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Abstract. Intensive longitudinal data collected via ecological momen-
tary assessment (EMA) are often sampled with unequal time spacing
between surveys. Given the popularity of EMA data, it is important
to understand whether time series methods are robust to such time in-
terval misspecification. The present study demonstrates via simulation
that stability and spread—two metrics for quantifying different aspects of
transitioning behavior within multivariate binary time series data—are
unbiased when applied to data that are collected along an off/on burst
sampling schedule, a between-person random sampling schedule, and a
within-person random sampling schedule. These results held in randomly
generated data with differing numbers of time series variables (k=10 and
k=20) and in data simulated based on the proportions of observed data
from a prior EMA study. Further, stability and spread demonstrated
approximately 95% coverage for all between- and within-person ran-
dom sampling schedules. However, coverage for stability and spread was
poor in the off/on burst sampling schedules (around 67%). We also ap-
plied these transition metrics—which measure repetitiveness and diver-
sity of transitions, respectively—to a foundational EMA dataset that was
among the first to show that adults regularly use many different emo-
tion regulation strategies throughout their daily life (Heiy & Cheavens,
2014). As hypothesized, we found a stronger positive relation between
mood and higher stability/lower spread in emotion regulation among
people with fewer depressive symptoms than those with more depressive
symptoms. Taken together, stability and spread appear to be appropriate
metrics to use with data collected using common unequal time spacing
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conditions and can be used to uncover theoretically consistent insights
in real psychosocial data.

Keywords: Time series · Ecological momentary assessment · Transitions
· Binary data · Emotion regulation · Switching

1 Introduction

Recent advances in technology have contributed to an explosion in intensive
longitudinal data (ILD) collection. ILD studies involve repeated data collec-
tion throughout participants’ days, often for multiple days at a time, and may
involve passive sensing (i.e., automatic data reports from electronic devices par-
ticipants have with them) or participant-reported data. Researchers may collect
data according to a variety of schedules, depending on the research question.
Three common methods include fixed interval sampling (e.g., every 15 minutes;
Ebner-Priemer & Sawitzki, 2007), random interval sampling (e.g., Burke et al.,
2017), or burst designs (i.e., sampling intensively for a relatively brief duration,
pausing for a relatively longer time, before sampling intensively again; Stawski,
MacDonald, & Sliwinski, 2015)

ILD may be categorical, ordinal, continuous, or qualitative, depending on
the research question. Here, we focus on binary data indicating the presence or
absence of a construct. For instance, researchers may be interested in whether
or not participants were experiencing an emotion (e.g., Heiy & Cheavens, 2014),
used an emotion regulation strategy (Southward & Cheavens, 2020), or were in
an interpersonal context (Daros et al., 2019). Binary data is important because
it allows for the study of transitions between two states—from present to absent
and vice versa—which underlie many theories of human behavior (e.g., atten-
tional focus under conditions of threat: Johnson, Zaback, Tokuno, Carpenter, &
Adkin, 2019) and facilitate the development of machine learning models (e.g.,
Pereira, Mitchell, & Botvinick, 2009; Steinwart & Christmann, 2008). Further-
more, collecting many different binary variables allows for the study of transitions
between one endorsed construct to another—a transition type called a ‘switch.’

Daniel, Moulder, Teachman, and Boker (2023) presented a method for quan-
tifying two aspects of switching behavior—stability and spread—within mul-
tivariate binary time series data to characterize how a system moves between
many possible binary states over time. Specifically, this method functions by
building a sliding series of transition matrices where each transition matrix re-
flects all pairwise transitions that occurred between back-to-back observations
within that pre-defined window of observations.5 Two matrix algebra equations
are then applied to each transition matrix to arrive at stability and spread val-
ues, which can be used in analysis. Stability measures the extent to which a
system transitions from one binary variable to the same binary variable at the
next time point relative to all observed transitions. Spread measures how many

5 Taking this windowing approach offers researchers the option to calculate stability
and spread values multiple times at different parts of the full time series.
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unique pairwise transitions are observed relative to all possible transitions af-
forded by the system.

Stability and spread are especially useful when researchers want to measure
how rigid and diverse, respectively, transitions are within a high dimensional
system. For example, panic disorder researchers could ask participants to report
where they were located during the onset of each panic attack. One person
with panic disorder might tend to have panic attacks in the same location (high
stability) whereas a second person might variably have panic attacks across
different locations (low stability). Two other people with equally low stability
might tend to either alternate between having panic attacks at home and at
work (low spread) or tend to have panic attacks across many different locations
with minimal regularity (high spread).

Although stability and spread indices characterize the sequence of transi-
tions between observations, they do not account for elapsed time between ob-
servations. This is unproblematic if every transition is captured in the data or
if the process of interest is sampled at equal intervals. However, this may pose
a limitation to the method if transitions are sampled at unequal time intervals.
Time misspecification may be especially pertinent to psychosocial researchers
because ILD are often collected with unequal intervals between observed data
points (Myin-Germeys et al., 2018), but unequal sampling intervals are not well-
suited to analytic tools that assume equal time intervals between observations
and participants (Stone & Shiffman, 1994). Therefore, stability and spread may
be biased or demonstrate poor coverage if they are applied to ILD sampled with
unequal time spacing.

