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Abstract. In the present article, we derive an explicit expression for
the truncated mean and variance for the multivariate normal distribu-
tion with arbitrary rectangular double truncation. We use the moment
generating approach of Tallis (1961) and extend it to general g, ¥ and
all combinations of truncation. As part of the solution, we also give
a formula for the bivariate marginal density of truncated multinormal
variates. We also prove an invariance property of some elements of the
inverse covariance after truncation. Computer algorithms for computing
the truncated mean, variance and the bivariate marginal probabilities
for doubly truncated multivariate normal variates have been written in
R and are presented along with three examples.

Keywords: Multivariate normal - Double truncation - Moment generat-
ing function - Bivariate marginal density function - Graphical models -
Conditional independence

1 Introduction

The multivariate normal distribution arises frequently and has a wide range
of applications in fields such as multivariate regression, Bayesian statistics and
the analysis of Brownian motion. One motivation to deal with moments of the
truncated multivariate normal distribution comes from the analysis of special fi-
nancial derivatives (“auto-callables” or “Expresszertifikate”) in Germany. These
products can expire early depending on some restrictions of the underlying tra-
jectory, if the underlying value is above or below certain call levels. In the frame-
work of Brownian motion the finite-dimensional distributions for log returns at
any d points in time are multivariate normal. When some of the multinormal
variates X = (z1,...,24) ~ N(u,X) are subject to inequality constraints (e.g.
a; < z; < b;), this results in truncated multivariate normal distributions.
Several types of truncations and their moment calculation have been de-
scribed so far, for example the one-sided rectangular truncation & > a (Tallis,
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1961), the rather unusual elliptical and radial truncations a < ’Rax < b (Tallis,
1963) and the plane truncation Cx > p (Tallis, 1965). Linear constraints like
a < Cx < b can often be reduced to rectangular truncation by transformation
of the variables (in case of a full rank matrix C : a* = Cla<z<C b= b*),
which makes the double rectangular truncation a < x < b especially important.

The existing works on moment calculations differ in the number of variables
they consider (univariate, bivariate, multivariate) and the types of rectangular
truncation they allow (single vs. double truncation). Single or one-sided trunca-
tion can be either from above (x < a) or below (z > a), but only on one side
for all variables, whereas double truncation a < < b can have both lower and
upper truncation points. Other distinguishing features of previous works are fur-
ther limitations or restrictions they impose on the type of distribution (e.g. zero
mean) and the methods they use to derive the results (e.g. direct integration or
moment-generating function).

Rosenbaum (1961) gave an explicit formula for the moments of the bivariate
case with single truncation from below in both variables by direct integration.
His results for the bivariate normal distribution have been extended by Shah
and Parikh (1964), Regier and Hamdan (1971) and Muthén (1990) to double

truncation.

For the multivariate case, Tallis (1961) derived an explicit expression for the
first two moments in case of a singly truncated multivariate normal density with
zero mean vector and the correlation matrix R using the moment generating
function. Amemiya (1974) and Lee (1979) extended the Tallis (1961) derivation
to a general covariance matrix 3 and also evaluated the relationship between
the first two moments. Gupta and Tracy (1976) and Lee (1983) gave very simple
recursive relationships between moments of any order for the doubly truncated
case. However, except for the mean, there are fewer equations than parameters.
Therefore, these recurrent conditions do not uniquely identify moments of order
> 2 and are not sufficient for the computation of the variance and other higher
order moments.

Table 1 summarizes our survey of existing publications dealing with the com-
putation of truncated moments and their limitations. Even though the rectangu-
lar truncation a < & < b can be found in many situations, no explicit moment
formulas for the truncated mean and variance in the general multivariate case
of double truncation from below and/or above have been presented so far in the
literature and are readily apparent. The contribution of this paper is to derive
these formulas for the first two truncated moments and to extend and generalize
existing results on moment calculations from especially Tallis (1961), Lee (1983),
Leppard and Tallis (1989), and Muthén (1990). Besides, we also refer Kan and
Robotti (2017) and Arismendi (2013) for the moment computation of folded and
truncated multivariate normal distribution. However, for moments computation
for skewed and extended skew normal distribution, we refer Kan and Robotti
(2017) and Arellano-Valle and Genton (2005). In the sequel, we also make a note
on the existing R package ”MomTrunc” (see Galarza C.E. & V.H., 2021) for nu-
merical computation of moments of folded and truncated multivariate normal
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Table 1. Survey of previous works on the moments for the truncated multivariate
normal distribution

