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Abstract. A novel algorithmic modeling method is proposed to deter-
mine dissimilarities between subjects for longitudinal data clustering us-
ing natural cubic smoothing splines. Although various modeling tech-
niques have to date been suggested for conducting such analyses, a major
problem with many of these approaches is that they often impose overly
restrictive assumptions. As a consequence, potentially problematic inter-
pretations of data clustering regarding both the number and the nature
of the growth trajectory patterns can occur. The proposed method is
shown to be highly effective in identifying heterogeneity of growth tra-
jectories in settings with data exhibiting complex nonlinear longitudinal
patterns and without imposing potentially problematic constraints on
the model.
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1 Introduction

The accurate depiction of longitudinal data to reveal individual differences has
immense consequences for the understanding and classification of developmen-
tal change in social and behavioral science research (Ruscio, 2007). Numerous
statistical models to depict longitudinal data have to date been proposed and
detailed descriptions of them can be found in the literature (e.g., Bollen & Cur-
ran, 2006; Flora, 2008; Grimm & Marcoulides, 2016; Grimm, Ram, & Estabrook,
2016; Marcoulides & Khojasteh, 2018; McArdle & Nesselroade, 2014). The pros
and cons of these various statistical models have also been extensively discussed,
including guidelines on the most appropriate ways to make informed choices,
advocating that although no single model may at all times be right, one can
at least determine which models are informative (e.g., Bollen & Curran, 2006;
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Grimm & Marcoulides, 2016; Grimm et al., 2016; Marcoulides & Khojasteh,
2018; McArdle & Nesselroade, 2014; Wood, Steinley, & Jackson, 2015).

One particularly informative and popular model that is regularly used to
examine intra-individual changes over time, inter-individual differences in intra-
individual changes over time, as well as a variety of other intra- and inter-
individual disparities over time is the latent growth curve modeling approach
(Baltes & Nesselroade, 1979). A strategy that is frequently used in this model-
ing approach in order to characterize longitudinal data is to model the growth
trajectories as linear functions. While linear patterns of change over time are
regularly encountered in social and behavioral science research, nonlinear pat-
terns are much more prevalent with extended measurements over time (Grimm
et al., 2016). For example, the development of crystallized and fluid intelligence
is generally linear when examined over short time periods, but over the entire
life span is best represented by a nonlinear model (Finkel, Reynolds, McArdle,
Gatz, & Pedersen, 2003). Similarly, growth in human height at adolescence might
display linear increases, but if examined from birth to adulthood will generally
display nonlinearity (Grimm & Marcoulides, 2016; Jones & Bayley, 1941).

Due to a variety of complexities that can be encountered when fitting such
nonlinear models, a number of different approaches have been proposed in the lit-
erature to capture growth patterns. For example, a direct extension of the linear
model frequently used to capture nonlinear components of change is the poly-
nomial function. Other nonlinear extensions include B-Splines, Bezier Curves,
Catmull-Rom Splines, Hermite Splines, Gompertz Curves, and Piecewise Splines
(Grimm & Marcoulides, 2016; James, Witten, Hastie, & Tibshirani, 2013; Mar-
coulides & Khojasteh, 2018; Rice, 1976). However, the necessity to a priori de-
termine the functional form or the location of the change point indicating the
occurrence of shifts in the studied process (also referred to as knots) has limited
their overall utility (Bollen & Curran, 2006).

Some alternative growth modeling approaches, such as the natural cubic
smoothing spline model and the automated latent growth fitting model, that
are able to offset the above-mentioned limitations have also recently been in-
troduced in the literature (e.g., Marcoulides, 2018; Marcoulides & Khojasteh,
2018). A key feature of the natural cubic smoothing spline model is that, unlike
other spline approaches, it completely avoids the problem of knot selection by
using each measured time point as a knot with appropriate coefficients estimated
accordingly (Lin & Zhang, 1999). In contrast, the automated latent growth fit-
ting model uses an optimization procedure and algorithmically determines the
precise location of the knots in piecewise latent growth models (Marcoulides,
2018). Although both these models can be considered variants of approaches to
generate interpolation curves for longitudinal data, an important feature is that
they readily enable a researcher to determine directly from the data the func-
tional form of the trend over time and the extent to which individual growth
trajectories vary around that trend.

