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Abstract. With the increasing availability of large datasets in the be-
havioral and health sciences, the need for efficient and effective variable
selection techniques has grown. While traditional methods like stepwise
regression remain prevalent, numerous advanced techniques are avail-
able but underutilized in these fields. This tutorial aims to increase
awareness and understanding of five variable selection methods available
in the popular statistical software R: LASSO, Elastic Net, a penalized
SVM classifier, random forest, and the genetic algorithm. Using a recent
survey-based assessment dataset on misophonia diagnosis, we provide
step-by-step guidance on variables selections and implementation of each
method in the context of classification. We discuss the strengths, weak-
nesses, and performance of each technique, emphasizing the importance
of selecting appropriate performance metrics. The associated code and
data implemented in this tutorial are available on Open Science Frame-
work and provide an interactive learning experience. We encourage social
and health science researchers to adopt these advanced variable selection
methods, leading to more robust, interpretable, and impactful models.
This paper is written with the assumption that individuals have at least
a basic understanding of R.
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1 Introduction

In the behavioral and health sciences, selecting the right variables for a model
is crucial for understanding human behavior’s complexity. Researchers strive to
uncover how personality traits influence treatment engagement, how symptoms
manifest in disorders, and how to accurately classify individuals into meaningful
groups for diagnosis or intervention. They not only want to understand how these
aspects (i.e., variables) are related to each other and to overarching constructs
but may also want to use the variables to classify individuals into groups (e.g.,
diagnosing clinical disorders, determining participant compliance, etc.). The ac-
curacy of these classifications or predictions is greatly influenced by which vari-
ables a researcher uses to create the classifications. For example, if a researcher is
interested in diagnosing someone with depression, the accuracy of the diagnosis
would suffer if relying solely on the presence of a depressed mood. However, if
they use a variety of variables like depressed mood, loss of interest in activities,
hours slept, and change in appetite or weight, their classification would be more
accurate.

Researchers must carefully construct their classification models to under-
stand variable interrelationships while maximizing predictive accuracy. Variable
selection techniques can help researchers to identify and select informative vari-
ables to build these models. The use of variable selection techniques can lead to
more accurate predictions, reduce the computational cost of creating the model,
and improve the parsimony of the model by eliminating redundant and irrel-
evant variables. For example, variable selection techniques have been used to
build models pertaining to identifying exposure-outcome associations (Lenters,
Vermeulen, & Portengen, 2018) as well as predicting mortality rates (Amene,
Hanson, Zahn, Wild, & Döpfer, 2016; Bourdès et al., 2010), psychological strain
in teachers (Wettstein et al., 2023), and nomophobia (Luo, Ren, Li, & Liu, 2021).

Behavioral researchers often turn to stepwise regression to perform variable
selection. An APA PsychINFO database search for the term “stepwise regres-
sion” returned 222 peer-reviewed articles published in the last 3 years using step-
wise regression for variable selection. Stepwise regression, however, has many
severe limitations and statistical experts do not recommend it (Smith, 2018;
Thompson, 1995; Whittingham, Stephens, Bradbury, & Freckleton, 2006). These
limitations include the inability to distinguish signal (i.e., true predictor vari-
ables) from noise (Derksen & Keselman, 1992; Kok, Choi, Oh, & Choi, 2021;
Whittingham et al., 2006; Wiegand, 2010), underestimation of p-values, and
failure to replicate (Smith, 2018; Thompson, 1995). As such, many alternative
variable selection algorithms have been proposed in the literature, but behav-
ioral researchers have been slow to adopt these new methods in place of more
traditional methods (Serang, Jacobucci, Brimhall, & Grimm, 2017; Shi, Shi,
& Fairchild, 2023). One potential reason for this delay may be the disconnect
between methodological and applied behavioral researchers, as much method-
ological research is often inaccessible for applied researchers at first (e.g., com-
plex techniques, lack of published code, or no tutorials). An APA PsychINFO
database search for the term “variable selection” returned 253 papers published
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in quantitative methods journals in the last 20 years, indicating that method-
ological researchers are dedicated to developing better approaches to variable
selection than stepwise regression. Of these publications, however, only one is a
tutorial (Gunn, Hayati Rezvan, Fernández, & Comulada, 2023).

