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Abstract. Recent work has demonstrated how to calculate conditional
mediated effects for mediation models with zero-inflated count outcomes
in a non-causal framework (O’Rourke & Vazquez, 2019); however, those
formulas do not distinguish between logistic and count portions of the
data distribution when calculating mediated effects separately for zeroes
and counts. When calculating conditional mediated effects for the counts
in a zero-inflated count outcome Y, the b path should use the partial
derivative of the log-linear regression equation for X and M predicting
Y. When calculating conditional mediated effects for the zeroes, the b
path should use the partial derivative of the logistic regression equation
for X and M predicting Y instead of the log-linear equation. This paper
presents adjustments to the analytical formulas of conditional mediated
effects for mediation with zero-inflated count outcomes when zeroes and
counts are differentially predicted. Using a Monte Carlo simulation, we
also empirically show that these adjustments produce different results
than when the distributional form of zeroes is ignored.
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1 Introduction

Many theories in the social and behavioral sciences specify indirect mechanisms
by which predictors influence outcomes. These mechanisms, also known as medi-
ators, are incorporated into such theories through the use of mediation models.
Mediation models are widely applied to theories of human behavior and test the
indirect influence of a predictor variable (X) on an outcome (Y) via a mediator
(M). Much methodological research on the mediation model has focused on mod-
els where the endogenous variables M and Y are continuously distributed and
assume linear associations, and several extensions have been proposed as well for
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models where M and Y are categorical (i.e., binary or count) variables that are
modeled with logistic or other exponential family distributions (Coxe & MacK-
innon, 2010; Gilula, 2012; Iacobucci, 2012; Imai, Keele, & Tingley, 2010; Mack-
innon, 2008; MacKinnon & Cox, 2012; Mackinnon & Dwyer, 1993; Preacher,
2015; Valeri & VanderWeele, 2013; VanderWeele, Zhang, & Lim, 2016). How-
ever, these methods are not appropriate for use where categorical endogenous
variables contain zero-inflation.

Zero-inflation occurs when the proportion of observations with a value of
zero on a particular variable is larger than what is expected from the variable’s
typical zero-uninflated distribution (for example, Poisson or negative binomial if
a variable is a measure of counts). Zero-inflated (ZI) count variables are common
in the social sciences. For example, consider a study of externalizing behaviors in
middle school; for a given count variable measuring bullying as “number of times
child was a bully in the past month”, many students would have a score of zero
because most children do not engage in bullying behaviors. Another example
from health intervention research would be measuring drinking outcomes in a
study designed to help adults with alcohol use disorder quit drinking. For a
drinking count variable measured as “number of drinks consumed in the past
week”, many participants would have a score of zero because they are actively
trying to refrain from drinking.

The traditional methods cited above for categorical mediation analysis are
not equipped to handle excess zeroes in the outcome, and using these models to
fit data with zero-inflated distributions may result in biased estimates. A techni-
cal body of literature does exist for causal inference methods to assess mediation
with categorical variables that contain zero-inflation (Cheng et al., 2018; Wang
& Albert, 2012) but this literature is not as accessible to applied researchers due
to the complexity of its application. The causal literature differs from the gen-
eral linear model (GLM)-based mediation literature in that it requires a working
knowledge of causal inference frameworks that involve formulas for probability,
and causal methods often require additional sensitivity analyses for a formal test
of mediation. Furthermore, the effects involved in mediation from the causal in-
ference literature are defined differently from GLM mediation effects, requiring
the calculation and interpretation of multiple effects to determine mediation even
in simple cases.

Recent work on mediation for ZI counts has applied Geldhof, Anthony, Selig,
and Mendez-Luck (2018)’s method of calculating mediation effects for count data
that are conditional upon values of X to mediation models with zero-inflated
count outcomes using a modeling framework that does not come from causal
inference (O’Rourke & Vazquez, 2019). In this method, mediation effects are
calculated separately for zeroes and counts when Y is zero-inflated. However,
that method does not account for the unique distributional nature of the ze-
roes, as zeroes are predicted using the binomial logistic model while counts are
fitted using the log-linear model. This article illustrates a revised formula for
calculating the mediation effect for the zeroes when zeroes and counts are dif-
ferentially predicted. We also demonstrate via Monte Carlo simulation that the
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revised formula produces different results than the original formula that does
not distinguish between zeroes and counts in a zero-inflated outcome.