However, stability and spread are calculated with a sliding window approach
(Daniel et al., 2023), which has previously been shown to be an effective way
to handle time misspecification in other use cases (Boker, Tiberio, & Moulder,
2018). Thus, these measures may be inherently robust to time interval misspecifi-
cation, a quality that would make them optimally useful in psychosocial research
without needing to further expand the method. Therefore, in this paper we aim
to establish the robustness of stability and spread to time interval misspecifi-
cation through simulation. We then demonstrate the method’s potential utility
to advance theory in psychosocial research by applying stability and spread to
unequally sampled emotion regulation (ER) strategy self-reports throughout the
daily lives of adults with varying levels of depression.

2 Methods

2.1 Data Simulation

To explore how robust stability and spread are when applied to data with time
interval misspecification, we simulated three datasets—two simulated randomly
and one simulated based on proportions of endorsements observed in a prior
EMA study. We describe each set of simulations below.
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Randomly Generated Simulations. First, we simulated data for 100 peo-
ple where each person reported on 10 binary time series variables 200 times.
Responses to each binary variable (1 vs. 0) were randomly determined. We con-
sider this our k = 10 parent dataset.6. From this parent dataset, we generated
four datasets per person, each with 25 observations per person: one reference
dataset with equally spaced observations and three further datasets, each with a
unique time-interval misspecification. To create the equally spaced dataset, we
selected every eighth observation from the 200-observation-long parent dataset.
To impose three common types of time interval misspecification from which to
compare, we selected from the original 200: (1) observations 36-40, 76-80, 116-
120, 156-160, 196-200 (to mimic a burst sampling schedule when equally spaced
sampling occurs during the “on burst” and no sampling happens during the “off
burst”), (2) 25 random observations held constant between persons (to mimic
a sampling schedule with unequal spacing between observations but identical
spacing between person), and (3) 25 random observations for each person (to
mimic unequal spacing within and between person). We conducted 1,000 repli-
cations in each condition of this simulation to arrive at the simulations used to
calculate bias and coverage. Although we allowed the equally spaced dataset to
vary across all simulations used to calculate bias (i.e., it could start its equal
sampling on any of the first 8 observations), we fixed the equal sampling dataset
to be the same across all simulations used to calculate coverage so that there
would be one set of “true” stability or spread values against which to compare.

We then repeated these steps, making only one change—we simulated a par-
ent dataset with 20 time series. We refer to this as our k = 20 parent dataset.

Data-Informed Simulation. Because stability and spread have been pro-
posed as potentially meaningful characterizations of ER strategy use in daily life
(Daniel, Moulder, Boker, & Teachman, 2024), we simulated data for 100 people
where each person was measured 200 times on nine binary variables based on real
data proportions from a two-week EMA study measuring use of nine different
ER strategies (Daros et al., 2019). In this study, 140 undergraduates reported
up to six times per day whether they used any of nine ER strategies. Responses
to each binary variable at each time point were drawn from a binomial distribu-
tion with the following proportions of successes: .618, .048, .110, .107, .072, .052,
.014, .055, .076. These values reflect the proportion of observations where each
of the following responses were selected out of all submitted EMA surveys: not
regulating one’s emotions, cognitive reappraisal, problem solving, introspection,
acceptance, advice-seeking, expressive suppression, emotional suppression, and
distraction, respectively (Daros et al., 2019). Proportions do not sum to 1 be-
cause multiple ER strategies could be endorsed simultaneously. We refer to this

6 We focused on k = 10 variables and k = 20 variables because stability and spread were
designed to calculate transition information from higher dimensional data sources
than existing approaches typically handle (Daniel et al., 2023) and yet are still likely
to be measured by psychosocial researchers (e.g., Heiy & Cheavens, 2014)
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as our data-informed parent dataset. All remaining steps were identical to those
detailed above.

Calculating Stability and Spread. We calculated stability and spread for
each sub-dataset using Daniel et al. (2023)’s methods. Specifically, we con-
structed transition matrices using the ‘buildTransArray’ function in the Transi-
tionMetrics package (Daniel & Moulder, 2020). To demonstrate how the transi-
tion matrices are built from data, imagine a participant i rated whether or not
they used each of four different ER strategies (ER1, ER2, ER3, ER4) at 6 time
points (T1, T2, T3, T4, T5, T6,). With these data (given on the top of Table
1) and assuming a window of 5 and a lag of 1, we can construct two transition
matrices (Xi1, Xi2).

To construct Xi1, we would start by creating a 4 x 4 matrix for which all
elements are initialized to zero. The example data show that ER1 occurred at
the first observation (T1) and ER3 occurred at the second observation (T2).
This means that a pairwise transition from ER1 to ER3 occurred between the
first two time points. Thus, we increment the (3,1) element of Xi1 by one (to
reflect the transition from ER1 to ER3). All other elements remain at 0. At the
next observation (T3), ER3 was endorsed again, indicating a pairwise transition
from ER3 to ER3 between T2 and T3. To reflect this pairwise transition, we
increment the (3,3) element of Xi1 by one. At the next observation (T4), ER3
was once again endorsed, indicating a pairwise transition from k3 to k3 between
T3 and T4. Thus, we increment the (3,3) element of Xi1 by one such that the
(3,3) element now equals two. At the next observation (T5), ER2 was endorsed,
indicating a transition from ER3 to ER2 between T4 and T5. Thus, we increment
the (2,3) element of Xi1 by one, such that the (2,3) element now equals one. At
this point, all transitions between the four binary variables across the first five
time points are reflected in Xi1 (see Table 1).