Given the clear gap in the popularity of variable selection methodological
research and the lack of tutorials on how to apply them, the field would benefit
greatly from additional tutorials on variable selection techniques with demon-
strations of how to apply them to psychological datasets. The following groups
would benefit, specifically, from this tutorial. First, behavioral and health science
researchers who are working with big data or looking to further enhance their un-
derstanding of advanced variable selection techniques to build more robust and
interpretable models. Second, graduate students and early career researchers
who are new to machine learning and variable selection methods and seek prac-
tical guidance on applying these techniques in their own research. Third, those
who may be teaching courses on data analysis, machine learning, or statistics
who are looking for comprehensive examples to illustrate advanced techniques to
their students. By following this tutorial, readers will gain practical knowledge
on implementing five advanced variable selection methods in R, insights into
the strengths and weaknesses of each method, helping researchers to choose the
most appropriate technique for their specific research question, and access to the
associated code on Open Science Framework, providing an interactive learning
experience. We encourage social and health sciences researchers to adopt these
advanced methods, leading to more robust, interpretable models.

Specifically, the goal of this paper is to provide a tutorial on five variable se-
lection techniques freely available to researchers in R. We will introduce the Least
Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, a version of
the genetic algorithm (GA), and implementations of Support Vector Machines
(SVMs) and Random Forest that have been adapted to perform variable selec-
tion. The manuscript is organized as follows. The first section illustrates the
importance of variable selection in machine learning and explains why each of
the five methods was selected. Then, a motivating example pertaining to the
diagnosis of misophonia is provided. The dataset was collected from a psychol-
ogy research pool and represents an excellent example of a dataset available to
many behavioral and health researchers (Norris, Kimball, Nemri, & Ethridge,
2022). Within this example, there are three major sections. The first discusses
methods using a logistic regression model (i.e., LASSO, EN, and the GA), the
second discusses SVM, and the third pertains to random forest. Each technique
is introduced, the code necessary to implement each technique is provided, and
each technique’s associated strengths and weaknesses are discussed. This paper is
written with the assumption that individuals have at least a basic understanding
of R.

1.1 Variable Selection in Machine Learning

Objectives of Variable Selection Variable selection is a fundamental step
in the process of building robust and efficient machine learning models, and its
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importance cannot be overstated (Chowdhury & Turin, 2020; Guyon & Elisseeff,
2003). It serves as a critical mechanism for optimizing model performance and
ensuring its reliability across various tasks and datasets. The goal of variable
selection (also known as feature selection in machine learning literature) is to
identify the most informative (i.e., best) subset of variables for a given task.
The criteria for defining “best” vary depending on the researcher’s objectives, as
highlighted by Huang (2015). Highlights of Huang’s discussion argue that there
are two main objectives of variable selection: (1) to improve the accuracy of the
model, and (2) to determine the relevance of the variables in the model so as to
better guide researchers’ hypothesis generation.

Types of Variable Selection In the field of machine learning, variable selec-
tion techniques are often classified into one of three categories, initially discussed
in the seminal paper by Guyon and Elisseeff (2003): filter methods, wrapper
methods, and embedded methods .

Filter methods (e.g., χ2, Euclidean distance, or the i-test) are often used as
a pre-processing step, but they can be used as a stand-alone variable selection
method. These techniques choose variables (or features) before building any
model to measure the construct of interest. For example, a filter could select
items based on a particular feature relevance score, a variable’s correlation with
the constructs of interest, or the variable’s amount of variance. Most often,
significance testing is used as a filter method to determine variable selection
(e.g., a variable would need to correlate significantly, as determined by a p-
value, with the outcome variable). However, these significance tests occur in a
univariate fashion (i.e., one variable is tested at a time), which ignores possible
interaction effects or covariance among variables. No filter methods are presented
in this tutorial, as past research indicates they provide inferior results and miss
important information as the selection is separate from model estimation (Blum
& Langley, 1997; Guyon & Elisseeff, 2003; Kohavi, 1996), but we include a brief
overview to provide the reader with a full picture of the types of variable selection
methods that exist.

Wrapper methods improve upon filter methods by accounting for a variable’s
ability to measure the construct of interest. Each wrapper method operates under
a specific algorithmic ideology from machine learning (e.g., stepwise regression
techniques operate as greedy algorithms, choosing the variable that will opti-
mize the selected criteria at each step). Wrapper methods are flexible in that
they are not constrained to any one type of model (e.g., regression, structural
equation modeling, etc.) but rather can be “wrapped” around the researcher’s
chosen model. The wrapper method explained in this tutorial is the genetic
algorithm, which we have wrapped around a logistic regression model for classi-
fication purposes. More details about the genetic algorithm will be provided in
a later section of this paper.

