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Abstract. Item response modeling is common throughout psychology
and education in assessments of intelligence, psychopathology, and abil-
ity. The current paper provides a tutorial on estimating the two-parameter
logistic and graded response models in a Bayesian framework as well
as provide an introduction on evaluating convergence and model fit in
this framework. Example data are drawn from depression items in the
2017 Wave of the National Longitudinal Survey of Youth and example
code is provided for JAGS and implemented through R using the runjags
package. The aim of this paper is to provide readers with the necessary
information to conduct Bayesian IRT in JAGS.
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1 Introduction

Item response theory (IRT) is a psychometric framework for modeling relation-
ships between observed responses, often in the form of test or survey data, and
latent abilities or traits (Birnbaum, 1968; Embretson & Reise, 2000). IRT models
consist of two sets of parameters namely ability parameters θi, i = 1, 2, ...N , and
item parameters ωjωjωj , j = 1, 2, ...J where i indexes the number of respondents and
j indexes the test items. Thus, the sample size is N and test length is J . IRT
models are natural fit for Bayesian estimation (Baker & Kim, 2004; Fox, 2010;
Lord, 1986; Patz & Junker, 1999) and provide a natural way to obtain ability
and item parameter estimates simultaneously.

While ability may be multidimensional or non-normally distributed (Reckase,
2009), it is assumed that θi is unidimensional and

θi ∼ N(0, 1) (1)

in this tutorial, for simplicity, as is common in practice. Other common assump-
tions for IRT models include local independence of responses

P (xixixi|θi) =
J∏

j=1

p(xij |θi) (2)
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where the probability of observing a given response pattern xixixi is given by xixixi =
(Xi1 = xi1, ..., XiJ = xij) and monotonicity of the latent trait

θ1 > θ2 →→→ p(x = 1|θ1) ≥ p(x = 1|θ2). (3)

Monotonicity implies that higher values of the latent trait increase the proba-
bility of endorsing the item. Thus, item scores are typically coded such that all
inter-item correlations are nonnegative.

While the distribution of θ is often informed by theory underlying constructs
of interest or computational convenience, the nature of ωωω depends on item char-
acteristics (e.g., number of response options) and the specified item response
model. A common model for binary data is the logistic model (Birnbaum, 1968)
which includes a family of models spanning from a single item parameter to four
item parameters (Barton & Lord, 1981). These item parameters can accommo-
date item difficulty, discrimination, and response asymptotes (e.g., guessing). In
addition to binary data, many psychological measures contain ordered categor-
ical response options (e.g., Likert-type scales). Polytomous IRT models, such
as the graded response model (GRM), are better suited for these instruments
(Samejima, 1969). This paper focuses on the two-parameter logistic (2PL) and
GRM for binary and ordered categorical responses respectively.

The organization of the rest of the paper is as follows: first, the 2PL and
GRM are detailed along with a discussion on priors for item parameters. Then,
demonstrations of the 2PL and the GRM in JAGS using the package runjags

(Denwood, 2016) are provided using data from the National Longitudinal Survey
of Youth (Bureau of Labor Statistics, 2017). Convergence analysis, model fit, and
item curves are also demonstrated. We conclude with a brief discussion.

2 Two-Parameter Logistic Model

The 2PL model is given by

Pij(xj = 1|θi,ωωωj) =
exp(Dαjθi − βK)

1 + exp(Dαj(θi − βj))
(4)

or alternatively

=
1

1 + exp(−Dαj(θi − βj))
(5)

where ωωωj = {αj , βj}. Here αj is the discrimination parameter, βj is the difficulty
parameter and D is a scaling constant. The 2PL can also be written as

logit(Pij) = Dαj(θi − βj). (6)

Since scores can be coded to ensure positive inter-item correlation, which is
necessary to preserve the assumption of monotonicity, αs are constrained greater
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than 0 and are typically between 0.5 - 2 in practice. The Rasch model can be
obtained by constraining αj = 1 (i.e., all items are equally discriminant). No
strict constraints are necessary to impose on β, however, values of β should
overlap with the distribution of θ in practice to ensure sufficient variability in
item responses. D is a scaling factor and setting D = 1.702 produces essentially
the same scaling as the normal ogive model (Camilli, 1994).

2.1 αj Priors

Priors for the discrimination parameter αj must accommodate the constraint
that αj > 0. Common choices include the truncated normal (i.e., N+, Curtis
(2010)) and the lognormal (Patz & Junker, 1999) distributions. We use the
truncated normal distribution in the demonstration of the 2PL

αj ∼ N+(µαj , σ
2
αj
). (7)

Researchers wishing to use a log-normal prior for αj should note that that both
µαj and σ2

αj
impact the mean and variance of the log-normal distribution making

prior specification challenging (Curtis, 2010). We fix ϕαj
= 1/σ2

αj
= .00001 and

draw µαj ∼ U [0.5, 2] in the demonstration below.