To construct Xi2 we would start with a second 4 x 4 matrix, also initialized to
zero. The window of observations being read into Xi2 would be shifted down the
time series by one compared to what was read into Xi1, such that the transitions
between T1 and T2 described above would not be captured by the new matrix.
The transitions between T2 and T3, T3 and T4, and T4 and T5, however, would
be incremented into the new matrix like in Xi1. Finally, because the window of
observations was shifted down one, there would be one new transition to add to
Xi2 (i.e., the transition between T5 and T6). In these example data, ER4 was
endorsed at T6, indicating that a transition from ER2 to ER4 occurred between
T5 and T6. Thus, we increment the (4,2) element of Xi2 by one. At this point,
all transitions between the four binary variables across the next five time points
are reflected in Xi2 (see Table 1). The stability and spread equations, which are
described further below, would then be applied to these two populated transition
matrices.

In the present study, the dimension of each transition matrix was determined
by the number of variables included in the data (e.g., when k = 9, the transition
matrices were 9-by-9). Five observations were included in each matrix with a
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Table 1. Visual Demonstration of Method

Example Data
ER1 ER2 ER3 ER4

T1 1 0 0 0
T2 0 0 1 0
T3 0 0 1 0
T4 0 0 1 0
T5 0 1 0 0
T6 0 0 0 1

Xi1

ER1 ER2 ER3 ER4

ER1 0 0 0 0

ER2 0 0 1 0

ER3 1 0 2 0

ER4 0 0 0 0

Stability = 2/4
Spread = 3/16

Xi2

ER1 ER2 ER3 ER4

ER1 0 0 0 0

ER2 0 0 1 0

ER3 0 0 2 0

ER4 0 1 0 0

Stability = 2/4
Spread = 3/16

Note. Two transition matrices constructed from example data with 6 observations (T1
through T6), window size of 5 observations per transition matrix, four binary time
series (ER1 through ER4), and a windowing lag of one. We chose not to reduce the
stability and spread fractions, when appropriate, to avoid obscuring the relationship
between the matrices and the resulting values.



Transition Metrics 25

windowing lag of one. Phrased differently, each transition matrix is composed of
all pairwise transitions between “on” states that occurred between successive ob-
servations within a window of five observations at a time. We calculated stability
and spread using the ‘transStats’ function in the TransitionMetrics package.

Stability, which measures the extent to which a system transitions from one
binary variable to the same binary variable at the next time point relative to all
observed transitions, makes use of one important characteristic of the transition
matrix. Namely, if the same time series variable is “on” in two back-to-back
surveys, then a cell along the on-diagonal of the matrix would be incremented
to reflect this “repeat.” Conversely, if a switch from one time series variable to
another time series variable occurs in two-back-back surveys, then a cell along
the off-diagonal of the matrix would be incremented to reflect this “switch.” As
such, stability is given by

Stij =
tr(Xij)∑∑

Xij
, (1)

where tr(Xij) is the sum of the elements along the on-diagonal of a transition
matrix Xij for the jth transition matrix of the ith person and

∑∑
Xij is the

sum of all elements of Xij . Stability is bounded between 0 and 1 where values
closer to 1 indicate a tendency to repeat the same variable between successive
surveys and values closer to 0 indicate a tendency to switch between at least two
different variables between successive surveys. This process resulted in 4 stability
vectors per dataset (12 vectors total), where each vector was a string of stability
values calculated within each of the sub-datasets simulated 1000 times for each
participant.

Spread, which measures how many unique pairwise transitions are observed
relative to all possible transitions afforded by the multivariate system, makes
use of a second important characteristic of the transition matrix. Namely, each
cell in the transition matrix represents a unique pairwise transition between two
successive observations and all possible pairwise transitions are represented in
the full transition matrix. As such, spread is given by

Spij =
nz(Xij)

k2
, (2)

where nz(·) is a count of the number of non-zero elements in · and k2 is the num-
ber of elements in Xij . Spread is bounded between 0 and 1 where values closer
to 1 indicate that a higher proportion of all possible transition pairings were
observed and values closer to 0 indicate that very few of the possible transition
pairings were observed. This process resulted in 12 spread vectors.

Calculating Bias. To calculate the bias in average stability scores introduced
by each time interval misspecification sampling schedule, we subtracted the sta-
bility vector calculated from the equal time spacing data set (i.e., the expected
value) from each unequal time spacing stability vector (i.e., the observed val-
ues). We then repeated this process for the spread vectors. We calculated these
difference vectors separately for each parent dataset, resulting in nine vectors of
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difference scores: three for stability and three for spread, for each parent dataset.
Difference scores indicate how different the transition metric was when calcu-
lated on data with unequal time spacing compared to when it was calculated on
data collected with equal time spacing. Difference scores closer to zero indicate
less bias in the values obtained from equal and unequal time spacing sampling
schedules.

We first plotted the distributions of these difference scores. We then calcu-
lated the mean (average bias) and standard deviation of the mean (standard
error of bias) difference score observed in all 1000 simulations. We used the av-
erage bias and standard error of bias from each sampling schedule to calculate
z-scores to determine if the observed bias was significantly larger than zero. We
also calculated the mean and standard deviation of the standard deviation in
difference scores observed in all 1000 simulation runs. Whereas average bias in-
dicates how much systematic bias likely results from unequal sampling across
many samples, average standard deviation indicates how much a single stabil-
ity or spread value calculated in unequally spaced data may deviate from what
would have been observed in an equal spacing design. Finally, we calculated the
root mean square error (RMSE), which measures the degree to which the ob-
served scores vary from the best fit line of the expected scores. Low variability
of error and low bias both contribute to RMSE values that are closer to zero.

