
Journal of Behavioral Data Science, 2022, 2 (2), 156–173.
DOI: https://doi.org/10.35566/jbds/v2n2/shao

A Tutorial on Bayesian Analysis of Count Data
Using JAGS

Sijing (SJ) Shao1

Department of Psychology, University of Notre Dame, Notre Dame, USA
sshao2@nd.edu

Abstract. In behavioral studies, the frequency of a particular behavior
or event is often collected and the acquired data are referred to as count
data. This tutorial introduces readers to Poisson regression models which
is a more appropriate approach for such data. Meanwhile, count data
with excessive zeros often occur in behavioral studies and models such
as zero-inflated or hurdle models can be employed for handling zero-
inflation in the count data. In this tutorial, we aim to cover the necessary
fundamentals for these methods and equip readers with application tools
of JAGS. Examples of the implementation of the models in JAGS from
within R are provided for demonstration purposes.

Keywords: Count data · Zero-inflation · Poisson regression · ZIP model
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1 Introduction

In behavioral studies, information such as the number of times a certain behav-
ior or event occurs is often collected in order to help understand individuals.
Such collected nonnegative and discrete data are typically called count data.
While normal distribution is the commonly used distribution in most research,
specifying a normal distribution for such outcome variables can be inappropri-
ate for at least two reasons: (1) negative and real expected values in a normal
distribution is possible while only nonnegative integer values are allowed in such
count data; and (2) the distribution of count data is often positively skewed
and its variance usually increases along with its mean, while mean and variance
are assumed to be unrelated in normal distributions. Poisson regression is more
appropriate than general linear regression for such count data, and it models the
non-negative integer responses against linear predictors through a link function.

Meanwhile, count data in behavioral research are often heavily skewed due
to large amount of zero responses. The zero responses consist of responses from
either the individuals who never engaged in such behaviors or those who have
engaged but not currently (Grimm & Stegmann, 2019). For example, in alco-
hol use disorder (AUD) studies, the number of alcohol drinks is often collected
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from the participants. A zero response could either from participants who never
engaged in drinking behavior, or those who drink but not when they are being
sampled. The zero-inflated Poisson (ZIP; Lambert (1992)) model was proposed
when zeros are assumed to be from both scenarios while the hurdle model (Mul-
lahy, 1986) is appropriate when zeros are assumed to be from only one source. In
this tutorial, Poisson regression models for count data, as well as ZIP and hur-
dle models for zero-inflated response variables are discussed under the Bayesian
framework. Examples of estimating these models with JAGS (Plummer, 2003)
and R (Team, 2013) package runjags (Denwood, 2016) are illustrated.

1.1 Poisson Regression

The responses Y = (Y1, .., Yn)
T are count of independent events occur in a fixed

time interval for n participants. The likelihood function for each response is
specified as:

Yi ∼ Poisson(λi), λi > 0,

where the rate parameter λi denotes the average number of count per time
interval for each person. The density function can be written as p(Yi = k) =
e−λiλ

k
i

k! for k > 0. The parameter λi can be modeled as a linear function of a
set of predictors X with a log link function such that: log(λi) = β0 + β1X1i +
β2X2i + ...+ βPXPi. The parameter β0 is the intercept, which is the predicted
mean of exp(Y ) when X is 0. The parameter βj is the coefficient corresponding
to the changes in predictor Xp: one unit increase in X is associated with the
expected change in the outcome exp(Y ).

1.2 Zero-inflated Poisson (ZIP) Model

In the ZIP framework, the excess zero observations are from either individuals
who never engaged in the behaviors of interest, with probability pi, or individ-
uals who are part of the Poisson distribution in which zeros are generated from
participants who have engaged in the behavior but not when the survey was
conducted, with probability 1− pi:

Yi ∼

{
0, with probability pi

Poisson(λi), with probability 1− pi,

where i indicates the ith participant. The parameter λi is the mean parameter for
Poisson distribution and represents the expected event frequency for individual

i. Thus, p(Yi = 0) = pi + (1 − pi) × e−λiλ0
i

0! = pi + (1 − pi) × e−λi and p(Yi =

k) = (1 − pi)
e−λiλk

i

k! for k > 0. Let X be the covariates that affect the Poisson
mean and B be the covariates affect the probability pi through log and logit link
functions respectively:

log(λi) = β0 + β1X1i + β2X2i + ...+ βPXPi

logit(pi) = γ0 + γ1B1i + γ2B2i + ...+ γJBJi,
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where βs and γs are coefficients for design matrices, which include a column of
1 as intercept and predictors X or B respectively. The interpretation for β0 and
β1 is similar as in Poisson regression. γ0 and γ1 are specific to ZIP model. When
B is zero, the average odds for a participant to be in the “zero only” group
vs. “Poisson” group is exp(γ0). With one unit increases in B, the odds that a
participant would be in the “zero only” group vs. “Poisson” group increases by
a factor of exp(γ1).

1.3 Hurdle Model

While there are two types of individuals in ZIP, the hurdle model treats all par-
ticipants in the same way so that everyone could be engaged in the behavior
when the survey was undertaken: they could decide to be engaged in the behav-
ior, and then the intensity of the behavior. Thus, two processes are involved in
the hurdle model. For n independent observations Yi:

Yi ∼

{
0, with probability pi

truncated Poisson(λi) with probability 1− pi.

In contrast to ZIP which includes logistic regression to predict “excess ze-
ros” over and above the zeros predicted by Poisson, hurdle models uses logis-
tic regression to predict zero vs non-zeros. The “hurdle” is used to measure
whether a response falls below or above the hurdle (e.g., the hurdle is zero
in this case). The positive responses above the hurdle zero are then modeled
by other truncated count regressions. In this framework, p(Yi = 0) = pi and

p(Yi = k) =
(1−pi)(λ

k
i e

−λi )

(1−e−λi )k!
for k > 0. Similar to the ZIP framework, design

matrices, which include a column of 1 as intercept and predictors X or B, are
associated with log(λi) and logit(pi) through coefficients βs and γs respectively.
However, the interpretation for γs is slightly different from in ZIP: When B is
zero, the average odds for a participant not engaging vs. engaging in the behav-
ior is exp(γ0). With one unit increase in B, the odds that a participant would
not be engaging vs. engaging in the behavior increases by a factor of exp(γ1).

2 Model Estimation

2.1 Data Description

The data on number of recreational boating trips to Lake Somerville was col-
lected in 1980. The dataset includes 659 responses from registered leisure boat
owners in 23 counties in Texas. Figure 1 reveals its variability from 0 up to
around 80 with large amount of zero responses. It clearly suggests that this
count variable is not normally distributed. The number of recreational trips is
often associated with the annual household income. In this illustrative example,
we examine whether income is a predictor of number of recreational boating
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trips a person took. The income variable measures the annual household income
of the respondent (in 1,000 USD) and is centered at its mean for the purpose of
interpretability. The data is available in R package AER (Kleiber & Zeileis, 2008).

Number of recreational boating trips
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Figure 1. Histogram of the outcome variable.

2.2 Estimation of Poisson Regression in runjags

We consider a model in which log(λ) is a linear function of income, where λi

denotes the average number of vacations person i took. The regression equation
is:

log(λi) = β0 + β1 × incomeC.

The model can be estimated in R with package runjags and the function
run.jags is used. It requires a valid model definition, string of monitored vari-
ables (beta0 for β0 and beta1 for β1 in this example), and data, as discussed
below.