Even though it is frequently assumed that sampled individuals in a given
longitudinal study exhibit similar overall growth trends, there can be situations
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involving typological differences in change that require individuals be treated as
stemming from heterogeneous populations (Muthén & Shedden, 1999). Hetero-
geneity may either be a function of observed variables, whereupon the compo-
sition of individuals is related to specific contextual variables (e.g., individual
characteristics like gender) or heterogeneity is due to unobserved features, such
that the composition of individuals is not known ahead of time and must be
inferred from the data. In samples with observed heterogeneity, the analyses
can be performed using multi-group growth modeling methods as the observa-
tions consist of explicitly identifiable groups. With unobserved heterogeneity,
the growth patterns can be analyzed using any number of different growth mix-
ture models introduced to date in the literature (Marcoulides & Trinchera, 2019;
Muthén, 2001; Muthén & Shedden, 1999; Nagin, 2005). These different methods
are designed to identify clusters or classes of individuals that follow a similar de-
velopmental growth trajectory on an outcome of interest. The methods basically
utilize a combination of the common latent growth curve model and a finite mix-
ture model to identify a fixed but unknown number of classes exhibiting distinct
growth trajectories.

A noted limitation with commonly applied growth mixture modeling meth-
ods is that researchers often assume the growth trajectories to be the same for
all individuals within a class (Diallo, Morin, & Lu, 2016). This implies that,
while intercepts and slopes might be varied by class, individuals within a class
are assumed to have the same intercept and slope as a result of constraining the
intercept variance and slope variance to zero. Research, however, has determined
that class identification and class size can drastically differ when variances are
constrained to be homogenous versus when they are instead set to be heteroge-
neous across trajectories (Diallo et al., 2016; Infurna & Grimm, 2018). In many
circumstances, therefore, these different constraints provide distinct class infor-
mation and elicit different growth pattern interpretations (Infurna & Grimm,
2018). As a consequence, researchers using current growth mixture modeling ap-
proaches have been cautioned to be very attentive to the manner in which they
impose constraints on their growth models, as they can lead to incorrect con-
clusions regarding both the number and nature of the growth trajectories (Hipp
& Bauer, 2006; Infurna & Grimm, 2018; Infurna & Luthar, 2016). Given the
influence that model specifications can have on the findings of a growth mixture
analysis, alternative methods that do not depend so much on the choices and
assumptions made by a researcher about the trajectory covariance structures are
undeniably needed.

The purpose of this article is to introduce a novel mixture modeling approach
that can help researchers better understand patterns of growth trajectories and
effectively be used to determine homogeneous and heterogeneous individual tra-
jectories without imposing potentially problematic constraints on the model.
The approach is ideally suited for fitting data in settings where normal mix-
tures might not be appropriate and when assumptions regarding the trajectories
might be problematic (Genolini & Falissard, 2010; Usami, 2014). The approach
uses estimated derivatives of individual natural cubic smoothing spline func-
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tions to algorithmically group or cluster individuals who follow the same growth
trajectory patterns (see complete description below). Although derivatives are
frequently used to describe the shape of a function (e.g., the first derivative of
a function with respect to time quantifies the slope, while the second deriva-
tive quantifies the amount by which the slope is changing), to date, they have
received limited attention in the literature as tools for the clustering of individ-
uals observed longitudinally. A study by Tarpey and Kinateder (2003) is one
of the few to consider the clustering of individuals based on the derivatives of
functions. In their approach, they differentiated Fourier basis functions and then
used a K-means clustering algorithm on the coefficients of the derivative func-
tions. However, a major limitation with any method that relies on the use of
K-means clustering is that the number of clusters must be known ahead. The
proposed approach presented in this article uses derivatives of individual natu-
ral cubic smoothing spline functions and then applies a hierarchical clustering
algorithm that does not require that the number of clusters be known ahead of
time to group the derivative functions.

