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Abstract. Longitudinal processes often exhibit nonlinear change pat-
terns. Latent basis growth models (LBGMs) provide a versatile solution
without requiring specific functional forms. Building on the LBGM spec-
ification for unequally-spaced waves and individual measurement occa-
sions proposed by Liu and Perera (2024), we extend LBGMs to multi-
variate longitudinal outcomes. The extended models enable the analysis
of nonlinear parallel longitudinal processes with unequally-spaced study
waves in the framework of individual measurement occasions. We present
the proposed models by simulation studies and real-world data analyses.
Simulation studies demonstrate that the proposed model can provide un-
biased and accurate estimates with target coverage probabilities for the
parameters of interest. Real-world analyses of reading and mathematics
scores demonstrate its effectiveness in analyzing joint developmental pro-
cesses that vary in temporal patterns. Computational code is included.

Keywords: Latent Basis Growth Model · Parallel Nonlinear Longitudinal
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1 Introduction

In longitudinal studies, researchers often gather measurements on multiple out-
comes to decipher how each evolves over time. While the focus has traditionally
been on univariate outcomes, the inter-correlated nature of processes in domains
such as development (Liu & Perera, 2022; Peralta, Kohli, Lock, & Davison, 2022;
Shin, Davison, Long, Chan, & Heistad, 2013), behavioral sciences (Duncan &
Duncan, 1994, 1996), and biomedicine (Dumenci et al., 2019) demands a mul-
tifaceted analysis. Recent research reflects a growing interest in exploring how
these interconnected outcomes influence one another over time. Developmental
studies, for example, often track achievement scores across multiple subjects
(Liu & Perera, 2022, 2023; Peralta et al., 2022; Shin et al., 2013), facilitating
an in-depth analysis of correlated growth in multiple domains. Similarly, clini-
cal trials might collect multiple endpoints (Dumenci et al., 2019) to provide a
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holistic evaluation of treatment effects. This complexity underscores the need for
advanced modeling techniques that accurately capture the correlation between
multiple longitudinal processes.

Another scenario highlighting the complexity of longitudinal studies involves
the reconciliation of data from diverse sources. For instance, observational stud-
ies may utilize both child and parent reports to assess a child’s health-related
quality of life (Rajmil, López, López-Aguilà, & Alonso, 2013). In clinical trials,
a single endpoint is often measured using different equipments, adding com-
plexity to data interpretation. Additionally, analyzing repeated outcomes from
individuals nested within pairs or small groups (Lyons et al., 2017; McNulty,
Wenner, & Fisher, 2016) presents unique statistical challenges. These situations
underscore the need for a model capable of describing the joint longitudinal pro-
cesses, with the aim of elucidating the associations between varied data sources
and outcomes. The objective of our study is to develop such models within the
Structural Equation Modeling (SEM) framework, as SEM provides a flexible and
comprehensive approach for capturing complex relationships and dependencies
between variables.

Research in developmental psychology has provided insights into the joint
development of cognitive abilities, such as the studies by Robitaille, Muniz, Pic-
cinin, Johansson, and Hofer (2012), revealed complex nonlinear intercept and
slope associations in the progression of visuospatial ability and processing speed,
using multivariate growth models (MGMs) with linear growth curves. However,
a model with linear function often falls short in capturing the full complexity
of real-world longitudinal processes, which frequently exhibit nonlinearity and
thus necessitate more sophisticated analytical approaches. To better model such
complexity, Blozis (2004) developed MGMs with nonlinear parametric functions,
such as polynomial and exponential forms, to capture nonlinear parallel growth,
which were implemented using LISREL in Blozis, Harring, and Mels (2008). De-
spite these advancements, parametric models with predetermined nonlinear func-
tional forms may not adequately represent actual change patterns that do not
conform to the prespecified functional forms. Furthermore, while these MGMs
can estimate correlations between growth factors, such as intercept-intercept and
linear/quadratic slope-slope relationships for quadratic functions, they often fail
to provide insights into the relationship between two nonlinear longitudinal pro-
cesses directly.

As the field has evolved, there has been a notable shift toward semi-parametric
methods to allow for more flexible analysis in multivariate nonlinear longitudinal
processes. Liu and Perera (2022) exemplified this shift with their linear-linear
piecewise function within the SEM framework. A longitudinal model with a
linear-linear piecewise function divides the growth trajectory into two linear
segments, each with its own slope, joined at a specific point (i.e., the knot).
By breaking down the growth curve into two distinct phases, the model allows
for the assessment of slope-slope correlation at each stage. More importantly,
by estimating the knots and their variances, the model also examines knot-knot
correlations. This approach provides a unique perspective on the developmental
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process by helping to understand how the correlation changes in each stage and
when the transition from one stage to the next occurs.

However, while semi-parametric functional forms like those introduced by
Liu and Perera (2022) significantly enhance modeling flexibility, they inher-
ently impose constraints by limiting the change patterns to only two distinct
phases. Such two-piece functional forms may not adequately capture more com-
plex developmental patterns that exhibit multiple phases over time, particularly
in exploratory research stages where the underlying change patterns are not well-
defined. Herein lies the advantage of latent basis growth models (LBGMs), which
provide greater flexibility by allowing for the determination of the optimal curve
shape without the constraints of prior assumptions (McArdle & Epstein, 1987;
Meredith & Tisak, 1990). Our work builds on this flexibility to facilitate ex-
plorations of multiple longitudinal processes, addressing the need for adaptable
analytical tools capable of handling the complexities of real-world challenges.

