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Abstract. The proofs of the probability density function (pdf) of the
Wishart distribution tend to be complicated with geometric viewpoints,
tedious Jacobians and not self-contained algebra. In this paper, some
known proofs and simple new ones for uncorrelated and correlated cases
are provided with didactic explanations. For the new derivation of the
uncorrelated case, an elementary direct derivation of the distribution
of the Bartlett-decomposed matrix is provided. In the derivation of the
correlated case from the uncorrelated one, simple methods including a
new one are shown.
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1 Introduction

The Wishart distribution has been often used for the matrix of the squares and
cross products of random vectors. In multivariate analysis or more specifically
structural equation modeling (SEM), a modified log-likelihood of this distri-
bution (see e.g., Ogasawara, 2016, Equation (2.8)) has been used probably as
a gold-standard discrepancy function for estimation even under non-normality
though the distribution is given under multivariate normality. In SEM, varia-
tions of the distribution are also used as priors for covariance matrices (Liu, Qu,
Zhang, & Wu, 2022; Zhang, 2021). The distribution has various extensions e.g.,
the inverted distribution (Anderson, 2003, Section 7.7), singular cases (Bodnar
& Okhrin, 2008; Mathai & Provost, 2022; Srivastava, 2003), complex-valued ones
(Srivastava & Khatri, 1979, Section 3.7; Mathai, Provost, & Haubold, 2022, Sec-
tion 5.5), those with two different degrees of freedom (df’s) (Ogasawara, 2023b),
the joint distributions of the Wishart matrix and normal vectors (Yonenaga,
2022) and cases under arbitrary distributions (Hsu, 1940; Srivastava & Khatri,
1979, Lemma 3.2.3; Olkin, 2002, Section 2).

Asymptotic results associated with the Wishart distribution are also of prac-
tical use. In SEM, the asymptotic standard errors of the Wishart maximum
likelihood estimators for structural parameters are often used under normality
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or non-normality. In this situation, the large df is assumed. When the number
of variables is also large under some condition as in high-dimensional data (see
e.g., Yao, Zheng, & Bai, 2015), the limiting distribution of the eigenvalues of the
Wishart matrix is given by the Marčenko and Pastur (1967, M-P) distribution
(the author is indebted to an anonymous reviewer for this point). The M-P dis-
tribution gives a tool for the problems of the numbers of factors or components
in SEM (Chen & Weng, 2023).

The probability density functions (pdf’s) of the Wishart distribution were
given by Fisher (1915, p. 510) and Wishart (1928) for the bivariate and general
multivariate cases, respectively. The derivations tend to be involved with geo-
metric viewpoints (see e.g., Anderson, 2003, Section 7.2) or not self-contained
algebra as criticized by Ghosh and Sinha (2002) (for the references of deriva-
tions see Srivastava & Khatri, 1979, p. 73 and Anderson, 2003, pp. 256-257).
Khatri (1963) showed a brief derivation using an integral of the unity over the
constant quadratic forms having the chi-square density. Ghosh and Sinha (2002)
gave a self-contained concise proof of the Wishart density though it is an indirect
method. In spite of frequent use of the Wishart density and its variations in SEM,
the derivation of the pdf seems to be often intractable for beginning students/re-
searchers. Probably, many of them use the Wishart pdf as if referencing a cook
book without understanding the derivation, which is an undesirable situation. A
relatively concise derivation is to use the characteristic function and its inversion
(Wishart & Bartlett, 1933; Wilks, 1962, Section 18.2). However, this method re-
quires the Fourier integral theorem or Levy’s inversion formula, which may be
unfamiliar for beginners. In this paper, almost self-contained known proofs and
new ones for the uncorrelated and correlated multivariate cases are shown with
didactic explanations.

2 Proofs of the Wishart Distributions

2.1 The distribution of a lower-triangular matrix for the Wishart
density

Suppose that in the random matrix X = {Xij} (i = 1, ..., p; j = 1, ..., n; p ≤ n),
each column is multivariate normally distributed as Np(0, Ip) independent of
the other columns with the population mean vector 0 and covariance matrix Ip
denoting the p× p identity matrix. That is, all the elements of X are mutually
independently distributed as standard normal.

Let S ≡ XXT = TTT be Bartlett-decomposed such that T is a p× p lower-
triangular matrix whose diagonal elements are positive. Define s =
(s11, s21, s22, ..., sp1, ..., spp)

T and t = (t11, t21, t22, ..., tp1, ..., tpp)
T, where s and

t are the {(p2 + p)/2} × 1 vectors of the non-duplicated elements of S and the
random elements of T, respectively. Let |∂s/∂tT|+ (Srivastava & Khatri, 1979,
p. 28) be the absolute value of the determinant of the Jacobian matrix for the
transformation S → T:

∂s

∂tT
=

{
∂sij
∂tkl

}
(p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1)
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using the double subscript notation for the rows of the elements of S and columns
for those of tT in ∂s/∂tT. Then, the Jacobian of the transformation is given by
|∂s/∂tT|+. For the proof of the Wishart distribution, the following lemmas are
used.

Lemma 1 Suppose that each of 2m variables Xik and Xjk (i ̸= j; k = 1, ...,m;
m = 1, 2, ...) independently follows N(0, 1) ≡ N1(0, 1). Then, the distribution of∑m

k=1 XikXjk is the same as that of Xil

√∑m
k=1 X

2
jk (i ̸= j; l = 1, ...,m).

Proof. When m = 1, the equal distribution of Xi1Xj1 and Xi1

√
X2

j1 = Xi1|Xj1|
is given by the symmetric distribution of Xi1Xj1 about zero. For general cases,
consider the moment generating functions (mgf’s). By definition, the mgf of∑m

k=1 XikXjk is

E {exp (t
∑m

k=1 XikXjk)} =
∏m

k=1 E {exp(tXikXjk)}

=
∏m

k=1
1
2π

∫∞
−∞

∫∞
−∞ exp

(
txikxjk − x2

jk

2

)
dxjk exp

(
−x2

ik

2

)
dxik

=
∏m

k=1
1√
2π

∫∞
−∞

∫∞
−∞

1√
2π

exp
{
− (xjk−txik)

2

2

}
dxjk exp

{
− (1−t2)x2

ik

2

}
dxik

=
∏m

k=1
1√
2π

∫∞
−∞ exp

{
− (1−t2)x2

ik

2

}
dxik

= (1− t2)−m/2 (|t| < 1).

On the other hand, the mgf of Xil

√∑m
k=1 X

2
jk is

E exp
(
tXil

√∑m
k=1 X

2
jk

)
= 1

(2π)(m+1)/2

∫∞
−∞ · · ·

∫∞
−∞ exp

(
txil

√∑m
k=1 x

2
jk − x2

il

2 −
∑m

k=1 x2
jk

2

)
×dxildxj1 · · · dxjm

= 1
(2π)m/2

∫∞
−∞ · · ·

∫∞
−∞

1
(2π)1/2

exp

{
−
(
xil − t

√∑m
k=1 x

2
jk

)2
/2

}
dxil

×exp
{
−(1− t2)

∑m
k=1 x

2
jk/2

}
dxj1 · · · dxjm

= 1
(2π)m/2

∫∞
−∞ · · ·

∫∞
−∞ exp

{
−(1− t2)

∑m
k=1 x

2
jk/2

}
dxj1 · · · dxjm

= (1− t2)−m/2 (|t| < 1).