The current approach is motivated by some recent work by Marcoulides and
Trinchera (2019, 2021) on algorithmically detecting unobserved heterogeneity in
growth curve models of longitudinal data using individual residuals. The newly
proposed approach is also closely connected to what Hamaker, Asparouhov,
Brose, Schmiedek, and Muthén (2018) called a “bottom-up approach”, whereby
longitudinal data are first separately analyzed by person, and then comparisons
between the dynamics of different individuals are subsequently examined via
clustering procedures. It is important to note that the term clustering is used
here to refer to the task of grouping observations in such a way that those similar
to each other (using some measure of similarity) are grouped together and dis-
similar observations are grouped separately. The term is not used to imply any
one specific algorithm. Other terms that have also been used interchangeably in
the literature to describe the same activity include mixture modeling, numerical
taxonomy, typology, and unsupervised learning (Fraely & Raftery, 1998; Gates,
Lane, Varangis, Giovanello, & Guiskewicz, 2017; Han & Kamber, 2001).

All the above noted terms constitute clustering methods with pivotal domains
in the literature that can be further categorized into two distinct groupings based
on how they assign individuals, namely: (i) hard clustering, and (ii) soft cluster-
ing (Ezugwu et al., 2022). Hard clustering is where individuals are exclusively
associated with a single cluster or group. The segmentation of the individuals
in hard clustering is based either on a predefined number of groups or algorith-
mically determined directly from the data by maximizing the similarities among
individuals within the same cluster while also ensuring dissimilarities with in-
dividuals in different clusters. In contrast, with soft clustering individuals can
be simultaneously associated with multiple clusters. This implies that the de-
termined groups of individuals may even overlap, thereby exemplifying notable
ambiguity of group boundaries. Segmentation of the individuals in soft clustering
is generally based on an arbitrarily selected and predefined number of groups.
We note that the proposed approach presented in this article is classified as a
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hard clustering method. The method assumes the existence of a fixed but un-
known number of classes that is to be algorithmically determined from the data
based on the clustering of individuals with similar growth patterns. Accordingly,
all individuals are exclusively associated with just a single cluster or group.

The remainder of the article is organized in the following way. First, we briefly
review basic elements of latent growth curve models, natural cubic smoothing
cubic splines, and hierarchical clustering. This is followed by a description of
the proposed growth mixture modeling approach. Finally, we illustrate how this
modeling approach can be applied to empirical longitudinal data and examine
its overall performance via a small simulation study.

2 Model Specification

Consider a longitudinal study comprised of a set of observations on a variable Y
for a subject i, Yi = (Yi1, . . . , Yip) observed at times ti = (tmin, . . . , tmax) with
the times being either equally or unequally spaced, and for simplicity assume
that there are no relevant explanatory covariates (although the model can easily
be extended to include covariates). A growth model for subject i can then be
written as

Yi = f(xi) + εi (1)

where f(xi) is an unknown function and εi is assumed to follow a normal dis-
tribution with a mean 0 and variance σ2, that is, εi ∼ N

(
0, σ2

e

)
. A reasonable

estimate of the function f(xi) is to minimize the residual sums of squares (RSS)
using a natural cubic smooth spline, where RSS =

∑p
i=1[Yi − f(xi)]

2 (e.g., for
additional details see Marcoulides & Khojasteh, 2018 and references therein).
Mathematically this minimization can be written as

min

p∑
i=1

[Yi − f(xi)]
2 + λ

∫
f ′′(x)2dt (2)

that includes a “fit” and “penalty” formulation (Green & Silverman, 1994). The
term

∑p
i=1[Yi − f(xi)]

2 quantifies the extent to which the model fits the data
and the penalty term λ

∫
f ′′(x)2dt ensures that the determined curve is not only

based on its fit to the data (as quantified by its RSS) but by its smoothness, as
determined by the value λ. The most common method for selecting the optimal
value of λ is through cross-validation, whereby the value that results in the
smallest RSS is directly selected as the smoothing or tuning parameter (James
et al., 2013). The notation

∫
denotes an integral, to represent summation over the

entire range of the measured occasions, while f ′′ denotes the second derivative of
the function and reflects the amount by which the slope of the growth function
is changing.