1.1 Mediation

The simplest single-mediator model is described by two OLS regression equations
using notation from Mackinnon (2008).

Y = i1 + bM + c′X + e1 (1)

M = i2 + aX + e2 (2)

In these equations, X is the predictor, M is the mediator, and Y is the outcome.
From Equation 1, the influence of M on Y is known as the b parameter, and the
influence of X on Y controlling for M is known as the c′ parameter (also known
as the “direct effect”). From Equation 2, the influence of X on M is known as
the a parameter. The parameters i1 and i2 are model intercepts and e1 and e2
are model errors. The mediated effect that is the focus of this article is speci-
fied as the product of the a and b parameters (ab), commonly referred to in the
mediation literature (and hereafter referred to) as the “mediated effect”. Other
specifications of the mediated effect and their equalities with respect to count
outcomes are described elsewhere (Coxe & MacKinnon, 2010; MacKinnon, Lock-
wood, Brown, Wang, & Hoffman, 2007; Mackinnon, 2008; O’Rourke & Vazquez,
2019).

Two common approaches to significance testing in mediation are the causal
steps (Baron & Kenny, 1986; Judd & Kenny, 1981; MacKinnon, Lockwood, Hoff-
man, West, & Sheets, 2002) and product of coefficients (Sobel, 1982) approaches.
The recommended test from the causal steps approach is the Joint Significance
test, which has the best balance of power and Type I error (MacKinnon et al.,
2002). The Joint Significance test uses individual z− or t−tests of estimates of
the respective a and b parameters to assess significance: if both tests are sta-
tistically significant, we can conclude that mediation is present. The product of
coefficients approach was developed using a derived asymptotic standard error
(Sobel, 1982) to compute a z−test for the mediated effect ab. More recently,
it has become common to assess significance of the mediated effect by using
bootstrapping to create asymmetric confidence intervals for ab (MacKinnon,
Lockwood, & Williams, 2004). Bootstrapping is used because ab is a product of
two variables and so it is not normally distributed (Aroian, 1947; Craig, 1936),
meaning traditional formulas that assume a normal distribution of z produce
biased confidence intervals for ab.

Mediation analysis is conducted with count outcomes in a similar manner
to the approach described above. The difference is that instead of a normal
distribution of continuous Y (the assumption under linear regression), the count
outcome Y is assumed to have a Poisson distribution, negative binomial (NB)
distribution if overdispersed, or beta-binomial distribution if overdispersed with
a restricted upper bound. If Y is a count outcome, Poisson, NB, or beta-binomial
regression can be used to fit the model specified in Equation 1, and (assuming
continuous M) Equation 2 can be assessed as usual with linear regression.
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1.2 Zero-Inflated Counts

Each of the models described for count outcomes has a ZI counterpart: the ZI
Poisson (ZIP), ZI negative binominal (ZINB), or ZI beta-binomial (ZIBB) mod-
els. These are known as zero-inflated generalized linear models (ZI-GZLMs).
Hurdle models, similar to ZI-GZLMs, can also be used to model ZI count out-
comes. However, zeroes are treated differently in hurdle models compared with
ZI models. ZI-GZLMs assume that there are two kinds of zeroes: “structural”
(i.e., excess) zeroes that will never take on another value, and “sampling” zeroes
that have some potential to be non-zero. (For the remainder of this paper, when
we refer to the zeroes in Y, we are referring to the structural zeroes that are
modeled separately from the counts and sampling zeroes.) Hurdle models do not
make the structural vs. sampling zero distinction, but instead assume that all
zeroes are generated from the same process. In other words, hurdle models treat
all zeroes as structural excess zeroes that are the only source of overdispersion
in the data, and these models do not include an additional probability mass
which distinguishes structural zeroes from counts and sampling zeroes in other
ZI-GZLMs.

In ZI-GZLMs, the probability of an occurrence of an excess zero is modeled
as follows.

z ∼ Bernoulli(π) (3)

Where π is the probability of observing excess zeroes. Assuming a ZI Poisson
distribution (the simplest in terms of parameterization because mean and vari-
ance are assumed to be equal), and where λ is the mean count from the Poisson
distribution, the probability mass function of a ZIP model is as follows.