2.2 βj Priors

The difficulty parameter prior can be specified as a normal distribution

βj ∼ N(µβj , σ
2
βj
) (8)

allowing the mean (µβj
) and variance (σ2

βj
) to vary across items. These pa-

rameters can be fixed or treated as hyper-parameters drawn from hyper-priors.
For demonstration, we draw µβj ∼ U [−2, 2] but fix σ2

βj
in the example. We fix

σ2
βj

= 106 by fixing the precision of the difficulty parameters ϕβj = .000001. Pre-
cision is commonly used in Bayesian analysis and is the inverse of the variance
(i.e., ϕ = 1/σ2

βj
).

2.3 Bayesian 2PL in JAGS

Multiple software programs for Bayesian analysis are openly available (Lunn,
Spiegelhalter, Thomas, & Best, 2009; Plummer, 2003; Stan Development Team,
2023). This paper focuses on JAGS implemented in R (R Team Core, 2022) via
the runjags package (Denwood, 2016). Alternative packages for running JAGS

through R are also available (Plummer, 2022). Specifying models in JAGS consists
of three primary components: 1) model specification, 2) initial values, and 3)
data. Once all of the components have been compiled, the runjags function can
conduct Markov Chain Monte Carlo (MCMC) sampling.
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Example Data Data for this tutorial consists of 4 items assessing depression
in the 2017 wave of the NLSY. For the demonstration of the logistic model, a
dichotomized version of the depression items are examined where responses of 1
are recoded as 0 and responses larger than 1 are recoded as a 1. Note that we do
not advocate dichotomozing polytomous responses in practice and do this only
for pedagogical purposes. Data are provided in the supplementary material.

2PL Model Specification First we specify twoPL as the 2PL model to run in
JAGS. In the code, i indexes the N respondents and j indexes the J items. The
item response for person i on item j is represented as X[i, j] and are drawn from
a Bernoulli distribution based on a probability determined by the underlying
2PL.

twoPL<- "

model{

for (i in 1:N){

for (j in 1:J){

X[i, j] ~ dbern(p[i,j])

logit(p[i,j]) <- D*alpha[j]*(theta[i] - beta[j]) #2PL

}

theta[i] ~ dnorm(0, 1)

}

#Priors for model parameters

for (j in 1:J){

beta[j] ~ dnorm(mu.beta[j], pre.beta)

alpha[j] ~ dnorm(mu.alpha[j],pre.alpha)T(0,)

}

#Hyper Prior for mu.beta and mu.alpha

for(j in 1:J){

mu.beta[j] ~ dunif(-1,1)

mu.alpha[j] ~ dunif(.75,1)

}

for(i in 1:N){

for(j in 1:J){

X.rep[i,j] ~ dbern(p[i,j]) #Model implied data

}

}

for(j in 1:J){

ppp[j] <-step(sum(X.rep[,j])-sum(X[,j])) # ppp for item fit

}

D=1.702 #scaling constant

}

"
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Here θi is assumed to follow a standard normal distribution. A normal prior
is chosen for difficulty parameters βj ∼ N(µβj

, ϕβj
), where ϕ is the precision. We

draw µβj ∼ U [−2, 2] and choose ϕβ = .000001. For the discrimination parameter,
a truncated normal (i.e., N+) distribution is chosen αj ∼ N+(µαj , ϕαj ) with
µalpha ∼ U [.75, 1] and ϕalpha = .000001. This prior ensures that αj are non-
negative. In JAGS, truncation of the normal distribution below at zero is specified
using T(0,). In addition to ability and item parameters, X.rep and ppp (i.e.,
posterior predictive p-values) are specified to obtain posterior predictive checks.
X.rep are draws from the implied model to be used in posterior predictive checks
via ppp (Gelman, Meng, & Stern, 1996). step(x) is a function which return 1
if x ≥ 0 and 0 otherwise.

To calculate the PPP, a new set of data ym is generated based on parameter
estimate θm at MCMC iteration m. The statistic of interest (e.g., expectation)
is calculated for both this generated posterior predictive distribution and the
sample data x using θm. The PPP is the proportion of generated statistics that
are greater than the statistics of the data. If T is the statistics of interest, the
PPP can be defined as

PPP = P (T (x) < T (y)). (9)

PPP values less than 0.10 (i.e., or greater than 0.90) indicate poor fit while
models which fit exceptionally well have PPPs near 0.5 (Cain & Zhang, 2019).

We choose Tj =
∑N

i=1 xij for the 2PL and obtain a PPP for each item.