1.1 Traditional Specification of Latent Basis Growth Model

Grimm, Ram, and Estabrook (2016, Chapter 11) demonstrated that LBGMs can
be constructed using both the Latent Growth Curve Modeling (LGCM) frame-
work, a subset of the SEM framework, and the mixed-effects modeling frame-
work. While LBGMs were not explicitly discussed, existing literature suggests
that, for a majority of longitudinal models, these two frameworks are mathemati-
cally equivalent in evaluating between-individual differences in within-individual
changes (Bauer, 2003; Curran, 2003). This study focuses on the SEM framework
due to its greater modeling flexibility and widespread recognition within the
social science research community.

Similar to other latent growth curve models, a LBGM can be expressed as
yi = Ληi + ϵi, where yi represents the vector of repeated measurements for
individual i, ηi is the vector of latent growth factors for individual i, Λ is the
matrix of factor loadings, and ϵi is the residual vector of individual i. Simply
put, this equation captures how an individual’s change patterns are represented
by latent growth factors and measurement occasions. LBGMs typically consist
of two growth factors: an intercept and a shape factor.

The factor loading matrix Λ is partially constrained for model identification.
Specifically, in a setting with J measurements, factor loadings for the intercept
are fixed at 1, while two factor loadings for the shape factor are also fixed,
and the remaining J−2 are estimated. Figures 1a and 1b illustrate two common
specifications of LBGM with six repeated measurements. In Figure 1a, the shape
factor is scaled as the change during the initial time interval. In Figure 1b, the
shape factor is scaled as the total change over the study duration. These methods
allow for the flexible estimation of Λ, thus freeing LBGM from being restricted
to a specific functional form. This flexibility in specification allows LBGMs to
adapt to different research questions and datasets, making them a powerful tool
for longitudinal data analysis.
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(a) Specification 1

(b) Specification 2

Figure 1: Path Diagram of Traditional Latent Basis Growth Models
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1.2 Novel Specification of Latent Basis Growth Model

Although the LBGM described in Section 1.1 is a flexible statistical tool to
explore trajectories, it does not specify whether nonlinearity exists in the growth
patterns (Grimm, Steele, Ram, & Nesselroade, 2013) nor does it detail the nature
of such nonlinearity (Wood, Steinley, & Jackson, 2015); it still has limitations.
According to Grimm et al. (2016, Chapter 11), discrete time points are required
when specifying an LBGM, and therefore, it cannot be fit in the framework of
individual measurement occasions. One approximate method for such continuous
measurement time is the time-bins approach, also known as the time-windows
method. The time-bins approach involves dividing the assessment period into
several intervals (time-bins), where each individual can have up to one response
per bin. If a subject does not contribute data to a specific time window, it is
treated as a missing record (Sterba, 2014).

However, several studies highlight the limitations of this approach. For exam-
ple, Blozis and Cho (2008) demonstrated that using the time-bins approach may
lead to inadmissible estimation, such as overestimating within-individual changes
and underestimating between-individual differences, though these effects can
be negligible if individual differences are not substantial. Moreover, Coulombe,
Selig, and Delaney (2015) concluded that neglecting time differences often leads
to undesirable outcomes, such as biased parameter estimates. Their evaluation of
bias, efficiency, and Type I error rate under various conditions—different com-
binations of sample size, degree of heterogeneity, distribution of time, rate of
change, and number of repeated measurements—showed that ignoring time dif-
ferences can significantly affect the results.

Two parallel but distinct methods for accounting for individual measurement
occasions have been developed by Sterba (2014) and Liu and Perera (2024).
Sterba (2014) introduces an innovative approach by incorporating two growth
factors—the intercept and shape factor. This model defines the loadings of the
shape factor as a function of the specific timing of each individual’s measure-
ments, accounting for deviations from a linear progression.

In contrast, the framework by Liu and Perera (2024) specifies the latent
basis growth model by incorporating linear piecewise functional forms, which
effectively capture the dynamics across J measurements segmented into J − 1
intervals. This model is designed to estimate interval-specific slopes and allows
for an extension to derive both interval-specific changes and changes from the
baseline. In particular, as illustrated in Figure 2a, the interval-specific change
is quantified using the area under the curve (AUC) for the corresponding time
interval, effectively representing the integral of the growth rate over that pe-
riod. For example, consider the change from t = 1 to t = 2 calculated as:
0.8× (2− 1) = 0.8. This calculation is depicted in Figure 2b, where the change
in growth is shown to increase by 0.8, from 21 to 21.8. Using AUC to represent
interval-specific change relaxes the traditional constraints of LBGMs and allows
for unequally-spaced study waves. For example, in Figure 2a, even if no mea-
surement is taken at t = 5, the change from t = 4 to t = 6 can still be calculated
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as 0.4×(6−4) = 0.8. Similarly, the change from the baseline at any specific time
is quantified using the AUC from the baseline to that particular time point.

