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Abstract. Latent growth curve models (LGCM) are widely used in lon-
gitudinal data analysis, and robust methods can be used to model error
distributions for non-normal data. This tutorial introduces how to model
linear, non-linear, and quadratic growth curve models under the Bayesian
framework and uses examples to illustrate how to model errors using t,
exponential power, and skew-normal distributions. The code of JAGS
models is provided and implemented by the R package runjags. Model
diagnostics and comparisons are briefly discussed.
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1 Introduction

Latent growth curve models (LGCM) are widely used in longitudinal studies,
and LGCM performs well in the identification of intraindividual changes and
investigation of interindividual differences in intraindividual changes (McArdle
& Nesselroade, 2014). LGCM can estimate linear and nonlinear growth trajecto-
ries flexibly or freely estimate the shape of growth trajectory by observed data.
Researchers may employ either the maximum likelihood estimation method or
the Bayesian method to model LGSM. The Bayesian methods have advantages
on handling difficulties in longitudinal data such as unequally spaced measure-
ments, nonlinear trajectories, non-normally distributed data, and small sample
sizes (Curran, Obeidat, & Losardo, 2010).

Influential outliers and non-normally distributed data can lead unreliable
estimates and inferences. Conventional methods such as deleting outliers may
result in underestimated standard errors (Lange, Little, & Taylor, 1989). Robust
statistical modeling methods have been developed to handle the violation of the
normality assumption. For example, the t-distribution is more robust to outliers,
and using t-distribution to model errors is one of the robust modeling strategies
(Lange et al., 1989). Robust modeling using t-distributions is easy to understand
and applied in both maximum likelihood and Bayesian methods (Lange et al.,
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1989; Zhang, 2016; Zhang, Lai, Lu, & Tong, 2013). The degree of freedom of t-
distributions can be estimated or predetermined, and a large degree of freedom
means the t-distribution approaches a normal distribution (Zhang et al., 2013).
Based on simulation studies, the robust method using the t-distributions for the
error term demonstrates good performance for heavy-tailed data in growth curve
models, and it efficiently estimates the standard error (Zhang, 2016; Zhang et
al., 2013).

This tutorial aims to present how to implement robust Bayesian growth curve
models using R and the JAGS programs. To begin, it provides a brief introduction
to LGCM, including the latent basis growth curve models (LBGM), the linear
growth curve models, and quadratic growth curve models. Then it introduces
commonly used priors and convergence diagnostic methods. Finally, a real data
set is used to demonstrate how to implement robust LGCM, and how to interpret
the estimated parameters.

2 Models and notations

2.1 General latent growth curve models

Latent basis growth curve models A LGCM with one variable Y can be
written as:

Yi = τ +Λbi + ϵi (1)

bi = β + ui (2)

Yi is a T × 1 vector in which T is the total number of measurement occasions,
and Λ is a T × q factor loading matrix, and it decides the shape of the growth
trajectory. The ϵi is assumed to follow a q-variate normal distribution ϵi ∼
MN(0,Φ). bi is an q × 1 vector and it represents the latent variables used to
describe the change. β is a q × 1 vector that represents the fixed effect (the
means of bi) and ei is the individual deviation from the fixed effect β. ui follows
a multivariate normal distribution with q dimensions as ui ∼ MN(0,Ψ).

LBGM is a special case of the general LGCM. It assumes the error variance
is the same for all measurements (homogeneity) by simplifying Φ = Iσ2

e . And
it also assumes measurement errors are uncorrelated. The parameters in LBGM
are:

Λ =


1 0
1 1
1 λ1

...
...

1 λT−2

 bi =

(
biL
biS

)
,

β =

(
βL

βS

)
Ψ =

(
σ2
L σLS

σLS σ2
S

)
.
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LBGM contains two latent variables: bL and bS . bL represents the intercept
and bS represents the growth slope. The specification of factor loadings of bS
determines the shape of the growth curve. Here, the first and second-factor
loadings on bS are fixed at 0 and 1 for identification purposes, while other factor
loadings are freely estimated. This assumption implies that the growth unit is
the difference between the first two measurements. Another common practice is
to fix the first and last factor loadings at 0 and 1, respectively, with the unit
representing the difference between the first and last measurements. βL and βS

represent the average intercept and slope across all individuals, respectively. σ2
L

and σ2
S represent variances, reflecting the individual differences in intercept and

slope. σLS represents the covariance between the intercept and slope.

