic, "CAIC"=caic, "AWE"=awe, "RE"=re)

Step 2: Model fit summary table See Table 1 for the summary of fit.

Step 3: Elbow plot of information criteria It is useful to plot the values
of the selected information criteria (ICs) for visual inspection. Lower IC values
signify a more optimal balance of model fit and parsimony. Ideally, a minimum
value in the set of fittings indicates the optimal solution. However, it is not
uncommon in practice that ICs continue to decrease as K increases. That is,
there is no global minimum. In such instances, the K at an “elbow” of point of
“diminishing returns” in model fit indices should be selected as the best solution.
For the empirical example, the following elbow plot in Figure 2 suggests that
the 2-class solution fits best based on AWE, whereas the 4-class solution is
supported by CAIC, BIC, and aBIC. Therefore, the 4-class solution appears to be
an appealing candidate. Next, this solution’s relative entropy is 0.748 (see Table
1), which is relatively high (> 0.6) and indicative of satisfactory classification
quality. Considering the current information, we decide on the 4-class solution.
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Table 1. Model fit summary table based on poLCA outputs.

Class Npar LL BIC aBIC CAIC AWE RE

Class-1 13 -7575.656 15241.11 15199.82 15254.11 15369.91 NA

Class-2 27 -7278.148 14742.81 14657.05 14769.81 15010.31 0.666

Class-3 41 -7171.830 14626.88 14496.66 14667.88 15033.10 0.721

Class-4 55 -7103.205 14586.34 14411.65 14641.34 15131.26 0.748

Class-5 69 -7075.080 14626.79 14407.65 14695.79 15310.43 0.764

Class-6 83 -7050.491 14674.33 14410.71 14757.33 15496.67 0.704
1 Npar = number of parameters;
2 LL = log data likelihood;
3 BIC = bayesian information criterion;
4 aBIC = sample size adjusted BIC;
5 CAIC = consistent Akaike information criterion;
6 AWE = approximate weight of evidence criterion;
7 RE = relative entropy.
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Figure 2. Elbow plot of the information criteria for the one-to six-group LCA of health
behaviors.
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Step 4: Plot class profiles The profiles of the latent classes are shown in
Figure 3.
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Figure 3. Conditional probability of endorsing health-behavior items for each class.

Step 5: Interpretation of emergent classes According to the above item
response probability plot, we can assign labels to the emergent classes. The first
class is of medium size (22.44%), and shows low engagement in health diet behav-
ior, high engagement in exercise, and moderately high engagement in computer
use. Hence, it can be characterized as the class of irregular diet, high exercise,
moderately high computer use. The second class is small (7.67%), and charac-
terized by the highest engagement in healthy diet behaviors, low engagement
in exercise, and relatively low computer use. We call this class the healthy diet,
low exercise, relatively low computer use. The third class is the largest (42.16%),
and can be called the lowest engagement in health-promoting behaviors due to
the low engagement in healthy diet behaviors and physical activities and the
highest engagement in computer use. The fourth class, consistent engagement in
health-promoting behaviors, is of medium size (27.73%) and demonstrates moder-
ate probabilities of a healthy dietary pattern, frequently physical activities, high
probability of longer sleeping time, and low probability of playing computer more
than 3 hours per day.
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6 Bayesian LCA Using JAGS

6.1 Specification of Priors

The model parameters of particular interest in LCA with binary items include
mixing proportions w and binary IRPs π. Here, w is assumed to follow a Dirich-
let distribution denoted as

w ∼ D (d1, . . . , dK)

with the hyperparameters d1, . . . , dK which represent the prior proportion of
individuals in each of the K classes. The conjugate prior for IRP is the Beta
distribution denoted as

πjk ∼ B (α, β)

where the hyperparameters α and β represents the prior sample sizes for the
number of individuals answering “Yes” and “No”, respectively.

6.2 Convergence Diagnostic

The convergence diagnostic method adopted in this tutorial is Geweke’s test,
which compares the location of the sampled parameter on two different time
intervals of the chain. If the mean values of the parameter in the two time
intervals are close to each other we then assume that the two parts of the chain
have similar locations in the state space, and it is assumed that the two parts
come from the same distribution. An absolute value of the z-score produced by
Geweke’s test above 2 could be considered as potentially problematic.

