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Abstract. Meta-analysis of proportions has been widely adopted across
various scientific disciplines as a means to estimate the prevalence of phe-
nomena of interest. However, there is a lack of comprehensive tutorials
demonstrating the proper execution of such analyses using the R pro-
gramming language. The objective of this study is to bridge this gap
and provide an extensive guide to conducting a meta-analysis of pro-
portions using R. Furthermore, we offer a thorough critical review of
the methods and tests involved in conducting a meta-analysis of pro-
portions, highlighting several common practices that may yield biased
estimations and misleading inferences. We illustrate the meta-analytic
process in five stages: (1) preparation of the R environment; (2) compu-
tation of effect sizes; (3) quantification of heterogeneity; (4) visualization
of heterogeneity with the forest plot and the Baujat plot; and (5) expla-
nation of heterogeneity with moderator analyses. In the last section of
the tutorial, we address the misconception of assessing publication bias
in the context of meta-analysis of proportions. The provided code offers
readers three options to transform proportional data (e.g., the double
arcsine method). The tutorial presentation is conceptually oriented and
formula usage is minimal. We will use a published meta-analysis of pro-
portions as an example to illustrate the implementation of the R code
and the interpretation of the results.

Keywords: Meta-analysis of proportions · Heterogeneity · Meta-regression
· Double arcsine transformation · Baujat plot

1 Introduction

A meta-analysis is a statistical approach that synthesizes quantitative findings
from multiple studies investigating the same research topic. Its purpose is to
provide a numerical summary of a particular research area, aiming to inform
future work in that area. Meta-analyses of proportions are commonly conducted
across diverse scientific fields, such as medicine (e.g., Gillen, Schuster, Meyer
Zum Bschenfelde, Friess, & Kleeff, 2010), clinical psychology (e.g., Fusar-Poli et
al., 2015), epidemiology (e.g., Wu, Long, Lin, & Liu, 2016), and public health
(e.g., Keithlin, Sargeant, Thomas, & Fazil, 2014), etc. The outcomes derived
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from these studies are often used for decision models (Hunter et al., 2014).
Each individual study included in a meta-analysis of proportions contributes a
specific number of “successes” and a corresponding total sample size (Hamza, van
Houwelingen, & Stijnen, 2008). While the majority of meta-analyses primarily
focus on effect-size metrics that measure a relationship between a treatment
group and a control group–such as standardized mean difference and odds ratio–
the effect-size metric in meta-analyses of proportions is an estimate of the overall
proportion related to a particular condition or event across all included studies
(Barendregt, Doi, Lee, Norman, & Vos, 2013). For instance, a meta-analysis
can be conducted to provide an overall prevalence estimate of homeless veterans
affected by both post-traumatic stress disorder and substance use disorder.

The purpose of this tutorial is to provide an introduction to conducting a
meta-analysis of proportions using the R software (R Core Team, 2022). We dis-
cuss two distinct benefits of choosing R as your primary meta-analysis tool. First,
R is freely available open-source software that offers a comprehensive collection
of R packages, which are extensions developed for specialized applications, in-
cluding meta-analysis. This remarkable feature provides researchers with diverse
possibilities and flexibility when it comes to data manipulation and analysis. Two
widely used R packages for meta-analysis are metafor (Viechtbauer, 2010) and
meta (Schwarzer, Carpenter, & Rücker, 2015). Second, R offers more convenient
options for transforming proportional data than other statistical software. The
two commonly adopted data transformation methods are the logit and the dou-
ble arcsine transformations (though not transforming data is also appropriate
under certain circumstances). Both the metafor and meta packages are capable
of performing these transformations. In contrast, other meta-analysis software
such as Comprehensive Meta-Analysis (CMA) (Borenstein, Hedges, Higgins, &
Rothstein, 2005) and MedCalc (Schoonjans, 2017) can only perform one of these
transformations. Additionally, while CMA and MedCalc automatically trans-
form data, R allows meta-analysts to make a decision on whether to apply data
transformation.

To the best of our knowledge, this is the first tutorial that illustrates the
implementation of such analyses. The tutorial offers an overview of the funda-
mental statistical concepts related to meta-analysis of proportions and provides
hands-on code examples to guide readers through the process in R.1 We use a
dataset from a published meta-analytic study to detail the steps involved. More-
over, we’ve rigorously tested the code in R and validated it using CMA, ensuring
identical results from both software.

Last but not least, this tutorial will explain why common publication bias
assessment procedures aren’t recommended for meta-analyses of proportions.

1 Throughout this tutorial, we’ll present generic code templates for all transformation
methods. However, the main text of this tutorial will focus on code examples for the
logit transformation, given the similarity in coding across all methods. For R code
related to other transformation methods and their associated datasets, please refer
to the supplementary files.
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2 Preparation of the R environment

2.1 R and RStudio

The first step is to download R. The base R program can be downloaded for
free from the Comprehensive R Archive Network (https://cran.r-project.org/).
R provides a basic graphical user interface (GUI), but we recommend that
readers use a more productive code editor that interfaces with R, known as
RStudio (RStudio Team, 2022). This is a development environment built to
make using R as effective and efficient as possible, which is freely available at
https://www.rstudio.com/. It adds much more functionality above and beyond
R’s bare-bones GUI.

Once RStudio is successfully installed on your computer and opened, the first
step is to create a new R Script. To do this, navigate to the “File” menu. Click on
“File”, and in the dropdown menu, select “New File”, then choose “R Script”.
A new tab will open in the top-left pane of RStudio, known as the source editor.
This space is where you’ll write your R code.

2.2 Setting up the working directory

To ensure proper organization of your R files and data, it’s crucial to establish
a working directory for the current R session. A working directory serves as a
centralized location where you can store all your work, including the R code
you’ve written and data files (e.g., .csv files) you wish to import into R for
analysis. To set up a working directory, start by creating a folder named “data”
in your preferred location on the computer, such as the D drive. After doing so,
enter the following code into the source editor:

setwd ("D:/data")

3 Overview of the example data set

3.1 Illustrative example: Prevalence and epidemiological
characteristics of congenital cataract (Wu et al., 2016)

The data set we will use for this tutorial is extracted from a published meta-
analytic study conducted by Wu et al. (2016). They estimated the prevalence of
congenital cataracts (CC) and their main epidemiological traits. CC refers to the
opacity of the lens detected at birth or at an early stage of childhood. It is the
primary cause of treatable childhood blindness worldwide. Current studies have
not determined the etiology of this condition. The few large-scale epidemiological
studies on CC also have limitations: they involve specific regions, limited popu-
lations, and partial epidemiological variables. Wu et al. (2016) aimed to explore
its etiology and estimate its population-based prevalence and major epidemio-
logical characteristics, morphology, associated comorbidities and etiology. The
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original dataset consists of 27 published studies that were published from 1983
to 2014, among which 17 contained data on the population-based prevalence of
CC, 2 were hospital-based studies and 8 were CC-based case reviews. Samples
investigated in the studies were from different regions of the world, including
Europe, Asia, the USA, Africa, and Australia. The sample sizes of the included
studies ranged from 76 to 2,616,439 patients, with a combined total of 8,302,708
patients. The diagnosed age ranged from 0 to 18 years of age. The proportions
were transformed using the logit transformation, which is commonly employed
when dealing with proportional data. This transformation results in a sampling
distribution that is more normal, with a mean of zero and a standard deviation
of 1.83. The authors coded five moderators, including world region (China vs.
the rest of the world), study design (birth cohort vs. other), sample size (less
vs. more than 100,000), diagnosed age (older vs. younger than 1 year old), and
research period (before vs. after the year 2000). All of these potential moderators
are categorical variables. Due to page limits, we will work with only a subset of
the provided moderating variables, including study design and sample size.

3.2 Recommended format for organizing data

Prior to performing a meta-analysis in R, it is important to first organize the
data properly. Table 1 shows an excerpt of the example dataset. Each row in this
table represents the data extracted from a primary study included in the current
meta-analysis. The columns contain variables that will be used to compute effect
sizes, create plots, and conduct further analyses.

Table 1. Data from Wu et al. (2016)

author year authoryear cases total studesg studydesign size samplesize
Stewart-Brown 1988 Stewart-Brown 1988 7 12853 0 Birth cohort 0 < 100000
Bermejo 1998 Bermejo 1998 71 1124654 0 Birth cohort 1 > 100000
SanGiovanni 2002 SanGiovanni 2002 73 53639 0 Birth cohort 0 < 100000
Haargaard 2004 Haargaard 2004 773 2616439 0 Birth cohort 1 > 100000
Stayte 1993 Stayte 1993 4 6687 0 Birth cohort 0 < 100000
Stoll 1997 Stoll 1997 57 212479 0 Birth cohort 1 > 100000
Rahi 2001 Rahi 2001 248 734000 1 Others 1 > 100000
Wirth 2002 Wirth 2002 421 1870000 1 Others 1 > 100000
Hu 1987 Hu 1987 77 207319 1 Others 1 > 100000
Abrahamsson 1999 Abrahamsson 1999 136 377334 1 Others 1 > 100000
Bhatti 2003 Bhatti 2003 199 982128 1 Others 1 > 100000
Nie 2008 Nie 2008 15 15398 1 Others 0 < 100000
Chen 2014 Chen 2014 6 9246 1 Others 0 < 100000
Yang 2014 Yang 2014 8 6299 1 Others 0 < 100000
Pi 2012 Pi 2012 3 3079 1 Others 0 < 100000
Holmes 2003 Holmes 2003 10 33021 1 Others 0 < 100000
Halilbasic 2014 Halilbasic 2014 51 38133 1 Others 0 < 100000

In this data set, we have separate columns for authors’ names and the year
of publication, which will be useful when sorting studies according to the year
of publication in R. Additionally, if we decide to use the forest() function in the
meta package to create forest plots, we need to create a column that combines
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both variables. In this case, we label the column as “authoryear”. It’s important
to note that when importing a data file into R, column names with uppercase
letters will be converted to lowercase. Therefore, we cannot use uppercase or
lowercase letters to differentiate between different columns. Moreover, we cannot
leave a blank space between two words when naming a column. As seen in the
table, we use “authoryear” instead of “author year”, “studydesign” instead of
“study design”, and “samplesize” instead of “sample size”.

The variable “cases” represents the number of the event of interest in the
sample of each study. By dividing “cases” by “total”, we can obtain the propor-
tions needed to compute effect sizes, which are labeled as “yi” in R. R will also
calculate the sampling variance for each “yi” and label them as “vi”. The remain-
ing variables in the dataset are potential moderators, which will be examined in
either a subgroup analysis or a meta-regression. For instance, “study design” is
a potential moderator with two categories or levels: “birth cohort” and “others”.
We have coded each category as either 1 or 0 in the column labeled “studesg”.
For continuous moderators, readers can create columns to store continuous val-
ues, such as the “year” column. This dataset is saved as a comma-separated
values (.csv) file named “data.csv” and is included in the online supplemental
materials for this tutorial. To import it into R, ensure the .csv file is stored in
the working directory.

4 Computation of effect sizes

4.1 Fixed-effect and random-effects model

Before combining effect sizes in a meta-analysis, we need to make a choice be-
tween two modeling approaches for calculating the summary effect size:2 the
fixed-effect and random-effects model (Hedges & Vevea, 1998; Hunter & Schmidt,
2000). The fixed-effect model assumes that studies included in a meta-analysis
are functionally equivalent, sharing a common true effect size. Put differently,
the true effect size is identical across studies, and any observed variation in ef-
fect size estimates is solely due to random sampling error within each study,
known as within-study variance. The random-effects model allows the included
studies to have true effect sizes that are not identical or “fixed” but follow a
normal distribution. In other words, the random-effects model accounts for both
within-study and between-study variances, while the fixed-effect model assumes
that the between-study variance is zero (i.e., between-study heterogeneity does
not exist).

The fixed-effect model applies when participants in the studies are drawn
from a single common population and undergo the same experimental procedures
conducted by the same researchers under identical conditions. For instance, a
series of studies with the same protocol conducted in the same lab and sampling
from the same population (e.g., school children from the same class) may fit
the fixed-effect model. However, these conditions rarely hold in reality. In fact,

2 The “summary effect size” and “overall effect size” are interchangeable terms.
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the majority of meta-analyses are conducted based on studies collected from the
literature. In such cases, we can generally assume that the true effect varies from
study to study. Even when a group of studies focuses on a common topic, they
are often conducted using different methods (Borenstein, 2019). Consequently,
the true effect size is assumed to follow a normal distribution under the random-
effects model.

An additional limitation of the fixed-effect model is that its conclusions are
limited to the specific set of studies included in the meta-analysis and cannot
be generalized to multiple populations. However, most social scientists aim to
make inferences that extend beyond the selected set of studies in their meta-
analyses. As a general rule of thumb, the random-effects model will be more
plausible than the fixed-effect model in most meta-analytic studies because the
random-effects model allows more generalizable conclusions beyond a specific
population (Borenstein, 2019; Borenstein, Hedges, Higgins, & Rothstein, 2009).
However, we discourage the practice of switching to the random-effects model
from the fixed-effect model based solely on the results of heterogeneity tests. We
will discuss the reasons in more depth later.