The path diagram of the LBGM with six measurement occasions, as pro-
posed by Liu and Perera (2024), is illustrated in Figure 3a. This model features
two growth factors: the initial status, denoted as η0, and the slope during the
first interval, denoted as η1. As depicted in Figure 3a, η1 along with the relative
rate γj−1, defines the interval-specific slopes (dyij). These slopes are then uti-
lized, along with the length of each interval, to derive interval-specific changes.
Each interval is enclosed in a diamond shape in the diagram, indicating that
these intervals are allowed to vary among individuals. Such flexibility addresses
the challenge of individual measurement occasions (which further lead to indi-
vidual intervals), thus providing a more accurate representation of their growth
trajectories. These time intervals are, therefore, considered ‘definition variables’,
allowing the model to account for individual differences (Mehta & Neale, 2005;
Mehta & West, 2000; Sterba, 2014).

In addition to allowing for unequally-spaced study waves and individual mea-
surement occasions in LBGM, this framework provides flexibility in scaling the
growth rate factor, η1. Instead of constraining η1 to the first time interval, it can
be adapted to represent growth rate during any selected time frame, such as the
last time interval, as demonstrated in Figure 3b. Here, γj−1 still serve as the rel-
ative growth rate in relation to η1 for each (j− 1)th time interval. Note that the
models with different scalings of η1 are mathematically equivalent. With such
novel specifications, the shape factor’s loading at each measurement occasion tj
is calculated by dividing the change-from-baseline (the difference between the
current value and the initial value at t1) at tj by η1. The setup of such factor
loadings will be further explained in Section 2.1.

1.3 Parallel Latent Basis Growth Model

In the study of joint longitudinal processes, researchers frequently utilize MGMs,
also known as parallel process and correlated growth models, which are thor-
oughly discussed in Grimm et al. (2016, Chapter 8) and McArdle (1988). MGMs
are generally utilized to estimate three main types of associations based on the
interactions they analyze: (1) within-process growth factors, (2) between-process
growth factors, and (3) between-process residuals. Existing research, including
studies by Robitaille et al. (2012), who investigated the co-evolution of process-
ing speed and visuospatial ability using linear growth curves, and Blozis (2004);
Blozis et al. (2008), who incorporated parametric nonlinear functional forms like
polynomial and exponential curves, has significantly contributed to the under-
standing of these relationships. More recently, Peralta et al. (2022) and Liu and
Perera (2022) have advanced this area by developing MGMs with linear-linear
functional forms with unknown random knots, in the Bayesian mixed-effects and
frequentist structural equation frameworks, respectively. Although effective for
theory-driven research, these models sometimes lack the flexibility needed dur-
ing the exploratory phases of research, especially in the absence of a guiding
domain-specific theory for functional form selection.
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Figure 2: Piecewise Linear Growth Curve and Growth Rate (Values of the In-
tercept and Slope of Each Time Interval: η0 = 20; γ1 = 1.0; γ2 = 0.8; γ3 = 0.6;
γ4 = 0.4; γ5 = 0.2)
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(a) Specification 1

(b) Specification 2

Figure 3: Path Diagram of Novel Latent Basis Growth Models
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This article aims to advance the field of joint longitudinal process modeling
by extending the LBGM with the novel specification detailed in Section 1.2 to
the MGM framework. The proposed model addresses existing gaps by demon-
strating how to implement a parallel LBGM tailored to unequally-spaced study
waves and individual measurement occasions. The structure of this article is
organized as follows: We begin with a description of a LBGM for a univariate
longitudinal process, incorporating our novel specification in the methods sec-
tion. This model is then extended to a parallel growth curve framework, where
we detail the model specification and estimation procedures. Subsequently, we
evaluate the model’s performance using a Monte Carlo simulation study, fo-
cusing on metrics such as relative bias, empirical standard error (SE), relative
root-mean-square error (RMSE), and the coverage probability (CP) of a 95%
confidence interval. We also illustrate the practical application of our model by
analyzing a real-world dataset of longitudinal reading and mathematics scores
from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11
(ECLS-K: 2011). In the application section, we explore how to derive and inter-
pret insights from the model output. Finally, we conclude with discussions on
practical and methodological considerations and directions for future research.

2 Method

2.1 Latent Basis Growth Model in the Framework of Individual
Measurement Occasions

This section introduces the novel LBGM specification developed by Liu and
Perera (2024) for univariate nonlinear developmental trajectories, applicable to
analyzing univariate longitudinal outcomes such as reading or mathematics de-
velopment. For individual i, the model can be specified as

yij = y∗ij + ϵ
[y]
ij , (1)

y∗ij =

{
η
[y]
0i , if j = 1

y∗i(j−1) + dyij × (tij − ti(j−1)), if j = 2, . . . , J
, (2)

dyij = η
[y]
1i × γ

[y]
j−1 (j = 2, . . . , J). (3)