1 Pois_Est <- run.jags(model = Poisson_Model , monitor =

2 c(" beta0", "beta1", "exp_beta0", "exp_beta1 "),

3 data = data , n.chains = 3, inits = inits ,

4 method = "simple", adapt = 1000, burnin = 3000,

5 sample = 10000)
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Some of the important arguments used in the function run.jags are:

– model. The model can be specified as a character string, including the likeli-
hood function and initial values. In order to estimate the Poisson regression
model using JAGS, we first need to specify its likelihood function for all par-
ticipants and define λi with the log link function (see Lines 2 - 6 below).
Note the operator “ ∼” is used to define random variables and it repre-
sents “is distributed as”. Line 6 Y[i] ~ dpois(lambda[i]) means that the
response Y[i] is distributed as a Poisson distribution with rate parameter
lambda[i]. The operator <- is for the linear function: log(lambda i) <-
beta0 + beta1*X[i]. Non-informative priors for β0 and β1 can be set as β0,
β1 ∼ N(0, 1000). In JAGS, a normal distribution is specified as dnorm(mu,

tau), with mean mu and precision tau, where precision is the reciprocal of
the variance. Thus, N(0, 1000) is specified as dnorm(0, 1/1000) in JAGS,
see Lines 9 - 10.

1 Poisson_Model <- "model{

2 ## Likelihood ##

3 for (i in 1:N){

4 Y[i] ~ dpois(lambda[i])

5 log(lambda[i]) <- beta0 + beta1*X[i]

6 }

7
8 ## priors for coefficients

9 beta0 ~ dnorm(0, 1/1000)

10 beta1 ~ dnorm(0, 1/1000)

11
12 ## exponentiate the paramters

13 exp_beta0 <- exp(beta0)

14 exp_beta1 <- exp(beta1)

15 }"

– monitor. The parameters to be estimated are defined in a character string.
Since the coefficient parameters are in log odds scale in Poisson regres-
sions, their exponentiated parameters should be obtained for interpretation.
InJAGS, the exponentiated parameters exp beta0 for exp(β0) and exp beta1

for exp(β1) can be sampled directly. exp beta0 and exp beta1 need to spec-
ified in monitor argument as well as in model.

– inits. We need to prepare initial values for beta0 and beta1 as shown below.
A set of initial values is specified as a list regarding the parameters to be
estimated. When multiple chains are generated for convergence diagnosis, a
nested list using the inits argument with length equal to the number of
chains should be specified. In this example, three sets of initial values are
specified since three chains are used for convergence diagnosis.
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1 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

2 beta1 = rnorm(1, 0, 0.1)) ,

3 list(beta0 = 1, beta1 = 1),

4 list(beta0 = -1, beta1 = -1))

– data. The variables from data are specified as a list and passed into the
data used in JAGS, with the argument data. The outcome variable Y in
Poisson Model is the “trips” variable from the raw data dat, denoted as Y
= dat$trips; the predictor X is the centered “income” variable, denoted as
X = dat$incomeC. In Poisson Model, N is the total sample size and need to
be defined as N = nrow(dat).

1 data <- list(Y = dat$trips , X = dat$incomeC ,
2 N = nrow(dat))

– n.chains. Multiple chains can be generated for convergence diagnostic. In
this example, three chains were simulated and denoted as n.chain = 3.
More chains will cause the simulation to run more slowly.

– method. A number of simulation methods are provided in JAGS. simple is
specified here since the model in the illustration example is relatively simple.
When more simulation time is possible, other methods allowing parallelisa-
tion should be considered.

– adapt. A adaption process is often needed for MCMC samplers in JAGS to
sample the posteriors more efficiently. The default is 1000 iterations.

– burnin. MCMC samplers often take a finite number of iterations to find the
region of posterior probability and this portion of chains should be discarded
for inference. The default is 4000 iterations. burnin and adapt should be
specified separately.

– sample. The total number of MCMC samples for each chain can be specified.
The default is 10,000 iterations.

Convergence Diagnosis Three Markov chains are obtained with three dif-
ferent set of initial values. The traceplots of the Markov chains for β0 and β1

and their exponential values are in Figure 2. Since there is no clear trend in
either of the plots and three chains are mixed well, it suggests that convergence
is achieved. In addition, the potential scale reduction factor (psrf; (Gelman &
Rubin, 1992)) in Table 1 are close to 1, suggesting again that convergence has
been reached.