P (Y = 0) = π + (1− π)e−λ (4)

P (Y ̸= 0) = (1− π)(
λY

Y !
)e−λ (5)

1.3 Mediation for Zero-Inflated Counts

One recent non-causal method of assessing mediation for count outcomes sug-
gested computing multiple conditional mediated effects for chosen values of the
predictor X (Geldhof et al., 2018), representing the nonlinear relation between
X and Y as several conditionally linear relations that differ across values of
X (Stolzenberg, 1980). This method was extended to mediation models for ZI
count outcomes (O’Rourke & Vazquez, 2019) by calculating two separate sets
of conditional mediated effects: one for the zeroes and one for the counts. For
a model with any measurement level of X, continuous M, and ZI count Y, b
paths were calculated separately for structural zeroes and counts using the first
partial derivative with respect to M of the loglinear mediation regression equa-
tion shown in Equation 1. This loglinear mediation regression equation is given
below.

Ŷ = ei1+bM+c′X (6)
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The first partial derivative of Equation 6 being the following.

bLL =
∂Ŷ

∂M
= b(ei1+bM+c′X) (7)

The formula in Equation 7 for bLL (b path from the loglinear equation) was
used in conjunction with the a path from Equation 2 to calculate conditional
mediated effects as follows.

a ∗ bLL (8)

Two sets of k conditional mediated effects were calculated separately for zeroes
and counts using the formula in Equation 8, with k being equal to the number
of chosen values of X (this number would typically be k = 2 for binary X, k = 3
for continuous X at low, medium. and high values) and M fixed at its mean.
Equation 8 was used to calculate sets of conditional mediated effects for both
ZIP and ZINB models, as both Poisson and negative binomial models utilize log
link functions.

1.4 Distributional Form for Zeroes

The method described above produced the desired sets of conditional mediated
effects, however, using the partial derivative formula bLL for both the structural
zeroes and the counts disregarded the form of the assumed distribution for the
structural zeroes. Specifically, the structural zeroes are modeled with a logistic
distribution. Therefore, the logistic regression for predicting structural zeroes
has a logit link function of

ln(
π

1− π
) (9)

The mean function corresponding to this logit link function is as follows.

Ŷ =
ei1+bM+c′X

ei1+bM+c′X + 1
(10)

Taking the first partial derivative of Equation 10 with respect to M gives us bLG

(the b path from the logistic mediation regression equation).

bLG =
∂Ŷ

∂M
= b

ei1+bM+c′X

(ei1+bM+c′X + 1)2
(11)

This would result in a conditional mediated effect for the zeroes of

a ∗ bLG (12)

Both of the first partial derivative formulas for b presented here are known
quantities for estimating a mediation path with either a count or binary non-ZI
endogenous variable (Geldhof et al., 2018; Li, Schneider, & Bennett, 2007), but
they have not been used in tandem to handle two-part mediation models for ZI
endogenous variables.
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The current paper aims to utilize both of these formulas for the b path, and
to demonstrate that using the b path from the logit link function bLG when
calculating mediated effects for the zeroes results in different estimates of the
conditional mediated effects than using the b path from the log link function
bLL for both zeroes and counts. In the next section, we describe a Monte Carlo
simulation study that demonstrates that the formulas produce different esti-
mates of the conditional mediated effects for the zeroes (hereafter referred to as
“conditional mediated effects”).

2 Simulation Study

2.1 Simulation Conditions

We conducted a Monte Carlo simulation in R 4.2.3 in conjunction with Mplus
version 8.10 (Muthén & Muthén, 2017). In this simulation study, we manipu-
lated two factors: Sample size (N = 100, 250, 500, 750, and 1500) and population
distribution of the counts in the outcome (Poisson vs. negative binomial). Simu-
lation manipulations resulted in 2 x 5 = 10 conditions. Sample sizes were chosen
to represent a range from small to large samples based on sample sizes commonly
observed in the behavioral sciences. Manipulation of sample size allowed for us
to examine possible effects of sample size on results by examining whether the
difference in estimates of the conditional mediated effect grew smaller as sample
size increased. The Poisson and negative binomial distributions for counts were
chosen as the two distributions that are most commonly observed and practically
applied with ZI-GzLMs. Differences in estimates of the conditional mediated ef-
fects were expected to be stable across the two levels of distribution of the count
outcomes.