Calculating Coverage. To calculate 95% coverage in stability, we determined
whether each equal time-spacing stability vector (i.e., the true values) fell within
+/- 1.96 standard deviations of the average7 stability value calculated from
a given time interval misspecification stability vector. We then calculated the
percentage of the time this was true. A measure with 95% coverage would expect
this percentage to be 95%. We repeated this process for the spread vectors. We
calculated these separately for each parent dataset, resulting in nine vectors of
TRUE/FALSE decisions: three for stability and three for spread, for each parent
dataset.

Open Data Statement. All simulations and code are available at
https://osf.io/xf82h/.

3 Results

3.1 Bias

The average bias in both stability and spread was not significant for any time
interval misspecification sampling schedule in either randomly generated parent

7 Per Daniel et al. (2023), matrices that showed no transitions (i.e., where no time
series were observed in the “on” state across five successive observations) received
a stability score of “noUse.” Since “noUse” cannot contribute to the mean stability
value, these observations were dropped.

https://osf.io/xf82h/
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dataset (Tables 2 and 3). Whereas the average bias for all cases was near-zero, the
average standard deviation between observed and expected stability was .058-
.059 when k = 10, depending on the sampling schedule, and .023 for all sampling
schedules when k = 20. The average standard deviation between observed and
expected spread scores was .139-.140 when k = 10 and .098 for all sampling
schedules when k = 20. RMSE scores for these comparisons were near zero.

The average bias in both stability and spread were also not significant for
any time interval misspecification case when the data were simulated based on
observed proportions from a prior EMA study (Table 4). The average bias for
all cases from the data-informed simulations was near-zero and the average stan-
dard deviation between observed and expected spread scores (SD = .088) was
within the range observed in the randomly generated data. However, the average
standard deviation between observed and expected stability scores was higher
than previously seen (i.e., approximately .263 on a measure ranging from 0 to
1). That said, RMSE scores for all stability and spread sampling schedules were
low.

3.2 Coverage

Across all parent data sets, stability and spread demonstrated approximately
95% coverage of the random sampling schedules. However, coverage for stability
and spread was poor in all off/on burst sampling schedules, ranging between
64.5% and 67.6% (Tables 2-4).
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Table 2. Bias and Coverage Estimates for Stability and Spread Calculations with Time
Interval Misspecification when k = 10

Average
Bias

SE of Bias Z Score of
Bias

Average
SD (SE)

RMSE Coverage

Stability
Off/On
Burst Sam-
pling

-7.24 e–5 0.002 -0.016 .059 (.010) 0.002 67.77%

Between
Random
Sampling

3.91 e–5 0.002 0.009 .058 (.010) 0.002 93.48%

Within
Random
Sampling

-2.48 e–5 0.002 -0.006 .058 (.010) 0.002 93.35%

Spread
Off/On
Burst Sam-
pling

6.24 e–5 0.006 0.005 .140 (.007) 0.006 67.90%

Between
Random
Sampling

-2.62 e–5 0.006 -0.002 .139 (.007) 0.006 95.67%

Within
Random
Sampling

7.25 e–5 0.006 0.006 .140 (.006) 0.006 96%

Note. k = the number of time series included in the simulation. SE = standard error;
SD = standard deviation; RMSE = root mean standard error. All Z scores are all non-
significant at p > .05, suggesting that the average amount of bias is non-significant for
both stability and spread metrics across all three misspecification sampling schedules.
Coverage reflects the percentage of time when the true value (given by the equal time
spacing series) falls within +/-1.96 standard deviations of the estimate (given by the
relevant time misspecification series).
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Table 3. Bias and Coverage Estimates for Stability and Spread Calculations with Time
Interval Misspecification when k = 20

Average
Bias

SE of Bias Z Score of
Bias

Average
SD (SE)

RMSE Coverage

Stability
Off/On
Burst Sam-
pling

-2.40 e–5 0.001 -0.013 .023 (.006) 0.001 66.86%

Between
Random
Sampling

3.27 e–5 0.001 0.018 .023 (.006) 0.001 94.57%

Within
Random
Sampling

-3.47 e–5 0.001 -0.019 .023 (.006) 0.001 94.47%

Spread
Off/On
Burst Sam-
pling

2.48 e–4 0.004 0.031 .098 (.005) 0.004 65.57%

Between
Random
Sampling

-5.84 e–5 0.004 -0.007 .098 (.005) 0.004 94.67%

Within
Random
Sampling

9.30 e–5 0.004 0.011 .098 (.004) 0.004 94.86%

Note. k = the number of time series included in the simulation. SE = standard error;
SD = standard deviation; RMSE = root mean standard error. All Z scores are all non-
significant at p > .05, suggesting that the average amount of bias is non-significant for
both stability and spread metrics across all three misspecification sampling schedules.
Coverage reflects the percentage of time when the true value (given by the equal time
spacing series) falls within +/-1.96 standard deviations of the estimate (given by the
relevant time misspecification series).
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Table 4. Bias and Coverage Estimates for Stability and Spread Calculations with
Time Interval Misspecification for k = 9 when the Probability of Each Time Series’
Endorsement is Given by Previously Collected Data

Average
Bias

SE of Bias Z Score of
Bias

Average
SD (SE)