The random-effects model can be estimated by several methods (although
other methods exist, we will focus on the most popular ones here): the method
of moments or the DerSimonian and Laird method (DL; DerSimonian & Laird,
1986) and the restricted maximum likelihood method (REML; Raudenbush &
Bryk, 1985). In all cases, the summary effect size (i.e., the summary proportion)
is estimated as the weighted average of the observed effect sizes extracted from
primary studies. The weighting for each observed effect size is the inverse of the
total variance of a study, which is the sum of the within-study variance and
the between-study variance (Ma, Chu, & Mazumdar, 2016). These two methods
differ mainly in the estimation of the between-study variance, commonly denoted
as τ2 in the meta-analytic literature. The technical differences between these
methods have been summarized elsewhere (e.g., Knapp, Biggerstaff, & Hartung,
2006; Thorlund, Wetterslev, Awad, Thabane, & Gluud, 2011; Veroniki et al.,
2016) and will not be discussed here.

4.2 Transformation of proportions: the logit transformation and the
double arcsine transformation

When the observed proportions are around 0.5 and the number of studies is
sufficiently large, the proportions follow an approximately symmetrical bino-
mial distribution. Under such circumstances, the normal distribution is a good
approximation of the binomial distribution, and using the raw proportion as
the effect-size metric for analysis is appropriate (Barendregt et al., 2013; Box,
Hunter, & Hunter, 2005; Wang & Liu, 2016). Additionally, based on their simula-
tion study, Lipsey and Wilson (2001) suggested that when observed proportions
derived from primary studies fall between 0.2 and 0.8, and the focus is solely on
the mean proportion across the studies, the raw proportion can be adequately
employed as the effect-size metric. The procedure for calculating the effect size,
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sampling variance, and inverse variance weight for an individual study using the
raw proportion is as follows (Lipsey & Wilson, 2001):

The raw proportion is given by:

ESp = p =
k

n
(1)

with its sampling variance:

V arp = SE2
p =

p (1− p)

n
(2)

and the inverse variance weight:

wp =
1

V arp
=

1

SE2
p

=
n

p (1− p)
(3)

where p is the proportion, k is the number of individuals or cases in the category
of interest, and n is the sample size. ES, SE, Var, and w stand for effect size,
standard error, sampling variance, and inverse variance weight, respectively.

However, when collecting studies for a meta-analysis of proportions, it is
observed that proportional data are rarely centered around 0.5 and often ex-
hibit significant skewness (Hunter et al., 2014). As the proportions deviate fur-
ther from 0.5 and approach closer to the boundaries (particularly when they
are below 0.2 or above 0.8), they become less likely to be normally distributed
(Lipsey & Wilson, 2001). Additionally, using the raw proportion as the effect-
size metric in such situations may underestimate the coverage of the confidence
interval around the weighted average proportion and overestimate the level of
heterogeneity among the observed proportions (Lipsey & Wilson, 2001). Conse-
quently, relying on the assumption of normality may lead to biased estimation
and potentially misleading or invalid inferences (Feng et al., 2014; Ma et al.,
2016).

To address the skewness in the distribution of observed proportions, it is
common practice to apply transformations to the observed proportions collected
for a meta-analysis. This is done to ensure that the transformed proportions con-
form as closely as possible to a normal distribution, thus enhancing the validity
of subsequent statistical analyses (Barendregt et al., 2013). More specifically, all
computations and analyses are performed based on the transformed proportions
(e.g., the natural logarithm of the proportion) and their inverted variances (i.e.,
the study weight). The results, such as the summary proportion and its confi-
dence interval, are presented in the original effect-size metric (i.e., proportion)
for ease of presentation and interpretation (Borenstein et al., 2009).

In practice, the approximate likelihood approach (Agresti & Coull, 1998) is
arguably the predominant framework for modeling proportional data (Hamza et
al., 2008; Nyaga, Arbyn, & Aerts, 2014). There are two main ways to transform
observed proportions within this framework: the logit or log odds transforma-
tion (Sahai & Ageel, 2012) and the Freeman-Tukey double arcsine transforma-
tion (Freeman & Tukey, 1950; Miller, 1978). For the logit transformation, the
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observed proportions are first converted to their natural logarithm of the pro-
portions (i.e., the logit). Following the transformation, the logit transformed
proportions are assumed to follow a normal distribution, and all analyses are
conducted on the logit scale. Subsequently, the logits are converted back into
proportions for reporting and interpretation purposes. The procedure for cal-
culating the logit, its standard error and inverse variance weight for primary
studies, as well as the formula for back-transformation, are as follows (Lipsey &
Wilson, 2001).

The logit is calculated by:

ESl = loge

(
p

1− p

)
= ln

(
p

1− p

)
(4)

with its sampling variance:

V arl = SE2
l =

1

np
+

1

n(1− p)
(5)

and the inverse variance weight:

wl =
1

SE2
l

= np (1− p) . (6)

To convert the transformed values into proportions, use:

p =
elogit

elogit + 1
. (7)

Being widely employed in meta-analyses of proportions, the logit transforma-
tion still has its limitations in certain situations. Two limitations are particularly
noteworthy.

First, the issue of variance instability persists even after applying the logit
transformation (Barendregt et al., 2013; Hamza et al., 2008). The purpose of
data transformation is to bring the skewed data closer to a normal distribution
or at least to achieve more consistent variance. While the logit transformation
generates a sampling distribution that approximates normality to a greater ex-
tent, it fails to stabilize the variance, potentially placing undue weight on studies.
According to the equation for sampling variance (Eq. 5), for a fixed value of n,
the variance changes with p. For instance, consider a situation with two studies of
the same sample size, where an observed proportion close to 0 or 1 yields grossly
magnified variance, while an observed proportion around 0.5 yields squeezed
variance, leading to variance instability (Barendregt et al., 2013).

Second, when the event of interest is extremely rare (i.e. p = 0) or extremely
common (i.e., p = 1), the logits and their sampling variances become undefined.
In practice, the common solution is to add an arbitrary constant 0.5 correction
to the np and n(1-p) for all studies (Hamza et al., 2008). However, this approach
has been shown to introduce additional bias to the results (Lin & Xu, 2020; Ma
et al., 2016).
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Both of the aforementioned problems can be elegantly solved by employing
the variance-stabilizing transformation known as the double arcsine transfor-
mation (Freeman & Tukey, 1950), which is accomplished with the following
equation3:

ESt = sin−1

√
k

n+ 1
+ sin−1

√
k + 1

n+ 1
(8)

The sampling variance is computed by:

V art =
1

n+ 0.5
(9)

The back-transformation is computed by the equation as proposed by Miller
(1978):

p =
1

2

1− sgn (cos t)

[
1−

(
sin t+

sin t− 1
sin t

n′

)2
] 1

2

 (10)

where t denotes the double arcsine transformed value or the confidence interval
around it with sgn being the sign operator. In Eq. (10), the total sample size
denoted by n′ is calculated as the harmonic mean of individual sample sizes
(Miller, 1978). The harmonic mean is defined as:

n′ = m(

m∑
i

n−1
i )−1 (11)

where ni denotes the sample size of each included study and m denotes the
number of included studies. Miller (1978) gives an example in his paper: a meta-
analysis of proportions includes four studies with sample sizes being 11, 17, 21,
and 6, respectively. The harmonic mean of the four sample sizes will be:

n′ =
4

1
11 + 1

17 + 1
21 + 1

6

= 10.9885. (12)

Barendregt et al. (2013) found that Eq. (10) becomes numerically unstable
when sin t is close to 0 or 1, leading to potentially misleading results. This
phenomenon has also been documented by recent publications (Evangelou &
Veroniki, 2022; Lin & Xu, 2020; Schwarzer, Chemaitelly, Abu-Raddad, & Rücker,
2019). Instead of the harmonic mean, Barendregt et al. (2013) and Xu et al.
(2021) recommend using 1/v̄ as the estimate for the total sample size. They
propose that the double arcsine back-transformation be implemented as follows:

p̄ =
1

2

1− sgn(cos t̄)

[
1−

(
sin t̄+

sin t̄− 1
sin t̄

1
v̄

)2
] 1

2

 (13)

3 The metafor package uses different definitions of Eq.8 and 9. For more details, see
https://www.metafor-project.org/doku.php/faq.

https://www.metafor-project.org/doku.php/faq
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where p̄ is the pooled proportion on the natural scale and v̄ is the pooled variance
on the transformed scale. Notice that Eq. (13) uses 1/v̄ instead of the harmonic
mean.

In summary, raw proportions are adequate when the observed proportions
from primary studies fall between 0.2 and 0.8. When observed proportions are
less than 0.2 or greater than 0.8, the logit or double arcsine transformation
is recommended. It is worth noting that some simulation studies have shown
that the double arcsine method slightly outperforms the logit transformation in
terms of relative bias, mean squared error, and 95% coverage (Barendregt et
al., 2013; Xu et al., 2021). Furthermore, the double arcsine method would be a
more appropriate choice when extreme proportions need to be addressed. Last
but not least, we recommend Eq. (13) when applying the back-transformation
of the double arcsine method.

4.3 Calculating the summary effect size in R

In a meta-analysis, effect sizes are weighted by the inverse of their sampling
variances, giving greater weight to larger studies and allowing their effect sizes
to have a greater impact on the overall mean. The weighted average proportion
(i.e., the summary proportion) can be computed as follows (Barendregt et al.,
2013):

ESP = P =

∑
(wipi)∑
wi

=

∑ pi

V arpi∑
1

V arpi

(14)

with its sampling error:

SEp =
√∑

wi =

√∑ 1

V arpi

. (15)

The confidence interval of the weighted average proportion can be expressed
as follows:

PL = P − Z(1−α) (SEP )
PU = P + Z(1−α) (SEP )

(16)

where Z(1−α) = 1.96 when α = 0.05.
We will now proceed with the first step of our meta-analysis. First, readers

need to install and download the necessary R packages. These packages are devel-
oped to run within R and contain a collection of functions that are essential for
conducting meta-analyses. In this tutorial, we will install two packages: metafor
(Viechtbauer, 2010) and meta (Schwarzer et al., 2015). We will primarily rely on
metafor and use meta to create forest plots. To install these packages, execute
the following command:

install.packages(c(" metafor", "meta"))

Once readers have installed a package, it becomes permanently available for
use in R on this specific computer. To use the installed packages, one needs to
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execute the library() function each time you run R. To load metafor and meta
into the current R session, type the following R code:

library(metafor)

library(meta)

We then need to import data.csv into R and create a data frame named
“dat”. This can be achieved by using the read.csv() function and running the
following code:

dat <- read.csv("data.csv", header = TRUE , sep = ",")

The code above represents a standard approach to importing .csv files. It in-
structs R to read a .csv file, interpreting the first row as column names, and
recognizing commas as the separators between values.

To estimate the weighted average proportion, we will use the following func-
tions in metafor : escalc(), rma(), and predict(). These functions, in conjunction
with a range of arguments to be specified within them, provide instructions to
R on how to calculate effect sizes. Note that certain arguments have default
values, such as weighted = TRUE, so users don’t need to specify them. The es-
calc() function estimates an effect size and its standard error for every primary
study included in a meta-analysis. Users have the flexibility to decide whether
to transform these effect sizes and, if so, which transformation method to em-
ploy, by using the measure argument. We will now create a data frame named
“ies” (short for individual effect size) to store calculated effect sizes and standard
errors using the following generic code:

#Only choose one of the three transformation methods

ies <- escalc(xi = cases , ni = total , data = dat ,

measure = "PR")

Here, the variable “cases” contains the number of events. The variable “total”
contains the sample size. We use the argument data to inform R that these
variables are contained in the data frame “dat”. By using the argument measure,
we can specify which computational method to employ for transforming the raw
proportions:

measure = "PR" #No transformation

measure = "PLO" #The logit transformation

measure = "PFT" #The double arcsine transformation

We will then use the function rma() to pool the derived effect sizes. The
function will yield a summary proportion, its standard error, and a 95% con-
fidence interval. Additionally, it will also conduct heterogeneity tests. We can
execute the following code to achieve this:

pes <- rma(yi , vi , data = ies , method = "REML")
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Although naming an object in R is arbitrary, we strongly recommend that
readers assign meaningful names to objects. In this case, if we decide not to
perform a transformation, we will name this object “pes”, which stands for
pooled effect size. If we decide to perform a transformation with either the logit
or the double arcsine, we will name it “pes.logit” or “pes.da”, which stands for
logit or double-arcsin transformed pooled effect size, respectively. The object will
store all of the outcomes. The method argument dictates which of the following
between-study variance estimators will be used (the default method is REML):

method = "DL" #The DL estimator

method = "REML" #The REML estimator

If unspecified, rma() estimates the variance component using the REML esti-
mator. Even though rma() stands for random-effects meta-analysis, the function
can perform a fixed-effect meta-analysis with the code:

method = "FE"