The approach introduced in this paper starts with fitting a growth model as
defined in Equation (1) for each subject i and then uses the computed deriva-
tives of each obtained natural cubic smooth spline function to algorithmically
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group or cluster individuals who follow the same growth trajectory patterns. For
example, consider the following repeated measurements obtained from a single
subject in a longitudinal study on event-based changes over time in infant looking
behaviors (0.65, -2.57, -4.72, 2.14, 1.91, 4.92, 3.86, 2.27, 0.13, -0.25, 1.08, 2.60 - a
similar developmental study was recently conducted by Yamashiro, Shrout, and
Vouloumanos (2019). The measurements basically represent infant reaction time
scores to initiate a gaze when observing an action. Figure 1 shows a plot of the
natural cubic smoothing spline for this illustrative observation, and bears a clear
nonlinear pattern of growth. Using the computerized implementation described
and illustrated by Marcoulides and Khojasteh (2018), the second derivatives of
the displayed cubic smoothing spline function are, 0, -3.10, 18.90, -18.34, 11.84,
-9.59, 2.12, -2.04, 2.66, 1.96, -0.20, 0, respectively.3

Figure 1. Plot of natural cubic smoothing spline of the looking behaviors for a single
individual.

It was noted previously that the second derivatives reflect the amount by
which the slope is changing. This implies that if the function is very smooth
then the derivative will take on a small value whereas major changes over time
will result in large values. The second derivatives can also be used to answer the
question of whether a particular score obtained at some measured time point
is a minimum or a maximum (Borg & Groenen, 2005). Specifically, this implies

3 In accordance with the boundary conditions, the end points are set to zero - for
additional details, see Gerald and Wheatley (2004) and Marcoulides and Khojasteh
(2018).
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that if, for some time point x the second derivative of the function f ′′ < 0,
then it is a maximum, whereas if f ′′ > 0, then it is a minimum. As can be seen
by examining the second derivatives for the examined illustrative infant looking
behavior data given above, they signify multiple major changes are occurring
over time, with the values being rather sizeable at time points 3 and 4. Although
the usefulness of examining the derivatives of a growth curve as a way to assess
the acceleration changes and the point in time when acceleration might reach a
maximum or minimum value have been noted in the literature (Borg & Groenen,
2005; Marcoulides & Khojasteh, 2018; Suk, West, Fine, & Grimm, 2019, e.g.,),
their consideration as tools for the clustering of individuals has not. As was also
suggested by Liao (2005), we contend that in fact using these obtained parameter
estimates of a growth model represents an ideal approach for the clustering of
time-series data of any type. Data representation is without doubt one of the
main challenging issues for any time-series clustering approach due in part to the
multidimensional nature of the data. By utilizing derivatives of growth curves
to group individuals who follow the same growth trajectory patterns, both local
and global shape characteristics of the time series data are maintained in the
obtained parameter estimates (Bagnall & Janacek, 2005; Liao, 2005). In this
manner, even datasets exhibiting exceptionally complex growth patterns are not
expected to impact the proposed clustering methodology (Giraud, 2022).

In order to determine groupings of individuals (should they exist), it is as-
sumed that subjects in an observed sample belong to K different clusters or
classes (G1, . . . ., GK), such that individuals in each group have similar growth
function derivatives. All natural cubic smooth spline functions and their deriva-
tives are obtained separately for each examined individual with no assumptions
regarding their distributions. Although it is possible to apply the approach to
existing group level data (e.g., children assembled or grouped according to cog-
nitive abilities), it is further assumed that all analyses will be conducted with
data at the individual level. The algorithm then utilizes a closeness measure to
evaluate the distance between observations and estimates the unknown number
of classes with a hierarchical clustering algorithm via a threshold rule applied
to the generated dendrogram. A dendrogram basically represents a tree-based
taxonomy of the observations and is generally depicted as an upside-down tree
built from leaves and branches (where each leaf represents a data point), and the
combining or clustering of leaves and branches up to form the trunk (James et
al., 2013). Hierarchical clustering is currently a very popular approach to group
individual observations according to their degree of similarity or closeness. Hier-
archical clustering can be thought of as a recursive partitioning of the data into
successively smaller sets of observations based on their similarities4. A major
advantage of hierarchical clustering over other types of clustering approaches
is that it does not require the number of groups (or their size) to be specified
beforehand (Newman, 2004), but instead relies on the generated dendrogram to
determine the appropriate partitioning of the data.