RMSE Coverage

Stability
Off/On
Burst Sam-
pling

-4.68 e–4 0.012 -0.021 .265 (.011) 0.012 64.62%

Between
Random
Sampling

6.27 e–4 0.011 0.028 .263 (.010) 0.012 96.29%

Within
Random
Sampling

-1.14 e–4 0.011 -0.005 .263 (.008) 0.011 96.52%

Spread
Off/On
Burst Sam-
pling

-6.82 e–5 0.004 -0.009 .088 (.006) 0.004 64.48%

Between
Random
Sampling

-2.24 e–4 0.004 -0.028 .087 (.006) 0.004 94.33%

Within
Random
Sampling

-8.22 e–5 0.004 -0.011 .087 (.005) 0.004 94.33%

Note. k = the number of time series included in the simulation. SE = standard error;
SD = standard deviation; RMSE = root mean standard error. All Z scores are all non-
significant at p > .05, suggesting that the average amount of bias is non-significant for
both stability and spread metrics across all three misspecification sampling schedules.
Coverage reflects the percentage of time when the true value (given by the equal time
spacing series) falls within +/-1.96 standard deviations of the estimate (given by the
relevant time misspecification series
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4 Discussion

Through simulation, we explored the robustness of stability and spread indices
when applied to data with common time interval misspecifications. In the aggre-
gate, stability and spread values were unbiased when applied to data collected
using a between-person random sampling schedule, a within-person random sam-
pling schedule, and an off/on burst sampling schedule. These results held in
randomly generated data with differing numbers of binary variables and in data
simulated based on the proportions of observed data from a prior EMA study.
Further, stability and spread demonstrated approximately 95% coverage for all
between- and within-person random sampling schedules. However, coverage for
stability and spread was poor in the off/on burst sampling schedules. Taken
together, these findings suggest that stability and spread are appropriate met-
rics to use with ILD that are collected using unequal time spacing conditions,
although researchers should be cautious when interpreting any given stability
or spread estimate if sampling a continuously transitioning process with a burst
design. This pattern of results supports the appropriateness of applying stability
and spread indices across a range of common EMA sampling schedules (Myin-
Germeys et al., 2018). With the proliferation of EMA across research disciplines
in psychology in the past two decades (Wrzus & Neubauer, 2023), our findings
provide more confidence in the general applicability of these transition metrics.

4.1 Stability and Spread are Unbiased on Aggregate, but Degree of
Bias Varies

It is possible that stability and spread appear unbiased because the method uses
a sliding window with a lag of one. This approach is consistent with time delay
embedding procedures, which have shown robustness to time interval misspec-
ification (Boker et al., 2018). Given this shared procedure between time delay
embedding and our windowing approach, researchers who choose to only calcu-
late stability and spread once per person, or repeatedly but with non-overlapping
windows, may be more vulnerable to bias. Future simulations that test boundary
conditions of the apparent robustness of stability and spread will be useful for
researchers who wish to set a windowing lag that is not one. Further, our results
support the idea that time delay embedding procedures might help address time
interval misspecification across a broader range of time series methods than were
originally tested by Boker et al. (2018).

Although unbiased in the aggregate, there was variation in how close specific
stability or spread values were when calculated from data with and without
time interval misspecification. Bias measures how well the stability and spread
values that are calculated from time interval misspecification data (i.e., observed
scores) approximate the stability and spread values that are calculated from data
with equal time spacing (i.e., expected scores). Variance, on the other hand,
measures how tightly clustered the observed scores are relative to the expected
scores. Thus, the true amount of error in stability and spread in a system can be
decomposed as the sum of the bias term and the variance term. Given that the
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total error is the sum of these two terms, there is a trade-off between bias and
variance (i.e., if total error stays constant, less bias implies more variance and vice
versa; Mehta et al., 2019). As such, it is not surprising that with no significant
bias, some degree of variance remained, although this observed variance still
tended to be low.

Across both k = 10 and k = 20 datasets, variance in spread was greater
than variance in stability. However, a visual inspection of scatter plots revealed
that stability was prone to more frequent edge cases, possibly because spread
values are determined at the unique cell level (the denominator is the number
of cells in the transition matrix) whereas stability values are determined at the
transition level (the denominator is the number of observed transitions). We ob-
served the opposite pattern in the data-informed datasets: variance was higher
in stability relative to spread. Further, the data-informed variances were notably
higher than those observed across all other cases. It could be that when every
time series is equally probable to be observed at a given measurement occasion,
the difference in stability calculated using equal time spacing relative to any of
the unequal time spacing measures is relatively small (given that random en-
dorsement patterns make high stability values less likely), but when a particular
time series is significantly more likely to be endorsed, there is a wider range of
possible stability values and thus greater variability between sampling schedules.
Researchers interested in using the stability value of any one transition matrix
might do so cautiously when using a sampling process expected to have pockets
of high underlying stability; however, coverage for between- and within-person
random sampling remained good.

