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Abstract. Bayesian growth curve modeling is a popular method for
studying longitudinal data. In this study, we discuss a flexible extension,
the Bayesian piecewise growth curve model (BPGCM), which allows the
researcher to break up a trajectory into phases joined at change points
called knots. By fitting BPGCMs, the researcher can specify three or
more phases of growth without concern for model identification. Our goal
is to provide substantive researchers with a guide for implementing this
important class of models. We present a simple application of Bayesian
linear BPGCMs to childrens’ math achievement. Our tutorial includes
Mplus code, strategies for specifying knots, and how to interpret model
selection and fit indices. Extensions of the model are discussed.
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1 Introduction

Developmental researchers often study within-person change over time to better
understand a variety of dynamic processes. For example, Marksxand Coll (2007)
contrasted growth in reading and math skills in children across four major ethnic
groups from kindergarten through third grade in order to highlight the needs of
American Indian and Alaska Native youth. Seiderxet al. (2019) documented the
development of Black and Latino high school students’ beliefs about poverty and
racism to examine the role of schooling and how these beliefs relate to each other.
Finally, Shono, Edwards, Ames,xand Stacy (2018) captured change in cannabis
use across teen years as a component of validity testing a new cannabis-related
word association test. These examples highlight a wide range of topics within
developmental research.

For many developmental research questions, choosing an appropriate model
to summarize the trajectory of development over time is crucial. Longitudinal
methods typically describe within-person change and explain between-person
differences in that change. There are many longitudinal models available, and a
truly helpful model will guide the researcher to evaluate their research questions
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and meaningfully communicate their findings. Of the many different model forms
that researchers can choose from, the growth curve model (GCM) is perhaps one
of the more beneficial for tracking change over multiple time-points. The GCM
uses repeated observations to estimate the latent population trajectory. Through
GCMs, researchers can summarize change over time or test hypotheses about
specific aspects of growth (e.g., the rate of change). In addition to summarizing
within-person change, GCMs also allow researchers to examine between-person
variability in development.

The GCM has many forms, and the simplest captures linear change over time
(called a “linear GCM”). Researchers using a linear GCM can describe change
with growth parameters that are straightforward to interpret: a mean intercept
and a mean slope. For example, Marksxand Coll (2007) examined differences in
reading development by interpreting the initial level of reading (i.e., the inter-
cept) and the average rate of change (i.e., the slope) across ethnic groups. The
linear GCM is useful in many research scenarios, but it also has some limitations
that applied researchers should consider while selecting a model. The main lim-
itation is that it assumes the true growth trajectory is a straight line, and can
not capture nonlinear changes that may be of substantive importance.

In some cases examining more dynamic processes, this linear assumption is
too restrictive and will not capture the substantive changes of most interest.
Development may follow a curve or other irregular deviations from linearity. For
example, Zimmer-Gembeckxet al. (2021) found the development of social anxi-
ety in adolescents was best represented by a quadratic GCM. Vargas Lascano,
Galambos, Krahn,xand Lachman (2015) found that a cubic model best fit the
shifts in perceived control in adults aged 18 to 43. In aging adults across the last
16 years of life, Schillin, Deeg,xand Huisman (2018) found that the decrease in
positive affect was best captured by an exponential GCM. The developmental
trajectories in these studies were not linear, and so the researchers used GCMs
that assumed a nonlinear growth trajectory.

An alternative to imposing any assumptions about the shape of the overall
trajectory (e.g., a quadratic growth model) is to instead capture the trajec-
tory with several linear segments using a linear piecewise growth curve model
(PGCM; Meredithx& Tisak, 1990). The word “piecewise” indicates that the lin-
ear slope may be different across different “pieces” of the study period, which
gives the researcher greater flexibility while maintaining simple parameters. For
example, Finkel, Reynolds, McArdle,xand Gatz (2003) used a linear PGCM to
capture cognitive decline in adults over 60 years of age, estimating different rates
of change for observations before and after age 65. This approach allowed them
to show that aging adults under 65 improved each year on certain cognitive
measures, but those scores declined after age 65. More recently, Gaudreau, Lou-
vet,xand Kljajic (2018) used a piecewise approach to capture the development
of adolescents’ performance in gymnastics classes, which decreased for the first
three classes before showing consistent improvement in the last three classes
of the study period. Taking a piecewise approach allowed these researchers to
capture unique shifts in the direction of development over time.
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These researchers used the simplest piecewise model: a linear-linear PGCM.
This type of PGCM is useful for capturing a nonlinear trajectory with a single
change in direction such as the switch from declining to improving performance in
gymnastics (as shown in Gaudreauxet al., 2018). A linear-linear PGCM uses two
phases of growth, but PGCMs with additional phases are possible with enough
measurement occasions. For growth trajectories with more complex nonlinearity
(i.e., growth with more than one change in direction), researchers may wish
to use additional phases. In the frequentist framework, the number of phases
is somewhat restricted in order to maintain model identification. One way to
work around this restriction is to estimate PGCMs in the Bayesian estimation
framework, an alternative approach that can be used to estimate some non-
identified models. For PGCMs, this allows additional phases of growth.

In addition to allowing more phases of growth in PGCMs, Bayesian esti-
mation has been shown to handle complex models with fewer estimation issues
(e.g., convergence, biased estimates). Instead of relying solely on observed data
and a likelihood function, Bayesian methods also incorporate prior information
into estimation using a prior distribution. Wangxand McArdle (2008) found that
Bayesian estimation fairly accurately captures parameters in nonlinear piecewise
growth models, and Depaoli (2013) found that Bayesian growth mixture models
estimated using informative priors yielded minimal bias in parameter estimates.
Using Bayesian estimation methods with thoughtfully selected prior distribu-
tions can help to accurately recover model parameters.

Bayesian PGCMs extend conventionally-taught linear growth models by al-
tering both the functional form of growth and the estimation framework. This
is an active area of methodological development, with recent extensions that
enable the direct estimation of knot placement (Kohli, Hughes, Wang, Zoplu-
oglu,x& Davison, 2015; Lock, Kohli,x& Bose, 2018), incorporation of covariates
(Lamm, 2022), and capturing the interdependent nature of bivariate piecewise
trajectories (Peralta, Kohli, Lock,x& Davison, 2022). Our intended scope for the
current paper is to provide an introductory, hands-on walkthrough to the novice
data scientist or graduate student. That is, our tutorial is written to bridge the
knowledge gap between linear growth curve models in the frequentist framework
and more complex piecewise models estimated in the Bayesian framework. Given
this audience, the specific goals of the current paper are:

– Present readers to Bayesian PGCMs as a flexible way to capture complex
nonlinearity.

– Thoroughly illustrate Bayesian PGCMs with an empirical dataset, including
how to select priors.

– Provide readers with additional resources to expand on this tutorial.

To achieve these goals, the remaining sections of the paper are structured as
follows. First, we describe linear GCMs and how linear PGCMs are a simple ex-
tension. We also highlight how to extend PGCMs beyond two phases of growth.
Second, we introduce Bayesian estimation. Our explanation describes some ben-
efits of Bayesian estimation, key terminology, how to specify priors, and how the
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Bayesian framework allows additional phases of growth. Third, we present an
illustration of Bayesian PGCMs applied to nonlinear growth in childrens’ math
achievement. This demonstration provides the syntax to implement the model in
Mplus, illustrates how to use comparative model indices to select the best model,
and shows how to interpret model results. Finally, we discuss the limitations of
linear PGCMs and possible extensions.

2 Piecewise Growth Curve Models

The main goal of a growth model is to summarize many repeated within-person
observations with a few growth parameters. The general form of a growth model
is

yj = g(tj) + ej , (1)

which says that the jth measurement of the variable y is the sum of some function
of time at the jth measurement g(tj) and timing-specific measurement error ej .
The j subscript indicates that the outcome, time, and error can vary across
all j = 1, 2, ..., J measurement occasions. In the following sections, we describe
different specifications of g(tj). Next we describe a linear GCM, how GCMs can
be adapted for nonlinearity, a two-phase linear PGCM, and linear PGCMs with
three or more phases. Finally, we connect these models to Mplus syntax.