2PL Initial Values In addition to model specification, it is also necessary to
specify initial values for item parameters. When selecting initial parameters, it
is crucial to select values of α and β which are valid for the model (i.e., α > 0).
To specify initial values in JAGS named lists are given for each desired chain. For
multiple chains, a list of named lists is used. Below, initial values for 2 chains
are specified. Note that for certain convergence metrics, such as the potential
scale reduction factor (psrf), multiple chains are needed (Gelman and Rubin
(1992)). Additionally, seeds for the Markov chains (i.e., .RNG.seed), as well as
the random number generation method (i.e., .RNG.name), can be supplied in the
initial values object to make the chains reproducible. JAGS possesses a number
of random number generators, we use the Mersenne-Twister method.

inits.2PL <- list(list(beta=rep(-.25, ncol(dep2017.binary)),

alpha=rep(.25, ncol(dep2017.binary)),

.RNG.seed=1, .RNG.name="base::Mersenne-Twister"),

list(beta=rep(.25, ncol(dep2017.binary)),

alpha=rep(.5, ncol(dep2017.binary)),

.RNG.seed=2, .RNG.name="base::Mersenne-Twister"))

2PL Model Data It is also necessary to specify data for JAGS in the form of a
named list. This data file includes the item response data as well as other neces-
sary constant values for the model script such as N and J. In the model data list,
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additional information about the hyperparameters (e.g., precision of α and β) or
model constants (e.g., D) can be provided if they are not explicitly defined in the
model specification. For demonstration, hyperparameter precision is provided as
data and the scaling constant D is defined in the model specification.

data.2PL <- list(N=nrow(dep2017.binary), J=ncol(dep2017.binary),

X=dep2017.binary, pre.alpha=1E-6, pre.beta=1E-6)

Monte Carlo Sampling The run.jags function can be used to translate the
model, initial values, and data into JAGS and conduct Gibbs sampling. This func-
tion also allows users to specify which model parameters should be monitored for
convergence using the monitor argument. In addition to parameters of interest,
we are also able to specify other values, such as posterior predictive p-values
(PPP), or log-likelihood values to be returned in our output. Users are also able
to specify the burnin and chain length using the burnin and sample arguments
respectively. Below we specify a burnin period of 1000 samples and a chain
length of 3000 samples. For readers new to Bayesian analysis, “burnin” samples
are thought to not be sampled prior to Markov Chains to reaching stationarity
and are discarded from analysis. JAGS also allows for multiple sampling meth-
ods for MCMC via the method argument. We use the parallel method which
conducts MCMC sampling for each chain simultaneously on separate cores. The
code below conducts sampling in JAGS and returns Markov chains for θi, αj , βj ,
and pppj . Convergence is evaluated and discussed in a later section.

out.2PL <- run.jags(twoPL,monitor=c("theta","beta","alpha","ppp"),

data=data.2PL, n.chains=2, method="parallel",

inits=inits.2PL,adapt=500, burnin=1000,

sample=3000)

3 Graded Response Model

The GRM (Samejima, 1969) is appropriate for items with ordered categorical
responses (1, ...,Kj). Note that the number of item response options is allowed
to vary by item. It is assumed, however, that response categories are monoton-
ically increasing in difficulty/severity. Then the cumulative probability Pijk of
endorsing up to category k is

Pijk = P (Xij ≤ k|θi) (10)

and the probability pijk of endorsing category k is given by

pijk = Pijk − Pijk−1, k = 2, ...,Kj (11)

with pij1 = Pij1 and PijKj
= 1. Thus, there are Kj − 1 boundaries between

response categories governed by item thresholds κ1 < ... < κKj−1. Given this,
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Pijk can be written as

Pijk(xij ≤ k|θi,ωωωj) =
1

1 + exp(κjk − αjθi)
(12)

Readers will note that (11) is the cumulative distribution of the logistic function
similar to the 2PL.

3.1 αj Priors

Priors for αj can be obtained using the same methods as the 2PL. Again we use
the truncated normal distributions

αj ∼ N+(µαj , ϕαj ). (13)

3.2 κj Priors

Distributions for κj need to accommodate the ordering constraint κ1 < ... <
κKj−1 but otherwise can be conceptualized similar to the βj parameters in the
2PL. To account for ordering, we recommend using unconstrained auxiliary pa-
rameters κ∗

j1, ..., κ
∗
jKj−1 following Curtis (2010). These auxiliary parameters can

be drawn from

κ∗
jk ∼ N(µκ, σ

2
κ) (14)

and sorted in increasing order. Following this rank ordering, κjk is assigned the
kth ordered κ∗

jk.

3.3 GRM in JAGS

For the GRM, the original Likert-type depression items are analyzed. Responses
on the original measure ranged from 1 to 5; however, not all categories were
endorsed on each item. Item 1 only has responses in categories k = 1, 2, 3, 5
but items 2-4 have responses to all five categories. While the GRM can easily
accommodate different Kj , it is necessary for these categories to be adjacent and
start at 1 in JAGS. Thus, responses of 5 on item 1 are recoded as 4.