Interpretation The exponentiated coefficients along with the HPD intervals
for β0 and β1 are shown in Table 1. When the household income is at the average
level (3,853 USD), the expected number of boat trips took by the respondents
is approximately 2 ( 2.21) times.
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Table 1. Bayesian parameter estimates from Poisson regression

Mean SD Lower 95 Upper 95 psrf

beta0 0.79 0.03 0.74 0.84 1.0002
beta1 -0.10 0.02 -0.13 -0.07 1.0004
exp beta0 2.21 0.06 2.09 2.32 1.0002
exp beta1 0.90 0.01 0.88 0.93 1.0004
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Figure 2. Traceplots of beta0 and beta1 from Poisson regression.
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In Table 1, “lower 95” is the 2.5 percentile of the HPD interval and “upper 95”
is the 95 percentile. Since 1 is not included in the HPD interval for exp(β1) [0.88,
0.93], the predictor income is statistically associated with number of boat trips
took by the respondents. With every $1000 increases in the annual household
income, the expected number of boat trips taken by the respondents decreases
by 10% (1- (exp(-0.1)) ×100%) on average.

2.3 Estimation of ZIP in runjags

The arguments inits, data, and model used in function run.jags for the ZIP
model are specified in similar ways as in Poisson regression.

1 ZIP_Est <- run.jags(model = ZIP_model ,

2 monitor = c(" beta0", "beta1", "gamma0", "gamma1"),

3 data = data , n.chains = 3, inits = inits ,

4 method = "simple", adapt = 1000, burnin = 3000,

5 sample = 10000, keep.jags.files = T, tempdir = T)

Similar to estimating Poisson regression in JAGS, both likelihood function
and prior for parameters are specified first in ZIP model.The likelihood function
is defined in Lines 2 - 9. In ZIP, the probability of a zero response coming from
the excessive zeros, which are from the group of respondents who never took a
boat trip (W[i] = 0), is pi. The probability of a zero response generated from
sampling zeros, who usually take boat trips but not when they are being sampled
is 1 − pi. The sampling zeros are zeros that are generated from the Poisson
distribution, denoted as W[i] = 1. W is a latent Bernoulli random variable and
is related to predictor centered income with logit link function:

logit(pi) = γ0 + γ1 × incomeC.

In another word, when W[i] is 0, W[i]*mu[i] or lambda[i] becomes 0. Y[i]
is generated from the excessive zeros, which is the group of respondents who
never took a boat trip. When W[i] is 1, Y[i] is generated from the Poisson
distribution with rate parameter mu[i]. The regression equation for λi is as
same as in Poisson regression:

log(λi) = β0 + β1 × incomeC.

Note that the covariates for logit(pi) and log(λi) can be the same. For sim-
plicity, we use centered income as the predictor for both. Non-informative prior
N(0, 10000) is specified for the four estimated parameters β0, β1, γ0, and γ1 in
Lines 12 - 15.

1 ZIP_model <- "model{

2 ## likelihood

3 for (i in 1:N){

4 Y[i] ~ dpois(lambda[i])

5 lambda[i] <- W[i]*mu[i]
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6 W[i] ~ dbern(1-p[i])

7 log(mu[i]) <- beta0 + beta1*X[i]

8 logit(p[i]) <- gamma0 + gamma1*B[i]

9 }

10
11 ## prior

12 beta0 ~ dnorm(0, 1/10000)

13 beta1 ~ dnorm(0, 1/10000)

14 gamma0 ~ dnorm(0, 1/10000)

15 gamma1 ~ dnorm(0, 1/10000)

16
17 ## exponentiate the paramters

18 exp_beta0 <- exp(beta0)

19 exp_beta1 <- exp(beta1)

20 exp_gamma0 <- exp(gamma0)

21 exp_gamma1 <- exp(gamma1)

22 }"

Initial values for gamma0 and gamma1 are set in the same way as beta0 and
beta1. One new variable W is introduced and binary initial values of it are gen-
erated. The length of W is the total sample size for the data. See Lines 1 - 11
for details. The data specification for ZIP is as same as for Poisson regression as
the same dataset is used.