2.1 Linear GCM

A linear GCM assumes the growth function g(tj) is a linear function of time t :

g(tj) = β0 + β1tj , (2)

where β0 represents the intercept and β1 represents the expected rate of change
for every 1-unit increase in time tj

1. We refer to these coefficients as growth
parameters. Researchers are typically interested in estimating linear growth pa-
rameters using a sample of i = 1, 2, ..., N persons with repeated measurements
at J different time points. To clarify that we are interested in estimating person-
specific outcomes as a function of person-specific time, we add an i subscript to
g(tj) in Equation (equation2). The linear growth function can be given by

g(tij) = β0 + β1tij , (3)

1 The coding and interpretation of tj is determined by the researcher. For example,
tj may refer to the number of weeks after the study began, or the number of months
after an intervention. If the measurements were not spaced consistently, this can be
reflected in the observed values of tj . For example, a study with measurements in
January, February, April, and July could code time as the number of months since the
first measurement occasion so that t1 = 0, t2 = 1, t3 = 3, and t4 = 6. In this case, the
intercept is placed at the first measurement occasion, but the researcher may choose a
different placement. For example, if an intervention occurred in April, the researcher
may choose to place the intercept there by recoding tj as t1 = −3, t2 = −2, t3 = 0,
and t4 = 3. Thoughtfully specifying time ensures that the intercept and slope can
be interpreted in a meaningful way.
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where the growth function of person i’s time at measurement occasion j is a
linear function with intercept β0 and slope β1. Plugging in this growth function
and adding an i subscript to Equation (equation1) gives

yij = β0 + β1tij + eij , (4)

where yij refers to the outcome variable for person i at time j, tij is person
i’s time measured at time point j, and eij is unexplained error for person i
at time point j. We assume that eij is normally distributed around zero, or
eij ∼ N(0, σ2

ej). The error variance parameter σ2
ej represents variability in the

observed data at time j that is unexplained by the model. The two coefficients in
this model, β0 and β1, refer to growth parameters that are held constant across
persons. However, there is often some between-person fluctuations in the growth
parameters. Imposing the same intercept and slope on each participant in the
sample can lead to higher measurement error eij . To prevent this, we introduce
a person-specific growth function, di(tij). We define di(tij) as,

di(tij) = δ0i + δ1itij , (5)

where δ0i and δ1i refer to a person-specific intercept and slope, respectively. We
assume the values of δ0i are distributed normally with a mean of β0 and that
δ1i is normally distributed around β1. These assumptions can be summarized in
the following way: [

δ0
δ1

]
∼MVN

([
β0
β1

]
,Σδ

)
, (6)

where Σδ is a 2 × 2 covariance matrix. The diagonal elements of this matrix
describe the variance of the intercept and variance of the slope. The off-diagonal
element describes the covariance of the intercept and slope. These variances can
have interesting substantive meaning. For example, if a researcher studied the
number of words children learn from age two to five and found the variance of the
intercept is smaller than the variance of the slope, this suggests that the number
of words children knew at age two varies less than how many new words children
learned per year. By replacing g(tj) with di(tij) in Equation (equation1), we can
write the full linear GCM,

yij = δ0i + δ1itij + eij , (7)

which describes the outcome variable yij as a function of time tij and person i’s
growth parameters δ0i and δ1i.

2.2 Capturing Nonlinearity

Linear GCMs assume change over time can be captured with a straight line,
but in some cases this linear assumption is too restrictive. Change in a variable
over time may follow a curve or have other deviations from linear change. When
change is not linear, the researcher’s analysis plan must transition to capture
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nonlinearity. There are many ways to model nonlinearity, but these extensions
may have limited applicability. For example, a researcher may add a third term
such as “+δ2it

2
ij” to Equation (equation7) to estimate a quadratic coefficient δ2i

for trajectories shaped like a parabola. Researchers can also alter linear GCM
specifications in more complex ways to capture cyclical growth with a sine func-
tion (e.g. Bollenx& Curran, 2006) or S-shaped growth with a Gompertz curve
(e.g. Grimmx& Ram, 2009). The parameters estimated by these models are
shape-specific and some may be challenging to substantively interpret. When
the goal of the model is simply to capture the trajectory, this is not a problem.
However, when the researcher wants a simpler interpretation of growth param-
eters, an alternative method is to break up the trajectory into linear phases as
shown in Figure figure1. These phases comprise a “piecewise” approach to mod-
eling nonlinear growth patterns. Using this piecewise approach allows a GCM to
capture nonlinear growth while maintaining the simple interpretation of linear
slope parameters.

The simplest piecewise model uses two phases to capture growth with a single
change in direction. The time when one growth phase switches to another is
called a knot, denoted k. The knot is placed at a measurement occasion chosen
by the researcher. We adapt the growth function in Equation (equation5) to
include a change in slope at k:

di(tij) = δ0i + δ1itij + δ2i(tij − k)+. (8)

Here, δ2i represents the person-specific change in slope that occurs at values
of tij after the knot. Similar to the other coefficients, δ2i has a mean of β2
and information about its variance and covariances are contained in a 3 × 3
covariance matrix Σδ. To implement a change in slope for some values of tij but
not others, we introduce a new term, (tij − k)+, which represents “the positive
part of tij − k”. This is defined as,

(tij − k)+ =

{
0 if tij ≤ k

tij − k if tij > k,
(9)

which means the term (tij − k)+ only appears when tij − k positive. This means
in Equation (equation8), person i’s linear slope when t ≤ k is δ1i, but the slope
for t > k is δ1i+δ2i. Adding this to Equation (equation7) gives the linear PGCM
with one knot:

yij = δ0i + δ1itij + δ2i(tij − k)+ + eij . (10)

Here, the coefficients δ0i and δ1i describe person-specific growth parameters in
the first phase of growth. The person-specific change in slope at k is described
by δ2i. The last term, eij , describes leftover error that is not captured by di(tij).
To illustrate this, consider Figure figure1, which shows a linear GCM in part
(a) and a linear PGCM in part (b). In part (b), there are four measurement
occasions t1 = 0, t2 = 1, t3 = 2, and t4 = 3, and a knot, k = 2. The rate of
growth increases at the knot, which appears visually as a steeper slope from
k = 2 onward.
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Figure 1. Examples of nonlinear development in a generic outcome y. The points
represent simulated data and solid lines represent estimated growth trajectories for
different models. Panel (a) shows a linear growth curve model (GCM) fitted to nonlinear
data; panel (b) shows a linear piecewise growth curve model (PGCM) that divides the
trajectory into two phases joined at a single knot indicated by the vertical dashed line;
panel (c) shows a longer simulated trajectory with more complex nonlinearity that
requires two knots (that is, three phases) to capture.
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2.3 Extending PGCMs to Three or More Phases

In the frequentist framework, extending piecewise models beyond two phases of
growth requires several measurement occasions. For example, Bollenxand Curran
(2006) showed at least five measurement occasions are required to estimate a
two-phase PGCM, and Flora (2008) noted that a three-phase PGCM needs
at least seven measurements. These restrictions ensure the model is identified,
meaning it has enough observed variables to estimate the parameters. A non-
identified model cannot be estimated using frequentist methods. In this section
we describe PGCMs with three or more phases, which traditionally require many
measurement occasions. Later we describe the Bayesian estimation framework,
an alternative approach that can estimate non-identified models.

To create more phases, the researcher must specify more knots. To refer to
M specific knots, we use k1, k2, ..., kM . First, we generalize the person-specific
growth function di(tij) to address more phases of growth:

di(tij) = δ0i + δ1itij +

M∑
m=1

δ(1+m)i(tij − km)+. (11)

The change from δ2i in Equation (equation8) to
∑M
m=1 δ(1+m)i here generalizes

the growth function to handle more than two phases. Each coefficient next to
the summation sign δ2i, δ3i, ..., δ(1+M)i refers to a change in slope that occurs
after the first phase. For example, for a model with M = 5 knots, the slope
in the sixth and final phase of growth would be δ1i + δ2i + ... + δ6i, or δ1i +∑5
m=1 δ(1+m)i. Putting the growth function from Equation (equation11) into

Equation (equation1), we get the full linear PGCM:

yij = δ0i + δ1itij +

M∑
m=1

δ(1+m)i(tij − km)+ + eij . (12)

This model is a generalization of the model shown in Equation (equation10) that
can address two or more phases. The summation describes how the linear slope
of each phase of growth is the sum of multiple coefficients.