Population parameter values were not varied over conditions, and the param-
eter values used in each simulation model are given in Table 1.

Table 1. Simulation Study Parameter Values

Parameter Population Value

a 0.59
b (Zeroes) -0.14
b (Counts) 0.14
c′ (Zeroes) -0.01
c′ (Counts) 0.01
µM 0
σM 1
µY (Zeroes) 0
µY (Counts) 3
ϕ* 1

*for ZINB models only
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Parameter value magnitudes were chosen to reflect large (0.59) effect size for
a and small (0.14) effect sizes for b as established in prior simulation research
on single mediator models (Fritz & MacKinnon, 2007; MacKinnon et al., 2002;
O’Rourke & MacKinnon, 2015), and parameter value signs were chosen such
that conditional mediated effects would differ in sign for the zeroes and counts,
as discussed below. The c’ path was assigned a very small effect size in accor-
dance with a model that would approach full mediation, a condition where c’ =
0 (Mackinnon, 2008), but still would factor into calculations of conditional me-
diated effects. Table 2 shows population calculations of the conditional mediated
effects across values of X based on the parameter values given in Table 1, using
both the log link and logit link b paths.

Table 2. Calculation of Population Conditional Mediated Effects for Log Link and
Logit Link Formulas

Log Link Function b path

X = 0 X = 1

General Formula a ∗ b(ei1+bM+c′X) a ∗ b(ei1+bM+c′X)

ei1+bM+c′X e0+(−0.14)(0)+(−0.01)(0) = 1 e0+(−0.14)(0)+(−0.01)(1) = 1.01

b(ei1+bM+c′X) −0.14 ∗ 1 = −0.14 −0.14 ∗ 1.01 = −0.141

a ∗ b(ei1+bM+c′X) 0.59 ∗ −0.14 = −0.0826 0.59 ∗ −0.141 = −0.0834
Conditional Mediated Effect -0.0826 -0.0834

Logit Link Function b path

X = 0 X = 1

General Formula a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2
a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2

ei1+bM+c′X e0+(−0.14)(0)+(−0.01)(0) = 1 e0+(−0.14)(0)+(−0.01)(1) = 1.01
ei1+bM+c′X

(ei1+bM+c′X+1)2
1

(1+1)2
= 0.25 1.01

(1.01+1.01)2
= 0.2499

b ei1+bM+c′X

(ei1+bM+c′X+1)2
−0.14 ∗ 0.25 = −0.035 −0.14 ∗ 0.2499 = −0.0349

a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2
0.59 ∗ −0.035 = −0.0207 0.59 ∗ −0.0349 = −0.0206

Conditional Mediated Effect -0.0207 -0.0206

2.2 Data Generation and Data Analysis

The R MplusAutomation package (Hallquist & Wiley, 2018) was used to simu-
late data. For each of the conditions, 500 replications with complete data were
simulated. The paths related to mediation (b and c’ ) were specified to be equal
in magnitude but opposite in sign for the zeroes and counts in Y in accordance
with commonly observed patterns of results in applied ZI-GZLMs. Binary X
was simulated with a Bernoulli distribution with X ∈ 0, 1, and M was simulated
with a continuous Gaussian distribution M ∼ N(0, 1). The counts in Y were
simulated to have a mean of 3 and the zeroes in Y, a mean of 0. Replications for
Y with a ZIP distribution did not include a dispersion parameter, and when Y
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was simulated to have a ZINB distribution, the dispersion parameter was ϕ = 1
as specified by the variance of Y in the Mplus MODEL command.

After all datasets were generated, the R MplusAutomation package was then
used to create and run Mplus scripts analyzing all replications within each con-
dition and then import results into R. This process was repeated for each of
the 10 conditions. For each replication, a ZI-GZLM was fitted to the data using
Maximum Likelihood estimation. Conditional mediated effects were calculated
at X = 0 and X = 1 using the Mplus “Model Constraint” command. For the
zeroes in Y, sets of conditional mediated effects were calculated using both the
original method with bLL for the b path and the revised method with bLG for
the b path. This resulted in four conditional mediated effects for comparison in
further analyses. Bootstrapped confidence intervals were also generated to assess
significance of each conditional mediated effect. Sample Mplus and R scripts can
be found on the GitHub project at https://github.com/horourke/MZI2.