4.2 Coverage Depends on Sampling Schedule

Whereas coverage was consistently around 95% for stability and spread when
random sampling was imposed between- and within-people, coverage was poor
for these metrics when an off/on burst sampling method was used. Specifically,
our burst design alternated between sampling five observations in a row and not
sampling for 35 observations in a row. It is likely that this design imposed too
long of a gap between measurement bursts such that the likelihood for the true
value to be contained within the confidence intervals from these samples was
substantially reduced. Researchers using burst designs should be cautious when
applying stability and spread to their data, though the amount of time between
measurement bursts that may be detrimental likely depends on the frequency
at which the system being studied changes. Moreover, this caution may only
be warranted if transition matrices are allowed to span samples collected across
two different bursts. In the current simulations, we allowed observations 38, 39,
40, 76, and 77, for example, to contribute to a given stability and spread value.
Researchers using burst designs when the process is expected to continue transi-
tioning between bursts might instead prevent transition matrices from spanning
long gaps in samples. This constraint would likely mitigate these issues.
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5 Applied Example: Emotion Regulation

How diverse a set of ER strategies that a person switches between (Wen, Quigley,
Yoon, & Dobson, 2021) and how often a person transitions between different ER
strategies—whether too often (Southward, Altenburger, Moss, Cregg, & Cheav-
ens, 2018) or not often enough (Bonanno & Burton, 2013) —is expected to be
associated with mental health (Gross, 2015). Being appropriately responsive to
changing emotional intensity likely promotes effective ER switching decisions
(Bonanno & Burton, 2013). However, people with more depressive symptoms
may exhibit particular deficits in effectively switching ER strategies in response
to variations in their mood (Cheng, 2001; Coifman & Bonanno, 2010; Southward
& Cheavens, 2017; Southward, Eberle, & Neacsiu, 2022), given that depression
is associated with “stereotyped and inflexible responses to a variety of emotional
stimuli” (Rottenberg, Kasch, Gross, & Gotlib, 2002). To demonstrate the util-
ity of spread and stability in real data, we conducted an applied example to
test how depressive symptoms moderate the relation between momentary ER
strategy switching patterns and mood throughout the daily lives of adults over-
sampled to be elevated in neuroticism.

We expected that participants with higher depressive symptoms would report
more unique types of ER strategy switches (higher spread) and more frequent
strategy switches (lower stability; e.g., rumination → expressive suppression →
substance use → reappraisal → denial) because depression has been associated
with greater diversity in ER strategy use (Wen et al., 2021). We also expected
that periods characterized by a more positive average mood state would be as-
sociated with fewer types of unique ER strategy switches (lower spread) and less
frequent switching (higher stability; e.g., positive refocusing → positive refocus-
ing → positive refocusing → positive refocusing → positive refocusing) because
experiencing positive mood reduces the need to search for strategies designed
to reduce negative emotions (Gross, 2015). Further, relatively improved mood
might indicate that an effective strategy has been found and switching is not
warranted (Daniel et al., 2024). Finally, we expected that depressive symptoms
would moderate the relation between average state mood and spread/stability in
ER strategies, such that individuals with less depression would show a stronger
relation between more positive mood and lower spread/higher stability in ER
strategies.

5.1 Method

Ninety-two undergraduate students at a large Midwestern university participated
for course credit in this ethics board-approved study (protocol 2008B0320). Par-
ticipants ranged from 18-31 years old (M = 19.73, SD = 2.25) and were pre-
dominantly female (54%) and White (81%). After providing informed consent,
participants completed a range of ER and psychopathology questionnaires at
baseline and were then shown how to answer an EMA survey using a study-
provided palm pilot. The EMA surveys were sent three times per day for 10
days. Surveys were sent randomly within four-hour intervals, typically occurring
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around 1pm, 5pm, and 9pm. We report how we determined our sample size, all
data exclusions, and all relevant measures. See Heiy and Cheavens (2014) for
more details.

Measures To assess the presence and severity of past-week depressive symp-
toms, participants completed the Center for Epidemiologic Studies Depression
scale (CES-D; Radloff, 1977) at baseline. The CES-D is a 20-item self-report scale
where higher scores indicate greater depressive symptom severity, and scores ≥
16 indicate the likely presence of major depressive disorder (MDD). Cronbach’s
alpha for this sample was .92, and participants reported somewhat elevated de-
pression scores, M = 18.30, SD = 11.61, with 49 participants (55.1%) likely
meeting criteria for MDD.

At each EMA survey, participants rated their current mood from 0 to 100,
with 100 reflecting the best possible mood and 0 reflecting the worst possible
mood. Participants were then asked to identify the strongest negative emotion
(if any) they had experienced in the prior four hours. If they reported a negative
emotion, participants received a list of 20 different ER strategies presented in
a random order and were asked if they had used any of the strategies to lessen
or decrease the intensity of the negative emotion.8 Response options for each
strategy were: no; yes, but it did not change the intensity of the emotion; and
yes, and it did change the intensity of the emotion. In the present study, we
collapsed the two “yes” responses into one such that each strategy was either
endorsed (yes = 1) or not endorsed (no = 0). If participants did not report
experiencing a negative emotion, ER strategy use was not assessed.

Analytic Approach All analyses were conducted in R version 4.1.3 (R Core
Team, 2022). Analysis scripts are openly provided (https://osf.io/xf82h). Data
are available upon reasonable request. The analysis scripts detail all data pre-
processing, stability and spread calculation, and model fitting steps in both
structural equation and Bayesian modeling frameworks.