Author # Variates Truncation  Focus

Rosenbaum bivariate single moments for bivariate normal vari-

(1961) ates with single truncation, by <
Y1 < 00,b2 <y2 < o0

Tallis (1961) multivariate single moments for multivariate normal
variates with single truncation from
below

Shah and Parikh bivariate double recurrence relations between mo-

(1964) ments

Regier and bivariate double an explicit formula only for the case

Hamdan (1971) of truncation from below at the
same point in both variables

Amemiya (1974) multivariate single relationship between first and sec-
ond moments

Gupta and Tracy multivariate double recurrence relations between mo-

(1976) ments

Lee (1979) multivariate single recurrence relations between mo-
ments

Lee (1983) multivariate double recurrence relations between mo-
ments

Leppard and multivariate single moments for multivariate normal

Tallis (1989) distribution with single truncation

Muthén (1990)  bivariate double moments for bivariate normal dis-

tribution with double truncation,
b1 <11 < ai,be < y2 < az
Manjunath and  multivariate double moments for multivariate normal
Wilhelm distribution with double truncation
in all variablesa < x < b

and Student’s t-distribution. However, the aforementioned package also suggests
the "tmvtnorm” package (e.g., Wilhelm & Manjunath, 2012), which is solely
based on the results presented in this note. Finally, we also refer Genz (1992)
for the numerical computation for the multivariate normal probabilities.

The rest of this paper is organized as follows. Section 2 presents the moment
generating function (m.g.f) for the doubly truncated multivariate normal case.
In Section 3, we derive the first and second moments by differentiating the m.g.f.
These results are completed in Section 4 by giving a formula for computing the
bivariate marginal density. In Section 5, we present two numerical examples and
compare our results with simulation results. Section 6 links our results to the
theory of graphical models and derives some properties of the inverse covariance
matrix. Finally, Section 7 summarizes our results and gives an outlook for further
research.
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2 Moment Generating Function

The d-dimensional normal density with location parameter vector p € R% and
non-singular covariance matrix X is given by

ons@) = g er] 5@ W = @ w |z Rl )

The pertaining distribution function is denoted by &, s:(x). Correspondingly,
the multivariate truncated normal density, truncated at @ and b, in R?, is defined
as

_u2@® fora<z<b
Papz(x) = ¢ P{asX<b}’ - 2)
0, otherwise.

Denote a = P {a < X < b} as the fraction after truncation.

The moment generating function of a d-dimensional truncated random vari-
able X, truncated at a and b, in R%, having the density f(x) is defined as the
d—fold integral of the form

m(t) = E (J’X) - /a ’ T f(z)de.

Therefore, the m.g.f for the density in (2) is

b
m(t) = a(27r)d/12|2|1/2/a exp {—; [(z - w) = (x—p) - 2t’x]}da:. (3)

In the following, the moments are first derived for the special case u = 0. Later,
the results will be generalized to all g by applying a location transformation.
Now, consider only the exponent term in 3 for the case pp = 0. Then we have
Ligsz o
-5 E x —2t'z]

which can also be written as

Lsi-Le-gs @-g).

where £ = 3t.

Consequently, the m.g.f of the rectangularly doubly truncated multivariate
normal is

eT b

a

where T = %t’Et.
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The above equation can be further reduced to

el b-¢ 1,
m(t) = NSEESEE /a—§ exp {—2w b :c} dz. (5)
For notational convenience, we write equation 5 as

m(t) = e’ box (6)
where

b 1 /b_ge 1:3’2_133 dx
P > ey r— Xp<{ —= .
=T @RS Jgg TP T2

3 First and Second Moment Calculation

In this section, we derive the first and second moments of the rectangularly
doubly truncated multivariate normal density by differentiating the m.g.f..