To illustrate this concept, see part (c) in Figure figure1. This plot shows
change over six measurements with two knots placed at k1 = 1 and k2 = 3.
Visually, growth appears slow in the first phase, accelerates in the second phase,
then switches to a decline in the third phase. We could specify these knots in
Equation (equation12) in the following way:

yij = δ0i + δ1itij + δ2i(tij − 1)+ + δ3i(tij − 3)+ + eij . (13)

In this model, the general term
∑M
m=1 δ(1+m)i(tij − km)+ has been spelled out

as δ2i(tij − 1)+ + δ3i(tij − 3)+. As before, δ0i and δ1i describe person i ’s growth
trajectory in the first phase of growth, which covers t1 = 0 and t2 = 1. The
second phase of growth extends from the second time point to the fourth, or
1 < t ≤ 3. The rate of change in this phase is δ1i + δ2i. The third phase starts
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at the second knot k2 = 3 and includes the next two time points. This phase of
growth has the slope δ1i + δ2i + δ3i. This is equivalent to δ1i +

∑2
m=1 δ(1+m)i.

Nonlinear trajectories may show complex nonlinearity that does not have
clear phases of growth. In these cases it is not clear how many phases are needed
to capture the trend, or where knots should be placed. There may be multiple
knot specifications that could capture the trajectory, or developmental theories
may disagree on when one phase of growth ends and another begins. In these
situations, a model selection approach can be useful.

Model selection is a method where multiple candidate models are estimated
and compared before selecting the “best” one. The criteria for this selection
is usually one or more model comparison indices, which are often provided by
statistical software. These indices may include model fit indices or model com-
parison indices. Model fit refers to how well an estimated model minimizes error
variance or “fits” the data. Model fit indices are used to evaluate the estimated
model on some index-specific scale. For example, values below 0.05 suggest ex-
cellent fit according to the root mean square error of approximation (RMSEA;
Brownex& Cudeck, 1992; Steigerx& Lind, 1980). Other model fit indices include
the Comparative Fit Index (CFI; Bentler, 1990) and Tucker-Lewis Index (TLI;
Tuckerx& Lewis, 1973). In contrast, model comparison is the task of comparing
two or more models and selecting the model with the best balance of fit and
parsimony.

Model comparison indices may be applied to PGCMs to select the best knot
specification out of several candidate models. Two commonly-used indices are the
Akaike information criterion (AIC; Akaike, 1992) and the Bayesian information
criterion (BIC; Schwarz, 1978). These comparison indices describe the fit of a
model (measured using the loglikelihood) penalized by model complexity (the
number of free parameters in the model). When evaluating candidate models,
the model with the smallest AIC (or BIC) is considered the winning model. For
further information on these and other model comparison indices, we refer the
reader to Nylund, Asparouhov,xand Muthén (2007).

2.4 Notation and Mplus Syntax

Translating linear PGCMs to syntax is relatively straightforward. We start by
showing how to implement the linear model in Equation (equation7) and part
(a) of Figure figure1 in Mplus. In this example, the five variables labelled y1, y2,
y3, y4, and y5 refer to observations of our variable of interest at five different
measurement occasions:

MODEL:

delta_0 delta_1 | y1@0 y2@1 y3@2 y4@3 y5@4;

The MODEL command indicates to Mplus that the following lines of code define
our model. In the next line, delta_0 and delta_1 refer to the growth parameters
we want to estimate: δ0i and δ1i from Equation (equation7). The | symbol means
the intercept and slope on the left should be estimated using the information
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on the right. On the right side of the vertical line, we see five main elements.
Each of these elements contains a y, an @, and a number. Each observation of y
is paired with a value of t (represented by the number for each element). The
@ symbol means that the value of y occurred at a specific time t. For example,
y1@0 indicates that the first measurement occasion y1 occurred when t = 0,
which places the intercept at the beginning of the study period. We extend this
syntax to address two phases of growth by adding a third line to estimate the
change in slope δ2i in Equation (equation10). We can implement the piecewise
model in Figure figure1 part (b), which uses a single knot k = 2, in the following
way:

MODEL:

delta_0 delta_1 | y1@0 y2@1 y3@2 y4@3 y5@4;

delta_0 delta_2 | y1@0 y2@0 y3@0 y4@1 y5@2;

The third line of syntax tells Mplus to estimate a change in slope called delta_2

by pairing each observation of y with the value of (tj − k)+. The delta_0 term
is included to tell Mplus the growth segments are connected, but it does not
mean delta_0 is the intercept of the second segment. As noted in Equation
(equation9), the value of (tj − k)+ is zero when tj ≤ k. As shown in part (b)
Figure figure1, the first three observations are left of or equal to the knot at
k = 2, represented as a dotted line in part (b) of Figure figure1. Piecewise
models like the one shown in part (c) of Figure figure1 are also possible with
additional lines of syntax, and we present examples in the Tutorial section.

3 The Bayesian Estimation Framework

There are multiple reasons for researchers use the Bayesian estimation frame-
work. Bayesian methods allow researchers to incorporate background knowledge
in analyses and use an estimator that does not rely on large sample theory. These
features allow Bayesian methods to estimate non-identified models, which may
allow the researcher to implement more phases of growth than what is possible
in the frequentist framework. Bayesian estimation can also improve the accuracy
of parameter estimates in nonlinear growth models (e.g., Depaoli, 2013; Wangx&
McArdle, 2008). We introduce researchers to the Bayesian estimation framework
here by discussing key Bayesian terminology, prior specification, the estimation
process, and Bayesian model indices for model selection and evaluation. For more
information, we recommend Kruschke (2014) and Depaoli (2021).

3.1 Key Terminology

Bayesian estimation addresses uncertainty about exact parameter values by
treating model parameters as random variables with their own probability dis-
tributions. The results of a Bayesian analysis include an estimated probability
distribution for each parameter called a posterior distribution. To obtain pos-
terior distributions, the researcher must provide probability distributions called
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prior distributions, or priors. These priors represent the researcher’s background
knowledge about the model parameters. The prior distributions are combined
with a likelihood function built from the observed data. The general process
of Bayesian estimation in developmental research is to specify our background
knowledge of change over time (priors), combine this knowledge with new data,
and create an updated description of change over time (posterior distributions).

3.2 Prior Specification

The prior is a hugely important component of Bayesian estimation that can
provide the researcher with potential influence over final parameter estimates.
Prior specification is a process where each parameter in the researcher’s model
is assigned a probability distribution. Priors may provide more or less informa-
tion depending on specification. Diffuse priors incorporate uncertainty into the
analysis by providing almost no information. In contrast, an informative prior
incorporates certainty into the analysis by providing information about likely
values for the model parameter.

The level of informativeness of a prior reflects the level of certainty about
possible values of the model parameter. As an example, consider the two-phase
PGCM shown in Figure figure1, part (b) and described in Equation (equation10).
The main parameters in this model are the mean intercept and slope for the first
phase, β0 and β1, and the average change in slope in the second phase, β2. These
are mean parameters, which are commonly assigned normal distribution priors.
Normal distributions are defined by a mean and a standard deviation. One way
to assign a prior to β0 is to give it a normal prior with a mean of zero and an
extremely large standard deviation such as σ = 105. We write this formally as
β0 ∼ N(0, σ = 105). This suggests a tremendous range of values, including those
as extreme as 1,000,000, are all potential values of β0. This prior is a “diffuse”
prior, meaning it does not provide much information about what values of β0
are likely. Alternatively, the researcher may believe β0 lies somewhere between
zero and 100. To narrow the range of likely values of β0, the researcher could
specify β0 ∼ N(50, σ = 20). The density of this normal distribution is almost
entirely between zero and 100, with values close to 50 more likely than values
far away. A similar strategy may be used to assign priors to β1 and β2.