Embedded methods are similar to wrapper methods in how well a set of vari-
ables predicts the given construct of interest. Embedded methods differ from
wrapper methods in that they perform variable selection while simultaneously
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estimating the prediction model (Guyon & Elisseeff, 2003). Although this often
results in higher efficiency than wrapper methods, embedded methods are con-
strained to one type of model. The embedded methods discussed in this tutorial
are LASSO and Elastic Net which use a logistic regression classification model
(Engebretsen & Bohlin, 2019), Elastic SCAD SVM which uses an SVM classi-
fier (Becker, Toedt, Lichter, & Benner, 2011), and Boruta which uses a random
forest classifier (Kursa & Rudnicki, 2010).

Variable Selection Importance Variable selection is advantageous with any
model (e.g., regression, structural equation modeling, etc.) because, as mentioned
previously, it leads to more accurate predictions, reduces the computational cost
of the model, and improves the parsimony of the model by eliminating redundant
and irrelevant variables. However, there are additional advantages to variable se-
lection when paired with machine learning models. First, variable selection helps
manage dimensionality problems (i.e., when a dataset contains more predictors
than observations). Over the years, technology such as the invention of online
data collection platforms like Prolific or the creation of mobile health apps has
allowed researchers to collect more complex data from increasingly larger sam-
ples. As datasets grow in both size and complexity, the number of variables
may also increase, leading to computational inefficiencies and reduced model
interpretability (Barceló, Monet, Pérez, & Subercaseaux, 2020). By carefully se-
lecting relevant variables, we can effectively reduce the dimensionality of the
data, thereby streamlining the computational process and facilitating easier in-
terpretation of the model (Jia, Sun, Lian, & Hou, 2022)

Moreover, the variable selection process enables models to achieve higher
accuracy and better generalization capabilities. For example, van Vuuren et al.
(2021) found that LASSO created a model that was able to classify students as
at risk for suicide with a higher accuracy than simple inclusion rules (i.e., pre-
dicting based on history of suicide alone). Pratik, Nayak, Prasath, and Swarnkar
(2022) utilized Elastic Net to select variables that were able to predict smok-
ing addiction in young adults with higher accuracy than previous research. By
focusing on the most informative variables, the model can discern meaningful
patterns within the data, leading to more precise predictions and improved per-
formance on unseen or new data. This selective approach prevents the model
from being overwhelmed by noise or irrelevant information, allowing it to focus
on capturing the underlying relationships that drive the outcome of interest. For
example, researchers found that applying Elastic Net regularization to classifiers
based on clinical notes reduced the number of features selected by more than a
thousandfold, making these classifiers more easily interpretable and maintaining
performance (Marafino, John Boscardin, & Adams Dudley, 2015).

Furthermore, the inclusion of irrelevant variables in the modeling process
can introduce bias and adversely affect the estimation of model parameters.
Additionally, extraneous variables may introduce noise or confounding factors,
leading to skewed parameter estimates and potentially misleading conclusions
(Kerkhoff & Nussbeck, 2019). By excluding such variables through proper selec-
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tion techniques, we can ensure that the model’s estimates remain unbiased and
reflects the true underlying relationships in the data, increasing the ecological
validity of study results and models produced.

Lastly, a well-selected set of variables enhances the model’s predictive perfor-
mance and contributes to its stability and reliability (Arjomandi-Nezhad, Guo,
Pal, & Varagnolo, 2023; Fox et al., 2017). Models built on a carefully chosen
subset of variables are less susceptible to overfitting, where the model simply
memorizes the data rather than learning meaningful patterns. Avoiding overfit-
ting leads to more robust models that generalize better and are less prone to
erratic behavior or unexpected deviations, which may lead to harmful classifica-
tions (e.g., classifying an individual as having a particular disorder when they
do not; Cateni, Colla, & Vannucci, 2010; Heinze, Wallisch, & Dunkler, 2018).

Put simply, variable selection is indispensable in the realm of machine learn-
ing. It serves as a cornerstone for improving computational efficiency, enhancing
model accuracy and generalization, reducing bias in parameter estimation, and
fostering the stability and reliability of the resulting models. As such, behav-
ioral and health researchers must employ rigorous techniques and considerations
during the variable selection process to ensure the models’ and conclusions’ ef-
fectiveness and generalizability.