The linear growth curve model The specification of Λ decides the shape
of growth. When the factor loadings of bS are equally spaced, it becomes a
linear growth curve model. A linear growth curve model assumes a linear change
pattern and the slope bS represents a linear slope. The factor loading matrix is:

Λ =


1 0
1 1
1 2
...

...
1 T − 1

 .

The quadratic growth curve model The quadratic growth curve model
estimates a nonlinear change by including the quadratic slope biQ, and the model
can be presented as:

Λ =


1 0 0
1 1 1
1 2 22

...
...

...

1 T − 1 (T − 1)
2

 bi =

biL
biS
biQ

 ,

β =

biL
biS
biQ

 Ψ =

 σ2
L σLS σLQ

σLS σ2
S σSQ

σLQ σSQ σ2
Q

 .

2.2 Robust growth curve models

The general LGCM assumes ϵi follow a multivariate normal distribution (ϵi ∼
MN(0,Φ)), while robust growth curve models use other distributions to for ϵi.
Zhang (2016) presented and summarized how to use Student’s t, exponential
power, and the skew normal distributions to build robust LGCM.
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Student’s t-distribution The robust growth curve models can be specified
by modeling ϵi by a student’s t-distribution: ϵi ∼ MTT (0, Φ, k), where k is the
degrees of freedom. The robust LGCM with a Students’ t-distribution performs
better than the traditional growth curve model with a multivariate normal dis-
tribution when dealing with heavy-tailed data and outliers (Zhang, 2016; Zhang
et al., 2013).

The multivariate t-distribution approaches the multivariate normal distribu-
tion when k increases. In the robust Bayesian methods, k can be specified as an
unknown parameter, and a prior is needed to estimate k. Alternatively, it can
be fixed and some researchers suggested k = 5 (Zhang et al., 2013).

In JAGS, t-distribution can be specified using the function dt(), and this
function will be explained in the following section with an example.

Exponential power distribution The exponential power distribution can
model error term eit with smaller kurtosis than normal distributions, and we
employ the same form of density function and parameters as Zhang (2016) in
this tutorial. The density of exponential power distribution is as follows:

pep(x) = ω(γ)σ−1exp

[
−c(γ)

∣∣x− µ

σ

∣∣2/(1+γ)

]
where

ω(γ) =
(Γ [3(1 + γ)/2])

1/2

(1 + γ) (Γ [(1 + γ)/2])
3/2

and

c(γ) =

(
Γ [3(1 + γ)/2]

Γ [(1 + γ)/2]

)1/(1+γ)

.

Here µ and σ are location and scale parameters, respectively, and γ is a shape
parameter that can be estimated.

Skew normal distribution Both the t-distribution and the exponential power
distribution are symmetric, while the skew normal distribution offers an option
to model asymmetric errors. The density function of a skew normal distribution
is as follows:

psn(x) =
2

ω
ϕ

(
x− µ

ω

)
Φ

(
α
x− µ

ω

)
where µ is a location parameter, ω is a scale parameter, and α is a shape pa-
rameter which can be estimated.

3 Robust growth curve model using JAGS

The following part introduces how to build and interpret the robust LGCM in
JAGS using a real data set, assuming homogeneity across time points.
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3.1 Specification of priors

Priors of LGCM are usually specified as: β ∼ N(µ0, σ
2
0), Φ ∼ W (V,m), σ2

e ∼
IG(α, β) (assuming Φ = IT×Tσ

2
e). For the robust growth curve model with the

t-distribution, the degrees of freedom k is another unknown parameter, and an
uninformative prior is applied to k as follows: k ∼ U(1, 500). In the case of the
exponential power distribution which involves an additional shape parameter γ,
an uninformative prior is assigned to it as follows: γ ∼ U(−1, 1). Similarly, for
the shape parameter α in the skew normal distribution, the prior is specified as
α ∼ U(−5, 5).

3.2 Convergence diagnostic

To check convergence, trace plots are visually inspected. If trace plots indicate
non-convergence, then more iterations and longer burn-in periods are needed.
The length of the chain should be extended until trace plots of all parameters
demonstrate visual convergence.

In addition to visual inspection, various convergence diagnostic tools are
available in R, including the Geweke test (Geweke, 1992), the Heidelberger and
Welch test (Heidelberger & Welch, 1983), Gelman and Rubin test (Gelman &
Rubin, 1992), and the Raftery and Lewis diagnostic (Raftery, Lewis, et al., 1992).
In this tutorial, the Geweke diagnostic is used, which compares the mean differ-
ence between two parts of chains, typically the first and last parts. It employs a
z test to compare the means of two parts, and if the z test statistic rejects the
null hypothesis, it indicates a significant difference.