Consequently, by taking the partial derivative of (6) with respect to t; we
have

om(t)  70Pux deT
o, ¢ oy, TPemg (7)

In the above equation the only essential terms that will be simplified are

d

de”

or, = ¢ 2ok
k=1

and

b, o [ b
at-z = E/ / SOQZ(:B)dxd“'dxlv (8)

d
where af = a; — Zi:l o;xtr and b = b; — 22:1 oi kti. Subsequently, (8) is
d

aﬁ;‘ == ok (Frlay) - Fe(b}), (9)
¢ k=1

where

Fi(z) =

b iy bl bl
(paz($1,..,$i,1,$,$i+1,..$d)d$d...d$i+1d$i,1...dl’l.

aj ai_y Jai, ag

(10)
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Note that at ¢, = 0, for all &k = 1,2,...,d, we have a] = a; and b] = b;.
Therefore, F;(z) will be the i—th marginal density. An especially convenient way
of computing these one-dimensional marginals is given in Cartinhour (1990).

From (7) — (9) for k = 1,2,...,d all ¢, = 0. Hence, the first moment is

B(x) = 220, 0= 3 s (Bulan) — Fulbo)). (11)

k=1

Now, by taking the partial derivative of (7) with respect to ¢;, we have

T = e oy s (9
The essential terms for simplification are
0%et
oot
and clearly, the partial derivative of 9 with respect to t; gives
0%, d OF(a; d OFy (b}
e =2 () - L (W)

In the above equation, merely consider the partial derivative of the marginal
density Fy(aj) with respect to ¢;. With further simplification, it reduces to

aFk ak b] bi_1 bk+1 by
— = Pax(T1, . Th—1, A, Thp1, --Ta)dT
ot; 8t o

k+1

_ 9y kaka(ak

Ok,k
Ok,q034,k
# 3 (70— T (Fogo ;) = Pralai ). (19
q#k
where
qu x y

k: 1 k+1
/ / / / / 90042 T,Y, Tk, q)d.’I} k,—q> (15)

ajpiq

and the short form x_j denotes the vector (x1,..,Xx—1,Zp+1,.-24) in (d— 1)-
dimensions and x_j, 4, denotes the (d — 2)-dimensional vector (z1, ..., Zx—1,

Tht1s ey Tg—1, L1, - Tq) for k # q. The above equation (14) is deduced from
Lee (1979, pp. 167). Note that for all ¢, = 0 the term Fy 4(z,y) will be the
bivariate marginal density for which we will give a formula in the next section.
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Subsequently, f)ngt(jni) can be obtained by substituting aj, by bj. From 12 —
(15) at all tx, =0, k = 1,2, ...,d, the second moment is
0?m(t)

d
i F — by Fy, (b
=i+ Y Ok 0jk (axFr(ar) — buFi(br))

g
=1 k.k

d
NS (%q - "’“”“) (Flg(ar, ag) — Frg(arsby))

k=1 Tk.k
= q#k
— (F,q(bks aq) — Flq(br, bg))] - (16)

Having derived expressions for the first and second moments for double trun-
cation in case of pu = 0, we will now generalize to all u. If Y ~ N(u,X) with
a*<y<b then X=Y —pu~N0OX)witha=a*—p<xz<b"—p=>b
and E(Y) = E(X) + p and Cov(Y) = Cov(X). Equations 11 and 16 can then
be used to compute E(X) and Cov(X). Hence, for general p, the first moment
is

d
EY;) = Z ok (Fr(ar) — Fe(bg)) + p. (17)
k=1

The covariance matrix

is invariant to the shift in location.

The equations 17 and 18 in combination with 11 and 16 form our derived
result allow the calculation of the truncated mean and truncated variance for
general double truncation. A formula for the term Fj ,(xg,xq), the bivariate
marginal density, will be given in the next section.

We have implemented the moment calculation for mean vector mean, co-
variance matrix sigma and truncation vectors lower and upper as a function
mtmvnorm(mean, sigma, lower, upper) in the R package tmvtnorm (Wilhelm
& Manjunath, 2010, 2012), where the code is open source. In Section 5, we will
show an example of this function.

