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Abstract. With the prevalence of missing data in social science re-
search, it is necessary to use methods for handling missing data. One
framework in which data with missing value can still be used for param-
eter estimation is the Bayesian framework. In this tutorial, different miss-
ing data mechanisms including Missing Completely at Random, Missing
at Random, and Missing Not at Random are introduced. Methods for
estimating models with missing values under the Bayesian framework
for both ignorable and non-ignorable missingness are also discussed. A
structural equation model on data from the Advanced Cognitive Train-
ing for Independent and Vital Elderly study is used as an illustration on
how to fit missing data models in JAGS.
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1 Introduction

The problem of missing data is prevalent in research, and the social sciences
are particularly influenced by this problem because surveys are commonly used
to collect information. As pointed out by Berchtold (2019), item-level missing
data were found in 69.5% of papers published in selected social science journals,
suggesting that the issue of missing data is quite omnipresent. Missing data may
lead to various problems including biases in estimations and lowered identifia-
bility of models (e.g., Zhang & Wang, 2012). To address missing data issues,
procedures including listwise deletion, full-information maximum likelihood es-
timation, and multiple imputation have been proposed (e.g., Zhang & Wang,
2013). One emerging context where models can be fitted with the presence of
missing data is the Bayesian framework (Ma & Chen, 2018). With Bayesian in-
ference, missing data can be handled quite naturally. The purpose of this paper
is to demonstrate the procedure of fitting a structural equation model with miss-
ing data under the Bayesian framework using the software JAGS (Plummer et
al., 2003).
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1.1 Missing Data Mechanisms

Three missing data mechanisms, Missing Completely at Random (MCAR), Miss-
ing at Random (MAR), and Missing Not at Random (MNAR), have been dis-
cussed in the literature (Rubin, 1976). To distinguish these mechanisms, we can
use a vector Y to denote the outcome variable, a matrix X to denote the co-
variates, and a vector R to denote the missing data indicator for the outcome
Y , with R = 1 if a Y is missing, otherwise 0. We can also assume a model with
parameter γ that governs the generation process of R. Further, we can assume
that the purpose of data analysis is to obtain the parameter θ that explains Y
using X. To illustrate the different missing data mechanisms, we use missingness
in the outcome Y as an example.

– If the missing data in the outcome Y are MCAR, the missing data do not
depend on any data collected. Thus, P (R|γ, Y,X) = P (R|γ).

– If the missing data in the outcome Y are MAR, the missingness depends
on the data collected, thus, P (R|γ, Y,X) = P (R|γ, Yobs, Xobs) where Xobs

denotes covariates that are observed and used in the modeling processes to
obtain θ, and Yobs denotes the observed part of the outcome.

– If the missing data in the outcome Y are MNAR, the missingness depends
on the unobserved data, thus, P (R|γ, Y,X) = P (R|γ, Ymis, Xmis, Yobs, Xobs)
where Xmis denotes predictors or covariates that are not observed and Ymis

denotes the missing outcome data.

1.2 Bayesian Methods for Handling Missing Outcome Data

Ignorable Missing Data Under the Bayesian framework, when the missing
outcome data mechanism is ignorable (MCAR or MAR), meaning that the miss-
ingness can be viewed as random after accounting for observed data, the pa-
rameter θ of interest in the statistical analysis model can be estimated based
on the observed part of data Yobs. For simplicity, we assume covariates X are
fully observed for now. Thus, for ignorable missing outcome data, we can derive
P (θ|Yobs, X) ∝ P (Yobs|θ,X)π(θ) as the posterior of θ based on the observed
part of data P (Yobs|θ,X) and the prior π(θ). Any suitable model for the out-
come variable can be used under the above scheme to obtain posterior samples
of the parameter when missing data are present (Ma & Chen, 2018).

Non-ignorable Missing Data When the missing outcome data are non-
ignorable (MNAR), meaning that the missingness mechanism cannot be fully
explained by observed data, models such as the selection model and the pattern-
mixture model can be used. Again, we assume that the covariates X are fully
observed for now. When missing data are non-ignorable, the target parameter
of estimation is not only θ, but both θ and γ.
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Selection Model. The selection model partitions the joint conditional proba-
bility of the outcome variable Y and missing data indicator R into two parts:
P (Y,R|θ, γ,X) = P (Y |θ,X)·P (R|γ, Y,X) (Heckman, 1979). The part P (Y |θ,X)
denotes the probability of the outcome Y based on covariates X and parameters
θ not accounting for missingness. The part P (R|γ, Y,X) denotes the missing-
ness mechanism based on both the covariates and the outcome data. While the
selection model assumes the same analysis model for observed and missing data,
it also assumes that the missingness indicator can be viewed as a function of the
data. To incorporate the selection model into the Bayesian estimation process,
we can write the posterior as P (θ, γ|Y,X,R) ∝ P (Y |θ,X)P (R|γ,X, Y )π(θ, γ)
so that in addition to the the model parameter θ, the missing data parameter γ
is also estimated.