3.3 Autocorrelation and posterior distribution

The adjacent iterations of the Markov chain may exhibit high dependence, and
serious autocorrelation can indicate problems in model estimation such as a prob-
lem with the sampling algorithm. The autocorrelation problem can be identified
by visual inspections. If visual inspection shows high autocorrelation, increasing
the number of iterations or implementing thinning techniques can be beneficial.
Additionally, it is important to ensure that the posterior distribution makes
substantive sense, taking into account factors such as the parameter’s range
and standard deviation. For instance, it would be unreasonable if the posterior
standard deviation exceeds the parameter’s scale.

4 Examples

This section includes R code and JAGS commands for constructing robust growth
curve models. The t-distribution is offered by JAGS and can be directly imple-
mented. In the following parts, t-distribution is utilized to model and compare
LBGC, linear and quadratic LGCM. To illustrate different robust methods, we
specify linear LGC models using the t, exponential power and skew-normal dis-
tributions.
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The data used in this tutorial were obtained from the Early Childhood Lon-
gitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011), a national lon-
gitudinal program conducted by the National Center for Education Statistics.
ECLS-K:2011 collected information about children’s development during their
elementary school years. For this tutorial, a random subset of data consist-
ing of N = 200 samples was selected from ECLS-K:2011. This subset includes
math scores measured at four different occasions. Math ability assessments were
conducted annually, spanning from the second grade to the fifth grade. De-
tailed information about ECLS-K:2011 can be found in the manual provided by
Tourangeau et al. (2015).

Descriptive analysis revealed that the distributions of the observed math
scores were skewed and exhibited heavier tails than normal distributions, as de-
picted in Figure 1. Additionally, increasing trends in math scores were observed,
and the growth pattern of each individual is illustrated in Figure 2.
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Figure 1. Descriptive plots of math scores

4.1 Specify the JAGS models

t distribution The LBGM model is specified using the JAGS notations as:

# models
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Figure 2. Growth curves of math scores in four waves

model1 <- "model{
# Specify the likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)
# normal
# y[i, j] ˜ dnorm(mu[i, j],tauy)

}
}
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
# Specify the growth trajectory
A3˜dnorm(0,1.0E-6)
A4˜dnorm(0,1.0E-6)
# specify priors
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
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taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

An R object model1 is constructed using the model block. In the case of a
four-wave of data organized with 200 rows (N = 200) and 4 columns (T = 4),
we use for loops to specify the likelihood for all participants across the four
measurement occasions.

This likelihood reflects the use of a robust Bayesian method. Specifically,
y[i,j] is modeled using univariate t-distributions, which are defined by dt()
with parameters for means mu[i, j], precision tauy, and degrees of free-
dom df. If the data were modeled using a multivariate normal distribution,
i.e., y[i,j] ∼ dnorm(mu[i,j], tauy), the model would represent a tra-
ditional latent growth curve model with normal assumptions.

The next part of the model involves specifying the prior distributions. β is as-
sumed to follow a bivariate normally distribution with β ∼ MN((0, 0)T , 1000I2),
and the covariance of ϵi follows an inverse Wishart distribution (Zhang, 2021).
The error term ϵi is assumed to follow a t-distribution with an estimated k
(ϵi ∼ MTT (0,Φ, k)). Here, a uniform distribution Unif(1, 500) is used as the
prior of k.

The latent variables and means are specified based on the hypothesized
growth curve and priors. The parameter b[i,1] represents the latent inter-
cept of LGCM, and the latent slope is b[i,2]. A3 and A4 are factor loadings of
math scores at the third and fourth measurement occasions, which control the
shape of changes.

If A3 is set to 2 and A4 is set to 3, then the model becomes a linear growth
curve model. Quadratic LGCM involves three latent variables, within b[i,3]
representing the quadratic shape. The coefficients A5 and A6 are fixed at 4 and
9, respectively.

Detailed JAGS models for both the linear and quadratic growth curve models
can be found in the appendix.

Exponential power distribution JAGS does not offer exponential power dis-
tribution or the skew-normal distribution by default. However, the likelihood
can be specified indirectly using the Bernoulli or the Poisson distributions (Nt-
zoufras, 2011).