3.4 GRM Specification

The GRM can be specified in JAGS in multiple ways. The first utilizes the cat-
egorical distribution for polytomous responses and auxiliary parameters κ∗ to
obtain item threshold parameters κ (Curtis, 2010). This approach is similar to
the 2PL and applies the logit function to each p(xi,j = k|θi, κj,k, αj) to obtain
the probability of responding to each response category. This specification, in-
cluding a demonstration of the truncated normal distribution for the αj prior is
provided below.
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GRM <- "

model{

for(i in 1:N){

for(j in 1:J){

X[i,j] ~ dcat(prob[i,j,1:K[j]]) #categorical distribution

}

theta[i]~dnorm(0,1)

for(j in 1:J){

for(k in 1:(K[j]-1)){

logit(P[i,j,k])<- kappa[j,k]-alpha[j]*theta[i]

#kappa is the threshold

}

P[i,j,K[j]]<-1

}

for(j in 1:J){

prob[i,j,1] <- P[i,j,1]

for(k in 2:K[j]){

prob[i,j,k] <- P[i,j,k]-P[i,j,k-1]

}

}

}

for(j in 1:J){

#truncated normal prior

alpha[j] ~ dnorm(mu.alpha,pre.alpha)T(0,)

}

for(j in 1:J){

for(k in 1:(K[j]-1)){

#sample auxiliary parameters

kappa.star[j,k] ~ dnorm(mu.kappa,pre.kappa)

}

#Need to sort kappa.star in increasing order

kappa[j,1:(K[j]-1)] <- sort(kappa.star[j,1:(K[j]-1)])

}

pre.alpha = 1E-06 #alpha precision

pre.kappa = 1E-06 #kappa.star precision

mu.alpha = 0.5 #alpha mean

mu.kappa = 0 #kappa.star mean

}

"

This specification also requires a dummy coded data matrix of κ when items
possess different number of response categories. This matrix is also J by K − 1
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with NA entries where κj will be estimated and a dummy value of 0 for entries
where no κj is to be estimated.

K = apply(dep2017,2,max) #nummber of response categories per item

J = ncol(dep2017) #number of items

N = nrow(dep2017) #number of respondents

kappa.dat = matrix(c(NA,NA,NA,0,

NA,NA,NA,NA,

NA,NA,NA,NA,

NA,NA,NA,NA),

nrow=J, ncol=(max(K)-1), byrow=T)

An alternative specification of the GRM uses the ordered logit distribution
from the glm module in JAGS. This allows for direct sampling given a location
parameter µ and sequence of K − 1 response categories. For the GRM, the
location parameter is given by

µi,j = αjθi. (15)

Readers will note that this specification does not require iteration through the
Kj−1 response boundaries. For this reason, we recommend this implementation
of the GRM and focus on it for the remainder of this paper.

GRM2 <-"

model{

for(i in 1:N){

for(j in 1:J){

X[i,j]~dordered.logit(mu[i,j],c[j,1:(K[j]-1)])

mu[i,j] <- alpha[j]*theta[i]

}

theta[i]~dnorm(0,1)

}

for(j in 1:J){

for(k in 1:(K[j]-1)){

c[j,k]~dnorm(0,.0001) #prior for thresholds/boundary

}

alpha[j] ~ dnorm(mu.alpha,pre.alpha) #prior for alpha

}

pre.alpha=1E-6

mu.alpha=0

}

"
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3.5 GRM Initial Values

Specifying initial values of κ∗ requires the specification of a J by K − 1 matrix
of values. Initial values should be monotonically increasing within each row.
Further, for items with less than K response categories NA should be included
as place holder in this matrix. As with the 2PL, initial values for αj can be
provided in a vector of length J . Both this vector and the matrix for κ∗ should
be entered into a named list.

kappa.star.init = matrix(c(0,1,2,NA,

-1,0,1,2,

0,1,2,3,

0,1,2,3),

nrow=J, ncol=max(K)-1, byrow=T)

inits.grm = list(list(alpha=rep(1,J), c=kappa.star.init,

.RNG.seed=2, .RNG.name="base::Mersenne-Twister"),

list(alpha=rep(.5,J), c=kappa.star.init,

.RNG.seed=3, .RNG.name="base::Mersenne-Twister"))

3.6 GRM Model Data

In addition to the data directly used in the model, when Kj differs across items,
a matrix for κ (i.e., kappa.dat above) is required for the first implementation
of the GRM discussed above. This matrix is not required for the ordered logit
approach used here.

data.grm = list(N=N,K=K,J=J, X=as.matrix(dep2017))

3.7 Monte Carlo Sampling

MCMC sampling for the GRM is nearly identical to the 2PL. The monitor

argument is altered to reflect the new model parameters. The GRM is a more
complex model than the 2PL and thus may require more iterations for chains to
reach convergence.

out.grm2 <- run.jags(GRM2, monitor=c("c","theta","alpha"),

data=data.grm2, n.chains=2, method="parallel",

inits=inits.grm2, adapt=1000, burnin=10000,

sample=300000, modules="glm")

4 Convergence Diagnostics

Following MCMC sampling, it is critical to evaluate if the MCMC procedures
converged to a stable posterior distribution that well approximates the underly-
ing process of interest. Convergence analyses, both graphical and statistical, are
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required to justify the use of resulting chains for inferential purposes. In general
it is crucial to determine the stability of the Markov Chains (i.e., convergence to
stationarity), the sensitivity of the results to starting values, and the dependence
of Monte Carlo samples (i.e., auto-correlation). Below we examine the conver-
gence of the 2PL results obtained above using the coda package (Plummer, Best,
Cowles, & Vines, 2006). The same process can be applied to the GRM.