Pattern-Mixture Model. The pattern-mixture model factors the joint conditional
probability of the outcome Y and the missingness indicator R in a different way:
P (Y,R|θ, γ,X) = P (Y |θ,X,R) · P (R|γ,X) (Little, 1994). In this model , the
part P (Y |θ,X,R) indicates that the outcome Y depends on missingness (i.e.,
the outcome model could be different for observed and missing data resembling
a mixture model), and the part P (R|γ,X) denotes the missingness mechanisms
that only depend on the covariates and not on the outcome. To incorporate the
pattern-mixture model into the Bayesian estimation process, we can express the
posterior as P (θ, γ|Y,X,R) ∝ P (Y |θ,X,R)P (R|γ,X)π(θ, γ).

1.3 Bayesian Methods for Handling of Missing Covariates Data

In Section 1.2, Bayesian schemes for handing missing data in the outcome vari-
able are discussed assuming that the covariates are complete. However, covariates
often contain missing data as well in real life. Thus, the estimation procedures
need further adaptations. When the missing data mechanism for the covariates
are ignorable (MCAR or MAR), distributions of the covariates can be specified
in addition to the models in Section 1.2 such that each covariate can have its
own conditional distribution (Ibrahim, Chen, & Lipsitz, 2002). When the miss-
ing covariates are non-ignorable (MNAR), models similar to the non-ignorable
missing outcome model can also be applied to the covariates such as the selection
model for both outcome and covariates implemented by Lee and Tang (2006).

2 Data and Models

2.1 Data

A subset of data from the The Advanced Cognitive Training for Independent and
Vital Elderly (ACTIVE) study will be used to illustrate how to handle missing
data under the Bayesian framework. n = 500 records for 5 variables, including 3
items measuring reasoning ability (i.e., WS, LS, and LT ), AGE, and EPT will
be used. Here, WS is the word series test result, LS is the letter series test result,
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LT is the letter sets test result, AGE is the age of participants, and EPT is the
Everyday Problems Test result. The respective scores are the integer number of
correct answers in each test.

The subset of data selected contains no missing values. For the purpose of
this tutorial, missing values are generated according to the MAR and MNAR
mechanisms. For the ignorable missingness model, 14.8% of missing data in EPT
are simulated such that logit(P (Ri = 1)) = −0.6 + 0.01 ∗ Agei where the Ri is
the missingness indicator for the i-th record on EPT. For the selection model on
handling non-ignorable missingness, 16.2% of missing data in EPT are simulated
such that logit(P (Ri = 1)) = 0.01 ∗ EPTi. Lastly, for the pattern mixture
model on handing non-ignorable missingness, 17.6% of missing data in EPT are
simulated by viewing EPT values between 24 and 26 as missing. Because EPT
consists of integer values only, this means that only the EPT values of 24, 25 and
26 are missing. Thus, when viewing EPT as a linear function of other variables,
which is what we will use in the analysis, the slopes for predictors will be small for
missing EPT since there is very low variance in missing EPT compared to other
variables; whereas for observed EPT, we can expect larger slopes. Additionally,
because EPT values are mostly below 24, we can also expect the intercept for
missing EPT to be larger than that of observed EPT.

2.2 Analysis Model

The analysis model will be a structural equation model using the three reasoning
ability items (i.e.,WS, LS, and LT ) and AGE to predict EPT as shown in Figure
1. The measurement model can be written as in Equation 1:

Xm = µ+ ηΛ+ ϵ. (1)

We denote the three manifest variables that are the reasoning ability items in-
volved in the measurement model using the matrix Xm with dimension n × 3
as formatted in Equation 2. In addition, the latent variable REASON is rep-
resented by the second column in ηn×1, the factor loadings are represented by
Λ1×3, the intercepts are represented by µ1×3, and the error terms are repre-
sented by ϵn×3. In the measurement model, it is assumed that ϵi1 ∼ N (0, σ2

WS),
ϵi2 ∼ N (0, σ2

LT ), and ϵi3 ∼ N (0, σ2
LS) for i ∈ (1, ..., n). Further, we assume the

latent variable REASONi ∼ N (0, σ2
REASON ).
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Xm =

WS1 LT1 LS1

... ... ...
WSn LTn LSn


µ =

[
k1 k2 k3

]
η =

REASON1

...
REASONn


Λ =

[
1 λLT λLS

]
ϵ =

ϵ11 ϵ12 ϵ13
... ... ...
ϵn1 ϵn2 ϵn3



. (2)
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Figure 1. Analysis model for the ACTIVE data.

The structural model follows Equation 3. Since the outcome is one-dimensional,
we write the structural model with respect to the outcome EPT directly. In the
structural model, the latent variable REASON and the observed variable AGE
are used to predict EPT with an intercept. Similar to the assumptions of the
measurement model, it is assumed that ϵEPT

i ∼ N (0, σ2
EPT ).