6.3 Demonstration of Bayesian LCA on YRBS2019

Step 1: Define JAGS model The following code specifies a JAGS model
and stores the model in an R object called lca bin. In fact, the model can be
specified as a character string within R, or in an external text file. The former
avoids the need for multiple text files, whereas the latter is preferred for more
complex model formulations. In the tutorial, we adopt the former way.

Every model specification must begin with informing JAGS that it is a
model specification using the model{} block. Within the model block, we specify
data likelihood for every single data point using a for loop. Note that, there
are two types of data in a mixture model−unobserved class membership z and
observed data y. Thus, we specify likelihood for z and y, respectively, as shown
in the “likelihood specification” chunk. First, we let z[i] follows a categorical
distribution with the dcat() call where w[1 : K] is a vector of non-negative
mixing proportions of length K. Second, the likelihood for y is specified through
a nested for loop because there are two indices (i.e., i = 1, . . . , N and j =
1, . . . , J) associated with each data point of y, and we let y[i, j] follow a Bernoulli
distribution with the dbern() call where π[j, z[i]] represents the IRP for the j-th
item within the z[i]-th class.
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After specifying the data likelihood, we then impose priors on the model
parameters (see the “prior specification” chunk). As discussed in Section 6.1,
we impose Dirichlet and beta priors on mixing proportions (w) and IRPs (π),
respectively.

# Build model: LCA for binary items

lca_bin <- "

model{

#===========================

# likelihood specification

#===========================

for(i in 1:N) {

Z[i] ~ dcat(w[1:K]) # class membership for the i-th subject

for(j in 1:J) {

Y[i,j] ~ dbern(pi[j,Z[i]]) # Bernoulli density function

}

}

#===========================

# prior specification

#===========================

# --------- w ---------

w[1:K] ~ ddirch(alpha[1:K]) # Dirichlet prior for

# mixing proportions

for(k in 1:K) {alpha[k] <- 1}

# --------- pi ---------

for(k in 1:K) {

for(j in 1:J) {

pi[j,k] ~ dbeta(3,3) # beta prior for conditional

# probabilities

}

}

}"

Step 2: Specify initial values Users of JAGS have the option of supplying
their own initial values or just using those generated by the random number
generators (RNGs). For user-specified initial values, list starting values for each
of the parameters in the model as follows:

# User-specified initial values

inits <- list(list(w=rep(0.25,4), pi=matrix(rbeta(J*K.est,3,3),

nrow=J, ncol=K.est)))
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There are four RNGs provided by the base module in JAGS with the fol-
lowing names:

– “base::Wichmann-Hill”
– “base::Marsaglia-Multicarry”
– “base::Super-Duper”
– “base::Mersenne-Twister”

To set the starting state of the RNG, one can simply supply the name of the
RNG and its seed (e.g., 111) as shown in the following code:

# Automatically generated initial values

inits <- list(".RNG.name"="base::Wichmann-Hill", ".RNG.seed"=111)

Step 3: Fit the model via JAGS We need to bundle the data and constants
used in the JAGS model into a list that JAGS can read (see the Dat object
in the following code). The call to run.jags() reads, complies, executes, and
returns the model information along with MCMC samples and summary statis-
tics. Before a model can be executed, the run.jags() function requires a valid
JAGS model to be passed to the model argument and a character string of
monitored parameters to the monitor argument.

Furthermore, the function allows users to specify additional arguments, in-
cluding but not limited to: 1) the method with which to call JAGS (e.g., rjags);
2) number of Markov chains to run (e.g., n.chain=1); 3) the number of adaptive
iterations used at the start of the chain (e.g., adapt=1000); 4) the number of
burnin iterations (e.g., burnin=1000); 5) number of iterations per chain (e.g.,
sample=10000) in addition to the adaptive and burnin iterations; and 6) thin-
ning interval for monitors (e.g., thin=1).

