
Journal of Behavioral Data Science, 2024, 4 (1), 81–104.
DOI: https://doi.org/10.35566/jbds/tongliu

A Tutorial on Bayesian Linear Regression with
Compositional Predictors Using JAGS

Yunli Liu and Xin Tong[0000−0003−3050−1554]

University of Virginia, Charlottesville, VA 22904, USA
xt8b@virginia.edu

Abstract This tutorial offers an exploration of advanced Bayesian method-
ologies for compositional data analysis, specifically the Bayesian Lasso
and Bayesian Spike-and-Slab Lasso (SSL) techniques. Our focus is on
a novel Bayesian methodology that integrates Lasso and SSL priors,
enhancing both parameter estimation and variable selection for linear
regression with compositional predictors. The tutorial is structured to
streamline the learning process, breaking down complex analyses into a
series of straightforward steps. We demonstrate these methods using R
and JAGS, employing simulated datasets to illustrate key concepts. Our
objective is to provide a clear and comprehensive understanding of these
sophisticated Bayesian techniques, preparing readers to adeptly navigate
and apply these methods in their own compositional data analysis en-
deavors.

Keywords: Bayesian analysis · Compositional data · Lasso · Spike and
Slab Lasso.

1 Introduction

Compositional data, also referred to as ipsative data or fractional data, are non-
negative components that represent fractions of a finite whole. Examples include
percentages that sum to 100, hours in a day that sum to 24, expenses on differ-
ent items that sum to the total budget, etc. Since compositional data contain
relative information within the whole, analyzing such data is valuable to better
differentiate ratings and diminish response biases. Compositional data analysis
can be employed whether all components contributing to the total have been
quantified, or merely a subset of them (Chastin, Palarea-Albaladejo, Dontje, &
Skelton, 2015). Although compositional data appear in many fields, including
but not limited to geology, biology, economics, medicine, and psychology, the
analysis of this type of data as predictors has received relatively little attention
due to the unique challenge caused by the constant-sum constraint in composi-
tional data, notably a statistical issue known as “exact collinearity”. With the

82 Liu and Tong

collinearity issue, traditional statistical methods may yield biased parameter es-
timates, inflated standard errors, and reduced statistical power (e.g., Belsley,
Kuh, & Welsch, 1980).

A common strategy to address the exact collinearity problem of composi-
tional data is to use transformations. Since compositional data reside in a sim-
plex and mainly carry relative information, a log-ratio transformation is typically
employed, based on the Aitchison geometry (Aitchison, 1986). Suitable log-ratio
representations include the additive-log-ratio (alr) transformation, the centered
log-ratio (clr) transformation, and the isometric-log-ratio (ilr) transformation
(Aitchison, 1986; Egozcue, Pawlowsky-Glahn, Mateu-Figueras, & Barceló-Vidal,
2003). However, the application of transformation-based methods for composi-
tional data analysis presents certain drawbacks. First, transforming data con-
taining zero values poses a challenge since log zero is undefined. To circumvent
the singularity, it is typical to replace zero values with a small predetermined
value. This approach, however, can introduce undesired bias and potentially pro-
duce misleading results, particularly when dealing with highly sparse data con-
taining a substantial number of zeros (Aitchison & Bacon-Shone, 1984; Palarea-
Albaladejo & Martin-Fernandez, 2013). Second, methods based on transforma-
tions struggle to provide clear interpretations, given their inability to fully dis-
entangle the dependency among predictors. This means that a shift in a single
predictor value inherently triggers alterations in other predictor values. As a
result, it can distort the original data structure, thereby complicating the inter-
pretation of the transformed data.

Because of the limitations of the transformation techniques, researchers have
been seeking alternative strategies to handle compositional data and yield inter-
pretable model estimation results (e.g., G. Li, Li, & Chen, 2023). It is shown in
the literature that Bayesian methods are promising as even with exact collinear-
ity, posteriors of the model parameters are well-defined. Although Bayesian com-
positional data analysis is sensitive to priors of the parameters, our previous
findings demonstrated that Bayesian Lasso and Bayesian Spike-and-Slab Lasso
(SSL) provide reasonable estimation results.

In this tutorial, we focus on linear regression and offer a hands-on explo-
ration of both the Bayesian Lasso and Bayesian SSL methods to handle compo-
sitional predictors. By integrating Bayesian methods within the Lasso and SSL
frameworks, we highlight the flexibility and robustness of our approach, thus
enhancing the accuracy of parameter estimation and facilitating a more compre-
hensive understanding of the relationships among the compositional predictors
and the outcome. The readers will learn how to implement the Bayesian Lasso
and Bayesian SSL techniques using R (R Core Team, 2023), equipped with the
Just Another Gibbs Sampler (JAGS) program (Plummer, 2003). The structure
of the tutorial is organized as follows. We begin with a preliminaries section that
provides a detailed introduction to compositional data, highlighting its complex-
ities and challenges. We also explore penalized methods, focusing specifically on
the Lasso and SSL techniques. This leads to a section dedicated to Bayesian
methods, where we establish the theoretical basis for the Bayesian Lasso and

Bayesian Compositional Data Analysis Tutorial 83

Bayesian SSL methodologies. The subsequent sections demonstrate the imple-
mentation of these Bayesian methods in JAGS. We conclude the tutorial with a
summary of insights and implications drawn from our discussion.