One approach, known as the “zero trick,” utilizes the Poisson distribution.
A matrix with the same dimensions of the data is created, with all elements
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set to zero. The likelihood is reflected in the mean of the Poisson distribution.
Assuming observation yi follows a new distribution and the log-likelihood is
li = logf(yi|θ). The model likelihood can be expressed as:

f(y|θ) =
n∏

i=1

e−(−li+c)(−li + C)0

0!
=

2∏
i=1

fP (0;−li + C).

In this expression, the mean of the Poisson distribution is a constant (C) minus
the log-likelihood (C − li) and C is chosen to ensure the mean of the Poisson
distribution is always positive.

The one trick sets all observations to one and uses the parameter of the
Bernoulli distribution to specify likelihood.

In this paper, the zero tricks were used to specify exponential power and
skew-normal distributions, assuming a linear change trajectory.

The model code is provided in the appedix. In the code, the log gamma
function is specified using command loggam(), and dpois() is used to sample
from the Poisson distribution.

Skew normal distribution The location parameter of the skew normal dis-
tribution is reparameterized as

µ = ω
α√

(1 + α2)2

√
(2/π)

to ensure that the mean of the error is zero. In the code, the standard normal
cumulative density function is specified by phi() and the log density function
of the normal distribution is specified by logdensity.norm().

4.2 Specify iterations,initial values, and saved parameters

After configuring the models, we can proceed by organizing the data in a list,
specifying initial values, and running the JAGS model.

The data is organized in a wide format and stored in a list called datalist,
which includes the number of participants (nsubj) and the number of mea-
surements (ntime). In this setup, we use two chains (nChains = 2), each
with a length of 20,000 iterations (nIter = 20000), and a burn-in period of
10,000 iterations (burnInSteps = 10000). Monitored parameters encompass
the means and variances of intercepts and slopes, and the shape parameters such
as the degrees of freedom. These parameters’ posterior draws will be saved.

# create data set for \texttt{JAGS} model
nsubj = nrow(data)
ntime = ncol(data)
datalist = list(nsubj=nsubj,ntime=ntime,y=data)
# set parameters, adaption, and MCMC chains
parameters = c("mub","sigma2b","sigma2y","df","A3","A4")
adaptSteps =5000 # Adaptive period
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burnInSteps = 10000 # Burn-in period
nChains = 2 # The number of chains
nIter =20000 # The number of kept iterations

Two chains are used in this tutorial, and two sets of initial values are specified:

# specify initial values
inits <- list(list(mub=c(0.7,0.4),

taub=structure(.Data=c(1,0,0,10),
.Dim=c(2,2)),

tauy=10,df=3),
list(mub=c(0.8,0.5),

taub=structure(.Data=c(2,0,0,8),
.Dim=c(2,2)),

tauy=15,df=5))

4.3 Run JAGS models

The package runjags is used in this tutorial and the function run.jags() is
used to read, compile, and run the model, and the model results are saved for
later analysis.

# run JAGS model
set.seed(1234)
out <- run.jags(model=model,

monitor=parameters,
data=datalist, n.chains=2,
inits=inits, method="simple",
adapt=adaptSteps,
burnin = burnInSteps,
sample=nIter,
keep.jags.files=TRUE,
tempdir=TRUE)

4.4 Convergence diagnostic

For convergence checking, we examine both trace plots and Geweke’s test. A
visual inspection of the trace plots reveals that all parameters have converged
after the adaptation and burn-in period. Figure 3 displays the plots of the latent
intercept and slope in the LBGM.

If Geweke’s test values exceeded 2, we doubled the number of iterations
and reran the model. In this particular example, we found no clear evidence of
non-convergence, however, some models exhibited autocorrelation issues in the
slope, as shown in the autocorrelation plots. To address this, longer iterations
or thinning techniques may be employed.

Additionally, posteriors make practical sense by checking the shape and range
in the posteriors plots. For example, the range of possible values for math ability
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Figure 3. Trace, ECDF, posterior and autocorrelation plots of the intercept and the
slope in LBGM with a t distribution
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is from -4.0 to 4.0, and the posterior mean of the intercept was close to the mean
of the observed math score in the second grade.

# Geweke diagnostic
geweke.diag(out$mcmc)
# Trace plots and autocorrelation plots
plot(out)

4.5 Model comparison

Results of LBGM, the linear and quadratic LGC models are summarized in
Table 1. To compare these models, we used the deviance information criterion
(DIC). When the t distribution was employed, the quadratic LGCM exhibited
the lowest DIC.