EPTi = b0 + b1REASONi + b2AGEi + ϵEPT
i . (3)

Together, the measurement and structural models can also be written with
respect to each item as in Equation 4:
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WSi = kWS +REASONi + ϵi1

LTi = kLT + λLTREASONi + ϵi2

LSi = kLS + λLSREASONi + ϵi3

EPTi = b0 + b1REASONi + b2AGEi + ϵEPT
i

. (4)

Combining the measurement model and the structural model, the probabil-
ity distribution function form of the analysis model used can be written as in
Equation 5:

REASONi ∼ N (0, σ2
REASON )

WSi ∼ N (kWS +REASONi, σ
2
WS)

LTi ∼ N (kLT + λLTREASONi, σ
2
LT )

LSi ∼ N (kLS + λLSREASONi, σ
2
LS)

EPTi ∼ N (b0 + b1REASONi + b2AGEi, σ
2
EPT )

. (5)

2.3 Software

JAGS will be used to conduct Bayesian inference in this paper. JAGS can be
installed via https://mcmc-jags.sourceforge.io/ (Plummer et al., 2003). In
this paper, JAGS will be used in the R environment (R Core Team, 2021) through
the software RStudio (RStudio Team, 2022) and the package runjags (Denwood,
2016). Other packages such as rjags (Plummer, Stukalov, & Denwood, 2022) that
provide similar functionalities to runjags are available as well. JAGS can also be
executed from the command line without using another interface.

In R, the package runjags can be installed using install.packages("runjags")
and loaded using library(runjags).

3 Ignorable Missingness Model

3.1 Model Specification

In Bayesian inference with JAGS, the two crucial components to a model are
the likelihood and the priors.

Likelihood If the missingness in the outcome of EPT is ignorable in the data,
then missing data can be addressed by sampling from the analysis model using
observed data. Thus, the model in Equation 4 can be used as the ignorable
missingness model. Further, the likelihood can be specified using the probability
densities in Equation 5. In this example, we do not have missing data in the
covariates. However, when missing data are present in the covariates, additional
distributions will need to be specified for them.

https://mcmc-jags.sourceforge.io/
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Priors We also need to specify the priors for the ignorable missingness model.
Since we are using the assumption that the observed and latent variables all fol-
low normal distributions, which is common in the practice of structural equation
modeling, we can choose the priors in Equation 6 for the model parameters. In
particular, the regression coefficients, factor loadings, and intercepts will have
normal priors, and the variance components will have inverse gamma priors.
Because there is only one latent factor in the model used, the inverse gamma
distribution could satisfy as the prior for the factor variance. However, when
more than one factors are involved in a structural equation model, and when the
factors are allowed to correlate, the inverse wishart distribution can be used as
the prior for the factor covariance matrix.

b0, b1, b2 ∼ N (µb, σ
2
b )

σ2
EPT ∼ IG(hEPT , θEPT )

λLT , λLS ∼ N (µλ, σ
2
λ)

σ2
WS , σ

2
LT , σ

2
LS ∼ IG(hm, θm)

kWS , kLT , kLS ∼ N (µk, σ
2
k)

σ2
REASON ∼ IG(hREASON , θREASON )

. (6)

In this tutorial, we will choose rather uninformative priors. But more infor-
mative priors can also be adopted. For example, the power priors can be used
which constructs priors based on likelihood in historical data (Ibrahim & Chen,
2000). Hierarchical priors is another option which can be used when a range
of values for the priors are available, so different levels of priors can be spec-
ified (Berger & Strawderman, 1996). These methods can be utilized for more
theory-informed specification of priors.

3.2 Implementation in JAGS

Implementing a model in JAGS involves the following steps.

Model Specification in JAGS Using runjags, the model specification can
be stored as a string. For example, the code below specifies a model named
ignorable.

ignorable <- "

#likelihood

...

#prior

...

"

The likelihood as specified in Section 3.1 can be implemented inside the model
string as the following. In JAGS, distributions can be specified using the sym-
bol ~ . As an illustration, in the code EPT[i] ~ dnorm(mu.EPT[i], pre.EPT),
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dnorm indicates that EPT is expected to follow a normal distribution with the
mean of mu.EPT and the precision (i.e., inverse of variance) of pre.EPT. Further,
mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i] shows that EPT is predicted
by the latent variable REASON and the observed variable AGE. The two lines
of code together correspond to Equation 3. Note that while ~ is used to specify
a distribution, <- is used to assign values. Similar to how the distribution of
EPT is specified, the measurement model for the 3 reasoning ability items can
be specified.

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

As mentioned in Section 3.1, historical data and previous research conclusions
are not used to construct the priors here; instead, the priors used are rather
uninformative. For example, the prior for means the error terms in the factor
model of REASON has precision of 0.001 or variance of 1000.

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

Additionally, to monitor the variances of various variables instead of the
precision, we can use the following to convert precisions to variances.