4 As there is extensive literature available on hierarchical clustering and its applica-
tions, the reader is referred to James et al. (2013) for additional details.
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To apply the proposed clustering approach, it is further suggested that the
similarity or closeness of individuals be determined using a derivative-based dis-
tance measure between the computed derivatives of each natural cubic smooth
spline function. Various other forms of distance measures have also been sug-
gested in the functional data analysis literature, although these generally do
not focus on second-order derivatives and are therefore unable to measure the
complete shape similarities or dissimilarities between examined functions (e.g.,
Ieva, Paganoni, Pigoli, & Vitelli, 2012; Tarpey & Kinateder, 2003). Specifically,
we define a derivative-based distance measure between the computed derivatives
for observations (say for i and j ) over an entire time interval t as follows:

D(i, j) =

[∫
t

[[
f

′′
(xi)− f

′′
(xj)

]2
dt

]] 1
2

(3)

where D(i, j) is the distance measure, while f
′′
(xi) and f

′′
(xj) respectively de-

note the second derivatives of the functions for observations i and j. It is further
assumed that D(i, j) ≥ 0, D(i, j) = D(j, i), and lastly that D(i, j) = 0, if i =
j. Thus, based on obtained distance measures of the derivatives for say obser-
vations i, j, and k using Equation (3), observation i would be declared to be
more similar to observation j than to observation k if D(i, j) < D(i, k), where
D(i, j) is the distance measure between individuals i and j and D(i, k) is the
distance measure between individuals i and k. Upon computing all pairwise ob-
servations comparisons in the longitudinal data set, the derived distance matrix
is then subjected to hierarchical clustering leading to similar observations being
iteratively grouped together.

3 Illustrative Example

This section demonstrates the use of the proposed approach to determine group-
ings of individual observations in longitudinal data settings based on their com-
puted growth function derivatives. For the purpose of this analysis, longitudinal
data from 200 individuals from two distinct mixtures of complex autoregressive
time series over 12 measurement occasions were simulated using the R function
‘arima.sim’ (with each cluster specified to contain an equal number of observa-
tions). This type of longitudinal growth model is very popular and commonly
used for the study of inter-individual differences in intra-individual changes over
time (Bulteel, Mestdagh, Tuerlinckx, & Ceulemans, 2018; Hamaker et al., 2018).
The data and the parameters of the autoregressive times series were modeled
following a detailed review of the literature on past growth mixture modeling
empirical and simulation studies (e.g., He & Fan, 2019; Lubke & Muthén, 2005,
2007; Nylund, Asparouhov, & Muthén, 2007; Peugh & Fan, 2012; Wang & Bod-
ner, 2007). Specifically, the data and their various complex growth patterns
were modeled after the Berkeley Growth Study, which is a well-known study
that traces the intellectual, motor, and physical development of infants (Bayley,
1933; Jones & Bayley, 1941). This data set often serves as a benchmark to test
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proposed clustering algorithm accuracy (Ramsay & Silverman, 2005). Previous
analyses of empirical data of the cognitive scores of children on the California
First-Year Mental Scale (CFYMS; administered as part of the Berkeley Growth
Study every month from 1 to 12 months of age), were found to follow growth
trajectory patterns that were characterized by sharp nonlinear changes in mea-
sured cognitive ability as the infants get older (Grimm & Marcoulides, 2016).
These nonlinear changes provide a typical example of a longitudinal study where
complex growth patterns are encountered.