The object “pes.logit” or “pes.da” now contains the estimated transformed
summary proportion. To convert it back to its original, non-transformed scale
(i.e., proportion) and yield an estimate for the true summary proportion, we can
use the predict() function:

#Inverse of logit transformation

pes <- predict(pes.logit , transf = transf.ilogit)

#Inverse of double arcsine transformation

pes <- predict(pes.da , transf = transf.ipft.hm , targ =

list(ni = dat$total))

The argument transf dictates how to convert the transformed proportion
back to proportion. As mentioned earlier, we can follow two methods for back-
transformation (Eq. 10 or Eq. 13). In either case, we set the transf argument
to transf.ipft.hm (the “hm” stands for the harmonic mean). If we opt for the
harmonic mean (n

′
) in Eq. (10) as the estimate for the total sample size, the

sample sizes of primary studies are specified by setting the targ argument to
list(ni = dat$total). If we opt to use 1/v̄ as the total sample size estimate, then
we specify the total sample size as 1/(pes.da$se)2 within the targ argument and
use the following code for back-transformation:

pes <- predict(pes.da , transf = transf.ipft.hm , targ =

list(ni=1/( pes.da$se)^2))

Finally, to see the output for the estimated summary proportion and its 95%
CI, we can use the print() function:

print(pes)

For the sake of readers’ convenience, we provide readers with generic code
for calculating the summary proportion under the random-effects model using
three different transformation methods:
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# Option 1: no transformation

ies <- escalc(xi = cases , ni = total , data = dat ,

measure = "PR")

pes <- rma(yi , vi , data = ies)

print(pes)

# Option 2: the logit transformation

ies.logit <- escalc(xi = cases , ni = total , data =

dat , measure = "PLO")

pes.logit <- rma(yi , vi , data = ies.logit)

pes <- predict(pes.logit , transf = transf.ilogit)

print(pes)

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
ies.da <- escalc(xi = cases , ni = total , data =

dat , measure = "PFT", add = 0)

pes.da <- rma(yi , vi , data = ies.da)

pes <- predict(pes.da , transf = transf.ipft.hm ,

targ = list(ni = dat$total))
print(pes)

Note the use of add = 0 in Option 3. When a study contains proportions
equal to 0, the escalc() function will automatically add 0.5 to the observed data
(i.e., the “cases” variable). Since the double arcsine transformation does not
require any adjustments to be made to the data in such a situation, we can
explicitly switch add = 0.5 to add = 0 to prevent the default adjustment.

Returning to the running example, we chose Option 2 (i.e., the logit trans-
formation) to calculate the summary proportion because all of the observed
proportions in the dataset are far below 0.2:

ies.logit <- escalc(xi = cases , ni = total , measure =

"PLO", data = dat)

pes.logit <- rma(yi , vi , data = ies.logit , method =

"DL", level = 95)

pes <- predict(pes.logit , transf = transf.ilogit)

print(pes , digits = 6)

The argument digits specifies the number of decimal places to which the
printed results should be rounded, with the default value being 4. The argument
level specifies the confidence interval, with the default value set to 95%.4

4 In this particular case, the estimates of τ , τ2, and I2 will fall outside of the 95%
CI for unknown reasons (though the summary proportion will not). The original
authors did not discover this issue. One way to address this issue is by switching to
the 99% CI. However, for the sake of consistency, we will continue to use the 95%
CI throughout this tutorial.
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The estimated summary proportion and its 95% CI are shown in Figure 1.
Interpreting these summary statistics, we find that the summary proportion is
estimated to be 0.000424 and its 95% CI is between 0.000316 and 0.000569.

pred ci.lb ci.ub cr.lb cr.ub

0.000424 0.000316 0.000569 0.000133 0.001347

Figure 1. Summary proportion and its 95% CI

5 Quantification of heterogeneity

Meta-analysis aims to synthesize studies and estimate a more precise summary
effect. An important decision that all meta-analysts face is whether it is appropri-
ate to combine a set of identified studies in a meta-analysis, given the inevitable
differences in their characteristics to varying degrees. Combining studies with
substantially different effect estimates can result in an inaccurate summary effect
and an unwarranted conclusion. For example, in a meta-analysis of proportions
regarding re-offending rates among juvenile offenders in a city, the summary
proportion may fall within a medium range (around 0.5). However, considerable
variation exists among these proportions, with some studies conducted in certain
boroughs reporting small proportions (e.g., under 0.1), while others report very
large proportions (e.g., above 0.9). Simply reporting a moderately large mean
proportion would be misleading, as it fails to acknowledge the significant vari-
ation or inconsistency in effect sizes across the studies. This variation is known
as heterogeneity (Del Re, 2015). We will introduce three quantifying statistics
for heterogeneity in this section: τ2, Q, and I2.

5.1 The between-study variance: τ2

Heterogeneity can be quantified by dividing it into two distinct components:
the between-study variance, which arises from the true variation among a body
of studies, and the within-study variance, resulting from the sampling error.
The true variation can be attributed to clinical and/or methodological diversity,
in other words, the systematic differences between studies beyond what would
be expected by chance, such as experimental designs, measurements, sample
characteristics, interventions, study settings, and combinations thereof (Lijmer,
Bossuyt, & Heisterkamp, 2002; Thompson & Higgins, 2002). In this tutorial, we
focus on the true variation in effect sizes, namely the between-study heterogene-
ity.

We characterize between-study heterogeneity by the variance of the true
effect size underlying the data, τ2, a statistic called tau-squared. Under the
assumption of normality, 95% of the true effects are expected to fall within ±
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1.96 × τ of the point estimate of the summary effect size (Borenstein, Hedges,
Higgins, & Rothstein, 2010). τ2 reflects the total amount of systematic differences
in effects across studies. The total variance of a study consists of the between-
and within-study heterogeneity and is used to assign weights under the random-
effects model (i.e., the inverse of the total variance).

In classic inverse variance meta-analysis, τ2 can be estimated by numerous
methods, as mentioned in Section 4 (e.g., REML, DL). Review and simulation
studies have shown that both methods perform satisfactorily well across various
situations; the differences between their results are negligible and rarely signif-
icant enough to impact the qualitative conclusions (e.g., Hamza et al., 2008;
Thorlund et al., 2011; Veroniki et al., 2016). Nevertheless, it is advisable to ob-
tain the 95% confidence interval around the point estimate of τ2, especially when
the number of included studies is small (less than 5) (Veroniki et al., 2016).

In practice, the DerSimonian and Laird estimator is arguably the most com-
monly used statistical method for meta-analyses of proportions and has become
the conventional and default method for assessing the amount of between-study
heterogeneity in many software packages, such as CMA (Cornell et al., 2014;
Schwarzer et al., 2015). All estimations in this tutorial are based on the DL
method.

5.2 Test of heterogeneity: Cochran’s Q

Using formal tests, the presence of between-study heterogeneity is generally ex-
amined using a χ2 test with a statistic Q (Cochran, 1954) under the null hy-
pothesis that all studies share the same true effect (Hedges & Olkin, 1985). In
other words, the Q-test and its p-value serve as a test of significance to address
the null hypothesis: H0 : τ2 = 0. If the value of the Q-statistic is above the
critical χ2 value, we will reject the null hypothesis and conclude that the effect
sizes are heterogeneous. Under such circumstances, you may consider taking the
random-effects model route. If Q does not exceed this value, then we fail to
reject the null hypothesis.

It is important to exercise caution when interpreting a non-significant p-value
and drawing the conclusion of homogeneous true effects. The statistical power of
the Q-test heavily relies on the number of studies included in a meta-analysis,
and as a result, it may fail to detect heterogeneity due to limited power when the
number of included studies is small (less than 10) or when the included stud-
ies are of small size (Huedo-Medina, Snchez-Meca, Marn-Martnez, & Botella,
2006). Therefore, a non-significant result should not be taken as showing empir-
ical evidence for homogeneity (Hardy & Thompson, 1998). This issue warrants
serious attention, considering that a significant proportion of meta-analyses in
Cochrane reviews involve only five or fewer studies (Davey, Turner, Clarke, &
Higgins, 2011).

Furthermore, it is important to note that the Q-test, in addition to its afore-
mentioned limitation, only assesses the viability of the null hypothesis and does
not provide a quantification of the magnitude of the true heterogeneity in effect
sizes (Card, 2015).
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5.3 I2 statistic

Higgins, Thompson, Deeks, and Altman (2003) proposed a statistic for mea-
suring heterogeneity, denoted as I2, that remains unaffected by the number of
included studies. In essence, it reflects the ratio of the observed heterogeneity,
representing the true between-study variance, to the total observed heterogeneity
(i.e., the sum of between- and within-study variance). As a result, it facilitates
the comparison of heterogeneity estimates across meta-analyses, regardless of
the original scale used in the meta-analyses themselves.

I2 can take values from 0% to 100%. A value of 0% indicates that all het-
erogeneity is caused by sampling error alone, requiring no further explanation.
Conversely, when I2 equals 100%, the entire heterogeneity can be attributed ex-
clusively to genuine differences between studies, thus justifying the application
of subgroup analyses or meta-regressions to identify potential moderating fac-
tors. The thresholds of 25%, 50%, and 75% are commonly used to indicate low,
medium, and high heterogeneity, respectively (Higgins et al., 2003) . Note that
these thresholds only serve as tentative benchmarks for I2. The 95% CI around
the I2 statistic should also be calculated (Cuijpers, 2016; Ioannidis, Patsopoulos,
& Evangelou, 2007).

Relying solely on the value of I2 can be misleading because a 0% I2, ac-
companied by a 95% CI ranging from 0% to 80%, does not necessarily indicate
homogeneity in a small meta-analysis study. Rather, the degree of heterogeneity
remains uncertain in such cases.

An important caveat
Together, the Q-statistic, τ2, and I2 can inform us if the effects are

homogeneous, or consistent. When the effect sizes are reasonably consistent,
it is appropriate to combine them and present a summary effect size in
reports. In cases where moderate and substantial heterogeneity is present,
the summary effect size becomes less informative or even of no value. In such
cases, we strongly suggest that researchers conduct moderator analyses to
thoroughly explore the possible sources of heterogeneity in observed effect
sizes rather than relying solely on the mechanistic calculation of a single
mean effect estimate (Egger, Schneider, & Smith, 1998). We will discuss
moderator analysis in more detail later.

However, it is important to note that the methods used to estimate the
amount of heterogeneity and conduct significance tests for heterogeneity
are not always reliable, potentially leading to misleading interpretations of
the variability of the true effect size. Relying solely on the Q-test is ill-
advised due to its inadequate power to detect low heterogeneity (Chung,
Rabe-Hesketh, & Choi, 2013; Rücker, Schwarzer, Carpenter, & Schumacher,
2008). Furthermore, the rules of thumb benchmarks for I2 only hold true
when the within-study error is relatively constant (Borenstein, Higgins,
Hedges, & Rothstein, 2017). Underestimating between-study heterogeneity
or failing to detect any heterogeneity due to inadequate statistical power
can result in authors fitting the wrong model (i.e., the fixed-effect model),
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leading to inaccurate inferences about the overall effect (Higgins & Thomp-
son, 2002; Thompson, 1994; Thompson & Sharp, 1999).

Heterogeneity tests provide only a single piece of evidence when deciding
between the fixed- and random-effects models. The choice of model should
consider a range of factors, including the sampling frame, the desired type
of inference, expectations about the distribution of the true effect, and the
statistical significance of the heterogeneity tests, among others. Borenstein
(2019) suggested that when studies in a meta-analysis are collected from
the literature, a random-effects model is almost always preferable. This
is because the true effect size is likely to vary across studies unless they
were conducted by the same lab, following identical protocols, and using
consistent materials on the same population. Furthermore, if we intend
to make an inference to comparable populations, as is common in social
sciences, the random-effects model becomes the only appropriate choice.