# Bundle data for JAGS

Dat <- list("Y"=as.matrix(dat.yrbs), "N"=N, "J"=J, "K"=4)

# Run the analysis

set.seed(1234)

out_bin <- run.jags(model=lca_bin, monitor=c(’w’,’pi’),

data=Dat, inits=inits, method="rjags",

n.chains=1, adapt=1000, burnin=1000,

sample=10000, thin=1)

Step 4: Inspect label switching The trace plots of the weight of each class
are displayed in Figure 4 and from it, no signs of label switching are found.
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Figure 4. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in Note that the start argument of the window()
function include the adaption (i.e., na) and burn-in (i.e., nb) phases, so if one has
12,000 iterations with 1,000 adaption and 1,000 burn-in samples, the following
code will retain the iterations from 2,001 to 12,000.

na <- 1000; nb <- 1000

out.burn <- window(out_bin$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic via Geweke’s test

con.diag <- geweke.diag(out.burn)

# |z| > 2 is potentially problematic

flag.cov <- which(abs(con.diag[[1]]$z)>2)

# double check via trace plot

traceplot(out.burn[[1]][ ,flag.cov])
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Figure 5. Trace plot of the parameter flagged by Geweke’s test.

Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

# Note: pi[j,k] is the IRP of the j-th item in the k-th class

round(post.means, digits=3)

## w[1] w[2] w[3] w[4] pi[1,1] pi[2,1] pi[3,1] pi[4,1]

## 0.234 0.277 0.411 0.078 0.792 0.047 0.069 0.179

## pi[5,1] pi[6,1] pi[7,1] pi[8,1] pi[9,1] pi[10,1] pi[11,1] pi[12,1]

## 0.277 0.680 0.797 0.847 0.816 0.760 0.770 0.568

## pi[13,1] pi[1,2] pi[2,2] pi[3,2] pi[4,2] pi[5,2] pi[6,2] pi[7,2]

## 0.747 0.943 0.783 0.310 0.613 0.378 0.963 0.881

## pi[8,2] pi[9,2] pi[10,2] pi[11,2] pi[12,2] pi[13,2] pi[1,3] pi[2,3]

## 0.817 0.799 0.815 0.842 0.663 0.867 0.773 0.136

## pi[3,3] pi[4,3] pi[5,3] pi[6,3] pi[7,3] pi[8,3] pi[9,3] pi[10,3]

## 0.083 0.107 0.211 0.697 0.851 0.127 0.153 0.370

## pi[11,3] pi[12,3] pi[13,3] pi[1,4] pi[2,4] pi[3,4] pi[4,4] pi[5,4]

## 0.696 0.415 0.798 0.677 0.851 0.562 0.770 0.512

## pi[6,4] pi[7,4] pi[8,4] pi[9,4] pi[10,4] pi[11,4] pi[12,4] pi[13,4]

## 0.723 0.663 0.160 0.220 0.289 0.598 0.553 0.730

Step 8: Plot class profiles for interpretation Compared with Figure 3, the
class profiles yielded by the Bayesian LCA (Figure 6) look quite similar to that
provided by the conventional LCA.



Bayesian Latent Class Analysis 143

0.2335 0.2774 0.4112 0.0778

 
 

 
 

 
 

Breakfast
Fruits

Juices
Veges

Milk
Water

Soda
MVPA

MSEx
STP

Sleep
Computer

TV

Class (weight)

M
an

ife
st

 v
ar

ia
bl

es

IR
P

    

 
 

  
  

  

  

  

  

  

  

  

 
   

  
 

 

 
 

  

 

 

 

 
 

 
 

 

 

 

 

 

  
 

 

Figure 6. Probability of endorsing health-behavior items for each class.

7 Extensions

7.1 Bayesian Mixed-mode Latent Class Analysis (MMLCA)

Specification of Model This section focuses on MMLCA for which observed
variables are a mix of binary and continuous data. Suppose we observe M vari-
ables consisting of J binary variables and L continuous variables for individuals
i = 1, · · · , N . Let uij be the observed value of the j-th binary item such that
uij = 1 if the i-th individual endorses the item (i.e., answer “Yes”), and uij = 0
otherwise, where j = 1, . . . , J ; let vil be the observed value of the l-th continuous
item.