The remaining parameters in the model are the coefficient covariance matrix
Σδ and measurement error variances σ2

e1, ..., σ
2
e7. Variance parameters should not

receive normal priors. In Mplus, the options for variance prior distributions are
the inverse gamma distribution or the inverse Wishart distribution. We use the
diffuse Mplus default variance priors (described in detail in the tutorial) to focus
our demonstration on mean growth parameters, but interested readers can see
Asparouhovxand Muthén (2021b) for guidance on how to construct informative
variance priors.

Careful prior specification is always important in Bayesian estimation, but it
is especially crucial for PGCMs with many phases. In the frequentist framework,
models must be identified to be estimated. In PGCMs specifically, the require-
ments for model identification restrict the number of growth phases (Bollenx&



12 L. Marvin et al.

Curran, 2006; Flora, 2008). The Bayesian estimation framework offers an alter-
native to the limitations of model identification. Bayesian estimation of non-
identified models (e.g., many phases of growth in piecewise growth curve mod-
els) are possible because the addition of prior information aids the estimation
process and can make up for a lack of information in the observed dataset. How-
ever, careful prior specification may be especially important because the priors
compensate for a lack of observed information. Priors placed on the latent co-
variance matrix in SEMs may be especially important for model estimation when
the model is not identified. Other literature (e.g., Liu, Zhang,x& Grimm, 2016)
has demonstrated how some prior specifications on this component of a growth
curve model can lead to biased estimates in identified models. Some prior spec-
ifications can lead to model convergence problems and estimated non-positive
definite covariance matrices, so the researcher needs to be mindful to assess the
impact of their chosen priors.

In this paper, we use weakly informative priors for mean parameters. Weakly
informative priors incorporate a small amount of certainty into the analysis.
These priors are based on our scale of measurement and used to demonstrate
one option for prior specification, but there are many others. Priors may be de-
rived from a data-splitting technique (e.g., Depaolix& van de Schoot, 2017; Gel-
man, Meng,x& Stern, 1996), meta-analysis (e.g., Rietbergen, Klugkist, Janssen,
Moons,x& Hoijtink, 2011), or expert consultation (e.g., Veen, Stoel, Zondervan-
Zwijnenburg,x& van de Schoot, 2017). A researcher may also use data from a
previous study to specify informative priors. Once all model parameters have
priors specified, the researcher can estimate the model.

3.3 Model Estimation

Posterior distributions are constructed by combining priors with observed data.
This combination of observed data and a prior distribution for each parameter
leads to a complex, multivariate equation that usually has no simple solution.
Statistical software employs iterative algorithms to solve such complex equations
regardless of the estimation framework (e.g., frequentist estimation commonly
uses maximum likelihood via the expectation-maximization algorithm). Bayesian
estimation uses Markov chain Monte Carlo (MCMC), a technique for sampling
from a probability distribution, in order to construct posterior distributions.

MCMC sampling uses an iterative process to gather a series of samples from
the posterior distribution, which is then used to construct an empirical estimate
of the posterior distribution. The “chain” part of MCMC refers to a record of
samples from each parameter’s posterior distribution. MCMC sampling in Mplus
uses two chains by default, but any number of chains can be specified. To achieve
stable and meaningful posterior estimates, the MCMC chains must converge on
the posterior distribution. Wildly inconsistent samples from the posterior suggest
the chains have not yet converged2, meaning the posterior distribution estimates

2 Chains may also be slow to converge due to high autocorrelation, a phenomenon
where adjacent samples in a chain are highly dependent on each other. Some re-
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are not yet stable. If the posterior estimates are unstable, the researcher cannot
draw valid inferences about growth in the population. Therefore, it is crucial for
the researcher to assess convergence.

The first several iterations in a chain are usually unstable before the chain
“finds” the posterior, and these are referred to as burn-in iterations. After es-
timating the model and discarding the burn-in iterations (Mplus automatically
discards the first half of the MCMC chain), the researcher may check convergence
by inspecting plots of parameter estimates in each chain (called trace plots) or by
using various convergence diagnostics such as the potential scale reduction factor
(PSRF; Brooksx& Gelman, 1998). These two diagnostic tools are directly avail-
able in Mplus, but additional diagnostics (such as the Geweke statistic, Geweke,
1991) can also be obtained by exporting chains to other software such as the
coda package in R (Plummer, Best, Cowles,x& Vines, 2006).

Trace plots display post-burn-in iterations on the x -axis and parameter es-
timates on the y-axis. If a chain has converged, the trace plot should display
parameter estimates with a consistent mean (i.e., a stable horizontal band) and
a consistent variance (i.e., a stable height of the chain). The researcher must
check trace plots for each model parameter. Chains that show inconsistent mean
and variance suggest a lack of convergence. Diagnostic statistics are additional
tools that are helpful for assessing convergence. The PSRF represents the ra-
tio of within-chain to between-chain variability in post burn-in iterations for a
given parameter. Ideally, all MCMC chains will converge to the same probability
distribution, and the PSRF will be close to 1.0 for all parameters, but values
below 1.1 are considered acceptable. Mplus reports the model’s highest PSRF
throughout estimation.

3.4 Model Selection Indices

The most common model selection indices used in the Bayesian framework are
the deviance information criterion (DIC; Spiegelhalter, Best, Carlin,x& van der
Linde, 2002, 2014), and Bayesian information criterion (BIC; Schwarz, 1978).
Both add a measure of general model fit to a penalty for model complexity. The
goal is to balance good fit with parsimony. Among competing models, the model
with lowest DIC (or BIC) is preferred. A third index is the posterior predictive
p-value (PPP; Gelmanxet al., 1996; Meng, 1994). Unlike the DIC and BIC, the
PPP is a model fit index rather than a model selection index, but it can provide
useful information for model selection. These three indices can be used to choose
among competing PGCM models.

The PPP is a measure of how well the model explains the observed data
by evaluating simulated datasets based on the model. The contrived datasets
may fit the model better or worse than the observed data, and the PPP is the
proportion of simulated datasets that show more discrepancy from the model

searchers address autocorrelation by thinning the MCMC chain. We use the Mplus
default of no thinning in our tutorial, but we encourage readers who are concerned
about autocorrelation in their analyses to check Depaoli (2021) or Kruschke (2014).
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than the observed dataset. Mplus conducts these simulations automatically. If
simulated data consistently show worse model fit than the observed data, the
model does not have good predictive accuracy. On the other hand, if simulated
data based on the model always shows better fit than the real data, this also
suggests model misfit. A PPP of 0.5 suggests excellent fit, with values close to
zero or one suggesting model misspecification. Recent work by Cainxand Zhang
(2019) suggest using a cutoff of 0.15 or lower to identify model misfit.

After using model comparison indices, it is useful to evaluate the preferred
model. Recent developments in Bayesian SEM research have lead to new model
fit indices including the Bayesian RMSEA (BRMSEA), the Bayesian compara-
tive fit index (BCFI), and the Bayesian Tucker-Lewis index (BTLI). In addition
to point estimates for these indices, Mplus also provides 90% credibility inter-
vals which can provide additional information. In particular, Asparouhovxand
Muthén (2021a) suggest three interpretations for the BRMSEA credibility inter-
val. If the full interval is below 0.06, BRMSEA suggests the model fits well, but
if the full interval is above 0.06, BRMSEA indicates poor fit. If the credibility
interval contains the cutoff value 0.06, the fit index is inconclusive (i.e., it cannot
determine whether fit is good or bad). The credibility intervals for the other fit
indices BCFI and BTLI have a similar interpretation. If the BCFI’s credible in-
terval is above 0.95, it suggests the model is well-fitting. If the interval lies below
0.95, it suggests poor fit. If the credible interval contains 0.95, the fit index is
inconclusive. The interpretation of BTLI is the same. Further information on the
formulation and use of these fit indices are provided in Asparouhovxand Muthén
(2021a) and Garnier-Villarrealxand Jorgensen (2020).

4 Tutorial

Bayesian linear PGCMs provide a flexible approach to handling nonlinear tra-
jectories with easily-interpretable parameters3. To illustrate this approach, we
applied Bayesian linear PGCMs to math achievement data using the model
selection approach to knot specification. There are many statistical programs
that can implement Bayesian PGCMs, including Stan (Stan Development Team,
2019) and OpenBUGS (Spiegelhalter, Thomas, Best,x& Lunn, 2007), but we use
Mplus for this tutorial because of its popularity and accessibility.