1 W <- dat$trips
2 W[dat$trips >0] <- 1

3
4 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

5 beta1 = rnorm(1, 0, 0.1),

6 gamma0 = rnorm(1, 0, 0.1),

7 gamma1 = rnorm(1, 0, 0.1), W = W),

8 list(beta0 = 1, beta1 = 1, gamma0 = 1,

9 gamma1 = 1, W = W),

10 list(beta0 = -1, beta1 = -1, gamma0 = 1,

11 gamma1 = 1, W = W))

12
13 data <- list(Y = dat$trips , X = dat$incomeC ,
14 B = dat$incomeC , N = nrow(dat))

Convergence Diagnosis The methods for convergence diagnosis for ZIP model
is as same as for Poisson regression models. Thus, the details are omitted here.

Interpretation The exponentiated coefficients and their HPD intervals for the
four estimated parameters are shown in Table 2. The results suggest that for
a respondent from a household with average income, the odds of a zero re-
sponse collected from this person indicating that s/he never went on a boat trip
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vs. s/she have taken a boat trip but not when being sampled is 1.71. This effect
is significant since its HPD interval [1.45, 2] does not contains 1. In addition,
when the annual household income increases by 1000 USD, the odds of a zero
response being generated from these who never went on a boat trip vs. those
who usually took a boat trip but not when being sampled decreases by 3% (
(1 − 0.97) × 100%). This effect is not significant since its HPD interval [0.88,
1.05] contains 1.

Meanwhile, for these who have taken a boat trip but not when being sampled,
an increase of $1000 in annual household income is associated with 13% ( (1 −
0.87)× 100%) less average number of boat trips taken by the respondents. This
effect is significant since the corresponding HPD interval [0.84, 0.9] does not
contain 1.

Table 2. Bayesian parameter estimates from the ZIP model

Mean SD Lower 95 Upper 95 psrf

beta0 1.78 0.03 1.73 1.84 1.0002
beta1 -0.14 0.02 -0.18 -0.11 1.0001
gamma0 0.53 0.08 0.38 0.69 1.0001
gamma1 -0.03 0.05 -0.12 0.05 1.0000
exp beta0 5.95 0.16 5.63 6.26 1.0002
exp beta1 0.87 0.02 0.84 0.90 1.0001
exp gamma0 1.71 0.14 1.45 2.00 1.0001
exp gamma1 0.97 0.04 0.88 1.05 1.0000

2.4 Estimation of Hurdle Models in runjags

In contrast to ZIP where both count and binary parts generate zeros, only the
binary part modeled by logistic function in hurdle models generates zeros. The
nonzero responses are assumed to be from a truncated Poisson distribution. Zero
trick is used when setting up the Bayesian model in runjags. The details of zero
trick approach are discussed in (Ntzoufras, 2011) and the code for the likelihood
function specification is in Lines 2 - 14. C <- 10000 is specified for the zero
trick to make -ll[i] + C greater than 0. A dummy variable z[i] is created so
that it is 0 when Y[i] is smaller than 0.0001 and is 1 otherwise.

The log likelihood of the truncated Poisson distribution truncPois[i] is de-
fined in Lines 6 - 7. The total likelihood function is the sum of z[i]*(log(1-p[i])
+ truncPois) and (1-z[i])*log(p[i]). When z[i] is 0 (Y[i] is 0, or Y[i]
is from the zero-only group), the total likelihood function is log(p[i]); when
z[i] is 1 (Y[i] is positive, or Y[i] is from the truncated Poisson group), the
total likelihood function is log(1-p[i]) + truncPois.

Non-informative priors N(0, 10000) is specified in Lines 18 - 21 for the four
parameters β0, β1, γ0, and γ1.
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1 hurdle_model <- "model{

2 # likelihood

3 C <- 10000

4 for (i in 1:N){

5 zeros[i] ~ dpois(-ll[i] + C)

6 truncPois[i] <- Y[i]*log(mu[i]) - mu[i]

7 - (log(1-exp(-mu[i])) + logfact(Y[i]))

8
9 l1[i] <- (1-z[i])* log(p[i])

10 l2[i] <- z[i]*( log(1-p[i]) + truncPois[i])