2 Preliminaries

2.1 Linear regression modeling of compositional predictors

This tutorial focuses on a linear regression model with compositional predictors,
given by:

yi = β0 + xT
i β + εi, εi ∼ N

(
0, σ2

)
, (1)

where yi represents the outcome for the ith subject (i = 1, . . . , n, n is the total
sample size), β0 is the intercept, xi = (xi1, . . . , xip)

T is a vector of compositional
predictors with p components for the ith subject, β = (β1, . . . , βp)

T represents
a p-dimensional vector of unknown regression coefficients, and εi is the random
error following a normal distribution with mean 0 and unknown variance σ2.
According to the definition, compositional data with p components refers to
non-negative numbers whose sum is a constant. Namely, xi1 > 0, . . . , xip > 0,
and

p∑
j=1

xij = c, (2)

where c is a constant. Without loss of generality, we set c at 1. Under the sum-
to-one constraint, the following issues may arise:

(1) The components of compositional data fall within the (0, 1) interval,
which can complicate the prediction of the dependent variable due to the limited
range of possible outcomes.

(2) The sum-to-one constraint leads to an exact collinearity problem among
predictors, which poses a significant challenge to standard regression techniques,
as they typically operate under the assumption of predictor independence.

(3) Real-world compositional data frequently manifest a high degree of spar-
sity, i.e., a large share of the components could be zero. This introduces addi-
tional intricacies to the analysis, as discerning whether a zero value signifies a
genuine absence of the component or merely results from measurement limita-
tions can be challenging.

In this tutorial, our focus lies on scenarios typified where a proportion of β
are either zero or sufficiently small to render the majority of potential predictors
insignificant in the analysis. Within this framework, we have two main goals: (i)
discerning the influential predictors, and (ii) precisely estimating the magnitude
of their corresponding effects.

2.2 Penalized least squares regression

To address collinearity, frequentist approaches often use a penalized likelihood
to obtain sparse estimates of the regression coefficient. These methods involve

84 Liu and Tong

adding a penalty term into the model to regulate the magnitude of the coefficients
and effectively shrinking them towards zero to reduce their variance. Similar to
ordinary least squares (OLS) estimation, penalized regression methods estimate
the regression coefficients β by minimizing the penalized residual sum of squares,
given by:

min
β

{
n∑

i=1

(
yi − β0 − xT

i β
)2

+ penλ(β)

}
. (3)

The penalized term penλ(β) can maintain all features while diminishing the
coefficients’ magnitude in the model. A widely used approach is the Least Abso-
lute Shrinkage and Selection Operator (Lasso), introduced by Tibshirani (1996),
which incorporates an L1 penalty term into the objective function, expressed
as penλ(β) = λ

∑p
j=1 |βj | . The parameter λ can be tuned to set the shrinkage

level: the higher the λ is, the more coefficients are shrunk to zero. This approach
aims to enhance predictive precision and identify a concise group of significant
predictors.

However, in high-dimensional scenarios, traditional Lasso may arbitrarily
select only one predictor from a group of highly correlated variables, potentially
leading to biased estimations and reduced interpretability (Zou & Hastie, 2005).
Additionally, Lasso employs a constant penalty for all coefficients and could
unintentionally result in the inclusion of irrelevant predictors (Friedman, Hastie,
& Tibshirani, 2010). These issues are particularly pertinent in compositional data
analysis, where each predictor represents a fraction of the total. The presence of
irrelevant predictors can skew these fractions, potentially leading to inaccurate
interpretations (Lin, Shi, Feng, & Li, 2014).

To reduce the bias of Lasso, Ročkov’a and George (2018) introduced the
Spike-and-Slab Lasso (SSL), an advanced technique that incorporates penal-
ized likelihood in the Bayesian framework. The SSL methodology has become
a prevalent tool for handling diverse statistical problems due to its inherent
flexibility and versatility. For example, Tang, Shen, Zhang, and Yi (2017b) and
Tang et al. (2018) used SSL within the framework of generalized linear models
to enhance the accuracy of disease outcome prediction and improve gene detec-
tion efficiency. In the context of multivariate regression, Deshpande, Ročková,
and George (2019) developed a multivariate SSL to offer an effective solution
for simultaneous predictor selection and effect estimation. Moreover, Z. Li, Mc-
Cormick, and Clark (2019) proposed an innovative class of priors for Bayesian
inference using SSL in multiple Gaussian graphical models, demonstrating its
ability to facilitate simultaneous self-adaptive shrinkage and model selection.
Also, the integration of SSL into Cox proportional hazards models by Tang,
Shen, Zhang, and Yi (2017a) has significantly advanced survival data analysis
by offering a nuanced understanding of time-dependent risks.

In general, penalized least squares methods are often effective for identifying
important predictors and managing collinearity in regression analysis. However,
when applied to compositional data, these methods in the frequentist framework
still require a transformation of compositional predictors, which struggle to pro-

Bayesian Compositional Data Analysis Tutorial 85

vide straightforward interpretations. To address this, we propose a shift towards
a Bayesian framework. This shift is grounded in the equivalence between the
frequentist penalized regression approach and the Bayesian approach, where a
normal likelihood combined with specific priors leads to a posterior distribution
akin to the penalized likelihood. In our Bayesian framework, we integrate Lasso
and SSL priors, enhancing the interpretability of results with compositional data.
We introduce Bayesian Lasso and Bayesian SSL below.

3 Bayesian Lasso and Bayesian SSL

3.1 Bayesian Lasso

Tibshirani (1996) suggested that Lasso estimates can be interpreted as posterior
modes when regression coefficients have independent and identically distributed
Laplace (double-exponential) priors. Thus, the prior for the regression coeffi-
cients β given the error variance σ2 with hyperparameter λ is defined as

p
(
β | σ2

)
=

p∏
j=1

λ

2
√
σ2

exp

{
−λ |βj |√

σ2

}
. (4)

Park and Casella (2008) pointed out that this Laplace distribution is equivalent
to a continuous mixture of Gaussian distributions (Andrews & Mallows, 1974).
Specifically, the expression for the Laplace distribution as a scale mixture of
normals (with an exponential mixing density) is given by

λ

2
exp(−λ|β|) =

∫ ∞

0

1√
2πτ2

exp
(
−β2/2τ2

)
× λ2

2
exp

(
−λ

2τ2

2

)
dτ2 , (5)

where τ2 serves as a scaling factor. This suggests the following hierarchical rep-
resentation of the full model:

yi | β0,xi,β, σ
2 ∼ N

(
β0 + xT

i β, σ
2
)
,

β | σ2, τ21 , . . . , τ
2
p ∼ N

(
0, σ2Dτ

)
,

β0 ∼ N (0, 100)

σ2, τ21 , . . . , τ
2
p ∼ p

(
σ2
) p∏
j=1

λ2

2
exp

{
−λ2τ2j

2

}
.