Applications of Variable Selection Methods Understanding the appro-
priate contexts for applying different variable selection methods is crucial for
researchers to make informed decisions. Below we outline scenarios where each
of the five methods discussed in this tutorial – LASSO, Elastic Net, genetic algo-
rithm (GA), support vector machines (SVM), and random forest – can be most
effectively utilized.

LASSO is particularly effective for datasets with a large number of predictors,
especially when many predictors are thought to be irrelevant or redundant (Tib-
shirani, 1996). It is often used in clinical research for identifying key biomarkers
from extensive genetic data or in psychological students for selecting signifi-
cant psychological traits that predict mental health outcomes (Chu et al., 2024;
Wettstein et al., 2023). However, LASSO is constrained by degrees of freedom
requirements, so, if researchers’ data contains more predictors than observations,
this approach would be infeasible.

Elastic Net is best suited for datasets with highly correlated predictors. It
combines the strengths of both LASSO and Ridge regression, which makes it
most suitable for complex datasets with multicollinearity. This method is applied
in epidemiology to study the impact of multiple, correlated environmental ex-
posures on health outcomes and in social sciences to analyze survey data where
multiple questions pertaining to a given latent construct are often correlated
(Han & Dawson, 2021; Pratik et al., 2022).

The genetic algorithm is ideal for complex optimization problems where tra-
ditional methods may fail to find the global optimum. It is flexible and can be
adapted to various types of models and data structures. If researchers believe
there may be strong interactions between variables, this approach may be most
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appropriate. In fact, GA has been used in the behavioral and health sciences to
explore variable selection when interactions between numerous behavioral vari-
ables are present, or hypothesized to be present, in the data (Adams, Bello, &
Dumancas, 2015; Basarkod, Sahdra, & Ciarrochi, 2018; Gan & Learmonth, 2016;
Moore et al., 2017; Yukselturk, Ozekes, & Türel, 2014).

SVMs are highly effective for classification problems with high-dimensional
(where there are more predictors than observations) data. They are robust to
overfitting, especially when an advanced kernel function (discussed in more detail
later) are used. They are often used in medical diagnosis for classifying patients
based on medical imaging data (Becker, Werft, Toedt, Lichter, & Benner, 2009;
Fernandez, Caballero, Fernandez, & Sarai, 2011) and in classification studies
such as predicting dementia (Battineni, Chintalapudi, & Amenta, 2019).

Random forest performs particularly well when data have a mix of variable
types or complex interactions. It handles large datasets well, provides measures of
variable importance, and is less prone to overfitting than some other approaches
due to the ensemble approach. Random forest has been applied to educational
psychology to assess student related outcomes (Alamri et al., 2021; El Haouij et
al., 2018; Tan, Main, & Darolia, 2021). Within the health sciences, researchers
have used random forest to predict cases of COVID-19, predict risk for adverse
health effective, and identify longitudinal predictors of health (Cafri, Li, Paxton,
& Fan, 2018; Iwendi et al., 2020; Loef et al., 2022).

Our Chosen Variable Selection Techniques Researchers have a variety of
variable selection methods available to them, and many are freely available to
researchers in R packages. Perhaps the most widely applicable and easy-to-use
R package for variable selection is the relatively new FSinR package (Aragón-
Royón, Jiménez-Vı́lchez, Arauzo-Azofra, & Beńıtez, 2020), which contains a
large number of filter and wrapper methods widely used in the literature for
both classification and regression models that are available in the R caret package
(Kuchirko, Bennet, Halim, Costanzo, & Ruble, 2021). A short, non-exhaustive
list of other easy-to-use R packages for variable selection is cited here for the
reader’s convenience (Calcagno & Mazancourt, 2010; Genuer, Poggi, & Tuleau-
Malot, 2010; Kursa & Rudnicki, 2010; Strobl, Malley, & Tutz, 2009; Trevino &
Falciani, 2006; Wehrens & Franceschi, 2012).