5.4 Viewing results of the heterogeneity test and statistics in R

To view the results of the heterogeneity test (Cochran’s Q) and the estimates of
between-study variance (τ2) and I2, we still use the print() function:

# Note , if you selected other transformation methods ,

# then type pes.logit or pes.da in print ()

print(pes)

The confint() function computes and displays the confidence intervals for τ2

and I2:

# If you selected other transformation methods ,

# then type pes.logit or pes.da in confint ()

confint(pes)

To display the output of heterogeneity-related results for the running exam-
ple, we can type:

print(pes.logit , digits = 4)

confint(pes.logit , digits = 4)

The output appears in Figure 2. It reveals that τ2 is 0.3256 (95% CI = 0.3296,
1.4997), I2 is 97.24% (95% CI = 97.28, 99.39), and the Q-statistic is 580.5387 (p
<.001), all of which suggests high heterogeneity in the observed proportions.5

5 Again, the values of τ , τ2, and I2 have fallen out their 95% CIs. Readers can fix this
problem by switching to the 99% CI.
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Random -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.3256 (SE

= 0.2033)

tau (square root of estimated tau^2 value): 0.5707

I^2 (total heterogeneity / total variability): 97.24%

H^2 (total variability / sampling variability): 36.28

Test for Heterogeneity:

Q(df = 16) = 580.5387 , p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub

-7.7650 0.1502 -51.7147 <.0001 -8.0593 -7.4707 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

estimate ci.lb ci.ub

tau^2 0.3256 0.3296 1.4997

tau 0.5707 0.5741 1.2246

I^2(%) 97.2439 97.2758 99.3884

H^2 36.2837 36.7079 163.4972

Figure 2. A random-effects model analysis of heterogeneity

6 Visualization of heterogeneity

This section is dedicated to visualization tools and a few formal diagnostic tests
pivotal for heterogeneity analyses. We introduce two essential tools for readers:
the forest plot and the Baujat plot. The forest plot allows for a visual assessment
of the homogeneity across studies, while the Baujat plot can pinpoint studies
that exert a significant impact on the overall effect, heterogeneity, or both. It’s
crucial to introduce the forest plot at this point. It lays the foundation for our
in-depth demonstration of its application in subgroup analyses, which we will
discuss in Section 7.

6.1 Forest plots

A forest plot (as shown in Figure 3) is a graphical representation that effectively
displays the point estimates of study effects along with their corresponding confi-
dence intervals (Lewis & Clarke, 2001). It is composed of a vertical reference line,
an x-axis, and graphical representations of effect size estimates and their 95%
CIs. The x-axis of the forest plot represents the scale of the outcome measure
(in our case, the proportion) and can range from 0 to 1.
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Typically, the vertical reference line is positioned at the point estimate of the
pooled proportion. At the bottom of the reference line lies a colored diamond
shape with its length representing the 95% confidence interval of the pooled
proportion. Each study effect plotted in a forest plot consists of two components:
a colored square symbolizing the point estimate of the study effect size and a
horizontal line through the square representing the confidence interval around
the point estimate. I refer to the horizontal lines as the squares’ ”wings”, if you
will.

The size of a square corresponds to the study’s weight; a larger square signifies
a larger sample size and, therefore, a greater weight. An effect size with a greater
weight carries more influence on the summary effect size and is therefore depicted
by a larger square with a shorter horizontal line (Anzures-Cabrera & Higgins,
2010).

In a forest plot, study effects are determined as homogeneous if all the hori-
zontal lines of the squares overlap (Petrie, Bulman, & Osborn, 2003; Ried, 2006).
The forest plot also allows us to identify potential outliers. This can be achieved
by examining studies whose 95% confidence intervals do not overlap with the
confidence interval of the summary effect size (Harrer, Cuijpers, A, & Ebert,
2021). Furthermore, it is worth noting that if large studies are identified as out-
liers, it may suggest that the overall heterogeneity is high.

Figure 3. An anatomy of a basic forest plot
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6.2 Creating forest plots in R

In this section, we will begin by explaining how to create a basic forest plot using
the meta package. We will also show readers how to create a more sophisticated,
publication-ready forest plot.

We can create a simple forest plot using the following generic code (assuming
that we have loaded the meta package):

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PRAW")

forest(pes.summary)

Using the metaprop() function, we conduct a meta-analysis of proportions
and save the results in an object named “pes.summary”. We then feed these
results into the forest() function to automatically generate a forest plot. The sm
argument in the metaprop() function dictates which transformation method will
be used to convert the original proportions:

PRAW # no transformation

PLO # the logit transformation

PFT # the double arcsine transformation

Forest plots created by the generic code are bare-boned and often fail to meet
publishing standards. The following code can produce publication-quality forest
plots for the running example:

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PLO", method.tau = "DL", method.ci =

"NAsm")

forest(pes.summary ,

common = FALSE ,

print.tau2 = TRUE ,

print.Q = TRUE ,

print.pval.Q = TRUE ,

print.I2 = TRUE ,

rightcols = FALSE ,

pooled.totals = FALSE ,

weight.study = "random",

leftcols = c(" studlab", "event", "n", "effect",

"ci"),

leftlabs = c("Study", "Cases", "Total",

"Prevalence", "95% C.I."),

xlab = "Prevalence of CC (%)",

smlab = "",

xlim = c(0,4),

pscale = 1000,

squaresize = 0.5,

fs.hetstat = 10,
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digits = 2,

col.square = "navy",

col.square.lines = "navy",

col.diamond = "maroon",

col.diamond.lines = "maroon ")

The generated forest plot is shown in Figure 4.
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Figure 4. A publication-quality forest plot

The arguments in forest() provided above are mostly self-explanatory. They
determine which components of the forest plot are displayed, as well as their
colors, sizes, and positions on the graph. The pscale argument is particularly
noteworthy. Setting “pscale = 1000” means that the prevalence is expressed as
events per 1,000 observations. Consequently, the combined proportion under the
random-effects model is displayed as 0.42h in the forest plot6. It should be
mentioned that due to space constraints, we have only listed the most essen-
tial arguments in the forest() function. Readers are encouraged to refer to the
documentation that comes with the meta package (type ?meta::forest() in R) to
explore additional useful arguments for customizing their own forest plots.

6 Readers should note that showing the permille symbol (h) within code snippets
in LATEX can be challenging. Consequently, the “%” is used in the xlab argument
purely for illustrative purposes. For accurate representation, readers can substitute
the “%” with “h” in R.
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We can sort the individual studies by precision to help us visually inspect
the data. This can be achieved by sorting the included studies using SE or the
inverse of SE:

precision <- sqrt(ies.logit$vi)

We then add the sortvar argument in the forest() function:

sortvar = precision

The new forest plot is shown in Figure 5. This forest plot clearly shows that
the prevalence of CC is higher in smaller studies (those with longer “wings”).
In meta-analyses of comparative studies, a forest plot without indications of
publication bias will exhibit an even spread of studies with varying precision on
both sides of the mean effect size. However, in a meta-analysis of observational
data, an uneven spread of studies may actually reflect a genuine pattern in effect
sizes rather than publication bias, especially when small studies fall to the right
side of the mean. It is also possible that some small studies are not published
due to valid reasons, such as the use of inadequate research methods. Thus, this
uneven distribution of effects warrants further investigation as it may provide
new insights into the topic of interest.
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[0.30; 0.46]
[1.08; 1.71]
[0.05; 0.08]
[0.21; 0.35]
[1.02; 1.76]
[0.59; 1.62]
[0.16; 0.56]
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Figure 5. A forest plot with sorted studies by precision

A visual inspection of the forest plot identifies several potential outlying
studies, including Wirth (2002), Bhatti (2003), SanGiovanni (2002), Bermejo
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(1998), Halilbasic (2014), Nie (2008), and Yang (2014). Their 95% CIs do not
overlap with that of the summary proportion. In the next step, we will cross-
validate these potential outliers using the Baujat plot.

6.3 Identifying outlying and influential studies with diagnostic tools

When dealing with high between-study heterogeneity in a meta-analysis, one
approach is to identify and exclude outliers, and then reassess the robustness of
the summary effect size. In this section, we will introduce some diagnostic tools
that can identify outlying and influential studies.

A basic Baujat plot is depicted in Figure 6. The horizontal axis of the Bau-
jat plot quantifies each study’s contribution to the overall heterogeneity or the
Cochran Q-test, while the vertical axis measures the impact of each study on
the summary effect size. We’ve divided the Baujat plot into four quadrants with
light blue dotted lines for illustration purposes. Studies situated far to the right
on the horizontal axis (in Quadrants 2 and 3) are significant contributors to
heterogeneity. Those positioned far up on the vertical axis (in Quadrants 1 and
2) substantially influence the overall meta-analysis result. A study’s influence
is deemed substantial if its removal would lead to a drastically different overall
effect.

Figure 6. An anatomy of a basic Baujat plot
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It can sometimes be challenging to differentiate between the concepts of an
“outlier” and an “influential effect size” in the context of meta-analysis. While
an outlying effect size can often be influential, it isn’t always so. Conversely, an
effect size that is influential doesn’t necessarily have to be an outlier (Harrer et
al., 2021). The Baujat plot helps distinguish between outliers that are influential
and those that are not:

– Small studies with effect sizes similar to others typically fall into the lower
left corner of Quadrant 4, indicating they are neither outliers nor influential.

– Small studies with notably different effect sizes than others often appear in
the lower right corner of Quadrant 3. They may be outliers, but their small
sample sizes prevent them from heavily impacting the overall effect size.

– Large studies with effect sizes similar to the majority of effect sizes tend
to populate the upper left corner of Quadrant 1. While these studies have
influential effects, they may not be outliers. Their influence on the pooled
effect size is pronounced because of their extensive sample sizes.

– Large studies with dramatically different effect sizes than the rest tend to
appear in the upper right corner of Quadrant 2. These studies are influential
outliers, exerting the most substantial impact on both the overall effect and
heterogeneity.

It is crucial to conduct several formal diagnostic tests to determine if the out-
lying effect sizes identified in the forest plot and Baujat plot are truly outliers. If
deemed outliers, further investigation is required to determine their actual influ-
ence on the overall effect size. Viechtbauer and Cheung (2010) have proposed a
set of case deletion diagnostics derived from linear regression analyses to identify
influential studies, such as difference in fits values (DFFITS), Cook’s distances,
leave-one-out estimates for the amount of heterogeneity (i.e., τ2) as well as the
test statistic for heterogeneity (i.e., Q-statistic). In leave-one-out analyses, each
study is removed sequentially, and the summary proportion is re-estimated based
on the remaining n-1 studies. This approach allows for the assessment of each
study’s influence on the summary proportion.

Outlying effect sizes can also be identified by screening for externally stu-
dentized residuals exceeding an absolute value of 2 or 3 (Tabachnick, Fidell, &
Osterlind, 2013; Viechtbauer & Cheung, 2010).

As a final note, instead of simply removing outlying effect sizes, meta-analysts
should investigate these outliers and influential cases to understand their occur-
rence. They sometimes reveal valuable study characteristics that may serve as
potential moderating variables.

6.4 Identifying outlying and influential studies in R

In this section, we will use the Baujat plot and diagnostic tests introduced above
to detect outliers and influential studies. The generic code for Baujat plot is
provided below:

baujat(pes) # or pes.logit , pes.da
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For the running example, use the following code to create a customized Bau-
jat plot:

# Create a Baujat plot

bjplot <- baujat(pes.logit ,

symbol =19,

xlim=c(0,15),

xlab=" Contribution to Overall

Heterogeneity",

ylab=" Influence on Summary

Proportion ")

# Label those studies located in the upper quadrants

bjplot <- bjplot[bjplot$x >= 10 | bjplot$y >= 0.4,]

text(bjplot$x , bjplot$y , bjplot$slab , pos=1)

The generated plot can be seen in Figure 7. In this customized Baujat plot, we
have labeled only a few of the more “extreme” studies, specifically: SanGiovanni
(2002) (Study 2), Bermejo (1998) (Study 8), and Halilbasic (2014) (Study12). We
observe that both Study 2 and Study 12 may be considered influential, though
they might not contribute heavily to the overall heterogeneity. In contrast, Study
8 stands out as an influential outlier, as it has a large impact on both the pooled
proportion and heterogeneity.
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Figure 7. A basic Baujat plot
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Next, we screen for large externally studentized residuals (ESR). The code
below calculates the ESR for each study in the current dataset, then sorts them
in descending order based on the absolute values of the z-scores tied to their
respective ESRs:

# Calculate ESR

stud.res <- rstudent(pes.logit) # or pes , pes.da

# Sort ESR by z-values in descending order

abs.z <- abs(stud.res$z)
stud.res[order(-abs.z)]

The test outcome appears in Figure 8. The key here is to locate studies with
z-values that exceed an absolute value of 2 or 3. Since we only have 17 studies
in the running example, we will set the threshold at 2. Therefore, the second,
eighth, and twelfth studies are chosen. They match the studies we previously
identified through the Baujat plot.

resid se z

8 -2.0265 0.5183 -3.9101

2 1.2701 0.5183 2.4505

12 1.2415 0.5541 2.2407

14 1.1563 0.6831 1.6928

17 0.8840 0.6382 1.3853

11 -0.7967 0.6198 -1.2854

6 -0.6895 0.6576 -1.0485

15 0.8618 0.8254 1.0441

9 -0.4925 0.6177 -0.7973

13 0.4459 0.7182 0.6209

4 -0.4063 0.7250 -0.5604

16 -0.3563 0.6727 -0.5297

3 0.3579 0.7743 0.4622

5 -0.2520 0.6444 -0.3911

1 0.2627 0.7021 0.3741

10 -0.1790 0.6231 -0.2872

7 -0.1447 0.6162 -0.2348

Figure 8. Externally studentized residuals results

The following code performs a set of leave-one-out diagnostic tests:

# Option 1: no transformation

# L1O stands for leave -one -out

L1O <- leave1out(pes); print(L1O)