JAGS missing data 107

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

Data Statement and Initial Values To estimate the ignorable missingness
model, we define the data to be used as follows.

data <- list(N = 500,

EPT = data_500_mar$EPT ,
AGE = data_500_mar$AGE ,
WS = data_500_mar$WS ,
LT = data_500_mar$LT ,
LS = data_500_mar$LS)

We also define initial values for the two MCMC chains that will be used.
Slightly different starting values for the two chains are specified to ensure that
the two chains will not converge to the same local optimum, if happening, for
better convergence diagnostic.

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

Running JAGS for Analysis Finally, the posteriors can be sampled using the
run.jags command. The model=ignorable argument specifies that the model
named m1 will be used. The monitor argument specifies which parameters or
variables we want to sample. The data=data, n.chains=2, inits=inits ar-
guments specify the data, number of chains, and initial values to be used, respec-
tively. The arguments adapt=1000, burnin = 3000, and sample=100000 specify
the number of adaptation, burn-in, and sampling iterations, respectively. Only
the sampling iterations will be recorded. The argument keep.jags.files=FALSE
instructs JAGS to not save any files produced in the sampling process. If the ar-
gument is set to keep.jags.files=FALSE, then additional files will be saved in
a folder named runjagsfiles. The argument thin=1 sets the intervals of recorded
samples to be 1, meaning that every iteration will be saved. The argument
method="simple" indicates that the simple method would be used to compile
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the model. The argument tempdir=TRUE asks JAGS to create a temporary di-
rectory to store files instead of saving files in the working directory.

out1 <- run.jags(model=ignorable ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

3.3 Convergence Diagnostics

The summary(out1) command in runjags gives the summary statistics of the
JAGS output which can be used for convergence diagnostics. We will mainly
rely on the Gelman-Rubin test for diagnosing convergence (Gelman & Rubin,
1992). The Gelman-Rubin test statistics, or the potential scale reduction factor,
is readily provided by the summary function and is suitable when multiple chains
are used. As shown in Table 1, the potential scale reduction factors (psrf) for all
parameters are below 1.1 and very close to 1, suggesting that the chains have
converged. Monte Carlo SEs of most parameters (MCerr) are quite low as well
(< 0.05). The effective sample sizes (SSeff) are also acceptable (> 400).

Table 1. Output from the ignorable data model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0 10.546 16.071 21.450 16.045 0.041 4515 1
b1 0.855 0.960 1.062 0.960 0.000 16217 1
b2 -0.038 0.034 0.110 0.034 0.001 4485 1
l.LT 0.402 0.445 0.489 0.445 0.000 20000 1
l.LS 1.066 1.142 1.222 1.142 0.000 20000 1
k.WS 9.266 9.700 10.129 9.701 0.002 20000 1
k.LT 5.439 5.684 5.926 5.683 0.001 20000 1
k.LS 9.744 10.225 10.726 10.226 0.002 20483 1
var.WS 3.294 4.247 5.265 4.260 0.004 20000 1
var.LT 3.025 3.487 3.995 3.497 0.002 20000 1
var.LS 3.717 4.981 6.230 4.994 0.005 19548 1
var.EPT 12.649 14.831 17.112 14.884 0.008 20000 1
var.REASON 17.037 19.849 23.122 19.903 0.011 20000 1
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The plot(out1) command can be used to generate trace plots and his-
tograms of the MCMC chains which can further help diagnose the convergence
of the target parameters. For example, Figure 2 shows the MCMC plots of the
parameter b1, and the trace plot and histogram both indicate that the parame-
ter converged. The histogram is centered at one mode, and the trace plot looks
stable.
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Figure 2. MCMC plots for the parameter b1 in the ignorable missingness model.

There are other approaches for diagnosing convergence which will not be
discussed in depth here. For example, the Geweke test can be conducted using
the coda package (Plummer, Best, Cowles, & Vines, 2006). This test takes two
proportions of a Markov chain and applies a z-test to see if the two proportions
are different. The Herdelberger and Welch test can also be used with coda which
tests if the samples come from a stable distribution.

3.4 Interpretation

Using the Highest Posterior Density (HPD) intervals which are indicated by the
Lower95 and Upper95 values in Table 1, we can see that the factor loadings and
intercepts in the measurement model are likely non-zero as the HPD intervals
for them excludes 0. Thus, the items WS, LT and LS do have commonalities
explained by the construct of reasoning ability. In the structural model, the
intercept term and the slope for REASON have their HPD intervals excluding
0, suggesting that we can conclude that the latent variable of REASON explains
the variance in EPT, whereas AGE does not.
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4 Selection Model

4.1 Model Specification

Likelihood When the missingness in the outcome is MNAR or non-ignorable,
the selection model can be applied. For non-ignorable missing outcome, we also
make the same assumption that the missing covariates are ignorable so that we
can specify conditional distributions for them. We also assume that the miss-
ingness is dependent on the outcome of EPT scores themselves in the selection
model. Using a missing data indicator Ri where Ri = 1 denotes a missing record
of EPT and Ri = 0 denotes an observed record of EPT, the selection model
translates to Equation 7, which can be used in addition to the model specifica-
tion in Equation 4:

logit(P (Ri = 1)) = a0 + a1EPTi. (7)

The corresponding probability density distribution form of the selection model
incorporates Equation 8 in addition to Equation 5:

Ri ∼ B(sigmoid(a0 + a1EPTi)). (8)

The missing data indicator Ri is deemed as a function of the outcome value
EPTi and an intercept. The intercept a0 here is used to adjust the threshold for
1 and 0 in the missing data indicator of Ri.