(6)

In this model, Dτ is a diagonal matrix with diagonal elements τ21 , . . . , τ2p . The
exponential distribution for τ2j reflects the Lasso penalty, with λ controlling the
amount of penalization. For σ2, we choose a non-informative scale-variant prior,
such as p

(
σ2
)
= 1/σ2. Or, to ensure model conjugacy, an inverse-gamma prior

for σ2 can be utilized.
In contrast to traditional Lasso that necessitates manual adjustment of its

penalty hyperparameter, the Bayesian Lasso facilitates the empirical estimation

86 Liu and Tong

of the shrinkage degree. This capability significantly improves the model’s effec-
tiveness in handling complexity and mitigating issues of collinearity. However,
despite these benefits, Ročková and George (2016) identified certain shortcom-
ings in the Bayesian Lasso, particularly its limited capacity to accommodate
sparsity and to rectify estimation bias. Further, as Ghosh, Tang, Ghosh, and
Chakrabarti (2013) indicates, it tends to insufficiently shrink less significant
coefficients while excessively shrinking more important ones. The following sub-
section will explore how the Bayesian SSL addresses these specific challenges.

3.2 Bayesian SSL

Unlike Lasso, which imposes uniform shrinkage across all regression coefficients
β, the SSL employs a mixture prior structure. Each coefficient βj comes from
either a Laplacian "spike" centered around zero or a broader Laplacian "slab".
The hierarchical prior over β and the latent indicator variables γ = (γ1, . . . , γp)
is given by:

p(β | γ) =
p∏

j=1

[(1− γj)ψ0 (βj) + γjψ1 (βj)] , γ ∼ p(γ), (7)

where γ = (γ1, . . . , γp)
′, with each γi being a binary variable, is an interme-

diate vector, indexing the 2p conceivable models within the framework. Here,
ψ0 (β) = (λ0/2) e

−|β|λ0 is the “spike” and ψ1 (β) = (λ1/2) e
−|β|λ1 is the “slab”

(λ1 ≪ λ0) . This two-point mixture of Laplace distributions will be referred to as
the SSL priors. The flexibility of the model space prior p(γ) substantially broad-
ens the scope of these priors. It allows for the tailoring of p(β) towards preferred
configurations of γ, enhancing the model’s ability to align with specific, desirable
configurations. For our analysis, we focus on of the following form:

p(γ | θ) =
p∏

j=1

θγj (1− θ)1−γj , and θ ∼ Beta(a, b), (8)

where θ = P(γj = 1 | θ) represents the prior expected fraction of substantial βj .
This hyperparameter θ plays a pivotal role in the mixture prior, as it balances
the influence of the spike and slab components by controlling the mixture prob-
abilities for each coefficient βj . Additionally, a and b serve as hyperparameters
in the Beta distribution, further shaping the overall behavior of the model.

In the Bayesian SSL framework, our sampling methodology for the Spike-and-
Slab Lasso posterior relies on the Stochastic Search Variable Selection (SSVS)
algorithm (George & McCulloch, 1993). This approach interprets the Laplace
distribution as a scale mixture of Gaussians defined by penalty parameters λj >
0. The mixing distribution is exponential, with the rate parameter set at λ2j/2,
following the approach outlined in Park and Casella (2008). Thus, regression
with SSL priors takes the following hierarchical form:

Bayesian Compositional Data Analysis Tutorial 87

yi | β0,xi,β, σ
2 ∼ N

(
β0 + xT

i β, σ
2
)
,

β0 ∼ N (0, 100) ,

β | τ ∼ N
(
0, σ2Dτ

)
,

τ2j ∼ Exp

(
λ2j
2

)
,

λj = γjλ1 + (1− γj)λ0,

γj | θ ∼ Bernoulli(θ) with θ ∼ Beta(a, b),

σ2 ∼ InvGamma(0.001, 0.001).

(9)

In the model, Dτ represents a diagonal matrix, with its diagonal comprising the
elements τ21 , . . . , τ2p . The hyperparameters λ1 and λ0 are used for computing λj ,
and are typically chosen based on prior knowledge, with λ1 being considerably
smaller than λ0 (expressed as λ1 ≪ λ0). The model’s spike-and-slab component
is encapsulated by the latent variables γ1, . . . , γp, each adhering to a Bernoulli
distribution characterized by the parameter θ, symbolized as Bernoulli(θ). Fur-
thermore, the parameter θ itself is modeled using a Beta distribution, determined
by the shape parameters a and b. Again for σ2, we can choose a non-informative
scale-variant prior, such as p

(
σ2
)
= 1/σ2. Or, to ensure model conjugacy, an

inverse-gamma prior for σ2 can be utilized.
The Bayesian SSL introduces a more sophisticated model for variable selec-

tion. It combines the shrinkage property of the Lasso with a spike-and-slab prior,
allowing for a more flexible and nuanced approach. This hierarchical structure
not only enhances the model’s flexibility but also aids in capturing the underlying
complexities of the data. This methodology is particularly effective in dissecting
the intricate structure of compositional data, offering a comprehensive under-
standing of the underlying relationships within the dataset.

Next, we delve into the practical implementation of the Bayesian Lasso and
Bayesian SSL using the rjags package.