It is found that the above two mgf’s are the same, which shows the same distri-

bution of
∑m

k=1 XikXjk and Xil

√∑m
k=1 X

2
jk (i ̸= j; l = 1, ...,m). ⊓⊔

The second proof using the pdf of the chi-distribution is given in the supple-
ment to this paper (Ogasawara, 2023a).
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Lemma 2 (Deemer & Olkin, 1951, Theorem 4.1; Srivastava & Khatri, 1979,
Exercise 1.28 (i); Muirhead, 1982, Theorem 2.1.9; Anderson, 2003, p. 255). The
Jacobian of the transformation S → T is

|∂s/∂tT|+ = 2p
∏p

i=1
tp−i+1
ii .

Proof. Deemer and Olkin (1951) derived the result as a special case of another
general theorem. Muirhead (1982) used the exterior product while an essential
standard proof was given by Anderson (2003). The derivation is given here by
induction. When p = 1, |∂s/∂tT|+ = ds11/dt11 = dt211/dt11 = 2t11 > 0 show-
ing that the above result holds. Assume that the result holds when p = p∗

i.e., |∂s/∂tT|+ = 2p
∗ ∏p∗

i=1 t
p∗−i+1
ii (p∗ ≥ 1). When p = p∗ + 1, the elements

sp∗+1,1, sp∗+1,2, ..., sp∗+1,p∗+1 are added to s at its end. Similarly,

tp∗+1,1, tp∗+1,2, ..., tp∗+1,p∗+1 are added to tT. Noting that sij =
j∑

k=1

tiktjk (p ≥

i ≥ j ≥ 1), we find that ∂s/∂tT is a lower-triangular matrix. Consequently, the
added factor in |∂s/∂tT|+ when p = p∗ + 1 over when p = p∗ is given by the
product of the added diagonal elements:

∂sp∗+1,1

∂tp∗+1,1

∂sp∗+1,2

∂tp∗+1,2
· · · ∂sp∗+1,p∗

∂tp∗+1,p∗

∂sp∗+1,p∗+1

∂tp∗+1,p∗+1
= t11t22 · · · tp∗p∗2tp∗+1,p∗+1.

That is, |∂s/∂tT|+ becomes

2p
∗
(∏p∗

i=1
tp

∗−i+1
ii

)
t11t22 · · · tp∗p∗2tp∗+1,p∗+1 = 2p

∗+1
∏p∗+1

i=1
tp

∗+1−i+1
ii ,

which shows that the formula |∂s/∂tT|+ = 2p
∏p

i=1 t
p−i+1
ii holds when p = p∗+1

indicating the required result. ⊓⊔

In the following theorem for a known Wishart density, we use Γp(n/2) ≡
πp(p−1)/4

∏p
i=1 Γ{(n− i+ 1)/2} i.e., the p-variate Gamma function (Anderson,

2003, Definition 7.2.1; Subsection 7.2, Equation (18); see also DLMF, 2021, Sec-
tion 35.3, https://dlmf.nist.gov/35.3), where Γ (k) =

∫∞
0

vk−1 exp(−v)dv (k >
0) is the usual gamma function.

Theorem 1 Under the condition that the n columns of X independently follow
Np(0, Ip), the pdf of the Wishart distributed S is given by

wp(S|Ip, n) =
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
(n ≥ p).

Proof. Consider the case of tij = Xij and tii =
√∑n

k=i X
2
ik (i = 1, ..., p; j =

1, ..., i− 1). Since Xij(i = 1, ..., p; j = 1, ..., n) are mutually independent, tij (i =

1, ..., p; j = 1, ..., i) are independent. Note that (TTT)ii =
∑i

j=1 t
2
ij = (XXT)ii

(i = 1, ..., p) are independently chi-square distributed with n df, where (·)ij
is the (i, j)-th element of a matrix; and tii is chi-distributed with n − i + 1

https://dlmf.nist.gov/35.3
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df. Further, Lemma 1 shows that the distributions of the off-diagonal elements
(TTT)ij =

∑j
k=1 tiktjk and (XXT)ij(p ≥ i > j ≥ 1) using tjj and tij (i =

1, ..., p; j = 1, ..., i− 1) are the same. That is, the distribution of S = XXT and
TTT are the same when tij (i = 1, ..., p; j = 1, ..., i) are distributed as above.
The pdf of the constructed tij ’s (p ≥ i ≥ j ≥ 1) denoted by fp(T) becomes

fp(T) =

[
p∏

i=1

tn−i
ii exp(−t2ii/2)

2{(n−i+1)/2}−1Γ{(n− i+ 1)/2}

]

×
1

(
√
2π)

(p2−p)/2

{ ∏
p≥i>j≥1

exp
(
−t2ij/2

)}

=

{
p∏

i=1

tn−i
ii exp(−t2ii/2)

}{ ∏
p≥i>j≥1

exp
(
−t2ij/2

)}
2

(n+1)p
2 − p(p+1)

4 −p × 2
p(p−1)

4 π
p(p−1)

4

p∏
i=1

Γ{(n− i+ 1)/2}

=

(
p∏

i=1

tn−i
ii

)
exp{−tr(TTT)/2}

2
np
2 −pΓp(n/2)

.

In the above expression, the pdf of the chi-distributed tii with k df denoted by
fχ(tii|k) is given by that of the chi-square distributed u = t2ii with k df i.e.,

fχ2(u|k) =
u(k/2)−1

2k/2Γ (k/2)
exp(−u/2) with the Jacobian du/dtii = 2tii, yielding

fχ(tii|k) =
u(k/2)−1

2k/2Γ (k/2)
exp(−u/2)

du

dtii
=

t
(n−i+1)−2+1
ii exp(−t2ii/2)

2(n−i+1)/2−1Γ{(n− i+ 1)/2}

as shown earlier, when u = t2ii and k = n− i+ 1.
Consider the transformation T → S in S = XXT = TTT. The Jacobian

J(T → S) of this transformation is given by the reciprocal of J(S → T) obtained

in Lemma 2 as J(T → S) = 1/|∂s/∂tT|+ =
(
2p
∏p

i=1 t
p−i+1
ii

)−1

. Consequently,

using |S|1/2 = |T| = t11 · · · tpp the pdf of S becomes

wp(S|Ip, n) = fp(T)J(T → S)

=

(∏p
i=1 t

n−i
ii

)
exp{−tr(TTT)/2}

2
np
2 −pΓp(n/2)2p

∏p
i=1 t

p−i+1
ii

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
.

⊓⊔

Remark 1 The pdf of tij ’s (p ≥ i ≥ j ≥ 1) i.e., fp(T) given above using Lemma
1 is algebraically equal to those of Anderson (2003, Equation (6), p. 253, Corol-
lary 7.2.1), Wijsman (1957, Equation (12)) and Kshirsagar (1959, Remarks).
However, a typical derivation by e.g., Anderson is an indirect one using or-
thogonalization and the conditional normal density. Since Anderson’s derivation
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seems to give some complicated impressions for beginning students/researchers
though it is almost self-contained, the corresponding didactic explanation of his
derivation is given below. Anderson (2003, Equation (2), p. 252) defined the
n-dimensional independent random vectors vi ∼ Nn(0, In) (i = 1, ..., p) with

X =


vT
1

...

vT
p

 .