Assuming local independence, the probability that an individual i in class k
produces a particular set ofM = J+L responses yi = {ui1, ui2, . . . , uiJ ; vi1, vi2, . . . , viL}
is a finite mixture of conditional densities

f (yi) =

K∑
k=1

p (ci = k) f (yi | ci = k) =

K∑
k=1

wkg (ui | k) g (vi | k) ,

where g (ui | k) is the conditional density of the vector of observed binary items
and g (vi | k) is the conditional density of the vector of observed continuous
items for the i-th individual given the k-th class, respectively.

Because of the local independence assumption, the two conditional densi-
ties can be further expanded. The g (ui | k) can be expressed as a product of
Bernoullis

g (ui | k) =
J∏

j=1

π
uij

jk (1− πjk)
1−uij
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where πjk represents the class-specific item response probability (IRP) that ob-
servations in the k-th class endorse the j-th binary variable; the g (vi | k) can
be written as a product of univariate Gaussians

g (vi | k) =
L∏

l=1

1√
2πσ2

lk

exp

{
− 1

2σ2
lk

(vil − µlk)
2

}
,

where µlk and σlk represent the mean and standard deviation of the l-th contin-
uous variable, respectively.

Specification of Priors Following the priors in LCA for binary items, we spec-
ify Dirichlet prior and Beta prior to mixing proportions and IRPs, respectively

w ∼ D (d1, . . . , dK) ,

πjk ∼ B(α, β).

For the parameters associated with the continuous items, we specify normal prior
and Gamma prior to mean and precision (τ = 1/σ2), respectively

µlk ∼ N
(
µ0, σ

2
0

)
,

τjk ∼ G(λ, κ).

7.2 Demonstration of Bayesian MMLCA on Simulated Data

We simulate a dataset of 500 subjects from an MMLCA model with 3 classes
and 8 items (4 binary and 4 continuous). The parameters shown in Table 2 serve
as the population values for the data generating model. Each subject’s class
membership is generated from unequal class sizes (w) of 0.5, 0.3, and 0.2. For
the binary items, the class-specific response probabilities (π) are set to 0.9 in
Class 1, to 0.9 for the first half of the items and 0.1 to the other half in Class
2, and to 0.1 in Class 3. For the continuous items, the class-specific item means
(µ) are set to 1 in class 1, to 0 in Class 2, and to −1 in Class 3, with the item
variances (σ2) fixed at 1 over the three classes.

Table 2. Population values for generating the dataset for MMLCA.

Class w π µ σ2

1 0.5 0.9, 0.9, 0.9, 0.9 1, 1, 1, 1 1, 1, 1, 1

2 0.3 0.9, 0.9, 0.1, 0.1 0, 0, 0, 0 1, 1, 1, 1

3 0.2 0.1, 0.1, 0.1, 0.1 -1, -1, -1, -1 1, 1, 1, 1

Step 1: Define JAGS model
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# Build model: LCA for binary and continuous items

lca_mix <- "

model{

#===========================

# likelihood specification

#===========================

for(i in 1:N) {

Z[i] ~ dcat(w[1:K]) # Class membership for the i-th subject

for(j in 1:J) {

Y[i,j] ~ dbern(pi[j,Z[i]]) # Bernoulli density function

}

for(l in 1:L) {

X[i,l] ~ dnorm(mu[l,Z[i]], tau[l,Z[i]]) # normal density

}

}

#===========================

# prior specification

#===========================

# --------- w ---------

w[1:K] ~ ddirch(alpha[1:K]) # Dirichlet prior for

#mixing proportions

for(k in 1:K) {alpha[k] <- 1}

# --------- pi ---------

for(k in 1:K) {

for(j in 1:J) {

pi[j,k] ~ dbeta(3,3) # beta prior for IRPs

}

}

# --------- mu & tau ---------

for(k in 1:K) {

for(l in 1:L) {

mu[l,k] ~ dnorm(0,1.0E-6) # normal prior for mean

tau[l,k] ~ dgamma(0.01,0.01) # gamma prior for precision

}

}

}"

Step 2: Specify initial values

# Automatically generated initial values

inits <- list(list(".RNG.name"="base::Wichmann-Hill",
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".RNG.seed"=111))