# Option 2: the logit transformation

L1O <- leave1out(pes.logit , transf = transf.ilogit)

print(L1O)
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# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
L1O <- leave1out(pes.da , transf = transf.ipft.hm , targ

= list(ni = dat$total))
print(L1O)

Using the current data set, we execute the following code:

L1O <- leave1out(pes.logit , transf = transf.ilogit)

print(L1O , digits = 6)

The output is shown in Figure 9. The numbers in the first column are the
leave-one-out estimates for the summary proportion, which are derived by ex-
cluding one study at a time from the included studies. For instance, the first
estimate in this column (i.e., 0.000419) is the summary proportion estimate
when the first study in the included studies is removed.

estimate zval pval ci.lb ci.ub Q Qp tau2 I2 H2

1 0.000419 -50.492057 0.000000 0.000310 0.000566 577.938615 0.000000 0.326294 97.404569 38.529241

2 0.000383 -58.124097 0.000000 0.000293 0.000499 405.001830 0.000000 0.236593 96.296313 27.000122

3 0.000418 -50.760057 0.000000 0.000310 0.000565 578.562279 0.000000 0.325980 97.407366 38.570819

4 0.000443 -41.417189 0.000000 0.000308 0.000639 580.526132 0.000000 0.489631 97.416137 38.701742

5 0.000435 -46.319695 0.000000 0.000313 0.000603 575.730710 0.000000 0.383340 97.394615 38.382047

6 0.000449 -45.217145 0.000000 0.000321 0.000626 540.974670 0.000000 0.400959 97.227227 36.064978

7 0.000429 -48.854385 0.000000 0.000315 0.000586 576.473491 0.000000 0.341576 97.397972 38.431566

8 0.000479 -56.505027 0.000000 0.000367 0.000624 404.914535 0.000000 0.236229 96.295515 26.994302

9 0.000439 -48.899481 0.000000 0.000322 0.000598 579.956198 0.000000 0.338978 97.413598 38.663747

10 0.000431 -47.992385 0.000000 0.000314 0.000591 574.985048 0.000000 0.354815 97.391237 38.332337

11 0.000449 -47.824077 0.000000 0.000328 0.000616 548.816035 0.000000 0.353117 97.266844 36.587736

12 0.000387 -55.147300 0.000000 0.000293 0.000511 461.941616 0.000000 0.267048 96.752836 30.796108

13 0.000416 -50.664580 0.000000 0.000308 0.000562 576.843109 0.000000 0.325434 97.399640 38.456207

14 0.000400 -51.312960 0.000000 0.000297 0.000539 563.535902 0.000000 0.318164 97.338235 37.569060

15 0.000412 -51.101371 0.000000 0.000305 0.000555 576.283345 0.000000 0.324438 97.397114 38.418890

16 0.000432 -50.008941 0.000000 0.000319 0.000586 580.534075 0.000000 0.328479 97.416172 38.702272

17 0.000403 -51.136341 0.000000 0.000298 0.000543 559.149838 0.000000 0.317149 97.317356 37.276656

Figure 9. Results of leave-one-out diagnostic meta-analyses

A leave-one-out forest plot can visualize the change in the summary effect
size. The generic code is given below:

# Option 1: no transformation

l1o <- leave1out(pes)

yi <- l1o$estimate; vi <- l1o$se ^2
forest(yi ,

vi ,

slab = paste(dat$author , dat$year , sep = ","),

refline = pes$b ,
xlab = "Leave -one -out summary proportions ")

# Option 2: the logit transformation

l1o <- leave1out(pes.logit)

yi <- l1o$estimate; vi <- l1o$se ^2
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forest(yi ,

vi ,

transf = transf.ilogit ,

slab = paste(dat$author , dat$year , sep = ","),

refline = pes$pred ,
xlab = "Leave -one -out summary proportions ")

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
l1o <- leave1out(pes.da)

yi <- l1o$estimate; vi <- l1o$se ^2
forest(yi ,

vi ,

transf = transf.ipft.hm ,

targ = list(ni = dat$total),
slab = paste(dat$author , dat$year , sep = ","),

refline = pes$pred ,
xlab = "Leave -one -out summary proportions ")

To generate a customized leave-one-out forest plot for the current data set,
use the following code:

l1o=leave1out(pes.logit)

yi=l1o$estimate; vi=l1o$se ^2
forest(yi ,

vi ,

transf=transf.ilogit ,

slab=paste(dat$author ,dat$year ,sep=", "),

xlab="Leave -one -out summary proportions",

refline=pes$pred ,
digits =6)

abline(h=0.1)

The generated forest plot is shown in Figure 10. Each black square repre-
sents a leave-one-out summary proportion. The reference line indicates where
the original summary proportion lies. The further a box deviates from the refer-
ence line, the more pronounced the impact of the corresponding excluded study
will be on the original summary proportion. For instance, if we exclude the study
by SanGiovanni et al. (2002), the new summary proportion becomes 0.00038. If
we exclude Stayte et al. (1993), the new summary proportion becomes 0.000418.
Apparently, excluding the former study has a larger impact on the original sum-
mary proportion than the latter study.
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0.000432 [0.000319, 0.000586]
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0.000400 [0.000297, 0.000539]
0.000416 [0.000308, 0.000562]
0.000387 [0.000293, 0.000511]
0.000449 [0.000328, 0.000616]
0.000431 [0.000314, 0.000591]
0.000439 [0.000322, 0.000598]
0.000479 [0.000367, 0.000624]
0.000429 [0.000315, 0.000586]
0.000449 [0.000321, 0.000626]
0.000435 [0.000313, 0.000603]
0.000443 [0.000308, 0.000639]
0.000418 [0.000310, 0.000565]
0.000383 [0.000293, 0.000499]
0.000419 [0.000310, 0.000566]

Figure 10. A leave-one-out forest plot

With these potential influential studies in mind, we now conduct a few more
leave-one-out diagnostics with the influence() function in metafor to verify our
guesses:

inf <- influence(pes.logit)

print(inf , digits =3)

plot(inf)

In Figure 11, studies marked with an asterisk are potential influential studies:

rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.374 0.083 0.007 1.052 0.326 577.939 0.048 4.811 0.083
2 2.451 0.801 0.474 0.813 0.237 405.002 0.066 6.643 0.791 *
3 0.462 0.093 0.009 1.042 0.326 578.562 0.039 3.915 0.093
4 -0.560 -0.242 0.088 1.541 0.490 580.526 0.069 6.896 -0.247
5 -0.391 -0.151 0.027 1.239 0.383 575.731 0.068 6.839 -0.152
6 -1.049 -0.336 0.139 1.289 0.401 540.975 0.069 6.873 -0.339
7 -0.235 -0.077 0.006 1.117 0.342 576.473 0.067 6.658 -0.077
8 -3.910 -0.941 0.653 0.812 0.236 404.915 0.066 6.636 -0.929 *
9 -0.797 -0.223 0.052 1.109 0.339 579.956 0.066 6.569 -0.224
10 -0.287 -0.103 0.011 1.156 0.355 574.985 0.068 6.770 -0.103
11 -1.285 -0.369 0.148 1.152 0.353 548.816 0.068 6.818 -0.371
12 2.241 0.674 0.377 0.900 0.267 461.942 0.065 6.530 0.669
13 0.621 0.136 0.019 1.047 0.325 576.843 0.046 4.578 0.136
14 1.693 0.395 0.153 1.031 0.318 563.536 0.050 5.001 0.395
15 1.044 0.197 0.039 1.032 0.324 576.283 0.034 3.420 0.198
16 -0.530 -0.128 0.017 1.064 0.328 580.534 0.053 5.296 -0.128
17 1.385 0.350 0.120 1.036 0.317 559.150 0.057 5.746 0.350

Figure 11. Results of the influential study test
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The diagnostics plots in Figure 12 show that the second and eighth studies
are colored in red, indicating that they fulfill the criteria as influential studies.
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Figure 12. Influential study diagnostics

Based on the Baujat plot and the outcomes of the diagnostic tests, we deter-
mine that all three studies (Study 2, 8, and 12) can be considered outliers, but
only Study 2 and 8 are deemed influential.

6.5 Removing outlying studies in R

Once all possible outliers are identified, we can remove them with the following
generic code:
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# Depending on the transformation method ,

# measure = "PLO" or measure = "PFT"

# Remember to add "add = 0" when using the

# double arcsine transformation

ies.noutlier <- escalc(xi = cases , ni = total , measure

= "PR", data = dat[-c(study1 , study2 ,) ,])

If we were to exclude Study 2 and Study 8 in the current data set, we would
execute the following code:

# Remove the two studies and calculate individual

# effect sizes

ies.logit.noutlier <- escalc(xi = cases , ni = total ,

measure = "PLO", data = dat[-c(2, 8) ,])

# Conduct meta -analysis with no outliers

pes.logit.noutlier <- rma(yi , vi , data =

ies.logit.noutlier , method = "DL")

pes.noutlier <- predict(pes.logit.noutlier , transf =

transf.ilogit)

print(pes.noutlier , digits = 5)

7 Explanation of heterogeneity with moderator analyses

We’ve determined that our data shows significant heterogeneity. Furthermore,
we identified several outlying studies that notably impact both the overall effect
and the variability of the observed effect sizes. When substantial heterogeneity
remains even after excluding these outliers, one commonly employed strategy
to unearth additional sources of heterogeneity is through moderator analyses.
In fact, a thorough moderator analysis can often yield deeper insights than a
mere estimate of summary effect size. This analysis helps identify and quantify
the extent to which certain study-level characteristics contribute to the observed
heterogeneity.

Subgroup analysis and meta-regression are two major forms of moderator
analysis. Subgroup analysis can be seen as a special case of meta-regression,
which examines the impact of a single categorical variable (Thompson & Higgins,
2002). In fact, meta-regression can accommodate both categorical and continu-
ous moderators of desired numbers. For instance, a meta-regression can include
a series of continuous variables or a mix of both continuous and categorical vari-
ables. In this tutorial, our focus will be on subgroup analysis and meta-regression
with a continuous moderator.

7.1 Meta-regression with a categorical moderator: Subgroup
analysis

When we want to explain heterogeneity with a categorical moderator in a meta-
analysis, subgroup analysis is the method of choice. This approach mirrors the
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logic of ANOVA in primary research (Littell, Corcoran, & Pillai, 2008). In a sub-
group analysis, studies are partitioned into two or more subgroups according to
the categories within the moderator. This moderator represents a specific study
characteristic that can potentially explain a portion of the variability observed
between studies (Hamza et al., 2008). If a subgroup has a unique characteristic
absent in other subgroups (e.g., exposure to a new treatment vs. an old treat-
ment), and the effect sizes between the subgroups show significant differences,
it suggests that the variation in effect sizes (i.e., the true heterogeneity) can
be attributed to this unique characteristic. In essence, the purpose of subgroup
analysis is to ascertain if the chosen moderator accounts for a significant portion
of the true heterogeneity.

To evaluate the influence of a proposed moderator, we apply a weighted least
squares (WLS) regression. In this approach, effect sizes (e.g., those transformed
using logit or double arcsine methods) are regressed against the moderator (Har-
rer et al., 2021):

ESi = β0 + β1C + δi + ei (17)

where ESi is the observed effect size for the primary study i, C is the dummy
variable representing the moderator (or predictor), β1 is the regression coefficient
(or slope), and β0 is the model intercept. δi and ei are error terms. Specifically,
δi is the between-study error for the primary study i, with its variance being
the between-study variance, τ2; ei is the sampling error for the primary study i,
with its variance being the within-study variance. The goal of the meta-regression
model is to estimate the parameters, β0 and β1.

The categorical moderator is introduced in the analysis through dummy cod-
ing (e.g., the “studesg” variable in our data set). Let’s say we have two categories
within this predictor: Subgroup A and Subgroup B. If Subgroup A is chosen as
the reference group, then all primary studies in Subgroup A would be coded as
0, while those in Subgroup B would be coded as 1. Mathematically, this can be
represented as C = 0 for Subgroup A and C = 1 for Subgroup B. The regression
coefficient of C, β1, quantifies the effect size difference between the two sub-
groups. When C = 0, β0 becomes the true overall effect of Subgroup A. When
C = 1, the overall effect of Subgroup B is captured by the sum β0 and β1. In
summary, the observed effect size for the study i, ESi, is an estimator of the
study’s true effect size, β0 + β1C + δi, burdened by the sampling error, ei.

Eq. (17) is a mixed-effects meta-regression model, a standard choice for meta-
regression. In subgroup analyses, this model combines the study effects within
each subgroup using a random-effects model, while a fixed-effect model is used
to combine subgroups and yield the overall effect (Borenstein et al., 2009). A
Wald-type test is used in meta-regression to determine if the slope of the model
is statistically significant, using the Z -score. In subgroup analyses, a statistically
significant slope suggests that Subgroups A and B exhibit statistically signifi-
cant differences between their overall effect sizes. In other words, the subgroup
membership can explain some or all of the between-study heterogeneity. Another
method to assess a moderator’s impact in meta-regression is through Cochran’s
Q. In subgroup analyses, if the Q-statistic for the predictor is statistically sig-
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nificant, it means that the subgroup membership explains some or the entirety
of the variability observed in the effect sizes. The R2 index can be employed
in meta-regression to quantify the proportion of the true heterogeneity across
all studies (i.e., the between-study heterogeneity) that can be accounted for by
moderators.