Then, the Gram-Schmidt sequential orthogonalization is employed (Anderson,
2003, Equation (3), p. 253) as

wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

(i = 2, ..., p) and w1 = v1,

where he used the expression vT
j wj for the denominator wT

j wj . Though vT
j wj =

wT
j wj (j = 1, ..., i) as will become apparent, wT

j wj may be more natural and
appropriate. While he included the short derivation of the orthogonality among
wi’s by induction, it is repeated here with some added explanations. When i =
2, we have

wT
2 w1 = {v2 −w1(w

T
1 w1)

−1wT
1 v2}Tw1 = v2

Tw1−v2
Tw1(w

T
1 w1)

−1wT
1 w1 = 0

showing the orthogonality. Suppose that

wT
j wk = 0 (j, k = 1, ..., i− 1; j ̸= k)

hold. Then, we have

wT
kwi = wT

k

(
vi −

i−1∑
j=1

wj

wT
j vi

wT
j wj

)
= wT

k vi −
i−1∑
j=1

wT
kwj

wT
j vi

wT
j wj

= wT
k vi −wT

kwk

wT
k vi

wT
kwk

= 0 (i = 2, ..., p; k = 1, ..., i− 1),

due to the assumption wT
j wk = 0 (j, k = 1, ..., i − 1; j ̸= k), showing the re-

quired result wT
j wk = 0 (j, k = 1, ..., i; j ̸= k). Recall that vT

j wj = wT
j wj (j =

1, ..., i) mentioned earlier, which is obtained bywT
j wk = 0 (j, k = 1, ..., i; j ̸= k)

and wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

(i = 2, ..., p).

The orthogonalization procedure is re-expressed by

wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

= vi − (w1, ...,wi−1)diag{(wT
1 w1)

−1, ..., (wT
i−1wi−1)

−1}(w1, ...,wi−1)
Tvi

≡ vi −PWi−1
vi = (In −PWi−1

)vi ≡ QWi−1
vi (i = 2, ..., p),
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where PWi−1
≡ Wi−1(W

T
i−1Wi−1)

−1WT
i−1 is the idempotent (i.e., P2

Wi−1
=

PWi−1
) and symmetric projection matrix transforming or projecting vi onto

the space spanned by the columns of Wi−1 ≡ (w1, ...,wi−1) of full column
rank by assumption; and QWi−1 = In − PWi−1 is also an idempotent and
symmetric projection matrix yielding the residual vector vi − PWi−1

vi or the
projected vector on the space orthogonal to the column space of Wi−1 with
vi = PWi−1

vi+QWi−1
vi. Anderson (2003, p. 252) stated that “wi is the vector

from vi to the projection on w1, ...,wi−1” with his Figure 7.1. He repeatedly
stressed the equivalence of the column space of Wi−1 and that of v1, ...,vi−1 in
our expression.

Using the constructed w1, ...,wi−1 by the Gram-Schmidt orthogonalization
or projection, Anderson (2003, p. 252) defined

tii = ||wi|| =
√

wT
i wi (i = 1, ..., p)

and
tij = vT

i wj/ ||wj || (i = 2, ..., p; j = 1, ..., i− 1),

which may be uniformly expressed by tij = vT
i wj/ ||wj || = (i = 2, ..., p; j =

1, ..., i) due to vT
j wj = wT

j wj ( j = 1, ..., i) mentioned earlier. Then, noting that
wi = vi −PWi−1

vi, we have

vi = wi +PWi−1
vi = wi +

i−1∑
j=1

wjw
T
j

wT
j wj

vi =

i∑
j=1

wT
j vi

||wj ||2
wj =

i∑
j=1

tij
||wj ||

wj

and

(XXT)ij = vT
i vj =

{
i∑

k=1

tik

||wk||
wT

k

}
j∑

k=1

tjk

||wk||
wk

=
j∑

k=1

tik

||wk||
wT

kwk

tjk

||wk||
=

j∑
k=1

tiktjk (p ≥ i ≥ j ≥ 1)

(Anderson, 2003, p. 252). In vi =
i∑

j=1

tij

||wj ||
wj (i = 1, ..., p), wj/ ||wj || (j =

1, ..., i − 1) is seen as the unit-norm vector representing the direction for the
j-th coordinate in the i − 1 coordinates given by w1, ...,wi−1. He stated that
“tij , j = 1, ..., i− 1 are the first i− 1 coordinates in the coordinate system with
w1, ...,wi−1 as the first coordinates axes” (p. 252). We also find that tij is ||wj ||
times the regression coefficient bij for vi on wj since

tij = vT
i wj/ ||wj || = (vT

i wj /w
T
j wj ) ||wj ||

= bij ||wj ||(i = 2, ..., p; j = 1, ..., i− 1).

The properties of the normality of tij = vT
i wj/ ||wj || (i = 2, ..., p; j =

1, ..., i− 1) and their mutual independence shown by Anderson are based on the
normality of the conditional distribution of the multivariate normal whenwj(j =
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1, ..., i − 1) are given and orthogonal transformation in tij = vT
i wj/ ||wj || (i =

2, ..., p; j = 1, ..., i − 1). That is, the standard normally-distributed variables
tij = vT

i wj/ ||wj || do not depend on w1, ...,wi−1 indicating independence with
(wj/ ||wj ||)Twk/ ||wk|| = δjk (j, k = 1, ..., i − 1), where δjk is the Kronecker
delta with δjj = 1 and δjk = 0 (j ̸= k) (Anderson, 2003, Theorem 3.3.1).

The independent property of tii’s is given by tii =
{
(XXT)ii −

∑i−1
j=1 t

2
ij

}1/2

.

Although the same result as shown above by the didactic explanation of Ander-
son’s derivation is directly given by Lemma 1, the two methods may be insightful
with compensatory properties. [end of Remark 1]

2.2 The Wishart density for general correlated cases

For the correlated cases, four lemmas are provided. Lemma 3 is for three Jaco-
bians in the product of two lower-triangular matrices, where the first Jacobian
was used by Anderson (2003, Theorem 7.2.2) to derive the Wishart density for
general correlated cases while the remaining two are given for generality with
didactic purposes. Lemmas 4 and 5 are provided for the Jacobians in two alterna-
tive derivations of the general Wishart density. The proof of Lemma 6 associated
with sufficient statistics is based on Ghosh and Sinha (2002).

Lemma 3 Suppose that A = BC, where A, B and C are p×p lower-triangular
matrices. Consider the variable transformation from the non-zero elements of
C or B to those of A. Then, the Jacobians J(C → A) and J(B → A) are∣∣∏p

i=1 b
i
ii

∣∣−1
and

∣∣∣∏p
i=1 c

p−i+1
ii

∣∣∣−1

, respectively. When B = C, J(B → A) =∣∣∣∏p
i=1

∏i
j=1 (bii + bjj)

∣∣∣−1

.