4.1 Introduction to the ECLS-K Math Application

We used math achievement data from the Early Childhood Longitudinal Study,
Kindergarten cohort (ECLS-K; Tourangeau, Nord, Lê, Sorongon,x& Najarian,
2009) to illustrate Bayesian PGCMs. The ECLS-K dataset is a nationally rep-
resentative sample from the United States with approximately 22, 000 children
who started kindergarten in the fall of 1998. The full dataset is larger than many

3 Readers interested in the performance of the model selection approach we outline
here can find a proof of concept simulation in Supplemental Material.
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datasets in developmental research, so we used a random subsample of N = 500
children to make our demonstration more applicable to common research set-
tings. We also ensured our sample had no missing math measurements to focus
our discussion on implemention.

The ECLS-K contains measurements of math achievement from kindergarten
through eighth grade. Trained evaluators assessed the children’s math ability in
the fall and spring of kindergarten, fall and spring of first grade, the spring of
third grade, the spring of fifth grade, and the fall of eighth grade. We coded
these times as 0.0, 0.5, 1.0, 1.5, 3.5, 5.5, and 8.0. This way, “1.0” corresponds
to fall of first grade, “3.5” refers to a spring of third-grade measurement, and
so on. The Math item response theory (IRT) scores reported in the dataset are
scale scores that represent estimates of the number of items children would have
answered correctly if they had taken all 174 items at all seven measurement
occasions. The IRT scale provided in the ECLS-K ensures that math scores are
comparable across test forms. Further details are provided by Pollack, Najarian,
Rock,xand Atkins-Burnett (2005). Figure figure2 shows a scatterplot of the math
achievement data across all seven measurement occasions. In the figure, math
ability generally increased over time, but some periods of growth were more
rapid than others. To estimate a linear PGCM to the nonlinear growth shown in
Figure figure2, the first step is to determine knot placement. Unlike the simple
examples shown in Figure figure1, the most appropriate knot specification is not
clear. Model selection is one way to address this ambiguity.

4.2 Choosing Model Candidates

The first step for implementing Bayesian PGCMs is devising a set of model can-
didates to estimate. The goal is to estimate several models that differ in knot
specification and use model selection indices to determine the best model. The
only difference between the models should be knot specification. In the Bayesian
estimation framework, the researcher may place knots on any measurement oc-
casion except the first and last, and use up to J − 2 knots in total. This means
for the ECLS-K data, a researcher may specify a PGCM with anywhere from
one to five knots. In this section, we describe five competing models we will use
to determine knot specification. The knot placement in these models break up
the overall trajectory in up to six phases, visualized in Figure figure3. We discuss
the rationale behind the knot placement for each model here.

The first knot specification uses a theory-driven approach. According to Pi-
aget’s classic theory of cognitive development (Flavell, 1963), children occupy
the preoperational stage of development from ages two to seven. The concrete
operational stage occurs from ages seven to eleven, and the formal operational
stage begins at twelve years old. These stages represent an increase in childrens’
ability to think abstractly, and a researcher could argue these stages relate to
math development. A researcher may apply these phases of development to the
ECLS-K data by placing knots at k1 = 1.5 and k2 = 5.5. For this specification,
the first phase of growth corresponds to preoperational development, the second
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Figure 2. The development of math achievement in the ECLS-K dataset. “Math IRT”
refers to the repeated measures outcome variable indicating math achievement in the
ECLS-K, dots represent individual children’s scores, and grade in school ranges from
zero (representing fall of kindergarten) to eight (representing fall of eighth grade). Lines
illustrate the trajectory over time for a random subsample of n=50 children.
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to the concrete operational stage of development, and the third to the formal
operational stage. Model 1 implements this knot specification.4

The remaining four models use a data-driven approach to derive knot place-
ment. Model 2 divides the trajectory into four almost equally-sized segments by
placing knots at k1 = 1.5, k2 = 3.5, and k3 = 5.5. Each phase of growth en-
compasses 2 years on average, and is the closest to equally-sized segments that
is possible with the timing of measurements. The third model places knots at
every other measurement occasion: k1 = 0.5, k2 = 1.5, and k3 = 5.5. The fourth
model increases complexity to four knots. The scatterplot in Figure figure2 may
be interpreted to show no meaningful change in growth between the first and
second measurement compared to the growth between the second and third. To
treat the whole of kindergarten as a single phase of growth while allowing unique
phases between all other measurements, Model 4 implements four knots k1 = 1.0,
k2 = 1.5, k3 = 3.5, and k4 = 5.5. Finally, Model 5 implements all possible knots
k1 = 0.5, k2 = 1.0, k3 = 1.5, k4 = 3.5, and k5 = 5.5. This fifth model suggests
that the rate of change between every single measurement is meaningfully differ-
ent. In the following sections, we demonstrate how to implement PGCMs in the
Bayesian framework and how to use Bayesian model selection indices to choose
the most appropriate model.

4.3 Prior Specification Strategy

Each parameter in a model requires a prior. For linear PGCMs, these parameters
include coefficient means (for the intercept, first slope, and changes in slope),
variances of the coefficients, covariances of the coefficients, and measurement
errors. We employed a combination of weakly informative and diffuse priors.

The intercept mean reflects the mean math achievement score when t = 0,
or the fall of kindergarten. Visual inspection of the data scatterplot showed no
negative values at the first measurement occasion, so the default prior centered
on zero did not seem appropriate. Instead, we specified a “weakly informative”
prior as Normal(µ = 25, σ2 = 100). The mean of all scores at the first timepoint
appears close to 25 in the scatterplot, and setting the variance to 100 reflects
our uncertainty about this exact mean value.

After setting the prior for the intercept, we took a more general approach
to the priors for the other coefficient means. Setting priors for PGCMs comes
with an additional challenge when using model selection indices to determine
knot placement: Priors should be kept as consistent as possible across models to
ensure that differences in model selection indices are due to knot placement alone.
The ECLSK dataset includes math IRT values ranging from approximately 10
to 174. Because of this range of values, the full width of the default priors did not

4 We are using this example of Piaget’s stages simply for illustrative purposes. We
make no claims about whether these are viable stages of development, nor how
they may (or may not) relate to math development. Instead, we wanted to form
a concrete example that would be easy for readers to follow in order to highlight
aspects of conducting the analysis.
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Figure 3. Five candidate knot specifications for the ECLS-K dataset. “Math IRT”
refers to the repeated measures outcome variable indicating math achievement in the
ECLS-K, dots represent individual children’s scores, and grade in school ranges from
zero (representing fall of kindergarten) to eight (representing fall of eighth grade).
Knot location is indicated by the dashed vertical lines, and each model uses unique
phases of growth to capture the development of math achievement. These models range
in complexity from the three-phase Model 1 to the six-phase Model 5. Colored lines
indicate the estimated mean trajectory according to each model.
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seem useful. A visual inspection of the data scatterplot shows that rate of growth
changed over time, but did not appear to exceed 30 IRT points within a single
year. In order to keep the priors for the slope means consistent, we assigned a
normal prior with N(µ = 0, σ2 = 400) to each one. This reflects our belief that
a range of linear slope values from -60 to 60 are possible, with slopes closer to
zero more likely. In substantive terms, this means we expected childrens’ math
IRT score to change by some value in the -60 to 60 range each year for the first
segment of growth, and the rate of change itself would never change by more
than 60 points.

Coefficient variances, covariances, and residual variances were also estimated.
Because we did not have a clear substantive reason to alter the priors for these
parameters, we used Mplus default settings. For the coefficient covariance matrix
Σδ, Mplus uses an inverse Wishart prior with a 0 scale matrix and –p−1 degrees
of freedom, where p is the number of latent growth factors. Residual variances
receive an inverse gamma prior defined as IG(−1, 0). Next, we describe how to
implement these priors in Mplus.