Step 3: Fit the model via JAGS

# Bundle data for JAGS

Dat <- list("Y"=dat.mmlca[,1:J], "X"=dat.mmlca[,(J+1):(J+L)],

"N"=N, "J"=J, "L"=L, "K"=3)

# Run the analysis

set.seed(1234)

out_mix <- run.jags(model=lca_mix, monitor=c(’w’,’pi’,’mu’,’tau’),

data=Dat, inits=inits, method="rjags", n.chains=1,

adapt=1000, burnin=1000, sample=10000, thin=1)

Step 4: Inspect label switching Similarly, no signs of label switching are
found in Figure 7.
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Figure 7. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in

na <- 1000; nb <- 1000

out.burn <- window(out_mix$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic using Geweke’s test

con.diag <- geweke.diag(out.burn)

flag.noncov <- which(abs(con.diag[[1]]$z)>2)
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Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

round(post.means, digits=3)

## w[1] w[2] w[3] pi[1,1] pi[2,1] pi[3,1] pi[4,1] pi[1,2]

## 0.483 0.320 0.197 0.889 0.905 0.912 0.905 0.930

## pi[2,2] pi[3,2] pi[4,2] pi[1,3] pi[2,3] pi[3,3] pi[4,3] mu[1,1]

## 0.835 0.109 0.133 0.138 0.203 0.152 0.178 0.960

## mu[2,1] mu[3,1] mu[4,1] mu[1,2] mu[2,2] mu[3,2] mu[4,2] mu[1,3]

## 0.912 1.051 1.130 0.081 0.119 0.042 -0.043 -1.044

## mu[2,3] mu[3,3] mu[4,3] tau[1,1] tau[2,1] tau[3,1] tau[4,1] tau[1,2]

## -0.865 -0.806 -0.907 1.179 0.849 1.002 1.087 1.062

## tau[2,2] tau[3,2] tau[4,2] tau[1,3] tau[2,3] tau[3,3] tau[4,3]

## 1.100 0.893 1.162 1.061 0.942 0.957 0.706

Step 8: Plot class profiles for interpretation The profiles of the classes are
shown in Figure 8.
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Figure 8. Probability of binary items (left panel) and mean score of continuous items
(right panel) for each class.

7.3 Bayesian Latent Growth Mixture Model (LGMM)

Specification of Model The latent growth curve model (LGCM) characterizes
changes in responses over time and estimate inter-individual variability in those
changes. The LGCM can be decomposed into two components: the measurement
model and the structural model. Suppose that individuals i = 1, . . . , N are
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assessed repeatedly at T time points. The measurement model can be expressed
as

yi = Λbi + ϵi,

where yi = (yi1, . . . , yiJ)
T
is a T × 1 vector of repeated-measures for individual

i, Λ is a matrix of factor loadings with T rows and m (number of latent factors)
columns, and ϵi is a T × 1 vector of measurement errors. The entries of Λ define
the shape of growth trajectories, for instance,

Λ =


1 0
1 1
1 2
1 3


represents a linear growth curve. The structural model is defined as follows

bi = β + ui,

where bi is a m× 1 vector of latent factors, β is a m× 1 vector of latent factor
means, and ui is a m × 1 vector of random effects that are independent of the
measurement errors. Conventional LGCM assumes that

ϵi ∼ N(0,Ω),

ui ∼ N(0,Ψ),

where Ω is a T ×T covariance matrix of measurement errors, and Ψ is a m×m
covariance matrix of latent factors. In this tutorial, we follow the traditional
assumption that Ω = σ2I. Putting the two models together, yi has the following
density function

f (yi | Θ) = Φ
(
µ = Λβ, Σ = ΛΨΛT +Ω

)
,

where Θ and Ψ represent the set of all parameters and the T -dimensional mul-
tivariate normal density function, respectively.

The LGMM is formulated much the same way as the LCA in Section 2. The
difference is that we now substitute the component density in LCA for binary
items (e.g., product of Bernoullis) with the density of LGCM. That is, in a
LGMM, each latent class describes a distinct growth trajectory. Therefore, the
mean and covariance matrix can be written at the latent class level

µk = Λβk,

Σk = ΛΨkΛ
T +Ωk.