Priors The priors can be constructed similarly to the ignorable missingness
model. Priors for the parameters a0 and a1 are needed for the selection model
as indicated by Equation 9, which can be combined with the priors in Equation
6 to be used in JAGS.

a0, a1 ∼ N (µa, σ
2
a) (9)

4.2 Implementation in JAGS

Model Specification in JAGS In JAGS, the likelihood for the ignorable
data model can be modified to incorporate the selection model by including the
following.

R[i] ~ dbern(p[i])

logit(p[i]) = a0 + a1*EPT[i]

The priors also need to be modified based on the the function of missingness
on EPT.

a0 ~ dnorm(0, pre.a)

a1 ~ dnorm(0, pre.a)

pre.a ~ dgamma (.001 ,.001)
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Data Statement and Initial Values Since the model has now changed,
the initial values and data supplied should be modified accordingly. A miss-
ing data indicator for the outcome is also needed as shown below in the variable
R = is.na(data_500_mnar$EPT)*1.

data <- list(N = 500,

EPT = data_500_mnar$EPT ,
AGE = data_500_mnar$AGE ,
WS = data_500_mnar$WS ,
LT = data_500_mnar$LT ,
LS = data_500_mnar$LS ,
R = is.na(data_500_mnar$EPT )*1)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1,

a0=0.1, a1=0.1),

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2,

a0=0.2, a1 =0.2))

Running JAGS for Analysis The model can then be estimated using the
following statement. Again, 1000 adaptation iterations, 3000 burn-in iterations,
and 100000 sampling iterations are specified.

out1 <- run.jags(model=selection ,

monitor=c("b0", "b1", "b2",

"a0", "a1",

"l.LT", "l.LS", "k.WS",

"k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)
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4.3 Convergence Diagnostics

As show in Table 2, the potential scale reduction factors (psrf) are all below
1.1, and the Monte Carlo SEs (MCerr) are satisfactory (< 0.05). The effective
sample sizes (SSeff) for all parameters are also above 400. The trace plots are
satisfactory as well. As an example, MCMC plots for the parameter a1 is shown
in Figure 3.

Table 2. Output from the selection model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0 13.170 18.649 24.029 18.623 0.043 4048 1
b1 0.865 0.968 1.077 0.968 0.000 15546 1
b2 -0.074 -0.002 0.072 -0.002 0.001 4064 1
a0 -4.276 -2.752 -1.374 -2.788 0.006 13872 1
a1 -0.010 0.059 0.132 0.059 0.000 13990 1
l.LT 0.402 0.446 0.491 0.446 0.000 20000 1
l.LS 1.076 1.153 1.233 1.154 0.000 20551 1
k.WS 9.266 9.702 10.133 9.702 0.002 20000 1
k.LT 5.445 5.685 5.926 5.685 0.001 19607 1
k.LS 9.747 10.230 10.720 10.228 0.002 19719 1
var.WS 3.436 4.448 5.453 4.459 0.004 20000 1
var.LT 3.048 3.502 4.014 3.513 0.002 21125 1
var.LS 3.443 4.699 5.955 4.711 0.005 20000 1
var.EPT 12.945 15.249 17.670 15.308 0.009 19667 1
var.REASON 16.618 19.644 22.728 19.701 0.011 20000 1

4.4 Interpretation

Using the HPD intervals, the factor loadings and factor intercepts in the mea-
surement model are again non-zero, indicating that the three items measuring
REASON do have overlaps. In the structural part of the selection model, the in-
tercept and the slope for the latent variable REASON both have HPD intervals
excluding 0, suggesting that REASON do explain significant variance in EPT
after accounting for the missingness mechanism. However, the HPD interval for
the slope of AGE still contains 0, suggesting that AGE may not be a useful
predictor of EPT here.

The slope for EPT in explaining the missingness mechanism has HPD in-
tervals containing 0, suggesting that EPT ’s effect on explaining missingness is
small. Whereas the intercept for predicting missingness has its HPD interval ex-
cluding 0. This deviates from the data generation model because the coefficients
used in missing data generation are quite small.

Although the selection model is most commonly used when missing data
are non-ignorable, it can be applied to MCAR and MAR data as well. In
the ACTIVE example, missingness predictors can be changed to, for instance,
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logit(p[i]) = a0 for MCARmissingness and logit(p[i]) = a0 + a1*AGE[i]

for MAR missingness, for example.