4.4 Implementing Linear PGCMs in Bayesian Software

Estimating Bayesian PGCMs in Mplus requires an input file with five sections:
data information (including the DATA and VARIABLE commands), the model itself
(under MODEL), estimation details (under ANALYSIS), prior specification (under
MODEL PRIORS), and output details (including PLOT and OUTPUT commands). We
present the syntax for Model 5 here, but readers can implement any of the other
candidate models with minor edits to the MODEL and MODEL PRIORS sections. We
begin with the MODEL section.

The equation for Model 5 can be written,

yij = δ0i + δ1itij + δ2i(tij − 0.5)+ + δ3i(tij − 1.0)+

+ δ4i(tij − 1.5)+ + δ5i(tij − 3.5)+ + δ6i(tij − 5.5)+ + eij ,
(14)

which translates to the following syntax:

MODEL:

delta_0 delta_1 | y1@0 y2@0.5 y3@1.0 y4@1.5 y5@3.5 y6@5.5 y7@8.0;

delta_0 delta_2 | y1-y2@0 y3@0.5 y4@1.0 y5@3.0 y6@5.0 y7@7.5;

delta_0 delta_3 | y1-y3@0 y4@0.5 y5@2.5 y6@4.5 y7@7.0;

delta_0 delta_4 | y1-y4@0 y5@2 y6@4 y7@6.5;

delta_0 delta_5 | y1-y5@0 y6@2 y7@4.5;

delta_0 delta_6 | y1-y6@0 y7@2.5;

[delta_0-delta_6] (beta_0-beta_6);

The first line after the MODEL command tells Mplus the timing of all seven mea-
surement occasions, and tells Mplus to use the timing to estimate the intercept
and slope of the first phase. The next line contains delta_2 and tells Mplus to
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estimate the change in slope for the second phase of growth, starting at tij = 0.5.
This line of syntax assigns the values of (tij − 0.5)+ to each measurement occa-
sion. For the first two measurements, the values are zero. The five time points
after the knot are (tij − 0.5)+ for tij = 1.0, 1.5, 3.5, 5.5, 8.0. For example, the
fifth measurement y5 occurs when tij = 3.5. The value of (3.5− 0.5)+ = 3.0, the
value of time assigned to y5. The next four lines of syntax repeat this process
for the remaining four phases of growth. In the final line, the square brackets
refer to the means of the parameters inside and parentheses contain labels for
these means. This line of syntax indicates the mean of the growth coefficients
δ0i, δ1i, ..., δ6i are labelled β0, β1, ..., β6.

The next section of code tells Mplus how to estimate the PGCM described
above:

ANALYSIS:

ESTIMATOR=BAYES;

FBITERATIONS = 100000;

BSEED = 1979;

The first line under the ANALYSIS heading tells Mplus that we want to use
Bayesian estimation. The next command, FBITERATIONS = 100000, requests
100,000 MCMC iterations. This number was selected based on the number
of iterations required for Model 5 to converge according to PSRF. Next, the
BSEED = 1979 command provides Mplus a “seed” number to begin implement-
ing the MCMC algorithm. We provide one here so the reader may replicate our
results, but Mplus can generate its own if one is not provided. If the model
reaches convergence, the seed number does not influence model results.

Next, priors are specified in the MODEL PRIORS section:

MODEL PRIORS:

beta_0 ~ N(25, 100);

beta_1-beta_6 ~ N(0, 400);

The first line under the MODEL PRIORS heading tells Mplus that the mean of
the intercept is normally distributed around 25 with a variance of 100, or β0 ∼
N(25, 100). The next line assigns a prior to the means of all six slope parameters,
β1, β2, ..., β6 ∼ N(0, 400). We do not explicitly assign variance priors here, so
Mplus will use its diffuse defaults. Once each candidate model’s input file has
been written in Mplus, we can estimate the models and use the results to conduct
model selection.

4.5 Model Selection

The five candidate models provide slightly different descriptions of change in
math achievement over time, as illustrated in Figure figure3. The next step of
the process is to examine Bayesian model selection indices summarized in Table
table1 to choose the best model. For the PPP, values close to 0.500 suggest ex-
cellent fit, and values close to zero or one suggest poor fit. For the DIC and BIC,
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the lowest value suggests the best balance of model fit with model complexity.
In this case, the PPP and DIC suggest that Model 5 is the best model. However,
the BIC suggests the best model is Model 4. For the purposes of this illustration,
we consider Model 5 the optimal model.

Table 1. Model selection indices and approximate model fit indices.

Fit indices for model selection

Fit Index Model 1 Model 2 Model 3 Model 4 Model 5

PPP 0.000 0.000 0.000 0.001 0.468
DIC 26533.70 26245.22 26486.75 26023.36 25992.85
BIC 26626.34 26371.32 26615.68 26229.44 26458.46

Approximate fit indices for evaluating Model 5

Fit Index Point Estimate 90% Credible Interval

BRMSEA 0.031 [0.000, 0.158]
BCFI 1.000 [0.995, 1.000]
BTLI 0.997 [0.925, 1.000]

Note. PPP = posterior predictive p-value; DIC = deviance information criterion;
BIC = Bayesian information criterion. Each model uses a different knot specification
to create unique phases of growth in the development of math achievement. These
models range in complexity from the three-phase Model 1 to the six-phase Model 5.
BRMSEA = Bayesian root mean square error of approximation; BCFI = Bayesian
comparative fit index; BTLI = Bayesian Tucker-Lewis index.

We can evaluate the quality of Model 5 using the BRMSEA, BCFI, and BTLI.
The point estimates and 90% credible intervals for these fit indices are reported
in Table table1. We focus on the credibility intervals to keep our interpretation
consistent with Asparouhovxand Muthén (2021a). For the BRMSEA, values be-
low 0.06 indicate good model fit. The BRMSEA’s credible interval ranged from
zero to 0.158. Because the credible interval contained 0.06, this fit index is incon-
clusive. Next, we consider the BCFI and BTLI, where values between 0.95 and
1.00 suggest excellent fit. For the BCFI, the credible interval ranged from 0.995
to 1.000, and the BTLI credible interval ranged from 0.925 to 1.000. The BCFI
results suggest good model fit because the credible interval is entirely above 0.95.
However, the BTLI credible interval contains the cutoff value and we consider
this fit index inconclusive. In summary, one fit index suggested good fit but the
other two were inconclusive.

Next, we describe and interpret the parameter estimates for Model 5, which
are summarized in Table table2. Recall that β0 and β1 refer to the mean intercept
and linear slope for the first phase of growth, and each following coefficient from
β2 to β6 refer to an average change in slope. In other words, the mean rate
of change in the second slope is not the estimate of β2 alone, but the sum of
β1 + β2. These changes accumulate across the phases of growth. For ease of
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interpretation, Table table2 contains a “Total Slope” column that reflects the
rate of change in all six phases. For example, the total slope in the first phase of
growth (from fall of kindergarten to spring of kindergarten) is 21.28. This value
means that children’s math achievement would increase by an average of 21.28
points in one year if growth remained constant. The rate of growth in the second
phase of development (spring of kindergarten to fall of first grade) decreases by
-6.89, resulting in a rate of 14.39. In contrast, the third phase of development
(from fall to spring of first grade) showed an increase in growth of 22.95, leading
to a total slope of 37.34. The fourth phase of growth addresses two years of
growth from spring of first grade to the spring of third grade. The average rate
of change per year in this phase decreased from the previous phase by -18.02,
meaning childrens’ math achievement increased by 19.32 per year on average.
In the fifth phase, growth slowed again by -6.90, creating a 12.42 increase in
math achievement per year from spring of third grade to the spring of fifth
grade. In the final phase from spring of fifth grade to fall of eighth grade, growth
slowed by -5.61 to a rate of change of 6.81. Overall, growth was most rapid in
the third phase, which was also when the most dramatic change in the rate of
development occurred. Table table2 also reports measurement error variance at
all seven timepoints, which ranged from 10.60 at the first measurement to 39.84
at the fifth measurement.

We present the covariance matrix of the growth coefficients Σδ in the lower
portion of Table table2. The individual elements in this matrix are not typically
of interest, but we can note that each coefficient covaries with the others. There
are particularly strong negative covariances between δ1i and δ2i, δ2i and δ3i, and
δ3i and δ4i. In other words, the rate of change in one phase of growth tends
to increase when the next phase decreases, and this relationship is particularly
strong across the first, second, third, and fourth phases. We can also note that
the change in slope for the second, third, and fourth phases show the highest
variance of all latent growth coefficients.