4 Bivariate Marginal Density Computation

In order to compute the bivariate marginal density in this section, we follow
Tallis (1961, p. 223) and Leppard and Tallis (1989) that implicitly used the
bivariate marginal density as part of the moments calculation for single trunca-
tion, evaluated at the integration bounds. However, we extend it to the doubly
truncated case and state the function for all points within the support region.
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Without loss of generality we use a z-transformation for all variates © =
(1,...,24)" as well as for all lower and upper truncation points a@ = (a1, ..., aq)’
and b= (by,...,bq), resulting in a N(0, R) distribution with correlation matrix
R for the standardized untruncated variates. In this section we treat all variables
as if they are z-transformed, leaving the notation unchanged.

For computing the bivariate marginal density Fy (x4, 2,) with ay < 24 <
by, ar <z < by, q # 7, we use the fact that for truncated normal densities the
conditional densities are also truncated normal. The following relationship holds
for x5, z5 € R472 conditionally on z, = ¢, and x, = ¢, (s # q # 1):

Oé_lﬁpd(iﬂs, Ty =Cq, Ty = CT;R) = a_lgp(cmcr; pqr)@d72<zs§ Rqr)a (19)

where

20 = (@5 = gty — Borger) [/ (1= p2)(1 = £2,.,) (20)

and Ry, is the matrix of the second-order partial correlation coefficients for
§# q#1. PBsqr and fs, 4 are the partial regression coefficients of z, on x4 and
x, , respectively, and pgr 4 is the partial correlation coefficient between x4 and
x, for fixed z,.

Integrating out (d — 2) variables x; leads to Fy . (x4, z,) as a product of a
bivariate normal density ¢(z4, z,) and a (d —2)-dimension normal integral @ ;_o:

b1 bg—1 bg+1 br—1
Fyr(zg=cqxr =¢r) = / / / /
a1 Gq—1 “Qq+1 Gr—1

bro1 ba
/ / Var(Ts, cq, cr)das
QAr41 ad

= a ' p(cqs s par)Pa—2(Als; B Ray) (21)

rSs? rs?

where A9, and BY, denote the lower and upper integration bounds of @,_o given
Tq = cq and x, = c;:

AL, = (s = Bag.rq — Barger)\/ (1= 02,)(1 = p2,.,) (22)

B, = (bs = Bag.rta — Beraer) [\ (L= 2)(1 = py). (23)

The computation of F, ,(z4, z,) just needs the evaluation of the normal integral
®,4_5 in d — 2 dimensions, which is readily available in most statistics software
packages, for example, as the function pmvnorm() in the R package mvtnorm
(Genz et al., 2012). The bivariate marginal density function dtmvnorm(x, mean,
sigma, lower, upper, margin=c(q,r)) is also part of the R package tmvtnorm
(Wilhelm & Manjunath, 2010, 2012), where readers can find the source code as
well as help files and additional examples.
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5 Numerical Examples

Example 1

We will use the following bivariate example with g = (0.5,0.5)" and covariance

matrix X
1 1.2
x= (1.2 2 )

as well as lower and upper truncation points @ = (—1, —c0)’,;b = (0.5,1), i.e. z1
is doubly, while x5 is singly truncated. The bivariate marginal density Fy ,(z,y)
is the density function itself and is shown in figure 1, and the one-dimensional
densities Fy(z) (k = 1,2) are shown in in figure 2.

bivariate marginal density (X1,Xp)

< -
N_
X O o
N
I
<If'_
I I I I I
-4 -2 0 2 4
X1

Figure 1. Contour plot for the bivariate truncated density function

The moment calculation for our example can be performed in R as

moments <- mtmvnorm(mean=mu, sigma=sigma,
lower=a, upper=b)

> library(tmvtnorm)

> mu <- c(0.5, 0.5)

> sigma <- matrix(c(1l, 1.2, 1.2, 2), 2, 2)
> a <- c(-1, -Inf)

> b <- ¢(0.5, 1)

>

>
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Figure 2. Marginal densities Fj(z) (k = 1,2) for z; and z2 obtained from Kernel
density estimation of random samples and from direct evaluation of Fj(z)

which leads to the results p* = (—0.152, —0.388)" and covariance matrix

s _ (0163 0.161
~ \0.161 0.606 ) -

The trace plots in figures 3 and 4 show the evolution of a Monte Carlo esti-
mate for the elements of the mean vector and the covariance matrix respectively
for growing sample sizes. Furthermore, the 95% confidence interval obtained
from Monte Carlo using the full sample of 10000 items is shown. All confidence
intervals contain the true theoretical value, but Monte Carlo estimates still show
substantial variation even with a sample size of 10000. Simulation from a trun-
cated multivariate distribution and calculating the sample mean or the sample
covariance also leads to consistent estimates of p* and X*. Since the rate of
convergence of the MC estimator is O(y/n), one has to ensure sufficient Monte
Carlo iterations in order to have a good approximation or to choose variance
reduction techniques.