2.3 Simulation Study Outcomes and Outcome Analyses

We assessed differences in results for the conditional mediated effect estimates by
examining relative parameter difference (i.e., relative bias for the abLG estimate).
The relative difference was calculated as the difference between the population

value of abLG and the respective estimates âbLL and âbLG, over the population
value of abLG.

abLG − âbLL

abLG
(13)

abLG − âbLG

abLG
(14)

Efficiency was calculated using the standard deviations of the raw estimates
of the conditional mediated effects averaged across each condition. We also ex-
amined statistical power for each condition, calculated as the proportion of repli-
cations for which the p value associated with each conditional mediated effect
was less than .05 and the bootstrapped confidence intervals of each conditional
mediated effect did not include zero.

In preparation for analysis of the relative difference outcome, data were re-
structured to long format such that use of the b formula (bLL vs. bLG) could
be coded as an additional binary predictor of a given outcome. Analyses con-
ducted in R examined the impact of the condition on the dependent variable
of interest at the replication level, with one replication considered as one obser-
vation. Analysis of variance (ANOVA) was used to investigate the differences
in study conditions for relative parameter differences. Analyses were conducted
separately for each outcome at X = 0 and X = 1. Factors representing study con-
ditions in each ANOVA were sample size, population distribution of the counts
in the outcome, and method of calculating the b path. In addition to main ef-
fects, all possible two- and three-way interactions were included as predictors
in each ANOVA. Only ANOVA estimates that were significant at p < .05 with

https://github.com/horourke/MZI2
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corresponding partial η2 values of .02 (small amount of variance explained) or
higher were considered meaningfully significant for the interpretation of results.

3 Results

3.1 Relative Difference

The average relative difference over replications for each condition is shown in
Table 3. Results from the ANOVAs for both X = 0 and X = 1 indicated that only
the method of calculating the b path (bLG vs. bLL) was a meaningfully significant
predictor of relative difference. Method of calculating the b path explained 20.6%
and 15.1% of the variability in the outcome respectively, which were large effect
sizes (X = 0: p < .001, partial η2 = .206; X = 1: p < .001, partial η2 = .151).

Table 3. Relative Difference of Conditional Mediated Effects Collapsed Across Con-
ditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 2.917 -0.052 4.620 -0.101
250 3.226 0.017 3.857 -0.005
500 3.089 0.011 3.330 0.000
750 3.062 0.007 3.176 0.000
1500 3.065 0.009 3.074 0.006

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 3.105 -0.001 4.599 -0.049
250 3.243 0.029 3.765 0.011
500 3.089 0.012 3.282 0.003
750 3.076 0.012 3.169 0.007
1500 3.066 0.012 3.073 0.010

Examining Table 3 for X = 0, the average relative difference was around 3
or above for all conditions for abLL estimates. When using the abLG formula
to calculate conditional mediated effects, the average relative difference only
reached an absolute value above .05 for the ZINB model at the smallest sample
size, and the average relative difference was otherwise extremely small for all
conditions using the abLG formula.

For X = 1, results from Table 3 indicate that the average relative difference of
the estimates of abLL ranged from [3.073, 4.620] for all conditions, with average
relative difference decreasing as sample size increased1. As with calculations for

1 Sample size was a statistically significant predictor of relative difference for the
ANOVA where X = 1, however the partial η2 < .02.
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X = 0, the average relative difference of the conditional mediated effects using
the abLG formula only reached an absolute value above .05 for the condition
fitting the ZINB model at the smallest sample size, and the average relative
difference was otherwise not problematic (i.e., below an absolute value of .05)
for all conditions using the abLG formula.

3.2 Efficiency

For all values of X and regardless of sample size and distribution of outcomes,
estimates of abLG had smaller variability (i.e., were more efficient) than for esti-
mates of abLL, as shown by the averaged standard deviations of the estimates in
Table 4. The difference in efficiency between the two sets of conditional mediated
effect estimates decreased monotonically as sample size increased such that the
conditional mediated effect estimates calculated with abLL were least efficient at
the smallest sample sizes.