The five techniques utilized in this paper were chosen for a variety of rea-
sons. First and foremost, LASSO and Elastic Net are arguably the most popular
modern variable selection techniques within the behavioral sciences. The imple-
mentations used in this tutorial come from the glmnet R package (Friedman,
Hastie, & Tibshirani, 2010; Tay, Narasimhan, & Hastie, 2023). Social psychol-
ogy researchers have used such techniques to create better environments that
promote prosocial environments for children (Chu et al., 2024), and health re-
searchers have used them to model the progression of Alzheimer’s disease (Liu,
Cao, Gonçalves, Zhao, & Banerjee, 2018). Implementations of SVM and random
forest were chosen because of their strength as classification algorithms and be-
cause they can handle more complex data types (e.g., mixed variable types or
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non-linearly separable). The SVM implementation comes from the penalizedSVM
package (Becker et al., 2009) while the random forest implementation comes from
the Boruta package (Kursa & Rudnicki, 2010). Lastly, the GA was chosen (1)
to introduce the reader to the concept of metaheuristic approaches to variable
selection and (2) because it has been shown to outperform more common meth-
ods like LASSO and Elastic Net across a variety of different data conditions
(Bain, Shi, Boness, & Loeffelman, 2023). The GA implementation comes from
the GA package (Scrucca, 2013, 2017). Note that while this paper includes core
code snippets, the accompanying Open Science Framework (OSF) repository
provides the complete code and data necessary to replicate all analyses. The
repository link is provided in the data availability section.

A Motivating Example This tutorial uses the assessment of misophonia as
an example through which we illustrate each technique. Individuals with miso-
phonia experience strong, negative, emotional responses to specific sounds (i.e.,
triggers Wu, Lewin, Murphy, & Storch, 2014). The original data sample consisted
of undergraduate students (N = 343) at a large southwestern university. Partic-
ipants were predominately white (76.7%), female (69.7%), and students (96.5%)
ranging from ages 18 to 36 (M = 18.96, SD = 1.7). The dataset contains 106 inde-
pendent variables related to both direct characteristics of misophonia and related
characteristics, as well as one self-report binary diagnosis variable. It is avail-
able to the reader on the accompanying OSF repository linked in the availability
of data and materials section of this paper. Since misophonia is still not fully
understood (i.e., formal diagnostic criteria have not been set, and researchers
are still trying to determine the most important symptoms), this dataset is an
illustrative example of variable selection. Some symptoms may be unimportant
for, or not predictive of, a true misophonia diagnosis. One should note that this
dataset does not contain any missing data, as it was handled a priori using list-
wise deletion. In addition, one should note that the group sizes are unbalanced
(16.5% diagnosed, 83.5% not). This presents additional complexity and is one
reason why we have chosen to evaluate the methods using both accuracy and
F-score. For more information on the larger previously published dataset from
which this data was selected and the background on misophonia, see the work
of Norris et al. (2022).

The Importance of Cross Validation. Model overfitting is a common problem
for implementing variable selection techniques (see Figure 1). If a model is built
too closely to the specifications of a specific dataset (i.e., it is not robust to
changes in the data), it is considered overfit. Alternatively, a model can be
underfitted where it is built in such a way that it is too generalizable and does
not create accurate or meaningful predictions. Researchers need to be cautious of
overfitting and underfitting to ensure that they build models that can accurately
generalize to new data while making meaningful and accurate predictions.

Cross-validation is one common way to help researchers increase generaliz-
ability in a meaningful way (i.e., protect against overfitting). In cross-validation,
the model is built on (or, in the case of this tutorial, variables are selected from)
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Figure 1. The leftmost graph illustrates an underfit model on a small amount of data.
The middle figure illustrates a fit that balances both bias and variance leading to good
fit. The rightmost graph illustrates an overfit model. Figure obtained from Geeks for
Geeks (ML | Underfitting and Overfitting , 2017)

a different set of data than it is evaluated. Although this can occur through the
collection of two different datasets, this is typically done by dividing one dataset
into parts. One can do this division in many ways, and this paper implements
holdout cross-validation, which occurs when one splits the data into two sets
(test and training sets) before conducting any analyses. Typically, 70% of the
data is used for the training set in holdout cross-validation, and the remain-
ing 30% is used for the test dataset. The code for how we performed holdout
cross-validation can be found in the companion code on OSF. For additional
information on the importance of cross-validation and alternative approaches to
cross-validation, see the helpful tutorials cited here (Ghojogh & Crowley, 2023;
Song, Tang, & Wee, 2021).