Example 2

Let i = (0,0,0) ,the covariance matrix

1.1 1.2 0
=112 2 -0.8
0-0.8 3
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Monte Carlo estimator for {i, Monte Carlo estimator for {i,
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Figure 3. Trace plots of the Monte Carlo estimator for p*

and the lower and upper truncation points a = (—1, —00, —00)" and b = (0.5, 00, 00)".

Then the only truncated variable is 1, which is uncorrelated with z3. Our for-
mula results in p* = ¢(—0.210, —0.229,0)" and

0.174 0.190 0.0
¥* = 0.190 0.898 —0.8

0 -0.8 3.0
For the special case of only k < d truncated variables (1, ..., zy), the remaining
d — k variables (zg41,...,2q4) can be regressed on the truncated variables, and

a simple formula for the mean and covariance matrix can be given (see Johnson
& Kotz, 1971, p. 70).

Let the covariance matrix X of (z1,...,24) be partitioned as

Vi Vio
Y= 24
(V21 V22) (24)
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Monte Carlo estimator for Cov(xy, X;) Monte Carlo estimator for Cov(xy, X) Monte Carlo estimator for Cov(xz, X)
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0.14
|

0.5

0.12
|

T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

sample size sample size sample size

Figure 4. Trace plots of the Monte Carlo estimator for the 3 elements of 3* (o7,
oiy = 03, and 033)

where V11 denotes the k x k covariance matrix of (z1,...,2). The mean vector?
and the covariance matrix X" of all d variables can be computed as

(61,€1V1i V12) (25)

and

5 < Uiy U11V111V12> (26)
Vo ViU Voo — Vo (Vi = VULV Vi

where £] and Uy, are the mean and covariance of the (z1,..., ) after trunca-
tion.
The mean and standard deviation for the univariate truncated normal x; are

6 =} = oy Donrnl0) = Pz B1).
H1,011 (bl) - ¢#1,011 (al)
A1Ppq,011 (al) - bl‘PuhUu(bl)
45#17011(171) - 45#17‘711(0’1) -
3 The formula for the truncated mean given in Johnson and Kotz (1971, p.70) is

only valid for a zero-mean vector or after demeaning all variables appropriately. For
non-zero means p1 = (p, f1,)" it will be (&1, gy + (€1 — p) Vi Vo).

*
011 =011 + 011
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Letting Uy = o}, and inserting & and Uj; into equations 25 and 26, one
can verify our formula and the results for p* and X*. However, the crux in
using the Johnson/Kotz formula is the need to first compute the moments of the
truncated variables (x1,...,xy) for £ > 2. But this has been exactly the subject
of our paper.

6 Moment Calculation and Conditional Independence

In this section we establish a link between our moment calculation and the the-
ory of graphical models (Edwards, 1995; Lauritzen, 1996; Whittaker, 1990). We
present some properties of the inverse covariance matrix and show how the de-
pendence structure of variables is affected after selection.

Graphical modeling uses graphical representations of variables as nodes in a
graph and dependencies among them as edges. A key concept in graphical mod-
eling is the conditional independence property. Two variables x and y are condi-
tionally independent given a variable or a set of variables z (notation = 1L y|z),
when z and y are independent after partialling out the effect of z. For condition-
ally independent x and y, the edge between them in the graph is omitted and
the joint density factorizes as f(x,ylz) = f(z|2)f(y|z).

Conditional independence is equivalent to having zero elements €2, in the
inverse covariance matrix @ = 37! as well as having a zero partial covari-
ance/correlation between x and y given the remaining variables:

z 1l yRest <= Quy =0 <= puy Rest = 0.