Equations 1 and 2 together specify a LBGM, where yij , y
∗
ij , and ϵ

[y]
ij are the

observed measurement, latent true score, and residual for the ith individual at
time j, respectively. At the baseline measurement (i.e., j = 1), the true score

corresponds to the initial status growth factor (η
[y]
0i ). For subsequent measure-

ments (i.e., j ≥ 2), the true score at time j is calculated as a linear combination
of the score at the preceding time point j − 1 and the true change from time
j−1 to j. This true change is further defined as the product of the time interval
(tij− ti(j−1)) and the interval-specific slope (dyij). Equation 3 further represents

the interval-specific slope, dyij , with a shape factor η
[y]
1i and γ

[y]
j−1, where γj−1
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(j = 2, . . . , J) can be interpreted as the relative growth rate in relation to η
[y]
1i

during the (j − 1)th time interval. In Liu and Perera (2024), the term η
[y]
1i is

scaled to represent the growth rate during the first time interval (i.e., γ2−1 = 1),
as illustrated in Figure 3a. As discussed in Section 1.2, this term can also be
scaled to correspond with the growth rate during any other time interval, such
as the last one (i.e., γJ−1 = 1), as depicted in Figure 3b.

The model specified in Equations 1-3 can also be written in a matrix form:

yi = Λ
[y]
i × η

[y]
i + ϵ

[y]
i , , (4)

η
[y]
i = µ[y]

η + ζ
[y]
i , (5)

where yi is a J×1 vector representing the ith individual’s repeated measurements

(with J denoting the number of such measurements). The vector η
[y]
i is a 2× 1

vector of growth factors, where the first element (η0i) signifies the initial status
and the second element (η1i) indicates the growth rate within a specified time

interval. The J × 2 matrix Λ
[y]
i consists of associated factor loadings. Finally,

ϵ
[y]
i is a J × 1 vector of the ith individual’s residuals. Equation (5) expresses η

[y]
i

as deviations (ζ
[y]
i ) from the mean values of the growth factors (µ

[y]
η ).

While the scaling of η1i affects its interpretation, the general form of the

factor loading matrix, Λ
[y]
i , remains consistent. The general form is given as:

Λ
[y]
i =


1 0

1 γ
[y]
2−1 × (ti2 − ti1)

1
∑3

j=2 γ
[y]
j−1 × (tij − ti(j−1))

. . . . . .

1
∑J

j=2 γ
[y]
j−1 × (tij − ti(j−1))

 , (6)

where the jth element in the second column represents the cumulative value of
the relative rate (i.e., γ[y]. ) over time up to time j, so the product of this element

and η
[y]
1i represents the change from the initial status of the ith individual (Liu

& Perera, 2024). In addition, the subscript i in Λ
[y]
i emphasizes that the model

accommodates individual measurement occasions.

2.2 Model Specification of Parallel Latent Basis Growth Model

In this section, we extend the univariate Latent Basis Growth Model (LBGM)
to its parallel version. This parallel version enables the joint analysis of multiple
repeated outcomes, such as the joint development of reading and mathematics
ability. The necessity for this extension arises from the various compelling reasons
that have been discussed in Section 1. We describe the parallel LBGM in the
context of individual measurement occasions, extending the univariate model
given in Equation (4). Assume that we have bivariate growth trajectories for
repeated outcomes, the parallel LBGM can then be formally defined as follows:(

yi

zi

)
=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
η
[y]
i

η
[z]
i

)
+

(
ϵ
[y]
i

ϵ
[z]
i

)
, (7)
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where zi is also a J × 1 vector of the repeated measurements for individual

i, η
[z]
i , Λ

[z]
i and ϵ

[z]
i are its growth factors (a 2 × 1 vector), the corresponding

factor loadings (a J × 2 matrix), and the residuals of person i (a J × 1 vector),

respectively. Similar to Λ
[y]
i , Λ

[z]
i has a general expression but with one fixed

relative growth rate γj−1, corresponding to the growth rate of (j − 1)th time

interval that η
[z]
1i represents. We then write the outcome-specific growth factors

η
[u]
i (u = y, z) as deviations from the corresponding outcome-specific growth

factor means. (
η
[y]
i

η
[z]
i

)
=

(
µ

[y]
η

µ
[z]
η

)
+

(
ζ
[y]
i

ζ
[z]
i

)
, (8)

where µ
[u]
η is a 2 × 1 vector of outcome-specific growth factor means, and ζ

[u]
i

is a 2× 1 vector of deviations of the ith individual from the means. To simplify

model, we assume that
(
ζ
[y]
i ζ

[z]
i

)T
follows a multivariate normal distribution

(
ζ
[y]
i

ζ
[z]
i

)
∼ MVN

(
0,

(
Ψ [y]

η Ψ [yz]
η

Ψ [z]
η

))
,

where both Ψ [u]
η and Ψ [yz]

η are 2 × 2 matrices: Ψ [u]
η is the variance-covariance

matrix of the outcome-specific growth factors while Ψ [yz]
η is the covariances be-

tween the growth factors of yi and zi. To simplify the model, we also assume that
the individual outcome-specific residual variances are identical and independent
normal distributions over time, while the residual covariances are homogeneous
over time, that is, (

ϵ
[y]
i

ϵ
[z]
i

)
∼ MVN

(
0,

(
θ
[y]
ϵ I θ

[yz]
ϵ I

θ
[z]
ϵ I

))
,

where I is a J × J identity matrix.