11 ll[i] <- l1[i] + l2[i]

12
13 log(mu[i]) <- beta0 + beta1*X[i]

14 logit(p[i]) <- gamma0 + gamma1*B[i]

15 }

16
17 # prior

18 beta0 ~ dnorm(0, 1/10000)

19 beta1 ~ dnorm(0, 1/10000)

20 gamma0 ~ dnorm(0, 1/10000)

21 gamma1 ~ dnorm(0, 1/10000)

22 }"

Similar to ZIP, the initial values for the four parameters β0, β1, γ0, and γ1
are set as below. A column of zeros is added to data for the zero trick approach.
Values of z[i] are generated from raw data and are provided to the argument
data.

1 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

2 beta1 = rnorm(1, 0, 0.1),

3 gamma0 = rnorm(1, 0, 0.1),

4 gamma1 = rnorm(1, 0, 0.1)),

5 list(beta0 = 1, beta1 = 1, gamma0 = 1,

6 gamma1 = 1),

7 list(beta0 = -1, beta1 = -1, gamma0 = 1,

8 gamma1 = 1))

9 z<-dat$trips
10 z[dat$trips > 0] <- 1

11 data <- list(Y = dat$trips , X = dat$incomeC ,
12 B = dat$incomeC , N = nrow(dat),

13 z = z, zeros = rep(0, nrow(dat)))

Convergence Diagnosis The methods for convergence diagnosis for hurdle
model are the same for Poisson regression models. Thus, the details are omitted
here.
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Interpretation The exponentiated coefficients and the corresponding HPD
intervals are presented in Table 3. For a respondent from a household with
average income, the odds of this person not have been to vs. have been to a boat
trip is 1.73. This is significant since its HPD interval [1.47, 2.01] does not contain
1. The odds decrease by 2% ( (1 − 0.98) × 100%) when the average house hold
income increases by $1000. This effect is not significant since its HPD interval
[0.9, 1.07] contains 1.

Meanwhile, for those who have taken a trip when being sampled, an increase
of $1000 in annual household income is associated with 13% ( (1 − 0.87) ×
100%) less average number of boat trips taken by the respondents. This effect is
significant since the corresponding HPD interval [0.84, 0.9] does not contain 1.

Table 3. Bayesian parameter estimates from the hurdle model

Mean SD Lower 95 Upper 95 psrf

beta0 1.78 0.03 1.73 1.84 1.0002
beta1 -0.14 0.02 -0.18 -0.11 1.0003
gamma0 0.55 0.08 0.39 0.71 1.0003
gamma1 -0.02 0.04 -0.10 0.07 1.0002
exp beta0 5.96 0.16 5.65 6.27 1.0002
exp beta1 0.87 0.02 0.84 0.90 1.0003
exp gamma0 1.73 0.14 1.47 2.01 1.0003
exp gamma1 0.98 0.04 0.90 1.07 1.0001

3 Discussion

This tutorial covered methods handling count data and how these methods can
be estimated in Bayesian framework with runjags. When the data is positively
skewed with zero inflation, ZIP and hurdle models can be considered to han-
dle such scenarios. Even though ZIP and hurdle models have been employed
interchangeably in psychological research, they are described in two distinct
frameworks: ZIP is a mixture model in which zeros can be generated from both
Poisson and Bernoulli distributions while hurdle is a two-part model separating
zeros from positive responses. While the output tables for ZIP and hurdle models
suggest that the results are very similar, the interpretation of the models differs.
Researchers should be careful with the choice of methods when working with
zero-inflated data.

Furthermore, both ZIP and hurdle models provide more information than
Poisson model when zero-inflation is present in the data. For example, income
is associated with the odds of zero responses being collected from responders
never went vs. have been on a boat trip but not when being sampled in ZIP. At
the same time, income is associated with the odds of a person have not been to
vs. have been to a boat trip. However, this information is not provided in Poisson
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models. In addition, even though the estimated βs are similar in all three models,
the estimated β in Poisson model is larger than the values estimated in the ZIP
and hurdle models.