4 Bayesian Lasso implementation in JAGS

In this section, we introduce how to use the rjags package in the R environment
(Plummer, 2003) to call JAGS and carry out Bayesian compositional analysis.
JAGS, short for Just Another Gibbs Sampler, can be installed from the following
link: https://mcmc-jags.sourceforge.io/.

4.1 Software

The following chunk of code loads the necessary packages for our entire tutorial. If
you haven’t installed these packages previously, you will need to install them first
using install.packages(). In our Bayesian analysis, we utilize rjags for interfacing
R with JAGS, while coda assists in summarizing MCMC outputs. These tools

88 Liu and Tong

collectively streamline the implementation and evaluation of Bayesian models in
R.

library(rjags) # rjags library allows R to
interface with JAGS

library(coda) # coda package provides tools
for summarizing and visualizing MCMC output

library(ggmcmc) # ggmcmc is used for
diagnostics of MCMC chains and plots

library(MASS) # MASS for generating
multivariate normal data

library(Matrix) # Matrix package is for matrix
computations , particularly for sparse matrices

library(MCMCpack) # Commonly used for generating
samples from a Dirichlet distribution in R

}

4.2 Compositional data generation

For illustration, we generate a compositional data matrix with n = 50 subjects
and p = 10 components. Two commonly used compositional data generation
methods are introduced below.

Method 1: Generate normally distributed data and normalize to com-
positional data. We start by generating a matrix X of random variables, fol-
lowing normal distributions. Each row of X represents observations from one
subject, and each column represents a component. Then, compositional data
can be obtained by dividing each element in X by its corresponding row sum.
After the conversion, elements in each row sum to 1.

p <- 10 # Define the number of variables
N <- 50 # Define the number of observations

Initialize a matrix Z with N rows and p columns to
hold the generated normal data

X <- matrix(rnorm(N * p), nrow = N, ncol = p)

Normalize each row so that they sum to 1 (
compositional data)

X <- X / rowSums(X)

Method 2: Generate data from Dirichlet distribution. Dirichlet distribu-
tion is a common choice for generating compositional data because it inherently
produces a vector of values that sum to 1. It is a multivariate generalization of
the beta distribution. Compositional predictors can be directly generated from
a Dirichlet distribution as below.

Bayesian Compositional Data Analysis Tutorial 89

p <- 10 # Define the number of variables
N <- 50 # Define the number of observations

alpha <- rep(1, p) # Specify hyperparameters for the
Dirichlet distribution

Initialize an empty matrix X with N rows and p
columns to hold the generated data

X <- matrix(0, nrow = N, ncol = p)

Fill the matrix X with random values drawn from the
Dirichlet distribution

for (i in 1:N) {
X[i,] <- rdirichlet (1, alpha)

}

After compositional predictors are generated, we generate the outcomes based
on Equation (1), with the intercept β0 = 1, coefficient values β = (−2,−1.5,−1, 0,
1, 1.5, 2, 0, 0, 0)T and error variance σ2 = 0.01. A subset of the generated data is
presented in Table 1.

q <- 6 # Define the number of non -zero regression
coefficients

Define the true regression coefficients; first q
coefficients are non -zero , rest are zero

beta_scenario <- c(-2, -1.5, -1, 0, 1, 1.5, 2, rep(0, p
- q-1))

Generate the outcome variable y based on equation (1)
y <- 1 + X %*% beta_scenario + rnorm(N, sd = 0.1)

Table 1. Representing a subset of compositional data generated from the Dirichlet
distribution and n = 50

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1.169 0.065 0.105 0.036 0.040 0.110 0.214 0.025 0.007 0.260 0.138
-0.040 0.428 0.065 0.098 0.204 0.052 0.031 0.005 0.001 0.015 0.101
0.162 0.507 0.002 0.047 0.106 0.032 0.035 0.074 0.001 0.181 0.015
0.650 0.296 0.024 0.013 0.019 0.019 0.067 0.166 0.218 0.106 0.071
0.185 0.313 0.300 0.045 0.055 0.097 0.093 0.003 0.032 0.042 0.377

4.3 Data analysis

For illustration purpose, we use one dataset generated using Method 2 to demon-
strate the implementation of Bayesian Lasso below.

90 Liu and Tong

Step 1: Define JAGS model
In this step, we define a Bayesian Lasso regression model using JAGS. The

model is specified in a string format and includes components for the likelihood,
priors for the regression coefficients β, and other model parameters.

model_string_Lasso <- "
model {

Likelihood
for (i in 1:N) {
y[i] ~ dnorm(mu[i], pre_sig2) # normal

distribution for y
mu[i] <- beta0+sum(beta[] * X[i,]) # model for

the mean
}

Prior for beta0 (intercept)
beta0 ~ dnorm(0, 1.0E-2) # Assuming a weakly

informative prior

Prior for sigma2
pre_sig2 ~ dgamma (0.01 ,0.01) #gamma prior

for precision
sigma2 <- 1/ pre_sig2

Priors for beta coefficients
for (j in 1:p) {

Using the scale mixture
representation of the Laplace
distribution:

beta[j] ~ dnorm(0, tau_beta[j])
tau_beta[j] <- 1 / (sigma2 * tau_sq[j])

Prior for tau_sq[j] (related to the
Lasso penalty)

tau_sq[j] ~ dexp(lambda ^2 / 2) #
follows an exponential distribution
with rate lambda ^2 / 2

}

}
"

Step 2: Specify initial values and prepare data
In this step, we define initial values for the parameters in the Bayesian Lasso

regression model. It is recommended to use estimates from a standard least
squares regression as initial values for the λ parameter in the Bayesian Lasso
model.

Bayesian Compositional Data Analysis Tutorial 91

In JAGS, users have the choice of using user-specified initial values or default
values from random number generators (RNGs). Our explanations will cover
both methods. For illustration, we let RNGs determine initial values for Bayesian
Lasso and use user-defined initial values for Bayesian SSL.