Iteration
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Figure 3. MCMC plots for the parameter a1 in the selection model.

5 Pattern-Mixture Model

5.1 Model Specification

Likelihood A pattern-mixture model can also be used to handle non-ignorable
missing data in the outcome of EPT. In this case, the intercept b0 and the slope
b1 for the outcome regressed on the latent variable of REASON are deemed
different for missing and observed data, whereas in practice, theories should
be used to guide the decision on the missing data model. The pattern-mixture
property is shown as the subscripts Ri on b0 and b1 in Equation 10, which can
be used in addition to the model specification in Equation 4 as the specification
for the pattern-mixture model:

EPTi = bRi
0 + bRi

1 REASONi + b2AGEi + ϵEPT
i . (10)

Also, Equation 11 can be used in addition to Equation 5 as the probability
density function form of the pattern-mixture model:

EPTi ∼ N(bRi
0 + bRi

1 REASONi + b2AGEi, σ
2
y). (11)

Assuming Ri = 1 for a missing record on EPT and Ri = 0 for an observed
record on EPT, then there are two sets of distinct b0 and b1 values for Ri = 1 and
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Ri = 0, respectively. It should be noted that this is merely one possible pattern-
mixture model that can be fitted onto the data, and that other pattern-mixture
models can be used based on specific theories.

Priors Priors for the pattern-mixture model can be specified using Equation 12
to replace the corresponding regression coefficients priors in Equation 6. Different
from the priors for the ignorable missingness model, here, priors for b0 and b1
are differentiated for missing data (b10, b

1
1) and for observed data (b00, b

0
1).

b00, b
1
0, b

0
1, b

1
1 ∼ N (µb, σ

2
b ) (12)

5.2 Implementation in JAGS

Model Specification in JAGS Different from the ignorable missingness model,
we need to specify the mean of EPT to be different for missing and observed data
such as mu.EPT[i] <- b0[R[i]+1] + b1[R[i]+1] *REASON[i] + b2*AGE[i]

in JAGS. Since JAGS uses 1-based indexes instead of 0-based indexes, we need
to use R[i]+1 instead of R[i] in the code to transform the 0 and 1 values in the
missing value indicator to 1 and 2. We also need to modify the priors of b0 and
b1 as the following which is based on the assumption that while the intercept is
larger for missing EPT, the slope is smaller for missing EPT. This assumption
is based on how missing data is generated.

b0[1] ~ dnorm(0, pre.b) # non -missing

b0[2] ~ dnorm(b0[1]+05 , pre.b) #missing

b1[1] ~ dnorm(0, pre.b) # non -missing

b1[2] ~ dnorm(b1[1]-0.5, pre.b) #missing

Data Statement and Initial Values Similar to the case in the selection
model, an indicator for missing or observed data is required for estimating the
pattern-mixture model, and the data statement can take the form of the follow-
ing:

data <- list(N = 500,

EPT = data_500_mnar_2$EPT ,
AGE = data_500_mnar_2$AGE ,
WS = data_500_mnar_2$WS ,
LT = data_500_mnar_2$LT ,
LS = data_500_mnar_2$LS ,
R = is.na(data_500_mnar_2$EPT )*1)

The initial values can be specified based on the pattern-mixture model. Com-
pared to the ignorable missingness model, initial values for b0 and b1 are changed
to incorporate two cases for missing and observed data. For example, in the first
chain, initial values for b0 and b1 are b0=c(0,1), b1=c(1,0). This is consis-
tent with our expectation that the intercept and slope for missing data would
be greater and lower, respectively, than those of the observed data.
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inits <- list(list(b0=c(0,1), b1=c(1,0), b2=0,

l.LT=0, l.LS=0, k.WS=0,

k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=c(1,2), b1=c(2,1), b2=1,

l.LT=1, l.LS=1, k.WS=1,

k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

Running JAGS for Analysis Finally, the model can be estimated using the
statement below.

out1 <- run.jags(model=pmm ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS", "var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

5.3 Convergence Diagnostics

In Table 3 which contains the output from this model, the potential scale reduc-
tion factors (psrf) are lower than 1.1, suggesting that the chains have converged.
The effective sample sizes (SSeff) are acceptable (> 400), and the Monte Carlo
SEs (MCerr) are mostly below 0.05.

The MCMC plots in Figure 4 can also be used to diagnose convergence. Here,
the plot for b1 when data are observed is used as an example. All parameters,
similar to b1, present satisfactory trace plots suggesting that convergence is
reached and the estimates are stable.

5.4 Interpretation

As shown by the HPD intervals in Table 3, the factor loadings and intercepts
in the measurement model again exhibit HPD intervals that exclude 0. In the
structural model, AGE ’s HPD interval contains 0, whereas the intercept and
the slope for REASON have HPD intervals excluding 0 for observed data and
including 0 for missing data. Consequently, for observed data, REASON can
predict EPT whereas for missing data it is not the case.
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Table 3. Output from the pattern-mixture model.