This tutorial serves for the purpose of illustrating how the models can be
estimated with runjags. Important topics such as model selections or other
distributions handling count data are not covered in this paper. Readers can
refer to Feng (2021) for a comprehensive comparison between ZIP and hurdle
models handling zero-inflated count data.
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Appendix A Supplemental Material

1 ########### Get the data ready for analysis ###########

2
3 library(AER)

4 data(" RecreationDemand ")

5 dat <-RecreationDemand

6 dat$incomeC <- dat$income - mean(dat$income)
7 hist(dat$trips , main = "",

8 xlab = "Number of recreational boating trips")

9
10 ############### load packages ###############

11 library(runjags)

12 library(kableExtra)

13
14
15 ############### analyses ###############

16
17 ###### Poisson ######

18 Poisson_Model <- "model{

19 ## Likelihood ##

20 for (i in 1:N){

21 Y[i] ~ dpois(lambda[i])

22 log(lambda[i]) <- beta0 + beta1*X[i]

23 }

24
25 ## priors for coefficients

26 beta0 ~ dnorm(0, 1/10000)

27 beta1 ~ dnorm(0, 1/10000)

28
29 ## exponentiate the paramters

30 exp_beta0 <- exp(beta0)

31 exp_beta1 <- exp(beta1)

32 }"

33
34 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

35 beta1 = rnorm(1, 0, 0.1)) ,

36 list(beta0 = 1, beta1 = 1),

37 list(beta0 = -1, beta1 = -1))

38
39 data <- list(Y = dat$trips , X = dat$incomeC ,
40 N = nrow(dat))

41
42 Pois_Est <- run.jags(model = Poisson_Model ,

43 monitor = c(" beta0", "beta1", "exp_beta0",
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44 "exp_beta1"), data = data , n.chains = 3,

45 inits = inits , method = "simple", adapt = 1000,

46 burnin = 3000, sample = 10000)

47
48
49 res11 <-cbind(round(Pois_Est$HPD[,c(1,3)],2),
50 round(Pois_Est$summary$statistics [,1:2],2),
51 round(Pois_Est$psrf$psrf [,1],4))
52 colnames(res11) <- c("Lower 95", "Upper 95",

53 "Mean", "SD", "psrf")

54 kable(res11 , caption = "Poisson runjags

55 Output", "simple ")

56 par(mfrow = c(1, 2))

57 plot(Pois_Est , plot.type = "trace")

58
59
60 ###### ZIP ######

61 ZIP_model <- "model{

62 ## likelihood

63 for (i in 1:N){

64 Y[i] ~ dpois(lambda[i])

65 lambda[i] <- W[i]*mu[i]

66 W[i] ~ dbern(1-p[i])

67 log(mu[i]) <- beta0 + beta1*X[i]

68 logit(p[i]) <- gamma0 + gamma1*B[i]

69 }

70
71 ## prior

72 beta0 ~ dnorm(0, 1/10000)

73 beta1 ~ dnorm(0, 1/10000)

74 gamma0 ~ dnorm(0, 1/10000)

75 gamma1 ~ dnorm(0, 1/10000)

76
77 ## exponentiate the paramters

78 exp_beta0 <- exp(beta0)

79 exp_beta1 <- exp(beta1)

80 exp_gamma0 <- exp(gamma0)

81 exp_gamma1 <- exp(gamma1)

82 }"

83
84 W <- dat$trips
85 W[dat$trips >0] <- 1

86
87 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

88 beta1 = rnorm(1, 0, 0.1),
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89 gamma0 = rnorm(1, 0, 0.1),

90 gamma1 = rnorm(1, 0, 0.1),

91 W = W), list(beta0 = 1, beta1 = 1,

92 gamma0 = 1, gamma1 = 1, W = W),

93 list(beta0 = -1, beta1 = -1,

94 gamma0 = 1,

95 gamma1 = 1, W = W))

96
97 data <- list(Y = dat$trips , X = dat$incomeC ,
98 B = dat$incomeC , N = nrow(dat))