The base module in JAGS includes four distinct Random Number Gener-
ators (RNGs), each identified by the following names: “base::Wichmann-Hill”,
“base::Marsaglia-Multicarry”, “base::Super-Duper”, and “base::Mersenne-Twister”.
To initialize the RNG of your choice, simply specify its name along with a seed
value (for example, a seed of 111), as illustrated in the subsequent code example:

Initial values for the parameters

Automatically generated initial values
inits_lasso <- list (".RNG.name "=" base::Wichmann -Hill",

".RNG.seed "=111)

We then prepare the data in a list format to be compiled with the model in
JAGS.

Data preparation
N: the number of observations.
p: the number of predictors.
X: the design matrix.
y: the response variable (converted to a vector using

as.vector(y)).

lambda <- p * sqrt(var(lm(y ~ X- 1) $residuals)) / sum(
abs(lm(y ~ X- 1) $coefficients))

data_lasso <- list(N = N, p = p, X= X, y = as.vector(y)
, lambda = lambda)

Step 3: Fit the model via JAGS
In our Bayesian Lasso model, we use a Markov chain Monte Carlo (MCMC)

algorithm. Note that the number of chains is set at 1 (n.chains = 1) for simplicity,
but it can be easily set at a larger value to check between-chains convergence,
which is crucial for a reliable model. We run the MCMC for 5000 iterations
(update(fit, 5000)) as a burn-in period, and then use 20,000 more iterations
(n.iter = 20000) to get a detailed view of the parameters.

fit <- jags.model(
textConnection(model_string_Lasso), # Model

specification.
data = data_lasso , # The data.
inits=inits_lasso , # The initial values for

the model parameters.
n.chains = 1, # The number of Markov chains.
n.adapt = 1000 # The number of adaptation

iterations

92 Liu and Tong

)
params <- c(" beta0","beta","sigma2 ")
update(fit , 5000) # burn -in
samples <- coda.samples(fit , variable.names = params , n

.iter = 20000)
#save results into model.res
model.res <- as.mcmc(do.call(rbind ,samples))

Step 4: Convergence diagnostic via traceplots and Geweke tests
Prior to examining the results of parameter estimates, we assess the conver-

gence of the Markov chains using two common diagnostic tools: traceplots and
Geweke tests.

The traceplots of the Markov chains for β are displayed in Figure 1. Clearly,
all chains converged, indicating effective sampling from the posterior distribu-
tions for all coefficients β1 through β10. Geweke test results are given below.
With Geweke statistics falling between the -1.96 to 1.96 range, there is no evi-
dence against convergence, suggesting that the model estimation is reliable for
interpretation.

Trace plot
race_plot <- traceplot(samples)

geweke tests
geweke.diag(model.res)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

beta [1] beta [2] beta [3] beta [4]
-0.14747 -0.06480 -0.08991 -0.02971
beta [5] beta [6] beta [7] beta [8]

-0.16094 0.14410 -0.16851 -0.06328
beta [9] beta [10]

-0.16662 -0.04245

Step 5: Plot regression coefficients estimation for interpretation
In this step, we focus on visualizing the estimates of the beta coefficients for

better interpretation and understanding.

Convert the results from JAGS into a format that ’
ggmcmc ’ can use.

ggmcmc_object <- ggs(model.res)

Creates a caterpillar plot which is used for
visualizing the posterior distributions of the
parameters.

ggs_caterpillar(D = ggmcmc_object , family = "beta")

Bayesian Compositional Data Analysis Tutorial 93

Figure 1. Trace plot for coefficients of Bayesian Lasso

94 Liu and Tong

The coefficient dot plots of the Markov chains for β are in Figure 2. The black
points represent the mean estimates of the coefficients. The black lines indicate
the range of these estimates, extending from the 2.5% percentile to the 97.5%
percentile. Specifically, the coefficients β1, β2, and β3 are notably negative, with
their 95% credible intervals excluding zero. This indicates a substantial negative
influence on the outcome variable as the corresponding predictor proportions
increase. Coefficients β5, β6, and β7 are positive, with credible intervals also
excluding zero, suggesting a significant positive effect on the outcome variable
with increasing proportions of these predictors. The coefficient β4, β8, β9, and
β10 are close to zero with credible intervals that encompass zero, indicating no
discernible impact on the outcome variable.

Figure 2. The posterior estimates for the coefficients of Bayesian Lasso

Step 6: Summarize posterior MCMC samples
In this step, we summarize the model estimation results from the MCMC pro-

cedure conducted in JAGS. The summary() function provides a comprehensive
overview of the posterior distributions for each parameter in the model. From the
results, the model appears to perform well in estimating the true values of the
regression coefficients. The empirical means are close to the true values, and the
true values generally fall within the 95% credible intervals of the estimates. Due
to sampling errors of one set of simulated data, there is bias. But the small bias
(-0.18, -0.01, -0.07, -0.29, 0.17, 0.01, 0.22, -0.17, 0.01, -0.06) for the coefficients
β demonstrates the effectiveness of Bayesian Lasso in capturing the underlying
true values of the coefficients.

summary(samples)
Iterations = 6001:26000
Thinning interval = 1
Number of chains = 1

Bayesian Compositional Data Analysis Tutorial 95

Sample size per chain = 20000

1. Empirical mean and standard deviation for each
variable ,
plus standard error of the mean:

Mean SD Naive SE Time -series SE
beta [1] -2.18754 0.5981 0.002115 0.07902
beta [2] -1.51041 0.5877 0.002078 0.07892
beta [3] -1.07185 0.6009 0.002124 0.07484
beta [4] -0.29220 0.5845 0.002067 0.07816
beta [5] 1.17219 0.5913 0.002090 0.08011
beta [6] 1.51421 0.6062 0.002143 0.07398
beta [7] 2.22883 0.6215 0.002197 0.07185
beta [8] -0.17333 0.5853 0.002069 0.08046
beta [9] 0.01159 0.5794 0.002048 0.07991
beta [10] -0.06262 0.5853 0.002069 0.07988
beta0 1.05053 0.5703 0.002016 0.08483