Both marginal independence and conditional independence between variables
simplify the computations of the truncated covariance in equation 16. In the pres-
ence of conditional independence of 7 and j given g, the terms 0;; — 0440, 0¢; = 0
vanish as they reflect the partial covariance of ¢ and j given q.

As has been shown by Marchetti and Stanghellini (2008), the conditional
independence property is preserved after selection, i.e. the inverse covariance
matrices Q and " before and after truncation share the same zero-elements.
We prove that many elements of the precision matrix are invariant to truncation.
For the case of k < d truncated variables, we define the set of truncated variables
with T'= {1, ..., 2%}, and the remaining d — k variables as S = {xj41,...,Z4}.
We can show that the off-diagonal elements €2; ; are invariant after truncation
forieTUS and j € S:

aq

Proposition 1. The off-diagonal elements €; ; and the diagonal elements §2; ;
are invariant after truncation fori € TUS and j € S.

Proof. The proof is a direct application of the Johnson/Kotz formula in equation
26 in the previous section. As a result of the formula for partitioned inverse
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matrices (Greene, 2003, section A.5.3) , the corresponding inverse covariance
matrix € of the partitioned covariance matrix X is

Q= (Vﬁl (I+V2F2Va V) —Vl_lquFQ)

1 27
—Fy Vo V! F, (27)

with Fo = (Voo — V21Vf11V12)_1~

Inverting the truncated covariance matrix X* in equation 26 using the for-
mula for the partitioned inverse leads to the truncated precision matrix

Q — <U1‘11 + VI Vi Fo Vo Vi —V1_11V12F2>

1 28
—FyVo Vi F, (28)

where the Q75 and €23, elements are the same as €212 and €297 respectively. The
same is true for the elements in Q3,, especially the diagonal elements in €5,. O

Here, we prove this invariance property only for a subset of truncated vari-
ables. Based on our experiments we conjecture that the same is true also for the
case of full truncation (i.e. all off-diagonal elements in £27,). However, we do not
give a rigorous proof here and leave it to future research.

Example 3

We illustrate the invariance of the elements of the inverse covariance matrix with
the famous mathematics marks example used in Whittaker (1990) and Edwards
(1995, p.49). The independence graph of the five variables (W,V, X, Y, Z) in
this example takes the form of a butterfly as shown in below.

vectors (W) statistics (Z)

algebra (X

mechanics (V) analysis (Y)

Here, we have the conditional independence (W,V) 1L (Y, Z)|X. A corre-
sponding precision matrix might look like (sample data; zero-elements marked
as ”.):

1 02 03
02 1-0.1
Q=|03-01 10405 (29)
04 10.2

0502 1
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After truncation in some variables (for example (W, V, X) as —2 < W < 1,
-1 <V <1,0< X <1), we apply equation 16 to compute the truncated
second moment and the inverse covariance matrix as:

1.88 02 03
0.2 3.45 —0.1 .
Q" =| 03-0112670.405 (30)
04 10.2
0502 1

The precision matrix Q" after selection differs from € only in the diagonal
elements of (W,V, X). From Q% we can read how partial correlations between
variables have changed due to the selection process.

Each diagonal element €2, of the precision matrix is the inverse of the par-
tial variance after regressing on all other variables (Whittaker, 1990, p.143).
Since only those diagonal elements in the precision matrix for the & < d of the
truncated variables will change after selection, this leads to the idea to just com-
pute these k elements after selection rather than the full k(k + 1)/2 symmetric
elements in the truncated covariance matrix and applying the Johnson/Kotz
formula for the remaining d — k variables. However, the inverse partial variance
of a scalar y given the remaining variables X = {x1,..., 24} \ y

Q= [T x) = [T - D IR k)

still requires the truncated covariance results derived in Section 3.

7 Summary

In this paper, we derived a formula for the first and second moments of the dou-
bly truncated multivariate normal distribution and for their bivariate marginal
density. An implementation for both formulas has been made available in the
R statistics software as part of the tmvtnorm package. We linked our results to
the theory of graphical models and proved an invariance property for elements
of the precision matrix. Further research can deal with other types of truncation
(e.g. elliptical). Another line of research can look at the moments of the dou-
bly truncated multivariate Student-t distribution, which contains the truncated
multivariate normal distribution as a special case.
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