Specification of Priors

w ∼ D (d1, . . . , dK) ,

β ∼ N
(
µ0, σ

2
0

)
,

Ψ−1 ∼ W (V ,m) ,

1/σ2 ∼ G (α, β) ,
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where, for the Wishart prior, V and m represent the scale matrix and the degree
of freedom, respectively.

7.4 Demonstration of Bayesian LGMM via Simulated Data

We simulate a dataset of 200 subjects from a LGMM model with 3 classes and
4 time points. The parameters shown in Table 3 serve as the population values
for the data generating model. Each subject’s class membership is generated
from unequal class sizes (w) of 0.5, 0.3, and 0.2. Growth factor means are set to

(βI1, βS1)
T
= (2, 0)T in Class 1, to (βI2, βS2)

T
= (4,−0.3)T in Class 2, and to

(βI3, βS3)
T
= (6, 0.3)T in Class 3. In addition, Ψ =

(
0.3 0
0 0.1

)
and σ2 = 0.5 for

the three classes.

Table 3. Population values for generating the dataset for LGMM.

Class w βI βS Ψ σ2

1 0.5 2 0 0.3, 0, 0, 0.1 0.5

2 0.3 4 -0.3 0.3, 0, 0, 0.1 0.5

3 0.2 6 0.3 0.3, 0, 0, 0.1 0.5

Step 1: Define JAGS model

# Build model: latent growth mixture model

gmm <- "

model {

#===========================

# likelihood specification

#===========================

for (i in 1:N) {

Z[i] ~ dcat(w[1:K])

for(t in 1:Time) {

# model the growth curve

y[i,t] ~ dnorm(muy[i,t], pre_sig2)

muy[i,t] <- LS[i,1]+(t-1)*LS[i,2]

}

LS[i,1:2] ~ dmnorm(muLS[Z[i],1:2], Inv_cov[1:2,1:2])

}

#===========================

# prior specification

#===========================
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# --------- w ---------

w[1:K] ~ ddirich(alpha[1:K])

for(k in 1:K) {alpha[k] <- 1}

# --------- muLS ---------

for(k in 1:K) {

# normal prior for mean of latent intercept

muLS[k,1] ~ dnorm(0,0.001)

# normal prior for mean of latent slope

muLS[k,2] ~ dnorm(0,0.001)

}

# --------- Inv_cov ---------

# Wishart prior for precision matrix

Inv_cov[1:2,1:2] ~ dwish(R[1:2,1:2],2)

Cov_b[1:2,1:2] <- inverse(Inv_cov[1:2,1:2])

R[1,1] <- 1

R[2,2] <- 1

R[2,1] <- R[1,2]

R[1,2] <- 0

# --------- pre_sig2 ---------

pre_sig2 ~ dgamma(0.1,0.1) # gamma prior for precision

sig2 <- 1/pre_sig2

}"

Step 2: Specify initial values

# Automatically generated initial values

inits <- list(".RNG.name"="base::Wichmann-Hill", ".RNG.seed"=111)

Step 3: Fit the model via JAGS

# Bundle data for JAGS

Dat <- list("y"=dat.gmm$y, "Time"=4, "N"=200, "K"=3)

# Run the analysis

set.seed(1234)

out_gmm <- run.jags(model=gmm, monitor=c(’w’,’muLS’,’Cov_b’,’sig2’),

data=Dat, inits=inits, method="rjags", n.chains=1,

adapt=1000, burnin=1000, sample=10000, thin=1)

Step 4: Inspect label switching Similarly, no signs of label switching are
found in Figure 9.
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Figure 9. Trace plot of class weights for inspecting label switching.