Table 1. Results for the LBGM, linear and quadratic LGC models with t distribution

LBGM Linear LGCM Quadratic LGCM
Mean L U Mean L U Mean L U

biL 0.73 0.62 0.83 0.76 0.65 0.85 0.74 0.64 0.85
biS 0.46 0.42 0.51 0.37 0.34 0.39 0.42 0.35 0.48
biQ -0.02 -0.04 0.01
σ2
L 0.49 0.38 0.59 0.48 0.38 0.59 0.54 0.42 0.66

σLS -0.05 -0.07 -0.02 -0.04 -0.06 -0.02 -0.11 -0.18 -0.05
σLQ 0.02 0.00 0.04
σLS -0.05 -0.07 -0.02 -0.04 -0.06 -0.02 -0.11 -0.18 -0.05
σ2
S 0.03 0.02 0.03 0.02 0.02 0.03 0.09 0.05 0.13

σSQ -0.02 -0.04 -0.01
σLQ 0.02 0.00 0.04
σSQ -0.02 -0.04 -0.01
σ2
Q 0.01 0.01 0.02
σ2
e 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04
k 3.44 2.30 4.76 3.53 2.31 4.94 3.58 2.04 5.42
A3 1.64 1.51 1.77 2.00 2.00
A4 2.44 2.26 2.64 3.00 3.00
A5 4.00
A6 9.00

DIC 370.79 374.78 283.36

Note. k represents the degrees of freedom. L: 2.5% HPD; U: 97.5% HPD.

The estimated means of the intercept biL from the three models were close.
The estimated factor loadings in LBGM were 1.64 and 2.44 in LBGM, which
suggests the estimated growth shape was different from a linear trend.

The estimated degrees of freedom were smaller than 5 in the three models.
This aligns with the observation that the observed data had heavier tails than
the normal distribution, as shown in Figure 1(Tong & Zhang, 2017). Therefore,
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the estimated degrees of freedom (k) are consistent with descriptive statistics,
affirming that the robust growth curve models are suitable for handling this
dataset.

When dealing with models that use exponential power and skew normal dis-
tributions, it’s important to interpret the DIC (deviance information criterion)
values from JAGS with caution. In these models, the DIC is calculated separately
based on likelihood and posteriors. The deviance, denoted as D(θ; y), is defined
as −2 log(p(x|θ)). The effective model parameters is defined as pD = D̄ − D̂,
and the DIC is calculated as DIC = D̄+ pD. The model using the skew normal
distribution exhibited the lowest DIC value, making it the preferred choice over
the t and exponential power distributions.

Table 2. Results for linear models with t, exponential power, and skew normal distri-
butions

Mean 2.5% HPD 97.5% HPD DIC

t-distribution

biL 0.76 0.65 0.85
biS 0.37 0.34 0.39
σ2
L 0.48 0.38 0.59

σLS -0.04 -0.06 -0.02 374.78
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.03 0.02 0.04
k 3.53 2.31 4.94

Exponential power distribution

biL 0.76 0.66 0.86
biS 0.37 0.34 0.4
σ2
L 0.49 0.39 0.6

σLS -0.04 -0.06 -0.02 392.10
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.07 0.06 0.08
γ 0.91 0.76 1

Skew normal distribution

biL 0.74 0.64 0.83
biS 0.37 0.35 0.4
σ2
L 0.46 0.36 0.56

σLS -0.04 -0.06 -0.02 360.41
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.18 0.15 0.21
α -4.17 -5 -3.01
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4.6 Summary of posteriors

The posterior means of most parameters were almost the same for linear models
using t, exponential power, and skew-normal distributions, see Table 2. For the
linear LGCM with the exponential power error, the estimated shape parameter γ
was 0.91, which suggested a fatter tail of the errors than the normal distribution.
The estimated α in the model using the skew-normal distribution was -4.17 which
indicates the distribution was left-skewed.

5 Summary

LGCM is widely used in longitudinal studies, and the Bayesian approach can
be applied to handle complex conditions. Bayesian approaches can handle the
conditions that data are not normally distributed or the sample size is small.
The robust Bayesian method offers an operable solution for data with heavy
tails or outliers.