Convergence can be assessed graphically using trace plots and numerically
via diagnostic statistics. Multiple diagnostic statistics are available in the coda

package including the Geweke Statistic (Geweke, 1992), the Heidelberger and
Welch Test (Heidelberger & Welch, 1983), the Raftery and Lewis test (Raftery
& Lewis, 1992), and the psrf (Gelman & Rubin, 1992). A review of diagnostic
statistics is beyond the scope of this paper and readers are referred to Roy
(2020). Below we demonstrate how to examine convergence on a subset of the
model parameters; in practice, all parameters for the analysis of interest should
be assessed for convergence prior to interpretation and inferential testing.

4.1 Graphical Methods for Convergence

Multiple plots are helpful in evaluating convergence of posterior distributions.
The plot function, when applied to an output from the run.jags function
will automatically produce four plots for each paramter monitored during sam-
pling. The plots include the 1) trace plot (i.e. history plot), 2) empirical CDF
of the parameter, 3) empirical pdf of the parameter (i.e., historgram), and 4)
auto-correlation plot of MCMC samples. Trace plots depict sampled parameter
values across the MCMC samples and are useful in cursory evaluation of chain
mixing and convergence. Visual evidence of chain convergence is provided when
chains appear to stabilize around a single parameter value. Mixed chains demon-
strate significant overlap in the trace of each chain. The auto-correlation plot
provides insight into the mixing speed of the chains; chains which quickly mix
demonstrate small auto-correlation while slower mixing chains possess higher
auto-correlation. Empirical cdf and pdf plots allow for direct examination of the
posterior distributions itself and allow researchers to check whether posteriors
are of the intended form.

Example Plots Below plots are provided for a single ability θ1 (Figure 1) and
difficulty parameter β3 (Figure 2). By default, the plot function will attempt to
plot all monitored parameters. To ensure brevity, we specify parameters to plot
using the var argument. A brief discussion of each parameter plot is provided
below.

The trace plot for θ1 is provided in the upper left pane with different colors
representing different Markov chains. We see that the chains are largely overlap-
ping and appear to oscillate around a value of θ1 = 1 suggesting that the chains
have converged to a stationarity posterior distribution. The bottom right pane
depicts the auto-correlation plot which shows fast mixing of the two chains. The
empirical cdf and pdf of θ1, in the top right and bottom left panes respectively,
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Figure 1. Graphical Convergence Plots for a Single Ability Parameter

appear to be approximately normal as expected based on assumptions on θ and
setting D = 1.702. Further the empirical cdf is overlapping for both chains.

Conversely, the trace plot for β3 shows that chains have neither converged
nor mixed well. The auto-correlation plot demonstrates high correlation between
samples suggesting a very slow mixing process. Chains do not appear to converge
and are mixing very slowly. As a result, it is necessary to increase the chain length
and re-run analyses and obtain additional samples.

4.2 Diagnostic Statistics

Although graphical methods of evaluating convergence are useful and intuitive,
they are subjective and become impractical when many parameters must be
assessed. Thus, it is recommended to evaluate MCMC convergence using numeric
metrics as well. We demonstrate how to obtain the Geweke and Gelman Rubin
statistics from the coda package.

Geweke Statistics The Geweke convergence diagnostic tests the equality of
means of two segments of a Markov chain with the null hypothesis that the
mean of a preliminary segment of the chain (e.g., first 10%) is equal to the latter
segment (e.g., last 50%). The Geweke statistic should be applied to individual
Markov chains and can be obtained using the geweke.diag function from the
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Figure 2. Graphical Convergence Plots for β3 Suggesting Nonconvergence

coda package. Geweke statistics are Z-scores; values larger than ±1.96 suggest
a lack of convergence.

chain1 = out.2PL[["mcmc"]][[1]]

geweke1 = geweke.diag(chain1)

We show Geweke statistics for the first 4 respondents and all item parameters
in the first chain below (Table 1). Here, the Geweke statistics suggest a lack of
convergence for θ1, α1 and β4 in chain 1. These results suggest that for these
chains there is a significant difference between the initial samples in this chain
and the later samples. Readers are encouraged to examine the Geweke statistics
for all chains as individual chains may reach convergence faster than others.