Proof. Note that Anderson (2003, p. 254) gave J(C → A). Since aij =
∑i

k=j bikckj
(p ≥ i ≥ j ≥ 1), we have



a11
a21
a22
...
ap1
...
apm


=



b11 0 0 · · · 0 · · · 0
∗ b22 0 · · · 0 · · · 0
∗ ∗ b22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · bpp · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · bpp





c11
c21
c22
...
cp1
...
cpp


,

where the diagonal element of the lower-triangular matrix corresponding to the
row for aij and the column for cij is bii (p ≥ i ≥ j ≥ 1); the asterisks indicate
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zero or non-zero elements; and

a11
a21
a22
...
ap1
...
app


=



c11 0 0 · · · 0 · · · 0
∗ c11 0 · · · 0 · · · 0
∗ ∗ c22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · c11 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · cpp





b11
b21
b22
...
bp1
...
bpp


,

where the corresponding diagonal element for aij and bij is cjj (p ≥ i ≥ j ≥ 1).
Since the inverses of the Jacobian matrices for J(C → A) and J(B → A) on
the right-hand sides of the above equations are lower-triangular, the Jacobians
become the reciprocals of the absolute values of the determinants i.e.,

∏p
i=1 b

i
ii

and
∏p

i=1 c
p−i+1
ii , respectively. The result when B = C is obtained by the recip-

rocal of the determinant of the sum of the two lower-triangular matrices. ⊓⊔

Lemma 4 Suppose that A = BCBT, where A and C are p × p symmetric
matrices; and B is a lower-triangular matrix. Consider the variable transforma-
tion from the non-duplicated elements of C to those of A. Then, the Jacobian

J(C → A) is |B|−(p+1)
+ .

Proof. Since the non-duplicated elements of A using its diagonal and infra-
diagonal elements are aij =

∑i
k=1

∑j
l=1 bikcklbjl (p ≥ i ≥ j ≥ 1), we have

∂aij
∂ckl

= bikbjl (p ≥ i ≥ j ≥ 1; k = 1, ..., i; l = 1, ..., j),

which gives

a11
a21
a22
...
ap1
...
app


=



b11b11 0 0 · · · 0 · · · 0
∗ b22b11 0 · · · 0 · · · 0
∗ ∗ b22b22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · bppb11 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · bppbpp





c11
c21
c22
...
cp1
...
cpp


,

where the diagonal element of the lower-triangular matrix for aij and cij is
∂aij/∂cij = biibjj (p ≥ i ≥ j ≥ 1). Since J(C → A) is the reciprocal of the
absolute value of the determinant of the above lower-triangular matrix, we obtain

J(C → A) = 1/
∣∣∣∏p

i=1 b
p+1
ii

∣∣∣ = |B|−(p+1)
+ . ⊓⊔

Lemma 5 Suppose that A = BCCTBT, where A is a p× p symmetric matrix;
and B and C are lower-triangular matrices. Consider the variable transforma-
tion from the non-zero elements of C to the non-duplicated elements of A. Then,

the Jacobian J(C → A) is |B|−(p+1)
+ /

∣∣∣2p∏p
i=1 c

p−i+1
ii

∣∣∣.
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Proof 1 The diagonal and infra-diagonal elements of A are employed for its non-
duplicated ones without loss of generality. Then, define a =
(a11, a21, a22, ..., ap1, ..., app)

T and c = (c11, c21, c22, ..., cp1, ..., cpp)
T with the el-

ements lexicographically ordered. Since B, C and BC are lower-triangular, the
Jacobian matrix ∂a/∂cT = {∂aij/∂ckl} (p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1) becomes
lower-triangular. This can be shown by

∂aij

∂ckl
= {B(EklC

T +CElk)B
T}ij = (BEklC

TBT)ij + (BCElkB
T)ij

= bik(BC)jl + (BC)ilbjk (p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1),

where Eij is the matrix of an appropriate size, whose (i, j)th element is 1 with
the remaining ones being 0. The right-hand side of the last equation in the above
expression vanishes when i < k or {i = k}∩{j < l}. This condition indicates the
lower-triangular form of ∂a/∂cT = {∂aij/∂ckl}. Then, the diagonal elements are

∂aij
∂cij

= {B(EijC
T +CEji)B

T}ij = (BEijC
TBT)ij = biicjjbjj (p ≥ i > j ≥ 1)

and
∂aii
∂cii

= {B(EiiC
T +CEii)B

T}ii = 2b2iicii (i = 1, ..., p).

Since the determinant of the Jacobian matrix for J(A → C) is

∏p
i=1

∏i
j=1

∂aij

∂cij
=
(∏p

i=1

∏i−1
j=1

∂aij

∂cij

)∏p
i=1

∂aii

∂cii
= 2p

∏p
i=1

∏i
j=1 biicjjbjj

= 2p
(∏p

i=1 b
i
ii

)∏p
j=1 c

p−j+1
jj bp−j+1

jj = 2p
∏p

i=1 b
p+1
ii cp−i+1

ii

= 2p|B|p+1
∏p

i=1 c
p−i+1
ii ,

the Jacobian J(C → A) is the reciprocal of the absolute value of the above
quantity:

J(C → A) = |B|−(p+1)
+ /

∣∣∣2p∏p

i=1
cp−i+1
ii

∣∣∣ ,
which is the required result. ⊓⊔

Proof 2 The transformation A = BCCTBT is seen in two steps. In the first
step, the transformation C → CCT is considered, whose Jacobian is given by

Lemma 2 as J(C → CCT) = 1/
∣∣∣2p∏p

i=1 c
p−i+1
ii

∣∣∣. The second step is for the

transformation CCT → A = BCCTBT with the Jacobian J(CCT → A) =

|B|−(p+1)
+ , which is given by Lemma 4. Then, the Jacobian J(C → A) is the

product of the two Jacobians due to the chain rule, which gives the required
result. ⊓⊔

Suppose that each column of a p×n matrix Y follows Np(0,Σ) with positive
definite Σ independent of the other columns. Recall X in Theorem 1. Let Σ =
BBT be the Cholesky decomposition, where B is a fixed lower-triangular matrix
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whose diagonal elements are positive for identification and convenience. Then,
each column of Y = BX independently follows Np(0,Σ). Define SΣ ≡ YYT =
BXXTBT = BSBT, where S = SIp = XXT = TTT, and the {p(p + 1)/2} ×
1 vector sΣ ≡ (sΣ11, sΣ21, sΣ22, ..., sΣp1, ..., sΣpp)

T with SΣ = {sΣij} (i, j =
1, ..., p).

Lemma 6 Define positive definite Σi = BiB
T
i and SΣi

= BiSB
T
i (i = 1, 2),

where S is as before. Denote the pdf’s of SΣi
at SΣ by gΣ=Σi

(SΣ) (i = 1, 2).
Then,

gΣ=Σ1
(SΣ)

gΣ=Σ2
(SΣ)

=
ϕp,n(Y|0, Σ1)

ϕp,n(Y|0, Σ2)
,

where ϕp,n(Y|0, Σi) =
∏n

j=1 ϕp{(Y)· j |0, Σi}; (Y)· j is the j-th column of Y;
and

ϕp{(Y)· j |0, Σi} =
exp{−(Y)T·jΣ

−1
i (Y)· j/2}

(2π)
n/2|Σi|1/2

( i = 1, 2; j = 1, ..., n).

Proof. The derivation is given by the factorization theorem for the sufficient
statistic corresponding to SΣ for Σ as used by Ghosh and Sinha (2002, Equation
(8)):

ϕp,n(Y|0, Σi) = gΣ=Σi
(SΣ)h(Y) (i = 1, 2),

which gives the required result. ⊓⊔

The Wishart density for general correlated cases (see e.g., Srivastava & Kha-
tri, 1979, Theorem 3.2.1; Anderson, 2003, Theorem 7.2.2) is derived in different
ways.