This tutorial introduces how to implement robust LGCM with three distri-
butions in JAGS and R in steps. It also covers the model diagnostics and com-
parison, and interpretations of posterior estimations. This tutorial offers some
guidelines for researchers who are interested in robust Bayesian growth curve
models.
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Appendix A Data

data=read.csv("example_data.csv",header = T)
colnames(data)=c("ID",paste("math",rep(1:4),sep=’’))
data=data[,-1]

Appendix B Using the t-distribution for error

# The latent basis growth curve model
model1 <- "model{
# specify the likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)
# normal
# y[i, j] ˜ dnorm(mu[i, j],tauy)

}
}
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
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mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
# specify the growth trajectory
A3˜dnorm(0,1.0E-6)
A4˜dnorm(0,1.0E-6)
# specify priors
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"
# write model out
writeLines(model1, "model1.txt")

# set parameters, adaption, and MCMC chains
parameters = c("mub","sigma2b","sigma2y","df",
"A3","A4","dic")# Specify the estimated parameters
adaptSteps =10000 # Adaptive period
burnInSteps = 10000 # Burn-in period
nChains = 2
nIter =40000 # The number of kept iterations

nsubj = nrow(data)
ntime = ncol(data)

# create data set for JAGS model
datalist = list(nsubj=nsubj,ntime=ntime,y=as.matrix(data))

# specify initial values
inits <- list(list(mub=c(0.7,0.4),

taub=structure(.Data = c(1,0,0,10),.Dim=c(2,2)),
tauy=10,df=3),
list(mub=c(0.7,0.5),
taub=structure(.Data = c(2,0,0,8),.Dim=c(2,2)),
tauy=15,df=5))
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# run jags model
set.seed(1234)
out <- run.jags(model=model,

monitor=parameters,
data=datalist, n.chains=2,
inits=inits, method="simple",
adapt=adaptSteps,
burnin = burnInSteps,
sample=nIter,
keep.jags.files=TRUE,
tempdir=TRUE)

# diagnostic
geweke.diag(out$mcmc)
# plots
# trace plots and autocorrelation plots
plot(out)
# Summarize posterior distributions
mcmcChain = as.matrix(out$mcmc)
sum = summary(out$mcmc)

# The linear LGCM
model2 <- "model{
# likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}

A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
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sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

# Quadratic LGCM
model3 <- "model{
# likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]+b[i,3]
mu[i,3] <- b[i,1]+A3*b[i,2]+A5*b[i,3]
mu[i,4] <- b[i,1]+A4*b[i,2]+A6*b[i,3]
b[i,1:3] ˜ dmnorm(mub[1:3], taub[1:3,1:3])

}
# linear change
A3 <- 2
A4 <- 3
# quadratic change
A5 <- 4
A6 <- 9
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
mub[3]˜dnorm(0,1.0E-6)
taub[1:3,1:3] ˜ dwish(Omega[1:3, 1:3], 3)
sigma2b[1:3, 1:3] <- inverse(taub[1:3,1:3])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
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Omega[3,3] <- 1
Omega[1,2] <- Omega[2,1]
Omega[1,3] <- Omega[3,1]
Omega[2,3] <- Omega[3,2]
Omega[2,1] <- 0
Omega[3,1] <- 0
Omega[3,2] <- 0
}
"

Appendix C Using exponential power distribution for
error

# A linear LGCM
model4 <- "model{
C <- 100000
lomega <- 0.5*loggam(3*(1+gamma)/2)-log(1+gamma)

-3/2*loggam((1+gamma)/2)
cgamma <- (exp(loggam(3*(1+gamma)/2))

/exp(loggam((1+gamma)/2)))ˆ(1/(1+gamma))
for (i in 1:nsubj) {

for (j in 1:ntime) {
# Exponential power
zeros[i,j] ˜ dpois(zeros.mean[i,j])
zeros.mean[i,j] <- C-le[i,j]
le[i,j] <- lomega-log(sqrt(sigma2y))
-cgamma*abs((y[i,j]-mu[i,j])

/sqrt(sigma2y))ˆ(2/(1+gamma))
}

}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
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tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
gamma ˜ dunif(-1,1)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

Appendix D Using the skew normal distribution

# A linear LGCM
model5 <- "model{
C <- 100000
xi <- -sqrt(sigma2y)*(alpha/sqrt(1+alphaˆ2))

*sqrt(2/3.1415)
for (i in 1:nsubj) {

for (j in 1:ntime) {
# Exponential power
zeros[i,j] ˜ dpois(zeros.mean[i,j])
zeros.mean[i,j] <- C-le[i,j]
e[i,j] <- y[i,j]-mu[i,j]
# phi(): standard normal cdf
# the log density of x is given by
le[i,j] <- log(2)-log(sqrt(sigma2y))
+logdensity.norm((e[i,j]-xi)/sqrt(sigma2y),0,1)
+log(phi(alpha*(e[i,j]-xi)/sqrt(sigma2y)))

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
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tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
alpha ˜ dunif(-5,5)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"
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