7.2 Meta-regression with a continuous moderator

In a meta-regression model with a single continuous moderator, as shown in Eq.
(18) (Harrer et al., 2021),

ESi = β0 + β1xi + δi + ei (18)

xi represent a continuous moderator, β1 is the regression slope. δi and ei are the
between- and within-study error terms for the study i, respectively. β0 is still
the model intercept, but it now represents the overall true effect size when x =
0. In summary, ESi represents the observed effect size for the study i, which is
an estimator of the study’s true effect size, β0 + β1xi + δi, burdened by the
sampling error, ei.

As summarized by Harrer et al. (2021), meta-regression analyzes the rela-
tionship between predictors and observed effects to identify a consistent pattern
between them, in the form of a regression line. By accounting for both sam-
pling error and between-study differences, meta-regression seeks to fit a model
that can generalize across all possible studies relevant to the topic. A well-fitting
meta-regression model can predict effect sizes close to the observed data.

An important caveat
Moderator analysis is subject to several limitations that should be taken

into consideration. A primary issue is that both the subgroup analysis and
meta-regression require a large ratio of studies to moderators. It is generally
recommended that moderator analysis should only be conducted when there
are at least 10 studies available for each moderator included in the analysis.
This is particularly crucial in multivariate models where the number of
studies might be small, leading to reduced statistical power (Higgins &
Green, 2006; Littell et al., 2008).

Another significant limitation is that the significant differences observed
between subgroups of studies cannot be seen as causal evidence. We may
fail to identify moderators that are truly responsible for the heterogene-
ity in effect sizes. Consequently, causal conclusions cannot be drawn solely
from moderator analyses (Cuijpers, 2016; Littell et al., 2008). We strongly
recommend that researchers select moderators based on solid theoretical
reasoning and only test those moderators with a strong theoretical basis.
This approach helps prevent erroneously attributing heterogeneity to spu-
rious moderators (Schmidt & Hunter, 2014).
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7.3 Conducting subgroup analyses and recalculating the overall
summary proportion in R

In a mixed-effects model meta-regression, the summary effect size for each sub-
group is computed using a random-effects model. Instead of estimating τ2 across
all studies, it’s estimated within these subgroups. In other words, each subgroup
has its own estimated τ2. These τ2 estimates may vary across subgroups. We
can choose to pool them or keep them separate when we compute the over-
all and within-subgroup summary proportions, depending on our assumptions
(Borenstein et al., 2009).

If we attribute the differences in these observed within-group τ2 estimates
solely to sampling error, then we anticipate a common τ2 across subgroups. In
such a scenario, pooling a common τ2 estimate and applying it universally to all
studies is appropriate. Conversely, if systematic factors, beyond just sampling
errors, are believed to influence the varying values of the observed within-group
τ2 estimates, then employing distinct τ2 estimates for each subgroup is justi-
fied. Essentially, using a separate estimate for between-study variance is equal
to conducting an independent meta-analysis for each subgroup. It’s important
to emphasize that the pooled proportion across all subgroups is likely to differ
from the summary proportion derived from pooling across all studies without
subgrouping. Nevertheless, any differences in these estimates are generally neg-
ligible.

When we assume that τ2 is the same for all subgroups, we can use the R2

index to represent the proportion of the between-study variance across all studies
that can be explained by the subgroup membership (Borenstein et al., 2009).

We have developed the following generic code to help readers perform sub-
group analyses and compute the overall and within-subgroup summary propor-
tions. It is essential for readers to gain a thorough understanding of their data’s
characteristics to choose the appropriate computational option.

In the first situation, we do not assume a common between-study variance
component across subgroups and thus do not pool within-group τ2 estimates. In
R, we first fit a random-effects model for each subgroup, and then we combine the
estimated statistics into a data frame. In the next step, we fit a fixed-effect model
to compare the two estimated logit transformed proportions and recalculate the
summary proportion. The generic code is provided below:

# Assumption 1:

# Do not assume a common between -study variance

# component (not pooling within -group estimates of

# between -study variance)

# Option 1: no transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

pes.subgroup1 <- rma(yi , vi , data = ies , subset =

moderator == "subgroup1 ")

pes.subgroup2 <- rma(yi , vi , data = ies , subset =

moderator == "subgroup2 ")
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# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups. It will be used in the next step.

dat.diffvar <- data.frame(estimate =

c(pes.subgroup1$b , pes.subgroup2$b), stderror =

c(pes.subgroup1$se , pes.subgroup2$se), moderator =

c(" subgroup1", "subgroup2 "), tau2 =

round(c(pes.subgroup1$tau2 , pes.subgroup2$tau2),
3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

pes.moderator <- rma(estimate , sei = stderror , method

= "FE", data = dat.diffvar)

pes.moderator <- predict(pes.moderator)

# Display subgroup 1 summary effect size

print(pes.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 2: the logit transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

pes.logit.subgroup1 <- rma(yi , vi , data = ies.logit ,

subset = moderator == "subgroup1 ")

pes.logit.subgroup2 <- rma(yi , vi , data = ies.logit ,

subset = moderator == "subgroup2 ")

pes.subgroup1 <- predict(pes.logit.subgroup1 , transf

= transf.ilogit)

pes.subgroup2 <- predict(pes.logit.subgroup2 , transf

= transf.ilogit)

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups.
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dat.diffvar <- data.frame(estimate =

c(pes.logit.subgroup1$b , pes.logit.subgroup2$b),
stderror = c(pes.logit.subgroup1$se ,
pes.logit.subgroup2$se), moderator =

c(" subgroup1", "subgroup2 "), tau2 =

round(c(pes.logit.subgroup1$tau2 ,
pes.logit.subgroup2$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

pes.logit.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.moderator <- predict(pes.logit.moderator , transf =

transf.ilogit)

# Display subgroup 1 summary effect size

print(pes.subgroup1); print(pes.logit.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2); print(pes.logit.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 3: the double arcsine transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.subgroup1 <- rma(yi ,vi ,data = ies.da , subset =

moderator == "subgroup1 ")

pes.da.subgroup2 <- rma(yi ,vi ,data = ies.da , subset =

moderator == "subgroup2 ")

pes.subgroup1 <- predict(pes.da.subgroup1 , transf =

transf.ipft.hm,targ = list(ni = dat$total))
pes.subgroup2 <- predict(pes.da.subgroup2 , transf =

transf.ipft.hm,targ = list(ni = dat$total))
# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups.

dat.diffvar <- data.frame(estimate =

c(pes.da.subgroup1$b , pes.da.subgroup2$b),
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stderror = c(pes.da.subgroup1$se ,
pes.da.subgroup2$se), moderator = c(" subgroup1",

"subgroup2 "), tau2 =

round(c(pes.da.subgroup1$tau2 ,
pes.da.subgroup2$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.moderator <- predict(pes.da.moderator , transf =

transf.ipft.hm, targ = list(ni = dat$total))
# Display subgroup 1 summary effect size

print(pes.subgroup1); print(pes.da.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2); print(pes.da.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

In the second situation, we assume a common between-study variance compo-
nent across subgroups and pool within-group τ2 estimates. Generally speaking,
unless there is a substantial number of studies available within each subgroup
(i.e., more than five studies) or compelling evidence suggesting within-group
variances vary from one subgroup to the next, it is sufficient to calculate sum-
mary proportions and create forest plots with a pooled τ2 (Borenstein et al.
(2009)). In this case, we can directly use the rma() function and fit a mixed-
effects model to evaluate the potential moderator. In R, we still need to combine
the estimated statistics into a new data frame for us to calculate a new overall
summary proportion using a pooled τ2 across all studies.

# Assumption 2: Assume a common between -study variance

# component (pool within -group estimates of

# between -study variance)

# Option 1: no transformation

# Conduct moderator analysis

subganal.moderator <- rma(yi, vi, data = ies , mods = ~

moderator)

pes.subg.moderator <- predict(subganal.moderator)

# Obtain estimates for each subgroup
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pes.subgroup1 <- rma(yi , vi , data = ies , mods = ~

moderator == "subgroup2 ")

pes.subgroup2 <- rma(yi , vi , data = ies , mods = ~

moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.subgroup1$b)[1], (pes.subgroup1$b)[1]),
stderror = c((pes.subgroup2$se)[1],
(pes.subgroup2$se)[1]), tau2 =

subganal.moderator$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

pes.moderator <- rma(estimate , sei = stderror , method

= "FE", data = dat.samevar)

pes.moderator <- predict(pes.moderator)

# Display subgroup 1 summary effect size

print(pes.subg.moderator[study label 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study label 2])

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 2: the logit transformation

# Conduct moderator analysis

subganal.moderator <- rma(yi, vi, data = ies.logit ,

mods = ~ moderator)

pes.subg.moderator <- predict(subganal.moderator ,

transf=transf.ilogit)

# Obtain estimates for each subgroup

pes.logit.subgroup1 <- rma(yi , vi , data = ies.logit ,

mods = ~ moderator == "subgroup2 ")

pes.logit.subgroup2 <- rma(yi , vi , data = ies.logit ,

mods =~ moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.logit.subgroup1$b)[1],(pes.logit.subgroup2$b)[1]),
stderror =

c((pes.logit.subgroup1$se)[1],(pes.logit.subgroup2$se)[1]),
tau2 = subganal.moderator$tau2)

# Recalculate summary effect size assuming a common

# heterogeneity component
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pes.logit.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.moderator <- predict(pes.logit.moderator , transf =

transf.ilogit)

# Display subgroup 1 summary effect size

print(pes.subg.moderator[study lable 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study lable 2])

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 3: the double arcsine transformation

# Conduct moderator analysis

# targ can also be set to list(ni = 1/(pes.da$se)^2)
subganal.moderator <- rma(yi, vi, data = ies.da, mods

= ~ moderator)

pes.subg.moderator <- predict(subganal.moderator ,

transf = transf.ipft.hm , targ = list(ni=dat$total))
# Obtain estimates for each subgroup

pes.da.subgroup1 <- rma(yi , vi , data = ies.da , mods =

~ moderator == "subgroup2 ")

pes.da.subgroup2 <- rma(yi , vi , data = ies.da , mods =

~ moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.da.subgroup1$b)[1],
(pes.da.subgroup2$b)[1]), stderror =

c((pes.da.subgroup1$se)[1],
(pes.da.subgroup2$se)[1]), tau2 =

subganal.moderator$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.moderator <- predict(pes.da.moderator , transf =

transf.ipft.hm, targ = list(ni = dat$total))
# Display subgroup 1 summary effect size

print(pes.subg.moderator[study lable 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study lable 2])

# Display subgroup analysis results
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print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

To help readers better understand how to use the code templates, we will now
illustrate their implementation with the running example. For demonstrative
purposes, we will use the variable “study design” (Birth cohort vs. Others) as
the moderator and conduct the analysis with the logit transformation under
both assumptions.