4.6 Final Results

In this application, we devised a set of candidate models and used model selection
indices to determine the most adequate model. The final model was Model 5,
which treats the time between each measurement occasion as a distinct phase
of growth with its own unique rate of change. The BCFI suggested good model
fit, but other approximate fit indices were inconclusive. We interpreted these
results as not suggesting excellent fit, but not suggesting substantial misfit either.
According to this model, the most rapid growth occurred in the third phase, from
fall to spring of first grade. After this phase, the rate of growth decreased in each
subsequent phase.
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Table 2. Model 5 parameter estimates for latent coefficient means and measurement
errors at each timepoint.

Growth Factor Estimates, Standard Errors, and Phase-Specific Slopes
Coefficient Estimate(SE) Total Slope

β0 27.25(0.43)
β1 21.28(0.65) 21.28
β2 -6.89(1.16) 14.39
β3 22.95(1.37) 37.34
β4 -18.02(1.09) 19.32
β5 -6.90(0.51) 12.42
β6 -5.61(0.41) 6.81

Error Variances

σ2
e1 10.60(7.22)
σ2
e2 11.78(9.08)
σ2
e3 20.79(11.29)
σ2
e4 32.56(21.58)
σ2
e5 39.84(25.54)
σ2
e6 30.56(20.15)
σ2
e7 39.30(29.67)

Covariance Matrix Σδ
Coefficient δ0 δ1 δ2 δ3 δ4 δ5 δ6

δ0 82.76
δ1 16.00 116.89
δ2 18.311 -159.98 354.63
δ3 -15.54 78.13 -239.28 438.00
δ4 -3.56 -21.58 38.03 -274.32 299.31
δ5 -22.39 -13.93 8.03 0.68 -40.00 68.88
δ6 -4.55 -9.14 5.05 -7.25 9.07 -19.54 40.18

Note. β0 = mean baseline Math IRT score; β1 = average linear slope of the first
phase of growth; β2 = average change in slope for the second phase of growth;
β3, β4, β5, β6 refer to cumulative changes in slope for the third through sixth phases of
growth. σ2

e1 through σ2
e7 refer to measurement error variance at the first through

seventh measurement occasions. δ0 refers to the latent intercept; δ1 refers to latent
slope in the first phase; δ2 through δ6 refer to cumulative changes in slope across
phases of growth.



24 L. Marvin et al.

5 Discussion

Our goal for this paper was to demonstrate how linear PGCMs are a flexible ex-
tension of linear GCMs, with models addressing three or more phases of growth
possible in the Bayesian estimation framework. This added flexibility can dra-
matically increase the number of possible models, and we outlined the process of
specifying candidate models and using model selection indices to choose the final
model. To provide a simple and accessible tutorial to implement Bayesian linear
PGCMs, several extensions and technical features were not addressed in detail.
We discuss extensions of the presented model and some technical cautions here.

5.1 Potential Extensions of the Current Work

In this tutorial, we focused on Bayesian linear PGCMs due to their simple coeffi-
cient interpretations in order to provide an introduction to the field of piecewise
growth models. As noted previously, there are several newer extensions of the pre-
sented model, which we encourage readers to explore. These extensions include
piecewise models that directly estimate knot placements (Kohlixet al., 2015;
Lockxet al., 2018), employ covariates (Lamm, 2022), or capture bivariate piece-
wise trajectories (Peraltaxet al., 2022). Additionally, PGCMs with higher-order
polynomials (e.g., cubic) or inherently nonlinear functions (e.g., exponential) are
also possible. Harring, Strazzeri,xand Blozis (2021) provide a discussion of these
extensions in the context of PGCMs with random knots. Additionally, Rioux,
Stickley,xand Little (2021) demonstrate PGCMs with discontinuities (i.e., gaps
in the growth trajectory) to address cancelled data collection waves. Piecewise
models with inconsistent measurement timing can be easily addressed in the mul-
tilevel modeling framework, where they are commonly called splines. Harezlak,
Ruppert,xand Wand (2018) provide a thorough introduction, including Bayesian
extensions.

5.2 Prior Cautions

Implementing linear PGCMs in the Bayesian estimation framework frees the
researcher from model identification requirements inherent in frequentist esti-
mation because prior distributions can compensate for additional measurement
occasions. However, implementing non-identified models in the Bayesian frame-
work must be done cautiously. The prior placed on the latent covariance matrix
can be especially influential on model results, as shown by Liuxet al. (2016) and
Depaoli, Liu,xand Marvin (2021). The specific implementation of the inverse
Wishart prior (the Mplus default) can also impact results in unexpected ways.
A key method of assessing how sensitive results are to prior specification is to
conduct a prior sensitivity analysis. In a prior sensitivity analysis, the researcher
estimates the chosen model under a set of alternative prior conditions, and dis-
cusses how robust the model results are. We recommend van Erp, Mulder,xand
Oberski (2018), van de Schoot, Veen, Smeets, Winter,xand Depaoli (2020), and
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Depaoli, Winter,xand Visser (2020) for thorough demonstrations. When imple-
mented conscientiously, we believe Bayesian linear PGCMs can be a useful class
of models because they frame development as phases of growth with simple pa-
rameters. This is in contrast to other GCM extensions with parameters that may
be challenging to interpret (e.g., a cubic coefficient).

5.3 Concluding Remarks

Developmental researchers study within-person change over time in many set-
tings. A linear GCM easily captures growth that follows a straight line, but
may not capture substantively important nonlinear changes. In this paper we
presented a tutorial to estimate Bayesian PGCMs, which can handle complex
nonlinearity with simple parameter interpretations. The goal of this tutorial was
specifically aimed to act as a precursor to more advanced methodological work
(e.g., Kohlixet al., 2015), which we recommend the interested reader to explore
as a subsequent resource to this work.

Applying this model to math achievement data allowed us to examine when
development accelerated or slowed, and highlighted phases of growth with more
variability than others. Bayesian PGCMs provide researchers with a useful model
that can capture nonlinear growth using parameters that are straightforward to
interpret. While research is needed to better understand the impact of different
covariance priors, the Bayesian linear PGCM can provide interesting results
when implemented thoughtfully.
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Appendix A Proof of Concept Simulation

To demonstrate the utility of treating the knot specification problem as a model
selection problem, we performed a simulation study. The purpose of this study
was twofold. First, we aimed to evaluate the performance of Bayesian model
fit indices in selecting the correct knot specification. Second, we assessed the
accuracy of the model parameter estimates.

Appendix A.1 Simulation Design

We considered five population models based on the five candidate models used
in analyzing the ECLS-K (see Figure figure3). There are seven measurement
occasions, coded like the ECLS-K such that t = 0.0, 0.5, 1.0, 1.5, 3.5, 5.5, 8.0. For
Population Model 1, growth was split into three phases, with knots at t = 1.5, 5.5.
Both Population Model 2 and Population Model 3 had four phases in the growth
trajectory but different knot placements. Population Model 2 used knots at t =
1.5, 3.5, 5.5 and Population Model 3 used knots at t = 0.5, 1.5, 5.5. Population
Model 4 implemented five phases of growth with knots at t = 1.0, 1.5, 3.5, 5.5.
Population Model 5 split the trajectory into six unique phases of growth, with
as many knots as possible at t = 0.5, 1.0, 1.5, 3.5, 5.5.