Theorem 2 Let each column of a p×n matrix Y follows Np(0,Σ) with positive
definite Σ independent of the other columns. Then, the pdf of SΣ = YYT is

wp(SΣ|Σ, n) =
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

Proof 1 Consider the transformation T → SΣ = BTTTBT. The Jacobian is
given by Lemma 5, when A = SΣ, B = B and C = T with added restrictions
bii > 0 and tii > 0 (i = 1, ..., p) as

J(T → SΣ) = |B|−(p+1)/
(
2p
∏p

i=1
tp−i+1
ii

)
= |Σ|−(p+1)/2/

(
2p
∏p

i=1
tp−i+1
ii

)
.
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The pdf of T denoted by fp(T) was given by Theorem 1. Then, we have

wp(SΣ|Σ, n) = fp(T)J(T → SΣ)

=

exp{−tr(TTT)/2}
p∏

i=1

tn−i
ii

2(np/2)−pΓp(n/2)

|Σ|−(p+1)/2

2p
∏p

i=1 t
p−i+1
ii

=

exp{−tr(TTT)/2}|Σ|−(p+1)/2
p∏

i=1

tn−p−1
ii

2np/2Γp(n/2)

=
exp{−tr(B−1SΣB

T−1)/2}|Σ|−(p+1)/2|B−1SΣB
T−1|(n−p−1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
,

where tr(B−1SΣB
T−1) = tr(BT−1B−1SΣ) = tr{(BBT)−1SΣ} = tr(Σ−1SΣ)

and |B−1SΣB
T−1| = |SΣ||Σ|−1 are used. The last expression gives the required

result. ⊓⊔

Proof 2 Employ the two-step transformation T → S = TTT → SΣ = BSBT.
The first step was used by Theorem 1. The Jacobian J(T → S = TTT) in the
first step is given by Lemma 2 by taking the reciprocal of the last result of the
lemma while J(S → SΣ = BSBT) is obtained by Lemma 4. That is,

wp(SΣ|Σ, n) = fp(T)J(T → S)J(S → SΣ)

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
J(S → SΣ)

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
|B|−(p+1)

=
exp{−tr(Σ−1SΣ)/2}|Σ−1SΣ|(n−p−1)/2|Σ|−(p+1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔

Proof 3 (Anderson, 2003, Theorem 7.2.2) Anderson used an alternative two-step
transformation T → T∗ = BT → SΣ = T∗T∗T . The Jacobian J(T → T∗) is
given by the first result of Lemma 3 while J(T∗ → SΣ) is given by the reciprocal
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of the last result in Lemma 2 when T = T∗. That is,

wp(SΣ|Σ, n) = fp(T)J(T → T∗)J(T∗ → SΣ)

=

exp{−tr(TTT)/2}
p∏

i=1

tn−i
ii

2(np/2)−pΓp(n/2)

(∏p
i=1 b

i
ii

)−1
(
2p
∏p

i=1 t
∗p−i+1
ii

)−1

=

exp{−tr(TTT)/2}
p∏

i=1

(t∗ii/bii)
n−i

2np/2Γp(n/2)
(∏p

i=1 b
i
ii

)∏p
i=1 t

∗p−i+1
ii

=

exp{−tr(TTT)/2}
p∏

i=1

t∗n−p−1
ii

2np/2 (
∏p

i=1 b
n
ii)Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔
Proof 4 Use Theorem 1 and Lemma 6 when Σ1 = Ip and Σ2 = B2B

T
2 =

Σ1/2(Σ1/2)T = Σ. Then, we have

wp(SΣ|Σ, n) = wp(SΣ|Ip, n)
ϕp,n(Y|0, Σ)

ϕp,n(Y|0, Ip)

=
exp{−tr(SΣ)/2}|SΣ|(n−p−1)/2

2np/2Γp(n/2)

exp{−tr(YYTΣ−1)/2}/{(2π)pn/2|Σ|n/2}
exp{−tr(YYT)/2}/(2π)pn/2

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔

3 Remarks and Conclusion

For the general correlated cases, four proofs are shown in Theorem 2. The
one-step first proof uses fp(T) with J(T → SΣ) given by Lemma 5, where
SΣ = BTTTBT with lower-triangular B and T is seen as a two-fold Bartlett
(Cholesky) decomposition or a usual Bartlett (1933) SΣ = BT(BT)T in terms
of lower-triangular BT. The two-step second proof uses fp(T) with J(T → S =
TTT) and J(S → SΣ = BSBT) obtained by Lemmas 2 and 4, respectively.
Anderson (2003)’s two-step third proof uses fp(T) with J(T → T∗ = BT) and
J(T∗ → SΣ) given by Lemmas 3 and 2, respectively. Among the four proofs,
the first and fourth ones are relatively simple. The remaining two-step proofs
seem to be comparable. It is found that in order to derive the final Jacobian by
Proofs 2 and 3, Lemma 2 is firstly and secondly used, respectively. When only
the pdf of S(= SΣ=Ip) is focused on, Proof 2 may be the simplest though the
same result is immediately obtained from the pdf of SΣ substituting Σ = Ip.

In each of the four proofs, fp(T) is used. Two derivations for fp(T) were
shown. The first method using Lemma 1 is much simpler than that used by
Anderson (2003) as detailed in Remark 1. The author believes that this sim-
plification will reduce the difficulties frequently encountered when beginning
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students/researchers master the Wishart density. Note that when the Wishart
density for wp(S|Ip, n) is given, fp(T) is obtained using J(S → T) in Lemma 2
as easily as the transformation J(T → S), which is the reversed problem (see
Bartlett, 1933; Muirhead, 1982, Theorem 3.2.14).

Remark 2 Lemma 1 gave the justification of XXT = TTT with mutually inde-
pendent normal tij (p ≥ i > j ≥) and chi-distributed tii(i = 1, ..., p). While the
chi-square distribution of (TTT)ii is obvious, the distribution of (TTT)ij (i > j)
is that of the product sum of p pairs of independent normals (the product-sum
normal for short). The pdf and mgf of the product-sum normal in the case of a
possibly correlated single pair was given by Craig (1936) (see also Ogasawara,
2023a, Remarks S1-S4). For current developments of this issue, see e.g., Seijas-
Maćıas and Oliveira (2012), Seijas-Maćıas, Oliveira, Oliveira, and Leiva (2020),
and Gaunt (2022).

Remark 3 As addressed earlier, the complicated property found in many of
the proofs of the Wishart density seems to be due partially to the associated
Jacobians in e.g., Srivastava and Khatri (1979, Section 3.2) and Anderson (2003,
Section 7.2). The proof of the Wishart density in Theorem 1 is similar to that in
Srivastava and Khatri (1979, Section 3.2).Though the Jacobian in Lemma 2 was
also used by Srivastava and Khatri, we did not use the Jacobian ofX → {T, V∗}
in X = TV∗, where V∗ is a p × n semi-orthonormal matrix with V∗V∗T = Ip
(see Srivastava & Khatri, 1979, Exercise 1.33). Instead, we used the marginal
chi and normal distributions for T as in Anderson (2003).