Lower95 Median Upper95 Mean MCerr SSeff psrf

b0[1] 11.522 16.352 21.157 16.361 0.034 5190 1.00
b0[2] -7.595 21.045 52.908 21.498 0.113 20000 1.00
b1[1] 0.847 0.950 1.053 0.951 0.000 17588 1.00
b1[2] -30.761 0.527 29.239 0.586 0.119 20000 1.01
b2 -0.046 0.020 0.084 0.020 0.000 5211 1.00
l.LT 0.399 0.443 0.486 0.443 0.000 20000 1.00
l.LS 1.066 1.141 1.222 1.142 0.000 19925 1.00
k.WS 9.288 9.705 10.149 9.705 0.002 20328 1.00
k.LT 5.450 5.686 5.925 5.686 0.001 19697 1.00
k.LS 9.741 10.232 10.716 10.231 0.002 20291 1.00
var.WS 3.254 4.204 5.240 4.218 0.004 20000 1.00
var.LT 3.070 3.524 4.036 3.533 0.002 20000 1.00
var.LS 3.711 4.955 6.239 4.968 0.005 20000 1.00
var.EPT 11.269 13.222 15.379 13.268 0.007 20000 1.00
var.REASON 16.956 19.852 23.114 19.932 0.011 20000 1.00

Iteration
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Figure 4. MCMC plots for the parameter b1 for observed EPT data in the pattern-
mixture model.
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6 Discussion

Data with missing values can still be used for parameter estimation in different
models under the Bayesian framework. In this paper, a structural equation model
is used as an example on the ACTIVE study data to illustrate how models
with missing data can be fitted using JAGS in R under different missing data
mechanisms including MCAR, MAR, and MNAR. Specifically, two models, the
selection model and the pattern-mixture model, are introduced for non-ignorable
(i.e., MNAR) missing data.

While this paper mainly focuses on obtaining parameter estimates when miss-
ing data are present, other aspects of missing data are not covered here. Although
not discussed in this paper, other models for handling non-ignorable missingness
exist such as the shared-parameter model (Albert & Follmann, 2008). In addi-
tion, there are model selection methods for deciding which of many potential
missing data models would suit the data best. For example, in sensitivity anal-
ysis which is often used to validate missing data handling processes by assessing
robustness of imputations under different conditions, Bayesian model compar-
ison criteria such as the deviation information criterion (DIC) can be used to
choose the best model (Ma & Chen, 2018; Van Buuren, 2018). Further, there
are ways to diagnose missing data mechanisms in a dataset such as discussed in
Little (1988). These topics can be further explored.

There are also different analysis models tailored toward specific types of data
that can be incorporated in Bayesian missing data handling processes, which
we did not discuss in this paper. While this paper uses a structural equation
model as an example, other models can be similarly constructed in JAGS to
accommodate missing data. For example, longitudinal data can be analyzed
using a multilevel model (Gelman & Hill, 2006). If the response data are of
mixed types from mixed populations, then mixture models may be appropriate
(Rasmussen, 1999). Social network data can also be used with methods such as
the exponential random graph model and the latent space model (Hoff, Raftery,
& Handcock, 2002; Robins, Pattison, Kalish, & Lusher, 2007). These models have
Bayesian variants that can be applied to estimate parameters when missing data
are present (Bürkner, 2017; Koskinen, Robins, Wang, & Pattison, 2013; Neal,
1992).
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data = read.csv(" active.csv")

data = data[, c(" WS_COR", "LS_COR", "LT_COR", "AGE", "EPT ")]

data = na.omit(data)

data_500 <- data[sample(nrow(data),500), ]

colnames(data_500) <- c("WS", "LS", "LT", "AGE", "EPT")

# MAR

miss <- rep(NA, nrow(data_500 ))

for (i in 1:nrow(data_500 )){

miss[i] <- rbinom(1, 1, data_500$AGE[i]*0.01 -60*0.01)
}

data_500_mar <- data_500

data_500_mar [,"EPT "][ miss ==1] <- NA

summary(data_500_mar)

# MNAR selection

miss2 <- rep(NA, nrow(data_500 ))

for (i in 1:nrow(data_500 )){

miss2[i] <- rbinom(1, 1, data_500$EPT[i]*0.01)
}

data_500_mnar <- data_500

data_500_mnar [,"EPT"][ miss2 ==1] <- NA

summary(data_500_mnar)

# MNAR pattern -mixture

miss3 <- rep(0, nrow(data_500 ))

miss3 [( data_500$EPT >23) & (data_500$EPT <27)] <- 1

data_500_mnar_2 <- data_500

data_500_mnar_2 [,"EPT"][ miss3 ==1] <- NA

summary(data_500_mnar_2)