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta [1] -3.34861 -2.5699 -2.196116 -1.83954 -0.9258
beta [2] -2.65227 -1.8809 -1.519331 -1.17487 -0.2676
beta [3] -2.24595 -1.4559 -1.082853 -0.70673 0.1647
beta [4] -1.44032 -0.6641 -0.291097 0.04308 0.9430
beta [5] 0.02786 0.7949 1.163895 1.51551 2.4180
beta [6] 0.33887 1.1301 1.502785 1.86480 2.8035
beta [7] 1.02289 1.8299 2.220343 2.60242 3.5282
beta [8] -1.31749 -0.5395 -0.179262 0.15835 1.0615
beta [9] -1.11653 -0.3470 0.003906 0.33893 1.2432
beta [10] -1.20086 -0.4322 -0.067443 0.26883 1.1846
beta0 -0.15954 0.7427 1.055721 1.40493 2.1579

5 Bayesian SSL Implementation in JAGS

Step 1: Define JAGS model
In this step, we define a Bayesian SSL regression using JAGS syntax. The

model is specified in a string format and includes components for the likelihood,
priors for the regression coefficients, and other model parameters.

model_string_SSL <- "
model {

Likelihood

96 Liu and Tong

for (i in 1:N) {

y[i] ~ dnorm(mu[i], pre_sig2)
mu[i] <- beta0 + sum(beta[] * X[i,])

}

Priors for beta and reparameterization for Laplace
prior

for (i in 1:p) {
Prior for gamma (Bernoulli distribution)
gamma[i] ~ dbern(theta) # Binary variable

following Bernoulli distribution.

Definition of lambda
lambda[i] <- gamma[i] * lambda1 + (1 - gamma[i]) *

lambda0 #Mixing two lambda values based on
gamma

Prior for beta (Normal distribution with mean 0
and precision tau)

tau_sq[i] ~ dexp(lambda[i]^2 / 2)
beta[i] ~ dnorm(0, tau_beta[i])

tau_beta[i] <- 1 / (sigma2 * tau_sq[i])
}

theta ~ dbeta(a, b) # Beta prior for theta (
Bernoulli parameter)

beta0 ~ dnorm(0, 0.01) # Normal prior for the
intercept

pre_sig2 ~ dgamma (0.01 ,0.01) # Precision follows a
gamma distribution

sigma2 <- 1/ pre_sig2 # Definition of sigma squared (
variance) as the reciprocal of precision

}
"

Step 2: Specify initial values and prepare data
Here, in the Bayesian SSL approach for illustration, we set initial values for

model parameters using user-specified initial values.

Initial values
Define Initial Values
inits <- list(list(gamma = rep(1, p), beta0 = rnorm(1,

0, 1), pre_sig2 = 1 , theta = 0.5, beta = rep(0, p
)))

Prepare data list
data_list_SSL <- list(

Bayesian Compositional Data Analysis Tutorial 97

y = as.vector(y), # Response variable
X = X, # Matrix of predictors
N = N, # Number of observations
p = p, # Number of predictors
a = 2, # Hyperparameter for the Beta distribution

prior on theta
b = p, # Hyperparameter for the Beta distribution

prior on theta
lambda1 = 0.1, # Hyperparameter for the lambda

calculation
lambda0 = 4 # Hyperparameter for the lambda

calculation
)

Step 3: Fit the Bayesian SSL model via JAGS
The code below serves to run the model and manage the adaptation and

burn-in phases of the MCMC procedure.

fit <- jags.model(
textConnection(model_string_SSL), # Model

specification.
data = data_list_SSL , # The data.
inits = inits_SSL , # The initial values for the

model parameters.
n.chains = 1, # The number of Markov chains.
n.adapt = 1000 # The number of adaptation iterations

)
update(fit , 2000)
params <- c("beta","beta0","sigma2 ")

#run 30000 iterations after the burn -in priord
samples <- coda.samples(fit , params , n.iter = 30000)

#save results into model.res
model.res <- as.mcmc(do.call(rbind ,samples))

Step 4: Convergence diagnostic via traceplots and Geweke tests
The model convergence is again assessed using two common diagnostic tools:

traceplots and Geweke tests.

Trace plot
race_plot <- traceplot(samples)

geweke tests
geweke.diag(model.res)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

98 Liu and Tong

beta [1] beta [2] beta [3] beta [4] beta [5] beta [6]
beta [7] beta [8]

-0.2644 -0.2936 -0.3114 -0.3153 -0.4079 -0.2915
-0.3601 -0.5842

beta [9] beta [10] beta0
-0.3861 -0.6112 0.3281

The traceplots of the Markov chains for β using Bayesian SSL are given in
Figure 3. Again, both traceplots and Geweke tests imply that all Markov chains
converged, thus parameter estimates can be trusted.

Figure 3. Trace plot for coefficient of Bayesian SSL

Step 5: Plot regression coefficients estimation for interpretation

Bayesian Compositional Data Analysis Tutorial 99

In this step, we focus on visualizing the estimates of the beta coefficients
from our Bayesian model for better interpretation and understanding.

Convert the results from JAGS into a format that ’
ggmcmc ’ can use.

ggmcmc_object <- ggs(model.res)

Creates a caterpillar plot which is used for
visualizing the posterior distributions of the
parameters.

ggs_caterpillar(D = ggmcmc_object , family = "beta")

The coefficient dot plots of the Markov chains for β are provided in Figure
4. The posterior estimates for the regression coefficients are depicted in the plot.
The interpretation from the Bayesian SSL model is the same as that from the
Bayesian Lasso model.