Table 1. Geweke Statistics

theta alpha beta

-2.446 2.031 -1.797
1.229 0.947 0.997
-1.224 -1.114 0.426
-0.254 1.394 2.165
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Gelman and Rubin Statistic The Gelman and Rubin convergence diagnos-
tic, also denoted as the psrf or rhat, requires multiple Markov chains and can be
intuitively understood as a ratio of between chain variance to within chain vari-
ance. Values near 1 are preferred and values less than 1.1 are typically used as
evidence of chain convergence (Gelman et al., 2015). The gelman.diag function
from the coda package calculates point estimates and upper confidence limits of
the psrf for each parameter in the chain.

psrf = gelman.diag(out.2PL)

Again, we show psrf diagnostics for the first 4 person parameters as well as
the item parameters below (Table 2). Following the pattern from the graphical
examination of convergence, θi appears to show convergence. Convergence for
item parameters, however, is less consistent with β3 demonstrating psrf > 1.1.
Thus, both graphical and statistical methods suggest that chains are yet to
converge.

Table 2. Gelman and Rubin Statistics

theta alpha beta

1.006 1.000 1.024
1.003 1.000 1.075
1.008 1.011 1.502
1.010 1.005 1.018

Successful chain convergence is necessary for all model parameters prior to
subsequent analysis steps. Without convergence, there is insufficient evidence
to support the assumptions that MCMC has reached the stationary posterior
distribution needed for inference. Thus, descriptions or inferences drawn from
non-convergent Markov Chains are largely invalid. To obtain convergence in
the 2PL example, the number of iterations was increased to ensure all psrf <
1.10. The extend.jags function can be used to continue MCMC sampling from
an exiting runjags object. Below, we extend the out.2PL object by 1,000,000
iterations. Following this, we confirm that convergence for all parameters has
been achieved using the Gelman-Rubin statistic.

out.2PL.ext = extend.jags(out.2PL, method="parallel",

sample=1000000, adapt=3000)

Examination of the psrf from the coda package for the longer 2PL chains
show convergence in both person and item parameters using psrf < 1.1 as the
criteria for convergence. The 5 largest psrf values after extending the chain are
provided below.

out.2PL.ext.psrf = gelman.diag(out.2PL.ext)

out.2PL.ext.psrf[["psrf"]][order(out.2PL.ext.psrf[["psrf"]][,1],

decreasing=TRUE)[1:5],1]
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## beta[1] alpha[2] beta[4] beta[3] beta[2]

## 1.010 1.008 1.007 1.002 1.000

For demonstration, we again provide plots to assess convergence of β3 graph-
ically (Figure 3). Note the overlap of chains in both the trace and empirical
CDF plots (i.e., upper left and upper right panes). This is in contrast to the
preliminary assessment of convergence above. Additionally, the autocorrelation
plot suggests MCMC samples are much closer to independent samples when
contrasted with the original convergence plots.
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Figure 3. Graphical Convergence Plots for β3 Suggesting Convergence

Assessing convergence for the GRM follows the same procedure. Below we
observe that the original MCMC did not reach convergence for chain lengths of
300,000 samples.

grm.gelman=gelman.diag(out.grm2)

max(grm.gelman[["psrf"]])

For demonstration, we extend the GRM chains using the autoextend.jags

function which automatically extends MCMC chains until a target psrf is ob-
tained (e.g., psrf.target=1.10). We see below that our psrf threshold was met.
The autoextend.jags function may not work well for complicated models (Den-
wood, 2016); furthermore, we recommend assessing convergence via the coda
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package following chain extension to ensure the validity of any subsequent con-
clusions.

grm.auto = autoextend.jags(out.grm2, psrf.target=1.10,

method="parallel")

grm.auto.psrf = gelman.diag(grm.auto)

max(grm.auto.psrf[["psrf"]][,1]) # < 1.10

## [1] 1.008

5 Summarize Posterior Samples

Posterior distributions which successfully pass convergence checks can be sum-
marized and, if desired, used for inferential analyses. The runjags package con-
tains a summary function which provides Highest Posterior Density (HPD) inter-
vals, measures of central tendency, and other useful information such as effective
sample size (i.e., SSeff). Effective sample size (SSeff) provides a metric of in-
formation present in a MCMC accounting for auto-correlation among samples.
Recall, however, that samples are correlated and do not provide independent
information about the parameter. Effective sample sizes of at least 400 are rec-
ommended (Gelman et al., 2015). HPD interval confidence level can be specified
using the confidence argument.

For convenience, we split the person parameter (i.e., θ̂i) and item parameter

estimates (i.e., α̂j , β̂j}) as well as the PPP into separate summary objects. Below
we provide example summary output of the summary function for the first 3 θi
parameters.

thetas = summary.2PL[startsWith(rownames(summary.2PL),"theta["),]

betas = summary.2PL[startsWith(rownames(summary.2PL),"beta["),]

alphas = summary.2PL[startsWith(rownames(summary.2PL),"alpha["),]

item.params = rbind(betas,alphas)

ppps = summary.2PL[startsWith(rownames(summary.2PL),"ppp["),]