2 Methods

2.1 Logistic Regression Models

Logistic regression is a widely used statistical model for binary classification
problems and models the probability that a given observation (e.g., a set of par-
ticipants’ responses to a given questionnaire), belongs to a particular category.
The equation for logistic regression is :

P (Y = 1|X) =
1

1 + e−(β0+β1x1+...+βmxm)
(1)

Here, P (Y = 1|X) represents the probability that the participant belongs in
class 1 given their response matrix (X). The intercept term (β0), is the value of
the log-odds when all predictor variables are zero. The coefficients (β1, . . . , βm)
associated with each of the predictor variables (x1, . . . , x⇕) represent the change
in the log-odds of the dependent variable for a one-unit change in the corre-
sponding predictor variable for a total of m predictors.
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Regularization Techniques Two of the techniques discussed in this paper,
LASSO and Elastic Net, are regularization techniques. Regularization is a com-
mon method used to combat issues of overfitting found in models estimated
with maximum likelihood estimation (like logistic regression). Each regulariza-
tion technique works to combat overfitting by intentionally introducing a small
amount of bias into the model such that a generic regularization function, within
the context of classification, takes the following form:

LReg(β) = Llogistic(β)− λP(β) (2)

where LReg is the penalized optimization function, Llogistic is the negative log
likelihood, λ is a regularization parameter (i.e., a tuning parameter), and P is
a penalty function that will vary across the regularization technique. The goal
of regularization is to find the optimal balance between bias (generalizability
of the model) and variance (specific model fit Helwig, 2017). The magnitude
of the lambda (λ) penalty determines this balance. A larger lambda will lead
to a sparser and more generalizable model. One popular technique utilized to
determine the value of the lambda parameter is cross-validation. As mentioned
above, cross-validation occurs when the data is split into multiple subsets, the
model is developed (i.e. trained) on a subset, and evaluated (i.e., validated) on
another. This process is iterative, allowing for the selection of the lambda penalty
that minimizes prediction error across different subsets.

One optimal model, in the context of this paper, is one that produces the
most accurate classifications. Accuracy can be calculated using the following
equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is the number of individuals who were correctly classified as having
a diagnosis of misophonia, TN is the number of individuals who were correctly
classified as not having a diagnosis of misophonia, FP is the number of individ-
uals who were classified as having a diagnosis but did not truly have a diagnosis
in the labeled data, and FN are the number of individuals who were incorrectly
classified as not having a diagnosis when a diagnosis was present in the labeled
data. It is worth noting that accuracy may not be the best optimization criteria
given the unbalanced nature of the data (i.e., the number of observations in class
0 is much larger than the number in class 1). In practice, researchers may want
to use a weighted accuracy or an F-score in their own research, depending on
the relative importance of a false positive versus a false negative. For example,
a clinician attempting to predict suicide attempts may prioritize a false positive
(i.e., saying the individual is likely to attempt suicide when they do not actually
attempt) over a false negative (i.e., saying the individual will not attempt when
they actually will). Non-weighted accuracy was included for ease of explanation.
However, we will also evaluate each model in terms of an F-score to illustrate
the differences between these metrics. The equation for calculating an F-score is
seen below.

F1 =
TP

TP + .5(FP + FN)
(4)
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The F1 score is a measure of a model’s ability to balance precision (accuracy of
positive predictions) and recall (correct identification of positive instances). The
equation provided modifies the traditional F1 score by scaling the sum of false
positives (FP) and false negatives (FN) by 0.5, reducing their weight in the final
score. This adjustment can be useful when false positives and false negatives are
not equally important or should be penalized less.

LASSO. LASSO (Tibshirani, 1996) is one of the penalized regression techniques
that perform variable selection. LASSO can handle data with multicollinearity,
be applied to various types of data (e.g., continuous, categorical, mixed type),
and is adaptable to sparse data (i.e., multiple predictors have zero or near-zero
coefficients; Foucart, Tadmor, & Zhong, 2023; Mendez-Civieta, Aguilera-Morillo,
& Lillo, 2021). The parameter estimates (i.e., the β coefficients) for LASSO can
be obtained by maximizing the penalized log-likelihood function:

LLASSO(β) =

n∑
i=1

[yixiβ − log(1 + exiβ)]− λ

m∑
j=1

|βj | (5)

where LLASSO(β) is is the loss function and is comprised of two summations.
The first summation represents the logistic regression log likelihood and n is
the number of observations in the data, yi represents the actual binary out-
come of the i-th observation, xi is the vector of predictor variables for the i-th
observation, β is the vector of coefficients (including the intercept term), and
log(1 + exiβ) is the log of the logistic function denominator, which ensures that
the probabilities are correctly bounded between 0 and 1. The second summa-
tion is the LASSO penalty (or the ℓ1 regularization term) which adds a penalty
proportional to the absolute value of the coefficients and m is the number of
predictors in the initial model. Here λ is the regularization hyperparameter that
controls the degree of shrinkage such that larger values lead to the selection of
fewer variables and