Figure 4. The posterior estimates for the coefficients of Bayesian SSL

Step 6: Summarize posterior MCMC samples
In this step, we summarize the model estimation results. The parameter

estimates from Bayesian SSL are similar to those from the Bayesian Lasso model.
Thus, the detailed interpretations are omitted here.

summary(samples)
Iterations = 3001:33000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 30000

1. Empirical mean and standard deviation for each
variable ,

100 Liu and Tong

plus standard error of the mean:

Mean SD Naive SE Time -series SE
beta [1] -1.879920 0.23686 0.0013675 0.0050494
beta [2] -1.164649 0.17559 0.0010138 0.0031632
beta [3] -0.806203 0.18310 0.0010571 0.0033090
beta [4] -0.008885 0.05826 0.0003363 0.0017450
beta [5] 1.091903 0.15091 0.0008713 0.0036028
beta [6] 1.582677 0.14494 0.0008368 0.0017249
beta [7] 2.005218 0.17140 0.0009896 0.0035410
beta [8] 0.006645 0.04939 0.0002851 0.0012593
beta [9] -0.001426 0.03078 0.0001777 0.0002378
beta [10] 0.001519 0.03137 0.0001811 0.0002364
beta0 0.933072 0.06327 0.0003653 0.0020230

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta [1] -2.33530 -2.03941 -1.8821989 -1.72026 -1.41082
beta [2] -1.50748 -1.28124 -1.1653645 -1.04836 -0.81613
beta [3] -1.16813 -0.92793 -0.8068750 -0.68623 -0.44117
beta [4] -0.15571 -0.02149 -0.0022969 0.01305 0.07433
beta [5] 0.79652 0.99090 1.0918781 1.19291 1.38692
beta [6] 1.29616 1.48652 1.5834631 1.67931 1.86601
beta [7] 1.66909 1.89193 2.0064159 2.11760 2.34457
beta [8] -0.07222 -0.01275 0.0022081 0.02050 0.11890
beta [9] -0.06681 -0.01646 -0.0007303 0.01404 0.06191
beta [10] -0.06310 -0.01421 0.0007147 0.01645 0.06935
beta0 0.80760 0.89115 0.9327129 0.97590 1.05674

6 Discussion

This tutorial has introduced the Bayesian Lasso and Bayesian SSL methods as
powerful tools for analyzing regression models with compositional predictors.
These Bayesian techniques offer distinct advantages, including the ability to in-
corporate prior knowledge, manage a large number of covariates, and handle
exact collinearity and sparsity in data. We provided a detailed walkthrough of
the Bayesian Lasso and SSL methods implemented in JAGS, designed to equip
researchers and analysts with the practical skills needed to apply Bayesian tech-
niques to compositional data. While the tutorial has focused on compositional
predictors, it is important to note that including continuous predictors along-
side compositional ones is a common scenario in practice. For analyses involving
continuous predictors alongside compositional ones, readers can easily modify
the JAGS code structure presented here and add other predictors. Additionally,
while JAGS is our chosen software for demonstration, alternatives like Stan may

Bayesian Compositional Data Analysis Tutorial 101

offer different benefits, and we include a Stan code example in the Appendix
for further exploration. In summary, this tutorial offers a practical foundation
for applying Bayesian methods to regression with compositional predictors, with
guidance for extending the analysis to more complex scenarios.

References

Aitchison, J. (1986). The statistical analysis of compositional data. Journal of
the Royal Statistical Society: Series B (Methodological), 48 (3), 139–177.
doi: https://doi.org/10.1007/978-94-009-4109-0

Aitchison, J., & Bacon-Shone, J. (1984). The multivariate poisson-
log normal distribution. Biometrika, 71 (2), 299–307. doi:
https://doi.org/10.1093/biomet/76.4.643

Andrews, D. F., & Mallows, C. L. (1974). Scale mixtures of normal distributions.
Journal of the Royal Statistical Society: Series B (Methodological), 36 (1),
99–102. doi: https://doi.org/10.1111/j.2517-6161.1974.tb00989.x

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identi-
fying influential data and sources of collinearity. John Wiley & Sons. doi:
https://doi.org/10.1002/0471725153

Chastin, S., Palarea-Albaladejo, J., Dontje, M., & Skelton, D. (2015). Com-
bined effects of time spent in physical activity, sedentary behaviors and
sleep on obesity and cardio-metabolic health markers: A novel com-
positional data analysis approach. Plos One, 10 (10), e0139984. doi:
https://doi.org/10.1371/journal.pone.0139984

Deshpande, S., Ročková, V., & George, E. (2019). Simultaneous variable
and covariance selection with the multivariate spike-and-slab lasso. Jour-
nal of Computational and Graphical Statistics, 28 (4), 921–931. doi:
https://doi.org/10.1080/10618600.2019.1593179

Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-
Vidal, C. (2003). Isometric logratio transformations for composi-
tional data analysis. Mathematical Geology , 35 (3), 279–300. doi:
https://doi.org/10.1023/A:1023818214614

Friedman, J., Hastie, T., & Tibshirani, R. (2010). A note on the group lasso
and a sparse group lasso. arXiv preprint arXiv:1001.0736 .

George, E. I., & McCulloch, R. E. (1993). Variable selection via gibbs sampling.
Journal of the American Statistical Association, 88 (423), 881–889. doi:
https://doi.org/10.1080/01621459.1993.10476353

Ghosh, P., Tang, X., Ghosh, M., & Chakrabarti, A. (2013). Asymptotic
properties of bayes risk of a general class of shrinkage priors in multi-
ple hypothesis testing under sparsity. Bayesian Analysis, 11 (3). doi:
https://doi.org/10.1214/15-ba973

Li, G., Li, Y., & Chen, K. (2023, Jun). It’s all relative: Regression analy-
sis with compositional predictors. Biometrics, 79 (2), 1318–1329. doi:
https://doi.org/10.1111/biom.13703

https://doi.org/10.1007/978-94-009-4109-0
https://doi.org/10.1093/biomet/76.4.643
https://doi.org/10.1111/j.2517-6161.1974.tb00989.x
https://doi.org/10.1002/0471725153
https://doi.org/10.1371/journal.pone.0139984
https://doi.org/10.1080/10618600.2019.1593179
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1080/01621459.1993.10476353
https://doi.org/10.1214/15-ba973
https://doi.org/10.1111/biom.13703

102 Liu and Tong

Li, Z., McCormick, T., & Clark, S. (2019). Bayesian joint spike-and-slab graph-
ical lasso. In Proceedings of the 36th international conference on machine
learning (Vol. 97, pp. 3877–3885). Long Beach, California, USA.