In the first situation, we do not assume a common between-study variance
component across subgroups:

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator studydesign

pes.logit.birthcohort <- rma(yi , vi , data=ies.logit ,

subset=studydesign == "Birth cohort", method ="DL")

pes.logit.others <- rma(yi , vi , data=ies.logit ,

subset=studydesign == "Others", method = "DL")

pes.birthcohort <- predict(pes.logit.birthcohort ,

transf = transf.ilogit , digits = 5)

pes.others <- predict(pes.logit.others , transf =

transf.ilogit , digits = 5)

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named studydesign to distinguish two

# subgroups.

dat.diffvar <- data.frame(estimate =

c(pes.logit.birthcohort$b , pes.logit.others$b),
stderror = c(pes.logit.birthcohort$se ,
pes.logit.others$se), studydesign = c(" Birth

cohort", "Others "), tau2 =

round(c(pes.logit.birthcohort$tau2 ,
pes.logit.others$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.studydesign <- rma(estimate , sei = stderror ,

data = dat.diffvar , mods = ~ studydesign , method =

"FE")

# Recalculate summary effect size assuming different

# heterogeneity components

pes.logit.studydesign <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.studydesign <- predict(pes.logit.studydesign ,

transf = transf.ilogit)

# Display summary effect sizes of the two subgroups
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print(pes.birthcohort , digits = 6);

print(pes.logit.birthcohort , digits = 3)

print(pes.others , digits = 6); print(pes.logit.others ,

digits = 3)

# Display subgroup analysis results

print(subganal.studydesign , digits = 3)

# Display recomputed summary effect size

print(pes.studydesign , digits = 6)

The outcomes of the subgroup analysis appear in Figure 13.

pred ci.lb ci.ub pi.lb pi.ub
0.000352 0.000158 0.000782 0.000045 0.002737

Random -Effects Model (k = 6; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.932 (SE = 0.866)
tau (square root of estimated tau^2 value): 0.966
I^2 (total heterogeneity / total variability): 98.55%
H^2 (total variability / sampling variability): 68.92

Test for Heterogeneity:
Q(df = 5) = 344.594 , p-val < .001

Model Results:

estimate se zval pval ci.lb ci.ub
-7.952 0.408 -19.501 <.001 -8.752 -7.153 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub pi.lb pi.ub
0.000472 0.000341 0.000653 0.000169 0.001317

Random -Effects Model (k = 11; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.247 (SE = 0.175)
tau (square root of estimated tau^2 value): 0.497
I^2 (total heterogeneity / total variability): 95.76%
H^2 (total variability / sampling variability): 23.59

Test for Heterogeneity:
Q(df = 10) = 235.944 , p-val < .001

Model Results:

estimate se zval pval ci.lb ci.ub
-7.658 0.166 -46.161 <.001 -7.984 -7.333 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fixed -Effects with Moderators Model (k = 2)

I^2 (residual heterogeneity / unaccounted variability): 0.00%
H^2 (unaccounted variability / sampling variability): 1.00
R^2 (amount of heterogeneity accounted for): NA%

Test for Residual Heterogeneity:
QE(df = 0) = 0.000 , p-val = 1.000
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Test of Moderators (coefficient 2):
QM(df = 1) = 0.445 , p-val = 0.505

Model Results:
estimate se zval pval ci.lb ci.ub

intrcpt -7.952 0.408 -19.501 <.001 -8.752 -7.153 ***
studydesignOthers 0.294 0.440 0.667 0.505 -0.569 1.157

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub
0.000453 0.000335 0.000611

Figure 13. A subgroup analysis assuming different between-study variance compo-
nents

From the output above, we can derive that the summary effect estimates
are 0.00035 (95% CI = 0.00016, 0.00078), 0.00047 (95% CI = 0.00034, 0.00065),
and 0.00045 (95% CI = 0.00034, 0.00061) for the two subgroups and the overall
group of studies, respectively. Note that the subgroup summary effect estimates
are derived by taking the exponential of the model results (e.g., exp(-7.952) =
0.00035). When we fit separate random-effects models in the two subgroups, we
decide to allow the amount of variance within each set of studies to be different,
which results in two different within-group estimates of τ2 (0.93 and 0.25 for
studies using the birth cohort design and other study designs, respectively). In
other words, studies within each subgroup share the same estimate of τ2 .

The results reveal that the difference between the two subgroup summary
estimates is not statistically significant (QM (1) = 0.45, p = 0.51). Note that
the sum of the within-group heterogeneity across the subgroups in the fixed-
effect model is equal to QE (0) = 0, p = 1. This is because the within-group
heterogeneity has been accounted for in each subgroup (Q(df = 5) = 344.594,
p < 0.001; Q(df = 10) = 235.944, p < 0.01, respectively) in the random-effects
model, thus there is no heterogeneity left to be accounted for.

In the second situation where we assume a common between-study variance
component across subgroups, execute the following code:

# Conduct a subgroup analysis based on studydesign

subganal.studydesign <- rma(yi, vi, data = ies.logit ,

mods = ~ studydesign , method = "DL")

pes.subg.studydesign <- predict(subganal.studydesign ,

transf = transf.ilogit)

# Obtain estimates for each subgroup

pes.logit.birthcohort <- rma(yi , vi , data = ies.logit ,

mods = ~ studydesign == "Others", method = "DL")

pes.logit.others = rma(yi , vi , data = ies.logit , mods

= ~ studydesign == "Birth cohort", method = "DL")
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# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.logit.birthcohort$b)[1],
(pes.logit.others$b)[1]), stderror =

c((pes.logit.birthcohort$se)[1],
(pes.logit.others$se)[1]), tau2 =

subganal.studydesign$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

pes.logit.studydesign = rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.studydesign = predict(pes.logit.studydesign ,

transf = transf.ilogit)

# Display subgroup summary effect sizes

print(pes.subg.studydesign [1], digits = 6)

print(pes.subg.studydesign [17], digits = 6)

# Display subgroup analysis results

print(subganal.studydesign , digits = 4)

# Display recomputed summary effect size

print(pes.studydesign , digits = 6)

The outcome of the subgroup analysis appears in Figure 14. This output is
fairly self-explanatory. Based on this output, we can derive that we have fitted a
mixed-effects model, meaning a random-effects model is used to combine studies
within each subgroup and a fixed-effect model is used to combine the subgroups
and estimate the summary effect size. The amount of within-group heterogeneity
across the two subgroups is assumed to be the same (τ2 = 0.44 in this case). This
combined estimate is derived by pooling the two within-group variance estimates
as displayed earlier (τ2 = 0.93 and τ2 = 0.25). Once we have the pooled estimate,
we then apply it to each study across the two subgroups, meaning every study
now shares the same estimate of τ2 (i.e., 0.44).
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Mixed -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.4427 (SE = 0.2518)
tau (square root of estimated tau^2 value): 0.6654
I^2 (residual heterogeneity / unaccounted variability): 97.42%
H^2 (unaccounted variability / sampling variability): 38.70
R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:
QE(df = 15) = 580.5386 , p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 0.9202 , p-val = 0.3374

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -7.9742 0.2892 -27.5726 <.0001 -8.5411 -7.4074 ***
studydesignOthers 0.3452 0.3599 0.9593 0.3374 -0.3601 1.0506

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub pi.lb pi.ub
1 0.000344 0.000195 0.000606 0.000083 0.001425

pred ci.lb ci.ub pi.lb pi.ub
17 0.000486 0.000319 0.000739 0.000124 0.001910

pred ci.lb ci.ub
0.000430 0.000307 0.000602

Figure 14. A subgroup analysis assuming a common between-study variance compo-
nent

The test of moderators suggests that the study design does not have a mod-
erating effect (QM (1) = 0.92, p = 0.34). That is, when we divide the included
studies according to their study designs, we fail to find any significant differences
between the two subgroups of effect sizes. This conclusion is also supported by
the results of the test for residual heterogeneity: there is significant unexplained
heterogeneity left in the effect sizes (QE (15) = 580.54, p < 0.01), which can also
explain why R2 shows 0%. Finally, the estimates for the two subgroup summary
proportions and the overall summary proportion are displayed at the bottom of
the output. They are 0.00034 (95% CI = 0.0002, 0.00061), 0.00049 (95% CI =
0.00032, 0.00074), and 0.00043 (95% CI = 0.00031, 0.0006), respectively.

There are several other points that are worth noting. Under the framework
of the mixed-effect model, the residual heterogeneity estimate here (QE (15) =
580.54) is the sum of the two within-group heterogeneity estimates we have
obtained above in the random-effects model (Q(df = 5) = 344.59, Q(df = 10)
= 235.94, respectively). When we dummy-code a moderator with two categories,
the subset of studies coded as 0 in a dummy variable will function as the reference
group, represented by the intercept of the fitted mixed-effects regression model.
The other subset of studies coded as 1 will be compared against the reference
group. In the running example, the “Birth cohort” group is the reference group,
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while the “Others” group is compared against it. The estimate of the intercept
(i.e., -7.97) is the logit-transformed summary effect size of the reference group
(i.e, logit(0.00034)). The slope is estimated to be 0.35. The sum of the slope and
the intercept is equal to -7.629, which is the logit-transformed summary effect
size of the “Others” group (i.e., logit(0.00049)).

When calculating the summary effect estimate across the subgroups, the out-
comes may vary depending on the specific τ2 estimate applied. However, even
with this variation, the two computational models may reach the same qualita-
tive conclusions. For instance, in the given example, both models agree that the
study design doesn’t significantly influence the results. In general, Borenstein et
al. (2009) recommend pooling the separate τ2 when the number of studies in a
subgroup is small (i.e., less than five studies). In doing so, we can obtain a more
accurate estimate of τ2. In contrast, if we decide not to pool them, each sub-
group should ideally consist of at least five studies to ensure moderately stable
estimates of τ2.

7.4 Creating forest plots in the presence of subgroups in R

Many authors conducting meta-analyses of proportions did not construct for-
est plots correctly for their subgroup analyses. Specifically, numerous published
meta-analytic studies did not present the appropriate estimates for either the
overall or subgroup summary proportions in their forest plots. These authors
failed to consider the two possible assumptions about τ2 that we have discussed
in Section 7.3.

In this section, we will construct forest plots with subgroups under different
assumptions (i.e., separate between-study variance components vs. a common
between-study variance component). We have obtained the estimates for sub-
group and overall summary proportions in the previous section, which can be
used to create our forest plots. The following code is used to construct forest
plots under the first assumption:

# Assumption 1: Do not assume a common between -study

# variance component (use separate within -group

# estimates of between -study variance).

# Option 1: no transformation

ies.summary <- summary(ies , ni = dat$total)
forest(ies.summary$yi , ci.lb = ies.summary$ci.lb,

ci.ub = ies.summary$ci.ub, rows = c(d:c, b:a))

# Option 2: the logit transformation

ies.summary <- summary(ies.logit , transf =

transf.ilogit)

forest(ies.summary$yi , ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub, rows = c(d:c, b:a))
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# Option 3: the double arcsine transformation

ies.summary <- summary(ies , transf = transf.ipft , ni =

dat$total)
forest(ies.summary$yi ,

ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub,
rows = c(d:c, b:a))

The code above merely builds the “bones” of a forest plot. More components
need to be added to it (e.g., texts, headers, labels, etc.). We also have to man-
ually adjust its appearance to make it look more professional. Dividing a set
of included studies into several subgroups in a forest plot using metafor has to
be done manually with the rows argument. Readers may have noticed that the
parameters in the argument (a, b, c, and d denotes a particular position on the
Y -axis) are ordered from right to left. a specifies the vertical position for plotting
the first study in the first subgroup; b specifies the vertical position for plotting
the last study in the first subgroup; c specifies the vertical position for plotting
the first study in the second subgroup; d specifies the vertical position for plot-
ting the last study in the second subgroup. Mathematically speaking, b− a+ 1
and d − c + 1 should be equal to the number of studies in their corresponding
subgroups. c and b do not need to be consecutive numbers. If we order these
parameters from left to right, studies will be displayed in reverse order with the
first study being displayed at the bottom of the plot and the last study being
displayed at the top of all the studies.

To illustrate, we can execute the following code to create a forest plot using
the study design as the moderator:

# Run the subgroup analysis code with the assumption

# of separate within -group estimates of between -study

# variance components first , then run the following

# code

ies.summary <- summary(ies.logit , transf =

transf.ilogit)

# par() function specifies font parameters

par(cex = 1, font = 6)

# Set up forest plot

# order= argument ensures that studies are divided by

# the subgroup variable

forest(ies.summary$yi ,
order = ies.summary$studesg ,
ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub,
ylim = c(-5, 23),

xlim = c(-0.005, 0.005) ,

slab = paste(dat$author , dat$year , sep = ","),

ilab = cbind(data = dat$cases , dat$total),
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ilab.xpos = c(-0.0019, -0.0005),

ilab.pos = 2,

rows = c(19:14 , 8.5: -1.5),

at = c(seq(from = 0, to = 0.004, by = 0.001)),

refline = pes.studydesign$pred ,
main = "",

xlab = "Proportion",

digits = 4)

# Add summary polygons for the subgroup and overall

# proportions

par(cex = 1.2, font = 7)

addpoly(pes.birthcohort$pred , ci.lb =

pes.birthcohort$ci.lb , ci.ub =

pes.birthcohort$ci.ub , row = 12.8, digits = 5)

addpoly(pes.others$pred , ci.lb = pes.others$ci.lb ,
ci.ub = pes.others$ci.ub , row = -2.7, digits = 5)

addpoly(pes.studydesign$pred , ci.lb =

pes.studydesign$ci.lb , ci.ub =

pes.studydesign$ci.ub , row = -4.6, digits = 5)

# Add column headings to the plot

par(cex = 1.1, font = 7)

text (-0.005, 21.8, pos = 4, "Study")

text(c(-0.0026, -0.0014), 21.8, pos = 4, c(" Cases",

"Total "))

text (0.0025 , 21.8, pos = 4, "Proportion [95% CI]")

# Add text for the subgroups

text (-0.005, c(9.7, 20.2), pos = 4, c(" Others", "Birth

cohort "))

# Add text for the subgroup and overall proportions

par(cex = 1, font = 7)

text (-0.005, -4.6, pos = 4, c(" Overall proportion "))

text (-0.005, 12.8, pos = 4, c(" Subgroup proportion "))

text (-0.005, -2.7, pos = 4, c(" Subgroup proportion "))

abline(h = -3.7)

The generated forest plot is shown in Figure 15. Notice that the overall
summary proportion is 0.00045 (95% CI = 0.00033, 0.00061) under the given
assumption, which is different than the one derived in the absence of subgroups
(0.00042).
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Figure 15. A forest plot with subgroups assuming different τ2 generated by metafor

Under the assumption of a common τ2, we employ the rma() function in
metafor in conjunction with the metaprop() and forest() functions in meta to
produce a forest plot with subgroups. The inclusion of predictors is set by the
mods argument in metafor and the byvar argument in meta. In the metaprop()
function, two arguments are particularly noteworthy: tau.common determines
whether a common τ2 estimate is applied across subgroups, while tau.preset
sets the value of τ . Given our assumption, we set tau.common to TRUE and
tau.preset to the pooled τ estimate obtained from the previous section.