The distribution of the latent growth factors for the five population models
were based on the ECLS-K estimates. The distribution of growth factors for Pop-
ulation Model 1 through 5 are described in the following Equations (1) through
(5):
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δ0
δ1
δ2
δ3

 ∼MVN




26.71
23.10
−6.50
−9.95

 ,


75.00
29.96 30.65
−27.03 −20.70 20.95
−14.36 −19.69 2.57 39.17


 , (15)


δ0
δ1
δ2
δ3
δ4

 ∼MVN




26.93
21.83
−0.44
−8.96
−5.61

 ,


76.71
28.20 26.45
−14.68 −5.82 17.83
−20.18 −21.62 −16.97 63.61
−4.46 −7.83 5.58 −19.30 38.86


 , (16)


δ0
δ1
δ2
δ3
δ4

 ∼MVN




27.26
19.34
6.68
−9.83
−9.55

 ,


85.00
10.38 62.49
20.30 −36.14 64.72
−27.56 −16.60 −30.99 52.06
−15.15 −15.70 −2.80 0.80 38.89


 , (17)


δ0
δ1
δ2
δ3
δ4
δ5

 ∼MVN




27.57
18.22
17.75
−16.63
−6.90
−5.60

 ,


76.61
29.66 29.19
−8.32 9.03 171.87
−5.40 −27.60 −197.26 270.61
−22.58 −10.42 9.72 −41.46 64.09
−4.74 −6.90 −3.12 6.87 −16.44 38.54



 ,

(18)



δ0
δ1
δ2
δ3
δ4
δ5
δ6


∼MVN





27.25
21.29
−6.89
22.95
−18.02
−6.50
−5.61


,



82.76
16.00 116.89
18.31 −159.98 116.89
−15.54 78.13 −239.28 438.00
−3.56 −21.58 38.03 −274.32 299.31
−22.39 −13.93 8.03 0.68 −40.00 68.88
−4.55 −9.14 5.05 −7.25 9.07 −19.54 40.18




.

(19)

Measurement error variances were set to 1.0. For each population model, we
simulated 500 datasets with sample size N = 500. For each generated dataset,
we fit all five candidate models, including the true model and the models with
misspecified knot placement. We estimated each model using Bayesian estima-
tion methods with the same setup (i.e., prior specification, number of iterations)
as that in analyzing the ECLS-K data. For each replication and model fitted,
we recorded the model parameter estimates and the Bayesian model fit indices
PPP, DIC, and BIC.
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Appendix A.2 Results

Table center3 shows the selection rates for the PPP, DIC, and BIC within all
five population models. To compute the selection rate of the PPP, we found the
proportion of replications where a given model had a PPP value closer to 0.5
than all competing models. The selection rate of the DIC was the proportion of
replications where a given model had a lower DIC than all competing models.
The BIC selection rate was computed the same way5.

When the data were generated from Model 1, the selection rate of PPP for
the correct model (i.e., Model 1) was around 11%. Similarly, when the data were
generated from Model 2, the selection rate of PPP for the correct model was
16%. When data were generated from Model 3, PPP selected Model 3 28% of
the time, and when data were generated from Model 4, PPP selected Model 4
28% of the time. For Population Model 5, the PPP selected the correct model
(i.e., Model 5) 100% of the time. Based on the simulation results, the PPP tends
to select more complex models. However, the DIC and BIC were more effective
at selecting the correct model. When the data were generated from Model 1, the
DIC selected the correct model (i.e., Model 1) 86% of the time. When the data
were generated from Model 2, DIC selected Model 2 92% of the time, and when
data were generated from Model 3, DIC selected Model 3 98% of the time. For
data generated from Model 4, the DIC selected Model 4 with a 93% selection
rate. Lastly, when data were generated from Model 5, the DIC selected Model 5
100% of the time. The BIC showed generally high selection rates for the correct
model. When the data were generated from Model 1, the BIC selected Model
1(i.e., the correct model) 100% of the time. The BIC selected the correct model
100% of the time when data was generated from Model 2, Model 3, and Model 4.
However, when the data were generated from Model 5, the BIC selected Model
5 only 1.2% of the time.

Table center4 reports the mean relative bias for coefficient estimates for the
five estimated models across all five population models. Relative bias was com-
puted as the difference between a parameter estimate and its true value, divided
by the true value. The highest relative bias for a correct model was 1.04% for
Model 2’s β2. Otherwise, relative bias for the true population model never ex-
ceeded 1%.

Overall, these results suggest that the DIC and BIC can effectively select an
appropriate knot specification among competing models in most conditions. In
general, the BIC selected the correct model more often than the DIC. A major
exception to this occurred for data generated from Population Model 5. When
data were generated from Model 5, the BIC selected Model 4 (an incorrect and
less-complex model) 99% of the time but the DIC selected Model 5 (the correct
model) 100% of the time. The PPP does not seem to reliably select the correct
model when models with more phases are available. When the correct model is

5 Ties were extremely rare and only occurred for the PPP. Ties for the winning model
according to PPP occurred in 1.2% of Population Model 1 replications, 0.02% of
replications in Population Model 3, and 0.02% of replications in Population Model
4. No other ties occurred.
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selected, growth factor means are estimated with very little bias. While these
results provide evidence that the Bayesian PGCM demonstrated in this tutorial
is a useful tool for handling complex nonlinear trajectories, a more thorough
simulation study is needed to examine whether this pattern of results holds
across different research conditions.

Table 3. Selection rates for model fit indices.

Population Estimated PPP DIC BIC

Population
Model 1

Model 1 0.11 0.86 1.00
Model 2 0.12 0.06 0.00
Model 3 0.13 0.07 0.00
Model 4 0.27 0.01 0.00
Model 5 0.36 0.00 0.00

Population
Model 2

Model 1 0.00 0.00 0.00
Model 2 0.16 0.92 1.00
Model 3 0.00 0.00 0.00
Model 4 0.24 0.06 0.00
Model 5 0.61 0.02 0.00

Population
Model 3

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.23 0.98 1.00
Model 4 0.00 0.00 0.00
Model 5 0.77 0.02 0.00

Population
Model 4

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.00 0.00 0.00
Model 4 0.28 0.93 1.00
Model 5 0.72 0.07 0.00

Population
Model 5

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.00 0.00 0.00
Model 4 0.00 0.00 0.99
Model 5 1.00 1.00 0.01

Note. PPP = posterior predictive p-value; DIC = deviance information criterion;
BIC = Bayesian information criterion.
Selection rates for the true model are bolded.
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Table 4. Average relative bias (in %) for growth factor means across the proof of
concept simulation.

Population Estimated β0 β1 β2 β3 β4 β5 β6

Population
Model 1

Model 1 -0.19 -0.07 -0.21 -0.16
Model 2 -0.19 -0.06 -0.19 -100.03
Model 3 -0.18 -0.07 -100.01 -34.80
Model 4 -0.20 -0.06 -99.96 -34.83
Model 5 -0.20 -0.06 -99.97 -99.96

Population
Model 2

Model 1 -0.07 -0.01 982.00 17.17
Model 2 -0.04 -0.08 -1.04 0.27 0.08
Model 3 -0.04 -0.13 -108.01 -46.79 67.24
Model 4 -0.06 -0.09 -100.74 -95.11 59.25
Model 5 -0.06 -0.09 -99.55 -100.04 -92.18

Population
Model 3

Model 1 -10.54 32.33 -240.20 -2.42
Model 2 -10.05 31.58 -237.04 -98.97 -0.10
Model 3 -0.04 -0.13 -0.00 -0.22 -0.12
Model 4 -5.04 24.10 -69.86 -0.01 -100.02
Model 5 -0.06 -0.12 -0.07 -100.00 2.68

Population
Model 4

Model 1 -0.43 1.80 -102.80 -32.32
Model 2 -0.18 0.91 -70.09 -32.40 -18.46
Model 3 0.02 -0.04 -89.94 -86.17 58.06
Model 4 0.00 0.02 -0.23 -0.31 0.07 0.27
Model 5 0.00 0.05 -100.06 -206.53 140.32 23.33

Population
Model 5

Model 1 -1.39 7.79 -6.60 -142.37
Model 2 -0.74 0.87 -102.51 -139.94 -69.01
Model 3 0.03 -9.35 -202.68 -145.14 -48.82
Model 4 0.77 -14.95 -365.47 -174.41 -61.66 -19.19
Model 5 0.02 -0.10 -0.93 -0.38 -0.15 0.09 -0.60

Note. β0 = mean baseline math achievement; β1, ..., β6 = mean slope parameters.
The ‘correct’ estimated models are italicized. All relative biases are reported to two
decimals, such that 0.02 indicates relative bias is 0.02% less than 0.005%.


	Using Bayesian Piecewise Growth Curve Models to Handle Complex Nonlinear Trajectories