∑m
j=1 |βj | is the sum of the absolute values of the coefficients

for all predictor variables (note that the summation begins at 1, indicating that
the intercept, β0, is excluded from regularization and must be included in the
final. For a more detailed discussion of LASSO, see Tibshirani’s (1996) paper
. Regularization techniques are useful for variable selection because they add a
penalty for large coefficients, effectively shrinking less important variables to-
wards zero and thus eliminating them from the model. This helps in improving
model interpretability and preventing overfitting, particularly in scenarios with
a large number of predictors or multicollinearity.

As with all methods, researchers may be interested in the recommended sam-
ple size LASSO. One conservative estimate suggests that researchers should have
10 observations per candidate variable (e.g., with 10 variables, a researcher would
need 100 observations; Peduzzi, Concato, Feinstein, & Holford, 1995; Peduzzi,
Concato, Kemper, Holford, & Feinstein, 1996). However, this recommendation
is made more generally for regression, and thus, does not generalize as specifi-
cally to regularization techniques where not all variables are included in the final
model. Recent simulation studies have investigated the performance of LASSO in
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small sample sizes (e.g., 50 – 100 participants) and found that methods perform
well (Bain et al., 2023; Kirpich et al., 2018; Wen et al., 2019).

To utilize LASSO for variable selection, we use the cv.glmnet() function
from the glmnet package in R (Friedman et al., 2010). More information on
the hyperparameters of the function can be found in Table 1. This function
determines the magnitude of lambda through a k-fold cross-validation approach.

lasso.model <- cv.glmnet(x = predTrain ,

y = outcomeTrain , type.measure = "class",

alpha=1, family="binomial", nfolds = 10)

Through this model, we can obtain the chosen lambda value. To obtain a full list
of all evaluated lambda values, use lasso.model$lambda. One can also plot the
k-fold cross-validation procedure to obtain λ using plot(lasso.model) (Figure
2). There are two lambda values that are particularly of interest. The first can
be obtained with lasso.model$lambda.min. This lambda value is responsible
for producing the model with minimal cross-validated error. The second can be
obtained with lasso.model$lambda.1se, or the 1se rule. This lambda value
is responsible for producing the model that has a cross-validated error within
one standard error of the minimum. There are advantages to each. Breiman
and colleagues (2017) as well as Chen and Yang (2021) suggest that researchers
should use the 1se rule to select lambda to reduce the instability of the model
while maintaining a parsimonious model. However, this gain in stability comes
with a loss in accuracy (an increase in misclassification error of one standard
error). In addition, some research has shown that the 1se rule performs poorly
in regression (Chen & Yang, 2021) as opposed to a classification tree, so we
used the value that minimized cross-validation error (lambda min). To obtain
our lambda min value, specify lasso.model$lambda.min. Using this specified
lambda value, we can build a LASSO model using the glmnet() function with
the following code, which will produce the coefficients as seen in Table 2.

lasso.model.min <- glmnet(x = predTrain ,

y = outcomeTrain , alpha=1,

family="binomial",

lambda = lasso.model$lambda.min)

Out of the original 106 predictor variables, only 16 were selected via LASSO,
thus a sparse model has been obtained. It is important to examine what variables
were selected by the model to ensure that they are theoretically justified. Ideally
researchers would make this decision about all variables, however, for the sake of
space within this paper, we have chosen to only examine two of the 16 selected
items. One selected item, MQ4 reads: “In comparison to other people, I am
sensitive to the sound of people making nasal sounds.” As nasal and throat
sounds are often thought to be triggers for those with misophonia, this item
makes theoretical sense to be a predictor of the diagnosis. For another selected
item, S5 7, participants were asked, “Please rate your typical reaction to the
following stimuli, if produced by another person: Throat clearing.” This item is
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Table 1. Hyperparameters of the cv.glmnet() function and their corresponding defi-
nitions.

Parameter Description

x A matrix of predictor (or input) variables.
y The vector containing the response (or outcome) variable.
type.measure The optimization measure to be used within the internal cross-validation

procedure. By setting this to “class” misclassification error is optimized.
alpha The Elastic Net mixing hyperparameter. Because the same function is

used to implement ridge, LASSO, and Elastic Net, the value for alpha
determines which regularization technique is run. Alpha is constrained
between 0 and 1, with a value of 0 implementing ridge regression, 1
implementing LASSO regression, and anything in between implementing
an Elastic Net regression.

family The type of regression to be implemented. By setting this hyperparam-
eter to “binomial” an MLE regression is implemented.

nfolds The number of partitions implemented in the internal k-fold cross-
validation.