2.3 Model Estimation

We then write the expected mean vector and variance-covariance matrix of the
bivariate repeated outcome yi and zi in the parallel LBGM specified in Equa-
tions (7) and (8) as

µi =

(
µ

[y]
i

µ
[z]
i

)
=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
µ

[y]
η

µ
[z]
η

)
(9)
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and

Σi =

(
Σ

[y]
i Σ

[yz]
i

Σ
[z]
i

)

=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
Ψ [y]

η Ψ [yz]
η

Ψ [z]
η

)
×

(
Λ

[y]
i 0

0 Λ
[z]
i

)T

+

(
θ
[y]
ϵ I θ

[yz]
ϵ I

θ
[z]
ϵ I

)
.

(10)

The parameters in the parallel LBGM specified in Equations (7) and (8)
include the mean vector and variance-covariance matrix of the growth factors,
the outcome-specific relative growth rate, the variance-covariance matrix of the
residuals. Accordingly, we define

Θ ={µ[u]
η ,Ψ [u]

η ,Ψ [yz]
η ,γ[u], θ[u]ϵ , θ[yz]ϵ }

={µ[u]
η0
, µ[u]

η1
, ψ

[u]
00 , ψ

[u]
01 , ψ

[u]
11 , ψ

[yz]
00 , ψ

[yz]
01 , ψ

[yz]
10 , ψ

[yz]
11 , γ

[u]
j−1,

θ[u]ϵ , θ[yz]ϵ }, u = y, z

j =

{
3, . . . , J Model specification in Figure 3a

2, . . . , J − 1 Model specification in Figure 3b

(11)

to list the parameters that we need to estimated in the proposed model.
We estimateΘ using full information maximum likelihood (FIML) to account

for the individual measurement occasions and potential heterogeneity of individ-
ual contributions to the likelihood function. In this present study, the proposed
model is built using the R package OpenMx with CSOLNP optimizer (Boker
et al., 2020; Hunter, 2018; Neale et al., 2016; Pritikin, Hunter, & Boker, 2015).
We provide OpenMx code of the proposed parallel LBGM and a demonstration
in the online appendix (https://github.com/Veronica0206/LCSM projects).
We also provide Mplus 8 code of the proposed model for researchers who are
interested in using Mplus.

3 Model Evaluation

We aim to assess the effectiveness of the proposed parallel LBGM by employ-
ing Monte Carlo simulation studies. Specifically, we examine the model’s per-
formance using several metrics: the relative bias, the empirical standard error
(SE), the relative root-mean-square error (RMSE), and the empirical coverage
probability for a nominal 95% confidence interval for each parameter. These
metrics are commonly used in simulation studies to evaluate the performance
of statistical methodologies or models. The definitions and estimates for these
metrics are presented in Table 1.

Following practices in simulation studies as suggested by Morris, White,
and Crowther (2019), we empirically determined the number of replications

https://github.com/Veronica0206/LCSM_projects
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Table 1: Performance Metrics: Definitions and Estimates
Criteria Definition Estimate

Relative Bias Eθ̂(θ̂ − θ)/θ
∑S

s=1(θ̂s − θ)/Sθ

Empirical SE

√
V ar(θ̂)

√∑S
s=1(θ̂s − θ̄)2/(S − 1)

Relative RMSE
√
Eθ̂(θ̂ − θ)2/θ

√∑S
s=1(θ̂s − θ)2/S/θ

Coverage Prob. Pr(θ̂lower ≤ θ ≤ θ̂upper)
∑S

s=1 I(θ̂lower,s ≤ θ ≤
θ̂upper,s)/S

a θ: the population value of the parameter of interest
b θ̂: the estimate of θ
c S: the number of replications and set as 1, 000 in our simulation study
d s = 1, . . . , S: indexes the replications of the simulation
e θ̂s: the estimate of θ from the sth replication
f θ̄: the mean of θ̂s’s across replications
g I(): an indicator function
h Coverage Prob.: coverage probability

to be S = 1, 000. The pilot simulation study was conducted to ensure that
the chosen number of replications would provide reliable performance metrics.
Among the four performance metrics, the (relative) bias is of utmost impor-
tance. The pilot simulation revealed that the standard errors of bias, calculated

as Monte Carlo SE(Bias) =

√
Var(θ̂)

S , were less than 0.15 across all parameters,

except for ψ
[u]
00 and ψ

[yz]
00 . To maintain the Monte Carlo standard error of bias

below 0.05, at least 900 replications are needed. Thus, we decided to proceed
with S = 1, 000 replications to account for variability and ensure a more robust
evaluation.

3.1 Design of Simulation Study

To thoroughly evaluate the proposed parallel LBGM, we designed a comprehen-
sive set of simulation studies, the conditions of which are outlined in Table 2.
A key factor in the effectiveness of a model designed for longitudinal data is
the number of repeated measures. We hypothesize that the proposed model’s
performance will improve with an increasing number of repeated measurements.
To test this hypothesis, we considered two levels for the number of repeated
measures: six and ten. For conditions with ten repeated measures, we inves-
tigated whether equally-placed study waves or unequally-placed waves affect
model performance, assuming that the study duration remains constant across
conditions. This consideration reflects real-world longitudinal study practices,
where measurement waves are typically not equally spaced, often occurring more
frequently at the beginning. We aimed to determine if such setups impact model
performance. In scenarios with six repeated measures, we examined the model’s
performance under the more challenging condition of a shorter study duration
with the hypothesis that a shorter duration poses greater challenges for the
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model due to less available data to accurately capture the underlying growth
trajectory. Measurement occasions are individuated by a ‘medium’-width time
window, (−0.25,+0.25) around each wave (Coulombe et al., 2015).