As shown earlier, in the three proofs of the Wishart density wp(SΣ|Σ, n),
the Bartlett-like Cholesky decomposition Σ = BBT is used for non-stochastic
Σ. Though this factorization gives simple results, other factorizations can also
be used with Σ = BGGTBT = BG(BG)T = DDT, where GGT = GTG = Ip
and D = BG. For illustration, Proof 5 using D = Σ1/2 with (Σ1/2)2 = Σ will be
shown in Appendix A for didactic purposes with associated remarks. The concise
derivation of Khatri (1963) will be explained in Appendix B. The Bartlett de-
composition S = TTT can also be replaced by other ones with the same number
of random variables. The case called the exchanged Bartlett decomposition will
be shown in Appendix C.

Conclusion Among Proofs 1 to 4 of the Wishart distribution given earlier and
Proofs 5 to 7 to be shown in the appendix for expository purposes, Proof 4
using our Lemma 1 for the equivalence of the distributions of the product-sum
normal and the product of the chi and standard normal as well as Lemma 6
for the factorization theorem given by Ghosh and Sinha (2002) is the simplest.
Since Proof 4 uses elementary and self-contained methods, the proof may be
understood by beginning students/researchers without much difficulty.
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(Magnus & Neudecker, 1999, Chapter 3, Section 8); and vec(·) is the vectorizing
operator stacking the columns of a matrix in parentheses sequentially with the
first column on the top. Using the formula vec(ABC) = (CT ⊗A)vec(B) (see
Magnus & Neudecker, 1999, Chapter 2, Theorem 2), where ⊗ denotes the direct
or Kronecker product, we obtain

DpsΣ = vec(SΣ) = vec(Σ1/2SΣ1/2) = (Σ1/2⊗Σ1/2)vec(S) = (Σ1/2⊗Σ1/2)Dps.

Pre-multiplying the above equation by (DT
pDp)

−1DT
p ≡ D+

p , which is the left-
or Moore-Penrose generalized inverse of Dp with D+

p Dp = Ip(p+1)/2 (see Magnus
& Neudecker, 1999, Chapter 3, Section 8), we have

sΣ = D+
p (Σ

1/2 ⊗Σ1/2)Dps.

The Jacobian of the transformation SΣ → S or equivalently sΣ → s is given
by |D+

p (Σ
1/2 ⊗ Σ1/2)Dp|+ = |Σ|(p+1)/2, which is derived using the following

lemma.

Lemma 7 (Magnus & Neudecker, 1986, Equation (7.11)). Let A be a p × p
positive definite matrix with distinct eigenvalues. Then, |D+

p (A ⊗ A)Dp| =
|A|p+1.

Proof. While Magnus and Neudecker (1986) used Shur’s theorem for the ex-
istence of a non-singular matrix V satisfying V−1AV = M, where M is an
upper-triangular matrix for a general square matrix A, we use a familiar special
case of the theorem as LTAL = Λ when A = LΛLT with LLT = LTL = Ip
and Λ = diag(λ1, ..., λp) (λ1 > ... > λp > 0), where the columns of L and
λi(i = 1, ..., p) are the eigenvectors and eigenvalues of A, respectively. Note that

D+
p (L

T ⊗ LT)DpD
+
p (A⊗A)DpD

+
p (L⊗ L)Dp

= D+
p (L

T ⊗ LT)(A⊗A)(L⊗ L)Dp

= D+
p {(LTAL)⊗ (LTAL)}Dp = D+

p (Λ⊗Λ)Dp,

where DpD
+
p (A ⊗ A) = (A ⊗ A)DpD

+
p and DpD

+
p Dp = Dp (Magnus &

Neudecker, 1999, Chapter 3, Theorem 13) are used, followed by the transfor-
mation given by (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) when multiplications are
defined.

Note that D+
p (L

T ⊗ LT)Dp = {D+
p (L⊗ L)Dp}−1 since

D+
p (L

T⊗LT)DpD
+
p (L⊗L)Dp = D+

p (L
T⊗LT)(L⊗L)Dp = D+

p Dp = Ip(p+1)/2.

Consequently, we can write as

D+
p (L

T ⊗ LT)DpD
+
p (A⊗A)DpD

+
p (L⊗ L)Dp

≡ B−1D+
p (A⊗A)DpB = D+

p (Λ⊗Λ)Dp,
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which shows that the eigenvalues of D+
p (A ⊗ A)Dp are the same as those of

D+
p (Λ ⊗ Λ)D (see e.g., Magnus & Neudecker, 1999, Chapter 1, Theorem 5).

Employ the double subscript notation as used earlier for the row numbers i
and j (p ≥ i ≥ j ≥ 1) and column numbers k and l (p ≥ k ≥ l ≥ 1) of
the {p(p + 1)/2} × {p(p + 1)/2} matrix D+

p (Λ ⊗ Λ)Dp. These numbers cor-
respond to the subscripts of the elements of e.g., the {p(p + 1)/2} × 1 vector
s = (s11, s21, s22, ..., sp1, ..., , spp)

T.
Consider (Λ⊗Λ)Dp, where the (k, k)th columns of (Λ⊗Λ)Dp (k = 1, . . . , p)

are unchanged from the corresponding ones of Λ⊗Λ while the (k, l)th columns
(p ≥ k > l ≥ 1) of (Λ ⊗Λ)Dp are combined ones as the sum of the (k, l)- and
(l, k)-th columns of Λ⊗Λ such that e.g.,

(Λ⊗Λ)D2 = diag(λ2
1, λ1 λ2, λ2 λ1, λ

2
2)


1 0 0
0 1 0
0 1 0
0 0 1

 =


λ2
1 0 0

0 λ1 λ2 0
0 λ2 λ1 0
0 0 λ2

2


when p = 2. For the second transformation D+

p (Λ ⊗ Λ)Dp, noting that D+
p =

(DT
pDp)

−1DT
p consists of 1’s, 1/2’s and 0’s as D+

2 =

1 0 0 0
0 1/2 1/2 0
0 0 0 1

, we find

that D+
p (Λ ⊗ Λ)Dp is the {p(p + 1)/2} × {p(p + 1)/2} diagonal matrix whose

diagonal elements are λ2
i (i = 1, ..., p) and λiλj (p ≥ i > j ≥ 1) as D+

2 (Λ ⊗
Λ)D2 = diag(λ2

1, λ2 λ1, λ
2
2). Then, we have

|D+
p (A⊗A)Dp| = |D+

p (Λ⊗Λ)Dp|

=

(
p∏

i=1

λ2
i

) ∏
p≥i>j≥1

λiλj =

(
p∏

i=1

λi

)p+1

= |A|p+1.

⊓⊔

Proof 5 of the Wishart density in Theorem 2 The Jacobian of the trans-
formation SΣ → S or equivalently sΣ → s is given by Lemma 7 as |D+

p (Σ
1/2 ⊗

Σ1/2)Dp|+ = |Σ|(p+1)/2. Consequently, J(s → sΣ) becomes |Σ|−(p+1)/2. Then,
the pdf of SΣ is obtained by that of S = Σ−1/2SΣΣ

−1/2 in Theorem 1 and
J(s → sΣ) = |Σ|−(p+1)/2 as

wp(SΣ|Σ, n) =
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
|Σ|−(p+1)/2

=
exp{−tr(Σ−1/2SΣΣ

−1/2)/2}|Σ−1/2SΣΣ
−1/2|(n−p−1)/2|Σ|−(p+1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔
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Remark 4 When Lemma 7 for the Jacobian of SΣ → S is given, Theorem 2
for the Wishart density for general correlated cases was immediately obtained.
Conversely, when the Wishart densities for S and SΣ are available, the Jacobian
is easily given by comparing two densities using S = Σ−1/2SΣΣ

−1/2, which was
employed by Anderson (2003, Theorem 7.3.3).