Lin, W., Shi, P., Feng, R., & Li, H. (2014). Variable selection in regres-
sion with compositional covariates. Biometrika, 101 (4), 785–797. doi:
https://doi.org/10.1093/biomet/asu031

Palarea-Albaladejo, J., & Martin-Fernandez, J. A. (2013). zcompositions–r pack-
age for multivariate imputation of left-censored data under a compositional
approach. Chemometrics and Intelligent Laboratory Systems, 120 , 31–38.
doi: https://doi.org/10.1016/j.chemolab.2015.02.019

Park, T., & Casella, G. (2008). The bayesian lasso. Journal
of the American Statistical Association, 103 (482), 681–686. doi:
https://doi.org/10.1198/016214508000000337

Plummer, M. (2003). Jags: A program for analysis of bayesian graphical mod-
els using gibbs sampling [Computer software manual]. Retrieved from
https://mcmc-jags.sourceforge.io/

R Core Team. (2023). R: A language and environment for statistical computing
[Computer software manual]. Vienna, Austria. Retrieved from https://
www.R-project.org/

Ročková, V., & George, E. I. (2016). Fast bayesian factor anal-
ysis via automatic rotations to sparsity. Journal of the
American Statistical Association, 111 (516), 1608–1622. doi:
https://doi.org/10.1080/01621459.2016.1192541

Ročkov’a, V., & George, E. I. (2018). Spike-and-slab lasso. Jour-
nal of the American Statistical Association, 113 (521), 431–444. doi:
https://doi.org/10.1080/01621459.2016.1260469

Tang, Z., Shen, Y., Li, Y., Zhang, X., Wen, J., Qian, C., . . . Yi,
N. (2018). Group spike-and-slab lasso generalized linear mod-
els for disease prediction and associated genes detection by incorpo-
rating pathway information. Bioinformatics, 34 (6), 901–910. doi:
https://doi.org/10.1093/bioinformatics/btx714

Tang, Z., Shen, Y., Zhang, X., & Yi, N. (2017a). The spike-
and-slab lasso cox model for survival prediction and associ-
ated genes detection. Bioinformatics, 33 (18), 2799–2807. doi:
https://doi.org/10.1093/bioinformatics/btx300

Tang, Z., Shen, Y., Zhang, X., & Yi, N. (2017b). The spike-and-slab lasso gen-
eralized linear models for prediction and associated genes detection. Ge-
netics, 205 (1), 77–88. doi: https://doi.org/10.1534/genetics.116.192203

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58 (1), 267–288.
doi: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 67 (2), 301–320. doi: https://doi.org/10.1111/j.1467-
9868.2005.00503.x

https://doi.org/10.1093/biomet/asu031
https://doi.org/10.1016/j.chemolab.2015.02.019
https://doi.org/10.1198/016214508000000337
https://mcmc-jags.sourceforge.io/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1080/01621459.2016.1192541
https://doi.org/10.1080/01621459.2016.1260469
https://doi.org/10.1093/bioinformatics/btx714
https://doi.org/10.1093/bioinformatics/btx300
https://doi.org/10.1534/genetics.116.192203
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x

Bayesian Compositional Data Analysis Tutorial 103

Appendix

In the appendix of this tutorial, we present an implementation of the Bayesian
Lasso using the Stan programming language. Note that Stan does not support
discrete parameters, which is a prerequisite for implementing the Bayesian SSL
model. As such, we currently are only able to provide the Bayesian Lasso imple-
mentation within the Stan framework.

stan_model_code <- "
data {

int <lower=0> N; // Number of observations
int <lower=0> p; // Number of predictors
matrix[N, p] X; // Predictor matrix
vector[N] y; // Response variable
real <lower=0> lambda; // Lasso penalty parameter

}

parameters {
real beta0; // Intercept
vector[p] beta; // Coefficients for predictors
real <lower=0> sigma; // Standard deviation of errors
vector <lower =0>[p] tau_sq; // Scale parameter for

Laplace prior
}

model {

// Likelihood
for (i in 1:N) {

y[i] ~ normal(beta0 + dot_product(beta , X[i]),
sigma);

}

// Priors
beta0 ~ normal(0, 100); // Weakly informative prior

for the intercept
sigma ~ cauchy(0, 2.5); // Cauchy prior for sigma
for (j in 1:p) {

tau_sq[j] ~ exponential(lambda ^2 / 2); //
Exponential prior for tau_sq

}

// Conditional prior for beta using scale mixture
representation

for (j in 1:p) {

104 Liu and Tong

beta[j] ~ normal(0, sqrt(tau_sq[j] * sigma ^2)); //
Laplace prior represented as scale mixture

}
}

"
y<-as.vector(y)
Initial values for the parameters
lambda <- p * sqrt(var(lm(y ~ X - 1) $residuals)) / sum(

abs(lm(y ~ X - 1) $coefficients))

Compile the Stan model
sm <- stan_model(model_code = stan_model_code)

Run the initial model
fit <- sampling(sm , data = list(N = N, p = p, X = X, y

= y, lambda = lambda),iter = 2000, chains = 1,
warmup = 500, thin = 1)

	A Tutorial on Bayesian Linear Regression with Compositional Predictors Using JAGS