99
100 ZIP_Est <- run.jags(model = ZIP_model , monitor =

101 c("beta0", "beta1", "gamma0", "gamma1",

102 "exp_beta0", "exp_beta1", "exp_gamma0",

103 "exp_gamma1 "), data = data , n.chains = 3,

104 inits = inits , method = "simple", adapt = 1000,

105 burnin = 3000, sample = 10000,

106 keep.jags.files = T, tempdir = T)

107 res2 <-cbind(round(ZIP_Est$HPD[,c(1,3)],2),
108 round(ZIP_Est$summary$statistics [,1:2],2),
109 round(ZIP_Est$psrf$psrf [,1],4))
110 colnames(res2) <- c("Lower 95", "Upper 95", "Mean",

111 "SD", "psrf")

112 res22 <-round(exp(res2[,c(1, 2, 3)]) ,2)

113
114 kable(res22 , caption = "ZIP runjags Exponentiated

115 Output", "simple ")

116 par(mfrow = c(1, 2))

117 plot(ZIP_Est , plot.type = "trace")

118
119
120 ###### Hurdle ######

121 hurdle_model <- "model{

122 ## likelihood

123 C <- 10000

124 for (i in 1:N){

125 zeros[i] ~ dpois(-ll[i] + C)

126 truncPois[i] <- Y[i]*log(mu[i]) - mu[i] -

127 (log(1-exp(-mu[i])) + logfact(Y[i]))

128
129 l1[i] <- (1-z[i])* log(p[i])

130 l2[i] <- z[i]*( log(1-p[i]) + truncPois[i])

131 ll[i] <- l1[i] + l2[i]

132
133 log(mu[i]) <- beta0 + beta1*X[i]
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134 logit(p[i]) <- gamma0 + gamma1*B[i]

135 }

136
137 ## prior

138 beta0 ~ dnorm(0, 1/10000)

139 beta1 ~ dnorm(0, 1/10000)

140 gamma0 ~ dnorm(0, 1/10000)

141 gamma1 ~ dnorm(0, 1/10000)

142
143 ## exponentiate the paramters

144 exp_beta0 <- exp(beta0)

145 exp_beta1 <- exp(beta1)

146 exp_gamma0 <- exp(gamma0)

147 exp_gamma1 <- exp(gamma1)

148 }"

149
150 z<-dat$trips
151 z[dat$trips > 0] <- 1

152
153 inits <- list(list(beta0 = rnorm(1, 0, 0.1),

154 beta1 = rnorm(1, 0, 0.1),

155 gamma0 = rnorm(1, 0, 0.1),

156 gamma1 = rnorm(1, 0, 0.1)),

157 list(beta0 = 1, beta1 = 1,

158 gamma0 = 1, gamma1 = 1),

159 list(beta0 = -1, beta1 = -1,

160 gamma0 = 1,

161 gamma1 = 1))

162
163 data <- list(Y = dat$trips , X = dat$incomeC ,
164 B = dat$incomeC ,
165 N = nrow(dat), z = z,

166 zeros = rep(0, nrow(dat)))

167
168 hurdle_Est <- run.jags(model = hurdle_model ,

169 monitor = c(" beta0", "beta1",

170 "gamma0", "gamm a1", "exp_beta0",

171 "exp_beta1", "exp_gamma0", "exp_gamma1 "),

172 data = data , n.chains = 3,

173 inits = inits , method = "simple",

174 adapt = 1000, burnin = 3000,

175 sample = 10000,

176 keep.jags.files = T, tempdir = T)

177
178 res33 <-cbind(round(hurdle_Est$HPD[,c(1,3)],2),
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179 round(hurdle_Est$summary$statistics [,1:2],2),
180 round(hurdle_Est$psrf$psrf [,1],4))
181 colnames(res33) <- c("Mean", "SD",

182 "Lower 95", "Upper 95"," psrf")

183 res33 <-round(exp(res33[,c(1, 2, 3)]) ,2)

184 kable(res33 , caption = "Hurdle runjags

185 Exponentiated Output", "simple ")

186 plot(hurdle_Est , plot.type = "trace")
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