Step 5: Adaption and burn-in

na <- nb <- 1000

out.burn <- window(out_gmm$mcmc, start=na+nb+1)

Step 6: Convergence diagnostic via Geweke’s test

con.diag <- geweke.diag(out.burn)

flag.noncov <- which(abs(con.diag[[1]]$z)>2)

Step 7: Summarize posterior MCMC samples

sum.stats <- summary(out.burn) # summary statistics

post.means <- sum.stats$statistics[,1] # posterior means

sum.stats[[1]] # display part 1 of the

# summary statistics

## Mean SD Naive SE Time-series SE

## w[1] 0.47670814 0.04073104 0.0004073104 0.0012239491

## w[2] 0.21085352 0.03102677 0.0003102677 0.0004599641

## w[3] 0.31243835 0.03959052 0.0003959052 0.0011664481

## muLS[1,1] 1.93669961 0.08287253 0.0008287253 0.0028227498

## muLS[2,1] 5.97551073 0.12216168 0.0012216168 0.0028493240

## muLS[3,1] 3.94876895 0.12075438 0.0012075438 0.0043165390

## muLS[1,2] 0.03924477 0.04421641 0.0004421641 0.0012517566

## muLS[2,2] 0.29034785 0.06514009 0.0006514009 0.0011798124

## muLS[3,2] -0.38549236 0.05797084 0.0005797084 0.0015226840

## Cov_b[1,1] 0.26303998 0.05820339 0.0005820339 0.0020464038
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## Cov_b[2,1] 0.03346480 0.02181222 0.0002181222 0.0007339775

## Cov_b[1,2] 0.03346480 0.02181222 0.0002181222 0.0007339775

## Cov_b[2,2] 0.10267863 0.01584738 0.0001584738 0.0003574567

## sig2 0.26908279 0.01841780 0.0001841780 0.0003431461

Step 8: Plot class profiles for interpretation The profiles of the classes are
displayed in Figure 10.
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Figure 10. Scatter line plot of growth trajectories. Black thin lines correspond to indi-
vidiual trajectories, colored thick lines correspond to the estimated growth trajectories
representing the three classes.

8 Reporting the Results for LCA

Weller and Faubert (2020) provides guidelines on the information that should
be included in an LCA report:

(1) Substantive theories guiding the choice of models to be evaluated are syn-
thesized

(2) Manifest variables are defined and their appropriateness is justified
(3) Report data characteristics (e.g., descriptive statistics, missing data)
(4) Provide statistical software used and the version number
(5) Estimation method is discussed
(6) Criteria used for selecting class model, both statistical (e.g., BIC, aBIC,

CAIC) and substantive
(7) Tabulate at least two fit indices, entropy, and smallest average latent class

posterior probability
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(8) Latent class proportions and conditional probabilities are reported and dis-
played (e.g., line plot)

(9) Boundary parameter estimates are highlighted and implications are dis-
cussed

(10) Meaningfulness of the latent class proportions is considered

Another comprehensive summary table can be found in Hancock et al. (2019,
p. 165), which lists key elements that should be addressed in any manuscript’s
methodological approach to LCA. In addition, Depaoli (2021) provides a tem-
plate for how to write up Bayesian LCA results for an empirical study (see
Section 9.7, p. 340).

9 Discussion

LCA is a popular technique that allows researchers to cluster individuals into
latent classes based on response patterns to manifest variables. In this tutorial,
LCA is described in a pedagogical manner to address the main challenge con-
fronting applied researchers−how to transition from statistical modeling to com-
puter programming. Although we demonstrated both the conventional LCA and
its Bayesian counterpart, we put emphasis on the Bayesian side. The Bayesian
framework can be advantageous for estimating LCA, particularly when sample
sizes are relatively small. The use of priors can improve the ability to obtain vi-
able and interpretable results. Nonetheless, the Bayesian approach is not exempt
from pitfalls. For instance, the label switching phenomenon makes the generated
MCMC samples non-identifiable and thus complicates the posterior inference.
Additionally, we highlighted other issues that one should be aware of when per-
forming LCA, including boundary estimates and quantitatively different classes.

The basic LCA for binary items along with the real data example should
provide the foundation for the readers to move on smoothly to the two more
advanced extensions: mixed-mode LCA and latent growth curve mixture model.
In the JAGS implementation, we decomposed these modeling approaches into
eight steps. Such a step-by-step procedure should allow the readers to apply
similar models in practice without much difficulty. We hope that this tutorial
serves as an approachable entry to a particular context of the extensive Bayesian
statistics literature.

Note

Supplementary materials can be downloaded here: https://doi.org/10.35566/
jbds/v2n2/qiu.
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