Appendix A.2 Ignorable Missingness Model

library(runjags)

ignorable <- "

model{

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)
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mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mar$EPT ,
AGE = data_500_mar$AGE ,
WS = data_500_mar$WS ,
LT = data_500_mar$LT ,
LS = data_500_mar$LS)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,
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list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

out1 <- run.jags(model=ignorable ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)

Appendix A.3 Selection Model

selection <- "

model{

# likelihood

for (i in 1:N){

R[i] ~ dbern(p[i])

logit(p[i]) = a0 + a1*EPT[i]

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0 + b1*REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0 ~ dnorm(0, pre.b)

b1 ~ dnorm(0, pre.b)
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b2 ~ dnorm(0, pre.b)

a0 ~ dnorm(0, pre.a)

a1 ~ dnorm(0, pre.a)

pre.a ~ dgamma (.001 ,.001)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)

# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mnar$EPT ,
AGE = data_500_mnar$AGE ,
WS = data_500_mnar$WS ,
LT = data_500_mnar$LT ,
LS = data_500_mnar$LS ,
R = is.na(data_500_mnar$EPT )*1)

inits <- list(list(b0=0, b1=0, b2=0, l.LT=0, l.LS=0,

k.WS=0, k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1,

a0=0.1, a1=0.1),

list(b0=1, b1=1, b2=1, l.LT=1, l.LS=1,

k.WS=1, k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2,

a0=0.2, a1 =0.2))
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out1 <- run.jags(model=selection ,

monitor=c("b0", "b1", "b2",

"a0", "a1",

"l.LT", "l.LS", "k.WS",

"k.LT", "k.LS",

"var.WS", "var.LT",

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)

Appendix A.4 Pattern-Mixture Model

pmm <- "

model{

# likelihood

for (i in 1:N){

EPT[i] ~ dnorm(mu.EPT[i], pre.EPT)

mu.EPT[i] <- b0[R[i]+1] + b1[R[i]+1]* REASON[i] + b2*AGE[i]

WS[i] ~ dnorm(mu1[i], pre.WS)

LT[i] ~ dnorm(mu2[i], pre.LT)

LS[i] ~ dnorm(mu3[i], pre.LS)

mu1[i] <- REASON[i] + k.WS

mu2[i] <- l.LT*REASON[i] + k.LT

mu3[i] <- l.LS*REASON[i] + k.LS

REASON[i] ~ dnorm(0, pre.REASON)

}

# priors

# regression model

b0[1] ~ dnorm(0, pre.b) # non -missing

b0[2] ~ dnorm(b0[1]+05 , pre.b) #missing

b1[1] ~ dnorm(0, pre.b) # non -missing

b1[2] ~ dnorm(b1[1]-0.5, pre.b) #missing

b2 ~ dnorm(0, pre.b)

pre.b ~ dgamma (.001 ,.001)

pre.EPT ~ dgamma (0.001 , 0.001)
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# factor model

l.LT ~ dnorm(0, 0.001)

l.LS ~ dnorm(0, 0.001)

pre.WS ~ dgamma (0.001 , 0.001)

pre.LT ~ dgamma (0.001 , 0.001)

pre.LS ~ dgamma (0.001 , 0.001)

k.WS ~ dnorm(0, 0.001)

k.LT ~ dnorm(0, 0.001)

k.LS ~ dnorm(0, 0.001)

pre.REASON ~ dgamma (0.001 , 0.001)

# variances

var.EPT <- 1/pre.EPT

var.WS <- 1/pre.WS

var.LT <- 1/pre.LT

var.LS <- 1/pre.LS

var.REASON <- 1/pre.REASON

}

"

data <- list(N = 500,

EPT = data_500_mnar_2$EPT ,
AGE = data_500_mnar_2$AGE ,
WS = data_500_mnar_2$WS ,
LT = data_500_mnar_2$LT ,
LS = data_500_mnar_2$LS ,
R = is.na(data_500_mnar_2$EPT )*1)

inits <- list(list(b0=c(0,1), b1=c(1,0), b2=0,

l.LT=0, l.LS=0, k.WS=0,

k.LS=0, k.LT=0,

pre.WS=0.1, pre.LS=0.1, pre.LT=0.1,

pre.EPT=0.1, pre.REASON =0.1) ,

list(b0=c(1,2), b1=c(2,1), b2=1,

l.LT=1, l.LS=1, k.WS=1,

k.LS=1, k.LT=1,

pre.WS=0.2, pre.LS=0.2, pre.LT=0.2,

pre.EPT=0.2, pre.REASON =0.2))

out1 <- run.jags(model=pmm ,

monitor=c("b0", "b1", "b2",

"l.LT", "l.LS",

"k.WS", "k.LT", "k.LS",

"var.WS", "var.LT",



126 Z. Xu

"var.LS", "var.EPT", "var.REASON"),

data=data , n.chains=2,

inits=inits , method =" simple",

adapt =1000 , burnin = 3000,

sample =1000000 ,

thin=1,

keep.jags.files=FALSE ,

tempdir=TRUE)

out1

plot(out1)
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