Table 4. Efficiency of Conditional Mediated Effects Collapsed Across Conditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 0.152 0.036 0.242 0.033
250 0.090 0.021 0.119 0.021
500 0.061 0.015 0.073 0.015
750 0.047 0.012 0.053 0.011
1500 0.034 0.008 0.037 0.008

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 0.147 0.034 0.221 0.032
250 0.086 0.021 0.109 0.020
500 0.059 0.014 0.069 0.014
750 0.045 0.011 0.050 0.011
1500 0.033 0.008 0.035 0.008

3.3 Power

Power values by condition can be found in Table 5. For conditional mediated
effects where X = 0, there were negligible differences in power between the
methods of calculating the b path. For conditional mediated effects where X =
1, power was slightly larger for estimates of abLG than for estimates of abLL.
Power increased as the sample size increased for all conditions, and there were
negligible differences in power between the ZIP and ZINB conditions. Power
never reached a level of .8 (Cohen, 1988) in any of the conditions, likely due to
the small magnitude of the b paths.
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Table 5. Power of Conditional Mediated Effects Collapsed Across Conditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 0.000 0.008 0.000 0.018
250 0.068 0.106 0.000 0.118
500 0.214 0.250 0.050 0.258
750 0.400 0.418 0.222 0.420
1500 0.692 0.700 0.612 0.702

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 0.000 0.020 0.000 0.032
250 0.090 0.120 0.000 0.134
500 0.274 0.298 0.084 0.308
750 0.432 0.442 0.286 0.446
1500 0.728 0.730 0.670 0.732

4 Discussion

We used a Monte Carlo simulation to demonstrate the differences in results using
log-linear vs. logistic regression equations for zeroes when calculating conditional
mediated effects in a mediation model where Y is a ZI count. The conditional
mediated effects for the zeroes in Y were calculated using two different b path
formulas, bLL and bLG, where bLG used the distributional form of the zeroes.
Comparing estimates of abLL and abLG, we found that the conditional mediated
effects differed significantly in magnitude at both values of X, for both ZINB
and ZIP models and across all sample sizes examined. Specifically, results for
relative difference showed that estimates of abLL were significantly different from
estimates of abLG, and that this difference held across sample sizes and outcome
distributions. Conditional mediated effects for zeroes calculated using the bLG

formula were also more efficient, and when X was non-zero, had slightly higher
power. These results indicate that the choice of b path formula has a meaningful
impact on the interpretation of results for the conditional mediated effects and
should be considered when using this method to conduct mediation analysis with
ZI count variables.

For conditional mediated effects calculated at non-zero X, power was slightly
higher for abLG than for abLL. This means that when using the different for-
mulas for b, we may make different conclusions about the significance of the
conditional mediated effects when X is non-zero (for example, we could observe
that the conditional mediated effect abLL[X=1] was not significant and abLG[X=1]

was significant), which further highlights the importance of considering the dis-
tributional form of the zeroes when conducting mediation analysis where ZI
counts are present in the data.
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In this paper, we focused specifically on the mediation model that contained
Y as a ZI count, meaning we discussed the issue of separate distributions of
zeroes and counts with respect to only the b path (from M to Y) in mediation.
However, this issue is applicable as well to models with a ZI count mediator, in
which case we would calculate an a path using a log-linear regression equation
for counts in M and an a path using a logistic regression equation for zeroes in
M. Furthermore, it would be possible to use this method in a model where both
M and Y are ZI counts. Under such circumstances, the a path for the counts
in M could be calculated using the first partial derivative with respect to X of
the log-linear transformation of Equation 2, and the b path for the counts in Y
could be calculated using Equation 7. The a and b paths for the zeroes in M
and Y would then be calculated using the first partial derivatives of the logit
transformations of their respective regression equations (Equation 11 for the b
path).

The utilization of these formulas can also be applied to future methodolog-
ical work on mediation analysis with ZI count variables. The method described
in this paper that is an extension of O’Rourke and Vazquez (2019) can be ex-
tended to more complex models that are frequently used by applied researchers,
such as models that incorporate time (i.e., longitudinal models). This process of
mediation can be expanded to ZI-GZLMs for repeated measures nested within
individuals that are fitted in the multilevel modeling framework.

It is important for researchers to have accessible methods of assessing me-
diation in complex nonlinear models. This paper advances accessible methodol-
ogy in the pursuit of best practices for investigating mediators when data are
nonnormal. The simulation results presented here highlight the complexity of
calculating mediated effects in models where ZI counts are present.
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