Consider for example the six complex times series trajectories displayed in
Figure 2. Each panel presented in Figure 2 corresponds to the trajectories of two
randomly generated individuals and are all characterized by nonlinear patterns
of changes occurring over time. As can be seen by examining each of the pre-
sented panels in Figure 2, the six selected individuals in some instances display
somewhat similar patterns of nonlinear changes and in other cases are markedly
different. Although plots like these allow one with relative ease to graphically
investigate whether individual growth trajectories differ from person to person,
the benefit of the proposed approach is that it can algorithmically discern differ-
ences between individuals and determine those that belong together in a cluster
based solely on their computed growth function derivatives.

To illustrate the comparison of individuals using their second derivatives, the
observed scores for just three observations are considered next. It is important
to note that in accordance with the model specification of their growth patterns,
Person 1 and Person 3 are a priori specified as belonging to the same class,
whereas Person 2 belongs to a different class. Figure 3 displays the individual
cubic smoothing splines of these selected observations, and while some distinc-
tions between the observations are evident, discerning how best to cluster them
into groups is not directly evident. Computing the second derivatives of their
growth functions (as presented in Table 1) and examining the distance measure
between these derivatives among the pairs of individuals using Equation 3, it is
determined that D(1, 2) = 26.94, D(1, 3) = 8.11, and D(2, 3) = 20.83 (where
1, 2, 3 are respectively used to denote each person examined). Based on the
obtained distance measures, it is evident that Person 1 and Person 3 have simi-
lar growth trajectories (and would accordingly be assigned to the same cluster),
while Person 2 has a dissimilar growth trajectory (and assigned to a different
cluster). It is important to note that electing to compute Euclidean distances of
the raw scores for these observations would result in approximately equal dis-
tance metrics between the three observations, and thereby make it much harder
to accurately cluster them. Examining instead distance measures of derivatives
makes the clustering much easier. Past research by Ramsay and Silverman (2005)
has similarly shown that distance metrics based on smoothed time series data
result in better data representations than distance metrics based on raw time
series data. Other empirical comparisons of distance measures performed by
Ding, Trajcevski, Scheuermann, Wang, and Keogh (2008) and Fulcher, Little,
and Jones (2013) have also resulted in similar conclusions and provide additional
motivation and support for the proposed clustering approach.
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Figure 2. Example raw data plots for a sample of 6 simulated observations.

Table 1. Second derivatives of the growth patterns for the 3 illustrative observations.

Time Point Person 1 Person 2 Person 3

1 0 0 0
2 0.904 -2.143 -2.123
3 -0.507 2.073 2.242
4 1.933 1.116 0.672
5 -1.962 -6.798 -1.275
6 -2.846 9.292 0.185
7 5.999 -10.853 0.365
8 -4.87 9.606 -2.431
9 3.473 -3.119 3.783
10 -4.397 -3.316 -4.561
11 3.821 4.299 3.909
12 0 0 0
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Figure 3. Cubic smoothing spline plots for a sample of 3 observations from the simu-
lated data.

Computing in the same manner the second derivatives of the growth func-
tions for all 200 simulated individuals along with the distance measure between
these derivatives and subjecting the obtained distance matrix among all pairs of
individuals to a hierarchical clustering, would result in the dendrogram displayed
in Figure 4. This dendrogram corresponds to a hierarchical cluster analysis of
second derivatives on the complete simulated data for the 200 individuals a priori
specified as belonging to two clusters. As can be seen, the two distinct mixtures
of complex autoregressive time series over the measurement occasions are clearly
visible and demonstrate the effectiveness of the proposed approach.
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Figure 4. The dendrogram of the derivatives of the growth model across the 2 simu-
lated clusters.

4 Simulation

To investigate the estimation accuracy rates of the number of classes for the pro-
posed approach, a small simulation study was conducted. Longitudinal data with
distinct mixtures of autoregressive time series were simulated using the R func-
tion ‘arima.sim’. The proposed approach was implemented using the software
program R (Marcoulides & Khojasteh, 2018; R Core Team, 2021) in combina-
tion with Microsoft Excel (via a programmed macro, data analysis tools, and
spreadsheet template; see Marcoulides and Khojasteh (2018)).