Another key variable of interest is the correlation between the two trajecto-
ries, as the proposed model is designed for analyzing joint longitudinal processes.
Three correlation levels for the between-construct growth factors are considered:
±0.3 and 0. We are interested in how model over-specification affects perfor-
mance in zero-correlation conditions, and whether the sign of the correlation
(±0.3) has any impact on model performance. Additionally, we explore the in-
fluence of varying trajectory shapes, quantified by the relative growth rate in
each time interval. As specified in Table 2, the change patterns considered in-
clude both increasing and decreasing growth rates. Moreover, we evaluate the
model’s performance across different sample sizes (n = 200 and n = 500) and

levels of outcome-specific residual variances (θ
[u]
ϵ = 1 or θ

[u]
ϵ = 2) to gauge the

effects of sample size and measurement precision. In the simulation design, fac-
tors considered less critical to the proposed model’s performance, such as the
distribution of growth factors and the correlation of between-construct residuals,
were held constant.

3.2 Data Generation and Simulation Step

To evaluate the performance of the proposed parallel LBGMs, we conducted a
simulation study according to the design presented in Table 2. Each condition
was replicated 1, 000 times to ensure a robust assessment. The steps for the
simulation are outlined as follows:

1. Growth Factor Generation: Utilizing the MASS R package (Venables
& Ripley, 2002), generate the growth factors for both longitudinal processes
based on the pre-defined mean vector and variance-covariance matrix as spec-
ified in Table 2. The MASS package is used for its reliability in generating
multivariate Gaussian samples.

2. Time Structure: Generate the time structure with J waves tj as defined
in Table 2. Add a uniform disturbance following U(tj − ∆, tj + ∆) around
each wave to obtain individual measurement occasions tij .

3. Factor Loadings Calculation: Compute the factor loadings for each indi-
vidual of each longitudinal process as Equation 6, using the relative growth
rates and individual measurement intervals.

4. Measurement Value Computation: Calculate the values of bivariate re-
peated measurements, incorporating growth factors, factor loadings, and the
pre-defined residual variance-covariance structure.

5. LBGM Implementation: Execute the proposed LBGM models on the
generated dataset, estimating the model parameters and constructing 95%
Wald confidence intervals.

6. Replication: Repeat steps 1-5 until 1, 000 convergent solutions are ob-
tained, as this number of replications provides a stable estimate of perfor-
mance metrics such as bias and coverage probability.
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4 Result

4.1 Model Convergence

Before assessing the four performance measures of the proposed parallel LBGM,
we first examined its convergence rate1. The model exhibited excellent conver-
gence, as evidenced by a 100% rate across all simulation conditions listed in
Table 2.

4.2 Performance Measures

This section summarizes the simulation results for four key performance metrics:
relative bias, empirical SE, relative RMSE, and empirical coverage probability for
a nominal 95% confidence interval. We calculated these metrics for each param-
eter across 1, 000 repetitions under each condition, and summarized the median
and range values for all conditions given the scale of parameters and simulation
setups. The proposed model generally yielded unbiased and accurate point es-
timates with target coverage probabilities. Further details for each performance
metric are provided in the Online Supplementary Document.

The proposed model produced unbiased and accurate point estimates. Specif-
ically, the magnitudes of the relative biases for outcome-specific growth factor
means, variances, and relative growth rates were below 0.004, 0.013, and 0.012,
respectively2. The magnitudes of the relative RMSEs for outcome-specific growth
factor means, variances, and relative growth rates were below 0.05, 0.15, and 0.23,
respectively3. Moreover, the model demonstrated excellent empirical coverage
probabilities, with median values approximating 0.95. Given these consistently
strong performance metrics, further investigations into the effect of different
simulation conditions were deemed unnecessary.

5 Application

In this section, we demonstrate how to employ the proposed parallel LBGM to
analyze real-world data. This application section includes two examples. In the
first example, we illustrate the recommended steps to construct the proposed
model in practice. In the second example, we demonstrate how to apply the
proposed model to analyze joint longitudinal processes with a more complicated

1 In this study, we define convergence rate as the achievement of an OpenMx status
code of 0, indicating successful optimization, in up to 10 runs with varied initial
values (Neale et al., 2016).

2 Previous simulations have often regarded relative bias in regression coefficients as
acceptable if it was below 10%, which is commonly considered a guideline when
assessing relative bias (Leite, 2017; Poon & Wang, 2010).

3 Regarding relative RMSE, while there is no universally accepted benchmark for
simulation studies, model accuracy is generally considered excellent when the score
is below 10%, good when it ranges from 10% to 20%, fair when it falls between 20%
and 30%, and poor when it exceeds 30% (Jadon, Patil, & Jadon, 2022).
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data structure, where two repeated outcomes have different time frames. We
randomly selected 400 students from the Early Childhood Longitudinal Study
Kindergarten Cohort of 2010-2011 (ECLS-K: 2011), all of whom had complete
records of repeated reading and mathematics scores based on Item Response
Theory (IRT), as well as their age in months at each wave4.