We calculated spread and stability in ER strategies according to the steps
outlined in Daniel et al. (2023) using the TransitionMetrics package (Daniel &
Moulder, 2020). We set window size (W ) to nine and used a windowing lag of
one. We set W = 9 so that each 20-by-20 transition matrix would be built with
surveys from at least three different days, thereby increasing the likelihood that
participants would be reporting ER attempts in response to multiple, distinct
events. The number of transition matrices built per participant varied by how
many total observations they submitted throughout the study. Participants who
submitted fewer than nine surveys (n = 3) were excluded from analyses given
insufficient observations upon which to build a minimum of one complete tran-
sition matrix. These analytic choices are consistent with previous pre-registered

8 The strategies assessed were acceptance, behavioral activation, rumination, problem-
solving, perspective, social support, benefit finding, consequences, self-blame, gener-
alizing, other-blame, expressive suppression, positive refocusing, reappraisal, sleep,
emotional suppression, substance use, denial, exercise, non-suicidal self-injury.

https://osf.io/xf82h
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decisions in the same data (https://osf.io/d3tyn). We built two models, one pre-
dicting spread in ER strategies and another predicting stability in ER strategies.

To test whether depression moderated the relation between average state
mood and spread in ER strategy choices, we fit the structural equation model
presented in Figure 1. We used a time delay embedding matrix with nine di-
mensions and a windowing lag of one. Spread in ER strategies was entered as
a time-varying manifest variable. We divided grand-mean-centered depression
severity scores by 100 and entered them as a time-invariant manifest variable.9

State mood was person-mean-centered and then entered into a nine-dimension
time delay embedding matrix to conform to the number of surveys contributing
to each spread calculation. Average state mood was specified along the nine di-
mensions of that time delay embedding matrix. Specifically, average state mood
was entered as a latent variable with loadings to all nine state mood indicators
fixed to one. We used an identity variable to include the moderation effect of
depression severity on the relation between average state mood and spread in ER
strategy choices. We conducted this analysis in OpenMx version 2.20.6 (Neale et
al., 2016) and used likelihood-based confidence intervals (the “mxCI” argument
in the “mxModel” statement) to test the significance of all hypothesized paths.
Paths with 95% CIs that did not include zero were considered significant.

We used similar procedures to test whether depression moderated the rela-
tion between average state mood and stability in ER strategy choices. However,
because stability returns a “noUse” result if no transition was observed—which
occurs if ER strategies were not endorsed between two back-to-back surveys
within a given transition matrix—we opted to use multilevel mixture modeling
(e.g., Muthén & Asparouhov, 2009). Specifically, we predicted whether some
numerical stability value was returned (vs. “noUse”; a binary outcome) and, if
some stability value was returned, the level of that value (a continuous outcome).
We therefore fit this mixture model with logistic regression and linear regres-
sion components, respectively. Predictors for both model components included
grand-mean-centered depression symptoms, person-mean-centered average state
mood (which was calculated outside of the model on nine EMA surveys at a
time), and their interaction. We also included person-level random intercepts for
both model components. We fit this model in the Bayesian framework using rjags
version 4-13 (Plummer, Stukalov, & Denwood, 2023) with uninformative priors.
All parameters converged10 using two chains on 5,000 iterations after a burn in
period of 15,000 iterations. Bayesian credible intervals that do not include 0 are
considered significant.

9 We elected to estimate depression outside of the model, rather than to estimate it
in the model as a latent variable, because estimating latent-by-latent interactions
within structural equation modeling is relatively understudied and often considered
infeasible. We divided grand-mean-centered depression severity by 100 to aid model
convergence.

10 The variance parameter for the random intercept of continuous stability did not
converge due to minimal average between-person variance on this outcome. However,
removing this random intercept did not change other model outcomes so we decided
to retain this parameter to maintain the multi-level structure present by design.

https://osf.io/d3tyn
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Figure 1. Spread in Emotion Regulation Strategy Choices Path Model

Note. Paths tested for path significance are bolded. CES-D = Center for Epidemiologic
Studies Depression, measure of trait depression symptom severity; Sprd = spread in
emotion regulation strategy choices solved for along a sliding series of nine successive
surveys inclusive; mM = average state mood score given by the nine state mood scores
which are labeled Mi through Mi+8.

5.2 Results

Predicting Spread in ER Strategy Transitions. We found a significant
interaction between depressive symptom severity and mean state mood in pre-
dicting spread in ER strategies (Table 5). Specifically, participants made fewer
unique switches between ER strategies (lower spread) when they were experi-
encing more positive mean state mood than usual, but this effect was especially
pronounced in those who endorsed fewer depressive symptoms (Figure 2). This
is in line with our hypothesis that people with fewer depression symptoms would
be more likely to demonstrate an association between better state mood and less
of a need to switch between many different ER strategies.

Predicting Stability in ER Strategy Transitions. We found a significant
main effect of mean state mood in predicting whether some stability value was
returned (Table 6). Specifically, when participants reported better mean state
mood than usual, they were less likely to report back-to-back ER strategy use
(“noUse” was returned more often). However, depression was neither a significant
main effect nor a significant moderator in the logistic regression component of
the model.
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Table 5. Summary of Free Parameters in Spread in Emotion Regulation Strategies
Model

Estimate Standard Error
95% CI

LB
95% CI

UB

Paths Assessed for Significance
mMood → Spread -0.02 0.005 -0.04 -0.02
CES-D → Spread -0.05 0.05 -0.15 0.04
mMood × CES-D → Spread 0.06 0.03 0.01 0.12