Based on previous growth modeling studies in the literature, the number of
time points and the degree of class separation were fixed in the simulation while
the number of classes and sample size were varied (Nylund et al., 2007; Peugh
& Fan, 2012). Specifically, the number of observed time points was set at t =
5, the degree of class separation (i.e., mean differences among clusters) was set
at a value of 2 (to reflect moderately separated classes)5, the number of true
classes were set to range from 2 to 4 classes, and the sample sizes per class were
set at N = 100, N = 500, and N = 1000 observations (to reflect small, medium,
and large samples that were equally distributed across classes). Following the
recommendations provided by a number of researchers (e.g., He & Fan, 2019;

5 It is important to note that past research has suggested that the degree of class
separation be quantified using a Mahanalobis distance value of at least 2 in order to
accurately identify latent classes in growth mixture models (e.g., Lubke & Muthén,
2007; Peugh & Fan, 2012).
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Kim, 2014; Nylund et al., 2007), a total of 100 replications were drawn for each
model and time series condition. Correct estimation rates of the true number
of classes we determined as the percentage of the total replications that were
correctly identified (with high percentage values reflecting correctly identified
number of classes; Nylund et al., 2007). It is important to note that because
the proposed approach is algorithmically based, we do not compare its perfor-
mance to traditional growth mixture modeling approaches. The determination
of the number of classes in traditional approaches is based on a user subjec-
tively applying various fit criteria (e.g., Nylund et al., 2007), thereby making
the comparison between methods problematic and analogous to comparing the
performance of an unsupervised data mining technique to a supervised technique
– one is entirely algorithmically driven and the other involves user interface.

The correct estimation rates of the true number of classes are presented in
Table 2. In summary, the simulation results clearly show the effectiveness of
the proposed clustering method under a variety of examined conditions. As ex-
pected from past simulation studies in the growth mixture modeling literature,
the overall performance accuracy of the approach was influenced by sample size
(Nylund et al., 2007). For example, with small sample sizes per class (N = 100)
the estimation rates were lower than when medium (N = 500) and large (N =
1000) sample sizes per class were analyzed. The influence of sample size on the
estimation rates was present irrespective of the number of latent classes exam-
ined. Overall, the proposed approach showed consistently accurate estimation
rates when the sample sizes were large (ranging from a low of 92% to a high
of 98%), while with small sample sizes the estimation rates were slightly lower
(ranging from a low of 88% to a high of 95%).

Table 2. Correct estimation rates of the true number of classes.

Number of Classes
Sample Size 2 3 4

N = 100 0.908 0.879 0.955
N = 500 0.922 0.968 0.964
N = 1000 0.932 0.977 0.981

Note. Sample size is per class.

Concluding Remarks

This article introduced a novel mixture modeling approach that can help
researchers better understand patterns of growth trajectories and effectively be
used to determine homogeneous and heterogeneous individual trajectories with-
out imposing potentially problematic constraints on the model. The proposed
approach can be considered as an unsupervised data-mining-oriented classifica-
tion of individuals according to the derivatives of their estimated cubic smooth-
ing spline functions. The proposed approach is ideally suited for fitting data
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in settings where normal mixtures might not be appropriate, particularly when
assumptions regarding the trajectories are problematic (Genolini & Falissard,
2010; Usami, 2014). By utilizing a “bottom-up-approach” in which data are
analyzed person by person, more insightful comparisons between the dynamics
of different individuals could also be achieved. Not only does the proposed ap-
proach provide an ideal way to visualize complex growth data, but it can also
be used to algorithmically reveal clustering of the growth patterns. The method
can be used irrespective of the frequency of data collection or the complexity of
the individual growth patterns, and provides an alternative lens through which
dynamic processes can be examined.

A major problem with many of the highly popular procedures used in growth
modeling is that they often impose overly restrictive assumptions on the model.
In such instances, their effectiveness and accuracy are not always assured. The
approach introduced in this paper is simply another alternative algorithmic-
based modeling approach to help researchers examine and understand complex
patterns of growth. Many options are available for the modeling of data from
longitudinal studies and the approach introduced here represents a method to
automate the determination of groupings of individuals (should they exist) en-
tirely on the basis of their dynamic growth patterns utilizing cubic smoothing
spline function derivatives.
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