ECLS-K: 2011 is a national longitudinal study of US children enrolled in
around 900 kindergarten programs beginning in the 2010-2011 school year. In
ECLS-K: 2011, children’s reading and mathematics abilities were assessed in
nine waves: fall and spring of kindergarten (2010-2011), first (2011-2012) and
second (2012-2013) grade, respectively, as well as spring of the 3rd (2014), 4th

(2015), and 5th (2016) grade. Only about 30% of students were assessed in the fall
semesters of 2011 and 2012 (Lê, Norman, Tourangeau, Brick, & Mulligan, 2011).
In the first example, we used all nine waves of reading and mathematics IRT
scores to demonstrate how to apply the proposed model. In the second example,
we utilized all nine waves of reading IRT scores but only the mathematics scores
obtained in the spring semesters to mimic one possible complex time structure in
practice. Note that the initial status and the number of measurement occasions of
the two abilities are different in the second example. Additionally, we employed
children’s age in months rather than their grade-in-school to have individual
measurement occasions. The subsample included 41.50% White, 7.25% Black,
37.00% Latinx, 8.25% Asian, and 6.00% of other ethnicity.

5.1 Analyze Joint Longitudinal Records with The Same Time
Structure

Following Blozis et al. (2008) and Liu and Perera (2022), we first constructed
a latent growth curve model to examine each longitudinal process in isolation
before analyzing joint development. Specifically, we employed a LBGM to explore
the univariate development of either reading or mathematics from Grade K to
5. Figure 4 illustrates the model-implied curves superimposed on the smooth
lines for each ability. For each ability, the estimates from the LBGM produced
model-implied trajectories that closely align with the smooth lines representing
the observed individual data.

We then applied the proposed parallel LBGM to analyze the joint develop-
ment of reading and mathematics abilities. Figure 5 illustrates the model-implied
curves superimposed on the smooth lines for each ability obtained from the par-
allel model. From the figure, it is evident that the model-implied curves of the
parallel models did not differ from those of the univariate growth models shown
in Figure 4. Table 3 presents the parameter estimates of interest for joint devel-
opment.

Note that we defined η
[u]
1 as the growth rate in the final time interval for

each ability’s longitudinal process (i.e., the model specification in Figure 3b).

4 The total sample size of ECLS-K: 2011 is n = 18174. The number of rows after
removing records with missing values (i.e., entries with any of NaN/-9/-8/-7/-1) is
n = 2290.
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Consequently, in Table 3, the parameters related to ’initial status’ and ’rate
of Interval 8’ were directly estimated from the proposed model, while others
were obtained using the function mxAlgebra()5 in the R package OpenMx. It is
important to note that the estimated initial status and interval-specific slopes

remain unaffected if η
[u]
1 is defined as the growth rate in the first time interval

for each ability’s longitudinal process (i.e., the model specification in Figure 3a).

This difference in specification only affects the interpretation of η
[u]
1 . Specifically,

when η
[u]
1 is scaled to be the slope in the first time interval, the correlation of

the two η
[u]
1 for the two outcomes indicates how the growth rates are related in

the first interval. In contrast, when η
[u]
1 is scaled to be the slope in the last time

interval, the correlation reflects how the growth rates are related during the final
interval.

From Figure 5 and Table 3, we observed that the development of both read-
ing and mathematics abilities generally slowed down after Grade 3, which aligns
with earlier studies (Liu & Perera, 2022; Peralta et al., 2022). Additionally, there
was a positive association between the development of reading and mathemat-
ics abilities, indicated by statistically significant intercept-intercept and slope-
slope covariances in each time interval. After standardizing the covariances, the
intercept-intercept correlation and each interval-specific slope-slope correlation
were found to be 0.83 and 0.58, respectively. This suggests that, on average, a
child who performed better in reading tests at Grade K also tended to perform
better in mathematics examinations, and vice versa. Moreover, on average, chil-
dren who showed more rapid gains in reading ability also tended to exhibit faster
improvement in mathematics, and vice versa.

5.2 Analyze Joint Longitudinal Records with Different Time
Structures

In this section, we use the proposed parallel LBGM to investigate the joint
development trajectories of reading and mathematics abilities. We retained all
nine measurement occasions for reading ability but included only the spring
semester measurements for mathematics ability (i.e., Waves 2, 4, 6, 7, 8, and 9).
In this configuration, both the initial statuses and the number of measurement
occasions differ between the two abilities. Figure 6 illustrates the model-implied
curves superimposed on the smooth lines representing each ability in this model.
The figure reveals that the model-implied trajectories vary only minimally from
those presented in Figure 5 due to fewer measurement occasions for mathemat-
ics ability, but they still sufficiently capture the smooth lines of the observed
individual data.