## Lower95 Median Upper95 Mean SD MCerr MC%ofSD SSeff AC.10 psrf
## theta[1] -0.045 1.032 2.414 1.108 0.686 0.003 0.5 40000 0.004 1
## theta[2] -2.366 -1.046 0.000 -1.119 0.658 0.003 0.5 39310 0.004 1
## theta[3] -0.093 0.718 1.975 0.812 0.586 0.003 0.5 40000 0.010 1

Posterior distributions of θi and HPD intervals can be used to compare abili-
ty/severity across individual respondents. Below (Figure 4), 95% HPD intervals

of θ̂i are plotted for θi. It is readily seen that although individuals vary in their
point estimates of depression, the interval estimates largely overlap. HPDs are
gplotted for both the 2PL and the converged GRM (code provided in supple-
mental material). Notice that HDIs for the 2PL are much larger in this example
which is partially attributable to dichotomizing ordinal response options. Addi-
tionally, note that θi HPD intervals in the GRM centered above θi = 1 posses
narrower intervals which is a function of item information discussed in a subse-
quent section.
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Figure 4. 95% HPD Intervals for 2PL and GRM θ Estimates

Here we see that the 2PL and the GRM yield similar θ̂ estimates; however, the
intervals for the GRM are typically much narrower. This reflects the increased
precision in estimates that arises from preserving the original ordinal scale of the
items rather than dichotomizing it as was done for 2PL demonstration. Further,
it is worth noting that the width of the HPD varies based on the θ̂ with estimates
larger than zero demonstrating relatively more precision. This suggests that these
particular items may be better at distinguishing among respondents with mild
to moderate levels of depression than their non-depressed counterparts.

6 Model Fit

Posterior predictive checks can be used to determine if the proposed models fit
the observed data. We use the PPP (Gelman et al., 1996). We observe that
PPP ≈ 0.50 for items 1,2 and 4 but ppp3 = 0.9 suggesting that the the 2PL is
a reasonable model for items 1,2, and 4 does not perform well for item 3. PPPs
could also be obtained for each respondent to detect potential outlying response
patterns by altering the JAGS model specification to include PPPs for each i. We
can use the posterior mean of the PPPj to examine model fit for each item.

## ppp[1] ppp[2] ppp[3] ppp[4]

## 0.516 0.532 0.903 0.524
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7 Item Curves

It is often of interest when conducting IRT analyses to evaluate how well test
items perform across a range of θs. For example, certain items may be more
informative for respondents with high levels of θ while other perform better
at lower levels. In this section we demonstrate how to plot Item Characteristic
Curves (ICCs), Item Information Curves (IICs), and test information for the
2PL. Given the poor model fit for item 3, we only examine curves for items 1, 2,
and 4. We use the posterior means of all item and person parameters to compute
pij .

alpha_hat = alphas[c(1,2,4),"Mean"]

beta_hat = betas[c(1,2,4),"Mean"]

theta_hat = thetas[,"Mean"]

p = calcP(thet=theta_hat,a=alpha_hat,b=beta_hat,D=1.702)

colnames(p) <- paste0("Item",c(1,2,4))

7.1 Item Characteristic Curves

Researchers often wish to examine how the probability of endorsing (or correctly
answering) an item varies as a function of θ. ICCs plot pj across the range of θ

providing a useful description of item functioning. Figure 5 plots pij over θ̂ for
items 1, 2, and 4.
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Figure 5. Item Characteristic Curves of Items 1, 2, and 4

The ICC demonstrates that item 1 is rarely ever endorsed across the θ range.
The remaining items are endorsed more frequently as θ increases (i.e., more
severe depression).
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7.2 Item Information Curves

It is also often helpful to plot the item information curves (IIC) which depict
how informative responses to an item are for a given level of ability. Items are
often evaluated using Fisher information which is defined for the 2PL (Lord,
1980)

I(θ, xj) = α2
jpij(1− pij). (16)

Fixing αj to be the posterior mean as above, we can obtain item information
curves. Figure 6 displays the item information for Items 1, 2, and 4.
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Figure 6. Item Information Curves for Items 1, 2, and 4

7.3 Test Information

Item information provides a metric for how well an item performs across values
of θ. The test information provides a similar metric for the entire test. Given the
assumption of local independence, calculating test information is a straightfor-
ward sum of the item information. Below we demonstrate how to plot the overall
test information again omitting item 3 (Figure 7).
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Figure 7. Test Information Curve for Items 1, 2, and 4

8 Summary

This paper provides a demonstration of Bayesian IRT models, specifically the
2PL and GRM, in JAGS using the runjags package. The general procedure for
conducting Bayesian analyses can be summarized in 7 overarching steps:

1. Model Specification

– Step 1a: Specify the desired model
– Step 1b: Specify priors and hyper-priors

2. Specify Initial Values in a named list

– If multiple chains are to be run, this list should be a list of named lists.

3. Specify Data for Analysis in a named list

– This list should contain data (e.g., item responses) as well as variables
such as N or J which are used in model specification.

4. Conduct MCMC sampling using run.jags

5. Convergence Analysis

– Successful convergence in all parameters is necessary to proceed to later
steps.