# Assumption 2: Assume a common between -study variance

# component (pooling within -group estimates of

# between -study variance)

# data= could also be set to ies.logit or ies.da

subganal.moderator <- rma(yi, vi, data = ies , mods = ~

moderator , method = "DL")

# sm= could also be set to "PLO" or "PFT"

# tau.common= must be TRUE and tau.preset must be

# sqrt(subganal.moderator$tau2)
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pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PRAW", byvar = moderator ,

tau.common=TRUE , tau.preset =

sqrt(subganal.moderator$tau2))
# resid.hetstat= must be FALSE

forest(pes.summary , resid.hetstat = FALSE)

Assuming that we apply a common τ2 across subgroups, the following code
creates a customized forest plot using the study design as the moderator:

subganal.studydesign <- rma(yi, vi, data = ies.logit ,

mods = ~ studydesign , method = "DL")

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PLO", method.tau = "DL", method.ci =

"NAsm", byvar = studydesign , tau.common=TRUE ,

tau.preset = sqrt(subganal.studydesign$tau2))
forest(pes.summary ,

common = FALSE ,

overall = TRUE ,

overall.hetstat = TRUE ,

resid.hetstat = FALSE ,

subgroup.hetstat = TRUE ,

test.subgroup = FALSE ,

fs.hetstat = 10,

print.tau2 = TRUE ,

print.Q = TRUE ,

print.pval.Q = TRUE ,

print.I2 = TRUE ,

rightcols = FALSE ,

xlim = c(0 ,4),

leftcols = c(" studlab", "effect", "ci"),

leftlabs = c("Study", "Proportion", "95% C.I."),

text.random.w = "Subgroup proportion",

text.random = "Overall proportion",

xlab = "Prevalence of CC (%)",

pscale = 1000,

smlab = " ",

weight.study = "random",

squaresize = 0.5,

col.square = "navy",

col.diamond = "maroon",

col.diamond.lines = "maroon",

digits = 2)

The generate forest plot is presented in Figure 16:
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Figure 16. A forest plot with subgroups assuming a common τ2

Notice that the estimates of τ2 are identical (0.4427) across two subgroups.
The overall summary proportion and its 95% CI (0.43; 95% CI = 0.31, 0.6) are
calculated across two subgroups based on the same τ2 estimate, as well.

7.5 Conducting meta-regression with different types of predictors
in R

When we want to evaluate the influence of a continuous moderator, the R code
is identical to what we used for subgroup analyses:

#data= could also be set to ies.logit or ies.da

metareg.moderator <- rma(yi , vi , data = ies , mods = ~

moderator)

As mentioned above, a mix of continuous and categorical moderators can be
regressed on the effect sizes in a meta-regression model. This can be achieved by
using the plus sign in the mods argument:

#data= could also be set to ies.logit or ies.da

metareg.moderators <- rma(yi , vi , data = ies , mods =

~moderatorA + moderatorB + moderatorC + ...)
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7.6 Visualizing moderator analyses with scatter plots in R

Scatter plots serve as an invaluable visualization tool when assessing potential
moderator variables. Such plots, as depicted in Figure 17, are constructed with
a regression line, flanked by two curved dotted lines that represent the 95% con-
fidence interval bounds, with studies represented by circles drawn proportional
to their study weights (i.e., larger studies appear as larger circles). What’s im-
portant in scatter plots is the slope of the regression line. Specifically, if the
regression line is horizontal or nearly so, it suggests there’s no significant asso-
ciation between the moderator and the effect sizes. Conversely, if the regression
line has a noticeable slope, it indicates the effect sizes change in relation to the
value of the moderator. To determine the significance of this relationship, one
can look at the slope and its significance test. A notably positive or negative
slope indicates that the predictor plays a significant moderating role, potentially
explaining a significant portion of the observed heterogeneity.

Figure 17. A basic scatter plot

In this section, we will employ the regplot() function in the metafor package
to create scatter plots. regplot() offers a distinct advantage over R’s native plot()
function. It simplifies the coding process, making it more user-friendly, especially
for those less familiar with R. It helps users to customize their scatter plots with
ease.

The following generic code creates weighted scatter plots for subgroup anal-
yses. In a weighted scatter plot, a study is represented by a circle. The weight
of a study is depicted by the size of the circle, with a larger circle indicating a
greater study weight. In an unweighted scatter plot, the circles are of equal size.
Additionally, it is necessary to use dummy variables for categorical moderators
(e.g., variables labeled as “studesg” in the running example).
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# Option 1: no transformation

regplot(subganal.dummyvar , mod = "dummyvar ")

# Option 2: the logit transformation

regplot(metareg.dummyvar , mod = "dummyvar",

transf=transf.ilogit)

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
regplot(subganal.dummyvar , mod = "dummyvar",

transf=transf.ipft.hm , targ=list(ni=dat$total))

Using the running example, we can create a customized scatter plot with a re-
gression line and corresponding 95% CI bounds for “studesg” with the following
code:

# Conduct a subgroup analysis based on the dummy

# variable "studesg"

subganal.studesg=rma (yi, vi, data = ies.logit , mods =

~ studesg , method = "DL")

# Create a scatter plot

regplot(subganal.studesg , mod = "studesg",

xlab = "Study Design",

transf=transf.ilogit ,

legend = FALSE ,

label = TRUE ,

shade = "white",

bg = "transparent",

lcol = "navy",

digits = 4)

The generated scatter plot is shown in Figure 18.
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Figure 18. A scatter plot using the study design as the moderator

Upon visual inspection of the scatter plot, it is evident that the slope of
the estimated regression line is neither entirely horizontal nor excessively steep,
suggesting a weak association between the study design and the observed ef-
fects. Furthermore, nearly half of the studies fall outside of the 95% CI bounds,
indicating the presence of potentially unidentified moderators.7

In the second example, we use the sample size as the moderator (the variable
“size” in the provided data set) and evaluate it in a subgroup analysis:

subganal.size <- rma(yi, vi, data = ies.logit , mods =

~ size , method = "DL")

regplot(subganal.size ,

mod = "size",

transf=transf.ilogit ,

xlab = "Sample size",

legend = "topright",

label = TRUE ,

shade = "white",

bg = "transparent",

lcol = "navy",

digits = 6)

7 If one wants to change the curved slope and 95% CIs lines to straight lines, further
steps are needed in R. I’ve included relevant R code in the supplementary materials.
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The generated scatter plot is presented in Figure 19. The code is self-explanatory.
Note that the legend argument determines if a legend is added to the scatter
plot, with its location specified by the user.
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Figure 19. A scatter plot using sample size as the moderator

In this case, the estimated regression line exhibits a noticeably steeper slope.
A visual inspection of this scatter plot indicates a negative correlation between
the sample size and the observed proportions. When the sample size is less than
100,000, the proportions tend to be higher; when the sample size is larger than
100,000, the proportions tend to be lower. Again, it is important to acknowledge
that potential missing moderators may introduce a degree of omitted variable
bias here. The outcomes of the subgroup analysis are shown below in Figure 20.
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Mixed -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.1398 (SE = 0.0911)
tau (square root of estimated tau^2 value): 0.3739
I^2 (residual heterogeneity / unaccounted variability): 93.90%
H^2 (unaccounted variability / sampling variability): 16.40
R^2 (amount of heterogeneity accounted for): 57.07%

Test for Residual Heterogeneity:
QE(df = 15) = 246.0073 , p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 36.4266 , p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -7.0500 0.1643 -42.9109 <.0001 -7.3720 -6.7280 ***
size -1.2867 0.2132 -6.0354 <.0001 -1.7046 -0.8689 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Figure 20. A subgroup analysis for sample size

The results of the test of moderators (QM (1) = 36.43, p < 0.0001) as well
as the significant regression coefficient (−1.29; Z (15) = −6.04, p < 0.0001) are
consistent with our visual interpretation. In stark contrast with the previous
subgroup analysis, the R2 indicates that 57.07% of the true heterogeneity in the
observed effect size can be explained by the sample size.

In the running example, Wu et al. (2012) did not examine any continuous
predictors. To demonstrate how to generate a weighted scatter plot for a meta-
regression with a continuous predictor in R, we will plot the observed effect
sizes against the year of publication, represented by the “year” variable in the
provided dataset. The code is provided below:

metareg.year <- rma(yi , vi , data = ies.logit , mods = ~

year , method = "DL")

regplot(metareg.year ,

mod = "year",

transf = transf.ilogit ,

xlab = "Year of publication",

legend = "topleft",

label = TRUE ,

shade = "white",

bg = "white",

lcol = "navy",

digits = 6)

The generated scatter plot is presented in Figure 21.
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Figure 21. A scatter plot using the publication year as the moderator

8 Common procedures addressing publication bias do
not apply to meta-analyses of proportions

One of the major threats to the validity of meta-analysis is publication bias.
This is a phenomenon where journals tend to accept and publish a study de-
pending on the direction or strength of its results (MarksAnglin & Chen, 2020).
Compared with studies with statistically significant results, small studies re-
porting insignificant results or small effects are less likely to be published and
subsequently included in a meta analysis (Dickersin, 1990; Littell et al., 2008).
Omitting unpublished studies in a systematic review could lead to a biased
meta-analytic estimate of the summary effect (Song, Eastwood, Gilbody, Duley,
& Sutton, 2000). As smaller studies require larger effect sizes to achieve statis-
tical significance (Sterne, Gavaghan, & Egger, 2000), only those small studies
with large effects get published and included in a relevant meta-analysis. Thus,
a meta-analysis that only includes studies with large effects and fails to include
studies with small effects at the same time could overestimate the true effect
(Cuijpers, 2016).

Current methods of detecting publication bias and assessing its impact are
developed for meta-analyses of randomized control trials. These methods rely
on certain assumptions (Borenstein et al., 2009). Firstly, regardless of the sig-
nificance of their effects, large studies are most likely to be published. Secondly,
only small studies demonstrating significant and substantial effects tend to be
published. Lastly, most moderate-scale studies that yield significant results also
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tend to be published. Consequently, as the sample size of a study decreases, the
likelihood of it being affected by publication bias increases. Traditional meth-
ods such as trim-and-fill, the rank correlation test, Egger’s regression model,
as well as the more sophisticated weighted selection approaches (e.g., Vevea &
Hedges, 1995; Vevea & Woods, 2005) have all operated under the assumption
that the publication likelihood depends on sample size, statistical significance,
or the direction of results (Coburn & Vevea, 2015).

While empirical research has confirmed the dominant role of statistical sig-
nificance in study publication (Preston, Ashby, & Smyth, 2004), the actual pub-
lication selection process across different fields is much more intricate. Cooper,
DeNeve, and Charlton (1997) have demonstrated that decisions regarding study
publication are influenced by various criteria or “filters” set by journal editors
and reviewers, independent of methodological quality and significance. These
filters can include factors such as research funding sources, societal preferences
related to race and gender during the study’s conduction, and even findings that
challenge pre-existing beliefs. Consequently, the traditional methods may fail to
capture the full complexity of the publication selection process.

In practice, authors of meta-analyses of proportions have employed these
methods in their attempts to detect publication bias. However, studies included
in meta-analyses of proportions are observational and non-comparative. In other
words, they only report a proportion or prevalence of an event, which inherently
precludes the testing of statistical significance for their findings (Borenstein,
2019). Consequently, the interpretation of the outcomes from such studies is not
contingent on the null hypothesis significance test and thus cannot be catego-
rized as either “positive/negative” or “desirable/undesirable.” The significance
levels are, therefore, unlikely to influence publication decisions regarding these
studies (Maulik, Mascarenhas, Mathers, Dua, & Saxena, 2011). Authors who re-
port low proportions (e.g., rare event rates) are equally likely to have their work
published as those reporting very high proportions (e.g., high cure rates), given
that the study quality meets rigorous publication standards. Consequently, the
traditional publication bias assessment procedures may struggle to identify pub-
lication bias in meta-analyses of proportions, as bias in non-comparative studies
can be introduced for reasons unrelated to statistical significance.

Borenstein (2019) warns meta-analysts that it is a mistake to apply publi-
cation bias procedures to studies of prevalence. Our suggestion aligns with his.
When conducting meta-analyses of proportions, we believe that the traditional
publication bias tests and modeling tools developed for randomized controlled
trials have limited utility and, therefore, should not be used. Any conclusions
drawn regarding the presence of publication bias based on these methods should
be approached with caution.
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