Appendix B On Khatri (1963)’s self-contained concise
derivation

Khatri (1963) is referred to only by Kshirsagar (1972, p. 59) and, Srivastava and
Khatri (1979, p. 76) to the author’s knowledge. The derivation depends on the
integral πk/2q(k/2)−1/Γ (k/2) =

∫
xTx=q

dx1 · · · dxk, where q is a positive constant

and xi’s with x = (x1, ..., xk)
T independently follow the standard normal. This

integral is typically obtained in a proof of the chi-square distribution with k df
using the surface area Sk−1 = 2πk/2rk−1/Γ (k/2) of the (k − 1)-sphere with the
radius r = q1/2 in the k-dimensional Euclidian space and dr = {1/(2q1/2)}dq:{∏k

i=1 (1/
√
2π) exp(−x2

i /2)|xTx=q

}∫
xTx=q

dx1 · · · dxk

=
1

(2π)
k/2

exp
(
− q

2

) 2πk/2rk−1

Γ (k/2)

dr

dq
=

1

(2π)
k/2

exp
(
− q

2

) 2πk/2q(k−1)/2

Γ (k/2)

1

2q1/2

=
1

2k/2Γ (k/2)
q(k/2)−1 exp

(
− q

2

)
,

yielding ∫
xTx=q

dx1 · · · dxk =
2πk/2q(k−1)/2

Γ (k/2)

1

2q1/2
=

πk/2q(k/2)−1

Γ (k/2)
.

Khatri (1963, p. 53) stated that
∫
xTx=q

dx1 · · · dxk = πk/2qk/2/Γ (k/2) using our

notation, where qk/2 rather than q(k/2)−1 is probably a typo since otherwise the
correct factor |S|(n−p−1)/2 corresponding to q(k/2)−1 when k = n − p + 1 in his
subsequent expression of the Wishart density does not follow. An alternative
short derivation of

∫
xTx=q

dx1 · · · dxk was given by Ogasawara (2022) as follows.
Suppose that the pdf of the chi-square with k df, which is equal to that of the
gamma with the shape parameter k/2 and the scale parameter 2, is obtained
by a different method using e.g., the property of the distribution that the sum
of the independent gamma distributed variables with the same scale parame-
ter becomes the gamma with the shape parameter being the sum of those of
the gammas and the same scale. Note that the beta integral or the moment
generating function can be used for the derivation of this property. Then, we
have{∏k

i=1
(1/

√
2π) exp(−x2

i /2)|xTx=q

}∫
xTx=q

dx1 · · · dxk =
q(k/2)−1 exp(−q/2)

2k/2Γ (k/2)
,
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which gives∫
xTx=q

dx1 · · · dxk =
q(k/2)−1 exp(−q/2)/{2k/2Γ (k/2)}∏k

i=1 (1/
√
2π) exp(−x2

i /2)|xTx=q

=
πk/2q(k/2)−1

Γ (k/2)
.

We find that this derivation without using the area of the (k−1)-sphere is similar
to that by Anderson (2003) mentioned in Remark 4.

Proof 6 of the Wishart density in Theorem 2 (Khatri, 1963) Khatri’s
1.5-page short derivation is due partially to his concise description. Since the ar-
ticle is less well documented with no title, the citations mentioned earlier using
the same incorrect page numbers and several possible typos including the above
one for important points and other minor errors, the corrected proof is pro-
vided with some added explanations. The derivation consists of a p-step variable
transformation with p Jacobians canceling most of them after multiplication.

Define the p×nmatrixXΣ , where each column independently follows Np(0,Σ).

Partition SΣ = XΣX
T
Σ =

Sp−1 sp−1

sTp−1 spp

 =

Xp−1X
T
p−1 Xp−1xp

xT
pX

T
p−1 xT

p xp

, where e.g.,

spp is temporarily used in place of sΣpp for simplicity. Define the n × n matrix

Pn =

Xp−1

Yn−p+1

, where the (n− p+ 1)× n submatrix Yn−p+1 is chosen such

that Yn−p+1X
T
p−1 = O and Yn−p+1Y

T
n−p+1 = In−p+1. Then, we have PnP

T
n =Sp−1 O

O In−p+1

, which gives |Pn|+ = |PnP
T
n |1/2 = |Sp−1|1/2. Consider the

variable transformation from xp to Pnxp with (sTp−1, zTn−p+1)
T = Pnxp, where

zn−p+1 ≡ Yn−p+1xp and J(xp → Pnxp) = |Pn|−1
+ = |Sp−1|−1/2. Since

spp = xT
p xp = (sTp−1, zTn−p+1)P

T−1
p P−1

p (sTp−1, zTn−p+1)
T

= (sTp−1, zTn−p+1)

S−1
p−1 O

O In−p+1

 sp−1

zn−p+1

 = sTp−1S
−1
p−1sp−1 + zTn−p+1zn−p+1,

we have zTn−p+1zn−p+1 = spp − sTp−1S
−1
p−1sp−1 = |SΣ |/|Sp−1|.

Using the multivariate normal density, the joint marginal density of Xp−1,
when a random matrix SΣ at SΣ is a fixed one, becomes

fXp−1(Xp−1) ≡ fXp−1

=
∫∞
−∞ · · ·

∫∞
−∞ (2π)

−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2}

×J{xp → (sTp−1, zTn−p+1)
T}dz1 · · · dzn−p+1

=
∫∞
−∞ (2π)

−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2dzn−p+1,
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where the integrand does not include zn−p+1. Then, the above integral becomes

fXp−1
= (2π)−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2

×
∫
zT
n−p+1zn−p+1= |SΣ |/|Sp−1| dzn−p+1

= (2π)−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2

×
π(n−p+1)/2 (|SΣ |/|Sp−1|){(n−p+1)/2}−1

Γ{(n− p+ 1)/2}

=
π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

(2π)
np/2|Σ|n/2Γ{(n− p+ 1)/2}

1

|Sp−1|(n−p)/2
,

where Khatri’s (p. 54) expression |Sp−1|(n−p−2)/2 using our notation in place
of |Sp−1|(n−p)/2 is incorrect. Define Xp−i{(p− i)×n}, Yn−p+i{(n− p+ i)×n},
Sp−i{(p−i)×(p−i)}, sp−i{(p−i)×1} and zn−p+i{(n−p+i)×1} (i = 2, ..., p−1)
similarly to those when i = 1, respectively. Then, using these matrices and
vectors in similar manners, we have the successive transformations as

fX1
=

π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}
(2π)

np/2|Σ|n/2Γ{(n− p+ 1)/2}
1

|Sp−1|(n−p)/2

×
∏p−1

i=2

∫
zT
n−p+izn−p+i= |Sp−i+1/|Sp−i| dzn−p+i

=
π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

(2π)
np/2|Σ|n/2Γ{(n− p+ 1)/2}

1

|Sp−1|(n−p)/2

×
p−1∏
i=2

π(n−p+i)/2 |Sp−i+1|(n−p+i−2)/2/|Sp−i|{(n−p+i−1)/2

Γ{(n− p+ i)/2}

=
π[(n−p)(p−1)+{p(p−1)/2}−np]/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2
∏p−1

i=1 Γ{(n− p+ i)/2}
|S1|−(n−2)/2

=
|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2πp(p−1)/4
∏p

i=1 Γ{(n− p+ i)/2}
×

(X1X
T
1 )

−(n−2)/2

πn/2/Γ (n/2)
.