– If convergence is not met, increase the length of the MCMC.
– Convergence can be assessed graphically and statistically.

6. Summarize Posterior Distributions
7. Assess Model Fit
8. Conduct Desired Inferential Analyses

Details of each step clearly varies based on models and analytic but this
general template provides a heuristic for conducting Bayesian IRT analyses using
JAGS. Code to implement the 2PL and GRM as well as conduct convergence
diagnostics and summarize posterior MCMC is provided.
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9 Discussion

This paper provided a demonstration of Bayesian IRT models via the 2PL and
GRM in JAGS using data from the NLSY. In general, implementing models in
JAGS requires 1) Model specification including priors, 2) specification of ini-
tial values, and 3) specifying the data needed to run the model. Depending on
idiosyncracies of item response models, dummy coded data for certain parame-
ters, such as the item intercepts in the GRM examined here, may be necessary
in JAGS. The models demonstrated here are by no means exhaustive of item
response models that can be analyzed in JAGS but provide a foundation for
readers to understand the general process of implementing IRT models in JAGS
and evaluating model convergence.
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Appendix A NLSY Depression Items

NLSY Depression Items:

1. How often have you been a nervous person?
2. How often have you been calm/peaceful in the past month? (R)
3. How often have you felt down or blue?
4. How often have you been depressed in the last month?

(R) = reverse coded

Appendix B Supplemental Code

dep2017.binary <- apply(dep2017,2,function(x){ifelse(x>1,1,0)})

dep2017[dep2017[,1]==5,1]<-4

summary.theta.df = data.frame(thetas)

summary.theta.df$id <- 1:nrow(thetas)

hpd1 <- ggplot(data=summary.theta.df,aes(y=id))+

geom_point(aes(x=Median))+

geom_errorbar(aes(xmin=Lower95,xmax=Upper95),alpha=.4)+

ylab("Respondent")+

xlab(expression(theta))+

ggtitle("2PL 95% HPD Estimates")+

theme_bw()+theme(plot.title=element_text(hjust=.5))

summary.thetas.grm.df = data.frame(thetas.grm)

summary.thetas.grm.df$id <- 1:nrow(thetas.grm)

hpd2 <- ggplot(data=summary.thetas.grm.df,aes(y=id))+

geom_point(aes(x=Median))+

geom_errorbar(aes(xmin=Lower95,xmax=Upper95),alpha=.4)+

ylab("Respondent")+xlab(expression(theta))+

ggtitle("GRM 95% HPD Estimates")+theme_bw()+

theme(plot.title=element_text(hjust=.5))

# Calculate probability of x = 1 given theta, alpha, beta

calcP <- function(theta,a,b,D=1.702){ #D is scaling constant

logitP = D*(a%*%t(theta)-b)

p = exp(logitP)/(1+exp(logitP))

return(t(p))

}

# Item Characteristic Curves

ICC.df = data.frame(theta=theta_hat,p)

ICC.plot <- ggplot(ICC.df,aes(x=theta))+
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geom_line(aes(y=Item1,color=’1’))+

geom_line(aes(y=Item2,color=’2’))+

geom_line(aes(y=Item4,color=’3’))+

xlab(expression(hat(theta)))+

ylab(expression("P(x=1|"~theta~")"))+ggtitle("ICC Plot")+

scale_color_manual(name="Item",breaks=c("1","2","3"),

values=c("1"="red","2"="blue","3"="orange"),

labels=c("1","2","4"))+

theme_bw()+theme(plot.title=element_text(hjust=.5))

# Item Information Curve

IIC.df = data.frame(I.item1 = alpha_hat[1]^2*(p[,1]*(1-p[,1])),

I.item2 = alpha_hat[2]^2*(p[,2]*(1-p[,2])),

I.item4 = alpha_hat[3]^2*(p[,3]*(1-p[,3])),

theta_hat)

IIC.plot <- ggplot(IIC.df,aes(x=theta_hat))+

geom_line(aes(y=I.item1,color=’1’))+

geom_line(aes(y=I.item2,color=’2’))+

geom_line(aes(y=I.item4,color=’3’))+

xlab(expression(hat(theta)))+

ylab("Item Information")+ggtitle("Item Information Plot")+

scale_color_manual(name="Item",breaks=c("1","2","3"),

values=c("1"="red","2"="blue","3"="orange"),

labels=c("1","2","4"))+

theme_bw()+theme(plot.title=element_text(hjust=.5))

# Test Information Curve

test.i.df = data.frame(theta_hat,

testInfo=apply(IIC.df[,1:3],1,sum))

test.i.plot <- ggplot(test.i.df,aes(x=theta_hat))+

geom_line(aes(y=testInfo))+

ylab("Test Information")+xlab(expression(theta))+

xlab(expression(hat(theta)))+

ggtitle("Test Information Curve")+

theme_bw()+theme(plot.title=element_text(hjust=.5))
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