Table 4 presents the estimated parameters of interest for the joint model
with differing time structures. Note that there are 8 time intervals for the devel-
opment of reading ability (corresponding to 9 measurement occasions) but only

5 By using mxAlgebra(), we specify algebraic expressions for new parameters, enabling
OpenMx to estimate their point values along with standard errors.
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Figure 6: Model Implied Trajectory and Smooth Line of Bivariate Development
with Different Time Structures

5 time intervals for the development of mathematics ability because three mea-
surements from the fall semesters were excluded. During the first time interval
for mathematics, which corresponds to Intervals 2 and 3 for reading ability (as
detailed in Table 3), the estimated growth rate was 1.811. This value represents
an average of the growth rates 1.437 and 2.169 from Interval 2 and Interval 3,
respectively, in Table 3. These findings suggest that our proposed model effec-
tively captures the underlying patterns of growth trajectories, even with fewer
measurements.
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6 Discussion

This article extends the latent basis growth model with the novel specification
proposed by Liu and Perera (2024) to explore joint nonlinear longitudinal pro-
cesses in the framework of individual measurement occasions. This framework
is particularly advantageous when investigating parallel development because
it helps avoid inadmissible estimation and allows for different time structures
across outcomes. Additionally, the proposed model allows scaling the second
growth factor as the growth rate during any time interval. In the present study,
we specify the second growth factor as the growth rate during either the first or
last time interval and estimate the relative rates for each of the other intervals
for each repeated outcome. We demonstrate that the proposed parallel LBGM
can provide unbiased and accurate point estimates with target coverage proba-
bilities through simulation studies. Additionally, we apply the proposed model
to analyze the joint development of reading and mathematics abilities, using the
same or different time structures. Our analysis relies on a subsample of n = 400
from ECLS-K: 2011.

6.1 Practical Considerations

In this section, we provide recommendations for empirical researchers based on
both the simulation study and real-world data analyses. First, although we scale
the shape factor η1 as the growth rate in the first or last time interval of the
study duration, it can be specified as the growth rate in any time interval.
Note that the interpretation of γj−1 remains as the relative growth rate to η1
during the (j− 1)th time interval. From the proposed parallel LBGM, we obtain
the estimates of the mean and variance of shape factor and the fixed effects of
relative growth rates for each construct. Using the mxAlgebra() function from
the OpenMx R package, we derive both fixed and random effects for the absolute
growth rate of each time interval, as detailed in the Application section.

In addition, the proposed model is capable of estimating the covariance of
between-construct intercepts and that of between-construct shape factors di-
rectly. We can derive the covariance of between-construct growth rates for each
interval by using the function mxAlgebra(). Note that the correlation of the
between-construct growth rates is constant because we only estimate fixed ef-
fects of relative growth rates.

Third, as the latent basis growth model serves primarily as an exploratory
tool, allowing trajectory characteristics to emerge from the data rather than
being specified a priori, researchers may also be interested in exploring other
aspects, such as the change-from-baseline values at each measurement wave for
each repeated outcome. We can also derive these features with the function mx-
Algebra(). In the online appendix (https://github.com/Veronica0206/LCSM
projects), we also provide code to demonstrate how to derive the values of
change-from-baseline.

https://github.com/Veronica0206/LCSM_projects
https://github.com/Veronica0206/LCSM_projects
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6.2 Methodological Considerations and Future Directions

There are several directions to consider for future studies. First, similar to the
standard implementation of latent basis growth models, the proposed model
requires a strict proportionality assumption (McNeish, 2020; Wu & Lang, 2016).
Wu and Lang (2016) showed that this assumption might potentially result in
biased estimates by simulation studies. McNeish (2020) demonstrated that this
assumption could be relaxed by specifying random factor loadings of the shape
factor. In the same way, we can also relax the proportionality assumption for the
proposed parallel LBGM. Note that the extended model, where both the shape
factor and relative growth rates are random coefficients, cannot be specified in a
frequentist SEM software because these random coefficients enter the model in a
multiplicative fashion (i.e., a nonlinear fashion). Similar to McNeish (2020), the
extended model can be constructed in Bayesian software such as jags or stan.

Second, it is not our intention to show that the proposed parallel LBGM is
better than any other parallel growth models with parametric or semi-parametric
functional forms. The proposed model is a versatile tool for exploratory analyses;
it should perform well to detect the trends of trajectories or whether a spike
exists over the study duration. However, the insights directly related to research
questions might be limited. Accordingly, subsequent analyses may need to be
based on the estimates generated by the proposed model. For instance, if we
obtain evidence suggesting that developmental processes can generally be divided
into two stages, we may employ the parallel bilinear spline growth model (Liu
& Perera, 2022) to further estimate the individual transition time to the stage
with a slower growth rate. Alternatively, we can constrain the relative growth
rates of multiple time intervals to be the same to have a more parsimonious
model. Therefore, statistical methods for comparing the full model to a more
parsimonious one need to be proposed and tested.

Third, as in any latent growth curve model, baseline covariates can be added
to predict the intercept or the growth rate. Additionally, a time-varying covariate
can also be added to estimate its effect on the measurements while simultane-
ously modeling parallel change patterns in these measurements.

6.3 Concluding Remarks

In this article, we propose a novel expression of latent basis growth models to
allow for individual measurement occasions and further extend the model to
analyze joint longitudinal processes. The results of both the simulation studies
and real-world data analyses underscore the model’s valuable capabilities for
exploring parallel nonlinear change patterns. As discussed above, the proposed
method offers avenues for both practical extensions and further methodological
examination.
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