Noting that (X1X
T
1 )

−(n−2)/2 = |S1|−(n−2)/2 = s
−(n−2)/2
11 is a fixed quantity, the

last step is the integral with respect to the row vector X1:

wp(SΣ|Σ, n) = fX1

∫
X1XT

1 =s11
dX1 = fX1π

n/2s
(n/2)−1
11 /Γ (n/2)

=
|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2πp(p−1)/4
∏p

i=1 Γ{(n− p+ i)/2}
.

⊓⊔

Appendix C The exchanged Bartlett decomposition

The Bartlett decomposition S = TTT has been used in this paper as well as
in literatures. Let S = UUT, where U( ̸= TT) is the upper-triangular matrix
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whose non-zero elements are random variables. Note that U can be obtained
by rotating T as U = TV using an orthonormal matrix V. Define the upper-
triangular matrix C satisfying Σ = CCT with cii > 0 (i = 1, ..., p), where C is
obtained by C = BV∗ and V∗ is another orthonormal matrix. Recall that the
Cholesky decomposition Σ = BBT was used earlier. The form Σ = CCT is also
called the exchanged (reversed) Cholesky or upper-lower (UL) decomposition in
this paper.

Remark 5 Consider the distribution of uij(i = 1, ..., p; j = i, ..., p), which are
assumed to be mutually independent. As in the case of the usual Bartlett, Lemma
1 shows that when uii is chi-distributed with n − p + i df (i = 1, ..., p) and uij

is standard normal (i = 1, ..., p; j = i+ 1, ..., p), the distribution of S = XXT(=
TTT) is the same as that of UUT. Note that tii is chi-distributed with n− i+1
df rather than n− p+ i. The joint pdf of U denoted by fp(U) becomes

fp(U) =

[
p∏

i=1

un−p+i−1
ii exp(−u2

ii/2)

2{(n−p+i)/2}−1Γ{(n− p+ i)/2}

]

× 1

(
√
2π)

(p2−p)/2

{ ∏
1≤i<j≤p

exp
(
−u2

ij/2
)}

=

{
p∏

i=1

un−p+i−1
ii exp(−u2

ii/2)

}{ ∏
1≤i<j≤p

exp
(
−u2

ij/2
)}

2
(n−p)p

2 +
p(p+1)

4 −p × 2
p(p−1)

4 π
p(p−1)

4

p∏
i=1

Γ{(n− p+ i)/2}

=

(
p∏

i=1

un−p+i−1
ii

)
exp{−tr(UUT)/2}

2
np
2 −pΓp(n/2)

.

Proof 7 of the Wishart density in Theorem 2 Consider the one-step trans-
formation from U to SΣ = CXXTCT = CSCT = CUUTCT, where it is found

thatC(X)·j
i.i.d.∼ Np(0,Σ) (j = 1, ..., n). Redefine the vector of the non-duplicated

elements in SΣ as sΣ = (sΣ11, ..., sΣ1p, sΣ22, ..., sΣ2p, ..., sΣpp)
T whose elements

are lexicographically ordered Similarly, define the {p(p+1)/2}×1 vectors c and
u using the corresponding elements of C and U, respectively.

The proof is similar to Proof 1 of Lemma 5. Since C, U and CU are upper-
triangular, the Jacobian matrix ∂sΣ/∂u

T = {∂sΣij/∂ukl} (1 ≤ i ≤ j ≤ p; 1 ≤
k ≤ l ≤ p) becomes upper-triangular, whose diagonal elements are

∂sΣij

∂uij
= {C(EijU

T +UEji)C
T}ij = (CEijU

TCT)ij = ciiujjcjj (1 ≤ i < j ≤ p)

and
∂sΣii

∂uii
= {C(EiiU

T +UEii)C
T}ii = 2c2iiuii (i = 1, ..., p).
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Since the determinant of the Jacobian matrix or J(SΣ → U) becomes

∏p
i=1

∏p
j=i

∂sΣij

∂uij
=
(∏p

i=1

∏p
j=i+1

∂sΣij

∂uij

)∏p
i=1

∂sΣii

∂uii
= 2p

∏p
i=1

∏p
j=i ciiujjcjj

= 2p
(∏p

i=1 c
p−i+1
ii

)∏p
j=1 u

j
jjc

j
jj = 2p

∏p
i=1 c

p+1
ii ui

ii = 2p|C|p+1
∏p

i=1 u
i
ii

= 2p|Σ|(p+1)/2
∏p

i=1 u
i
ii,

J(U → SΣ) is given by the reciprocal of the above quantity.
The Wishart density is given by fp(U) and J(U → SΣ):

wp(SΣ|Σ, n) = fp(U)J(U → SΣ)

=

exp{−tr(UUT)/2}
p∏

i=1

un−p+i−1
ii

2(np/2)−pΓp(n/2)

|Σ|−(p+1)/2

2p
∏p

i=1 u
i
ii

=

exp{−tr(UUT)/2}|Σ|−(p+1)/2
p∏

i=1

un−p−1
ii

2np/2Γp(n/2)

=
exp{−tr(C−1SΣC

T−1)/2}|Σ|−(p+1)/2|C−1SΣC
T−1|(n−p−1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)

as expected. ⊓⊔

Remark 6 Though U ̸= TT as noted earlier, U is obtained by reversing the
row indexes of T followed by the similar reversal of the column ones. When p =
3, this transformation proceeds as

T =

 t11 0 0
t21 t22 0
t31 t32 t33

→

 t31 t32 t33
t21 t22 0
t11 0 0

→

 t33 t32 t31
0 t22 t21
0 0 t11

 ≡

u11 u12 u13

0 u22 u23

0 0 u33

 = U.

The above example indicates other decompositions S = T∗T∗T = U∗U∗T with
the unchanged distribution of S = XXT, where T∗(U∗) is a lower (upper)-
triangular matrix defined with the non-zero elements on and below (above) the
minor diagonals. Note that T∗ and U∗ are obtained by T and U by revers-

ing the row or column indexes. When p = 3, T∗ and U∗ are

0 0 t11
0 t22 t21
t33 t32 t31

 ≡0 0 t∗33
0 t∗22 t∗23
t∗31 t

∗
32 t∗33

 and

u13 u12 u11

u23 u22 0
u33 0 0

 ≡

u∗
11 u∗

12 u∗
13

u∗
21 u∗

22 0
u∗
31 0 0

, respectively.
Actually, we have infinitely many transformations with the unchanged distri-

bution of S, including the above ones, using various orthonormal p× p matrices
denoted by V’s since each column of VX independently follows Np(0, Ip) (see
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e.g., Anderson, 2003, Theorem 3.3.1). In other words, the distributions of VX
and X are the same. Then, S = XXT can be replaced by S = VXXTVT. Note
that one of the decomposed matrices e.g., T, T∗, U and U∗ are given by other
ones using V as T = VU∗. This indeterminacy of transformation is similar to
the rotational indeterminacy in orthogonal rotation in factor analysis and canon-
ical correlation analysis or more generally transformations in structural equation
modeling (Ogasawara, 2007; Schuberth, 2021; Yu, Schuberth, & Henseler, 2023).
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