Additional Paths Included in the Model
covariance (mMood, CES-D) -0.04 0.02

(Error) Variancesρ
mMood v 7.97 1.53
Spread e 0.02 0.001
CES-D e 0.01 0.0004

Means
CES-D 6.3 e–6 0.002
Spread 0.13 0.005

Notes. LB = Lower bound and UB = Upper bound. Mood = mean state mood; CES-D
= Center for Epidemiologic Studies Depression, measure of trait depression symptom
severity; Spread = spread in emotion regulation strategy choices (higher spread de-
notes a higher proportion of unique types of switches between ER strategies and lower
spread denotes fewer unique types of switches); appending a variable name with v de-
notes a variance; appending a variable name with e denotes an error variance. Paths
are significant if its upper and lower 95% Confidence Interval bounds do not cross 0.
Significant paths are bolded.
× is used to reflect an interaction effect between two variables on Spread.
ρ Estimates and standard errors for the nine state mood indicators along the time
delay embedded matrix are not included to improve readability of model output.
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Figure 2. Johnson-Neyman Plot Depicting the Significant Interaction between Trait
Depression Severity and Mean State Mood Intensity on Spread in Emotion Regulation
Strategy Choices

Note. Increasingly negative values on the y-axis indicate that the association between
more positive mood and less unique transitions between emotion regulation strategies
is becoming stronger. CES-D = Center for Epidemiologic Studies Depression, measure
of trait depression symptom severity.

We found a significant interaction between depression severity and mean
state mood in predicting continuous stability in ER strategy choices (Table 6).
Specifically, participants with fewer depression symptoms tended to switch be-
tween ER strategies less frequently (higher stability) when experiencing periods
of more positive state mood than usual, whereas participants with more depres-
sion symptoms tended to switch between ER strategies more frequently (lower
stability) when experiencing periods of more positive state mood than their usual
(Figure 3). This is in line with our hypothesis that people with fewer depression
symptoms would be more likely to demonstrate an association between better
state mood and less frequent switching between ER strategies.

5.3 Discussion

Using empirical data that followed a within-person random sampling schedule,
stability and spread metrics led to both sensible and novel insights into ER
strategy use. In line with expectations, all participants evidenced more unique
strategy switches (higher spread) and used any strategies more consecutively
(fewer ‘noUse’ results for stability) when feeling more intense negative moods,
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Table 6. Stability in Emotion Regulation Strategies Model

2.5%
Credible
Interval

50%
Credible
Interval

97.5%
Credible
Interval

Logistic Regression Component
mMood -0.2 -0.15 -0.12
CES-D -2.6 e–2 3.7 e–2 0.11
mMood × CES-D -1.0 e–3 1.4 e–3 3.9 e–3

Linear Regression Component
mMood -3.3 e–4 8.7 e–6 3.4 e–4
CES-D -2.2 e–3 -1.6 e–3 -1.1 e–3
mMood × CES-D -2.0 e–4 -1.7 e–4 -1.4 e–4

Notes. The outcome for the logistic regression component of the model is whether a
numerical stability value was returned (1) or “noUse” was returned (0). The outcome
for the linear regression model is the numerical stability value that was returned (where
a higher stability value denotes less switching, and a lower stability value denotes more
switching). A random intercept per participant was included for both components of
the model. mMood = mean state mood; CES-D = Center for Epidemiologic Studies
Depression, measure of trait depression symptom severity. Effects are significant if its
95% Credible Interval does not cross 0. Significant effects are bolded.
× is used to reflect an interaction effect between two variables on the outcome.

potentially indicating a type of searching for the “right” strategy in response to
greater distress (Aldao & Nolen-Hoeksema, 2013; Southward et al., 2018). Inter-
estingly, depression moderated these effects in novel ways. People with greater
depression were more likely to exhibit more unique strategy switches (higher
spread) and more frequent switching (lower stability) in response to more pos-
itive moods than those with less depression. These results suggest that ER in
depression may be characterized as consistently inconsistent – that is, more fre-
quent and more diverse regardless of the emotional context. Of course, replication
in larger and more diverse samples, including those that were not selected to be
relatively high in trait neuroticism, is needed to strengthen these claims. Future
researchers may use stability and spread indices to test if unique patterns of ER
distinguish different disorders and identify specific clinical targets (i.e., switching
strategies too quickly or too often).
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Figure 3. Johnson-Neyman Plot Depicting the Significant Interaction between Trait
Depression Severity and Mean State Mood Intensity on Continuous Stability in Emo-
tion Regulation Strategy Choices

Note. Increasingly positive values on the y-axis indicate that the association between
more positive mood and less frequent switches in emotion regulation strategies is be-
coming stronger whereas increasingly negative values indicate that the association be-
tween more positive mood and more frequent switches in emotion regulation strategies
is becoming stronger. CES-D = Center for Epidemiologic Studies Depression, measure
of trait depression symptom severity.

6 Conclusion

Stability and spread appear unbiased, in the aggregate, when applied to data
with common types of time interval misspecification. Stability and spread also
demonstrate approximately 95% coverage when using between- and within-person
random sampling schedules. However, coverage is poor when using an off/on
burst sampling schedule. When applied to a previously collected EMA dataset
measuring adults’ naturalistic use of 20 ER strategies, depressive symptoms were
differentially associated with the ways in which a person’s state mood and ER
strategy switching decisions were related in daily life. Taken together, stability
and spread appear to be appropriate metrics to use with data that are collected
along common unequal time spacing conditions. Further, researchers interested
in transitions within high-dimensional binary ILD should prioritize sampling at
a rate that is conceptually or empirically matched to the transition process of
interest, rather than prioritize equal sampling at the expense of missing the sus-
pected transition process. However, taking long breaks between sampling bursts,
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assuming transitions are expected to continue as usual, may increase the likeli-
hood that specific stability and spread values are inaccurate.
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