Figure 2. Cross-validated estimate of the mean squared prediction error for LASSO as
a function of the log λ. The upper axis indicates the number of non-zero coefficients in
the regression model at the given log λ. The dashed vertical line illustrates the location
of the CV minimum and the one standard error rule locations for λ.

theoretically justifiable for the same reason as above, reactions to throat sounds
are a symptom of the disorder.

The coefficient estimates obtained through a LASSO approach are biased
by the nature of the algorithm (Yarkoni & Westfall, 2017), and thus research
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Table 2. A table containing the variables selected by the LASSO model and their
corresponding estimated coefficients. The table also includes the full item for that
particular variable. If items share a common stem, we have grouped them together.

Variable Coefficient Full Item

(Intercept) -5.741

MQ4 0.154 In comparison to other people, I am sensitive to the sound
of people making nasal sounds (e.g., inhale, exhale, sniffing,
etc.).

Once you are aware of the sound(s), because of the sound(s), how often do
you:

MQ11 0.039 Cover your ears?

MQ12 0.137 Feel anxious or distressed?

MQ13 0.112 Become sad or depressed?

MQ17 0.045 Become physically aggressive?

Please rate your typical reaction to the following stimuli, if produced by
another person:

S5 7 0.087 Throat clearing

S5 24 -0.032 Car engine

S5 25 0.318 Clock ticking

S5 31 0.159 Pacing

S5 32 0.024 Nail biting

S5 35 0.123 Strong smells

S5 36 0.089 Seeing someone chew gum

Please indicate your level of agreement to the following statements:

S5 56 0.124 I can feel physical pain if I cannot avoid a sound.

S5 57 0.419 Sometimes in response to sounds I feel rage that is difficult
to control.

S5 75 0.252 Some sounds have caused me to use violence towards myself
or others.

S5 78 -0.018 It does not matter who is making the sounds, my reactions
are the same.

recommends recalculating them using a standard regression before interpreting
the coefficients of the model. To do that, one could use the following code.

selected <- trainDat %>% select(MQDX , MQ4 , MQ11 ,

MQ12 , MQ13 ,MQ17 , S5_7,S5_24, S5_25, S5_31,

S5_32, S5_35, S5_32,S5_35, S5_36, S5_56,

S5_57, S5_75, S5_78)

logistic.model <- glm(MQDX ~ .,

family=binomial(link = "logit"),

data = selected)
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In this code, we first use the select() function from the dplyr package to select
only the variables with non-zero coefficients in the lasso.model.min as well as our
outcome variable, MQDX (Wickham et al., 2023). We then use these variables
to build a standard logistic regression model using the glm() function.

A comparison of the biased coefficients obtained from the LASSO model and
the corrected coefficients obtained in the standard logistic model can be seen in
Table 3. Obtaining the predicted classification prior to calculating accuracy is
crucial. Accuracy values (Equation 3) are then determined using the coefficients
estimated from both the LASSO model (incorrectly biased) and the logistic
model. The following code can be used to obtain the accuracy values from the
logistic model as well as the F-score from the model. Note that the F-score
is obtained using the F1 Score() function from the MLmetrics package (Yan,
2024).

Table 3. A table containing the variables selected by the LASSO model and the coef-
ficient estimates obtained directly from the LASSO model as well as the re-estimated
(non-biased) coefficients obtained by creating a typical logistic model using the selected
variables.

Variable LASSO Estimate Logistic Estimate

(Intercept) -5.741 -8.802

MQ4 0.154 0.361

MQ11 0.039 0.480

MQ12 0.137 0.760

MQ13 0.112 -0.193

MQ17 0.045 0.143

S5 7 0.087 -0.057

S5 24 -0.032 -1.154

S5 25 0.318 1.051

S5 31 0.159 0.538

S5 32 0.024 0.245

S5 35 0.123 0.110

S5 36 0.089 0.285

S5 56 0.124 0.387

S5 57 0.419 0.867

S5 75 0.252 0.186

S5 78 -0.018 -0.600

pp.logistic <- predict(logistic.model ,

data.frame(predTest),

type = "response")

pc.logistic <- ifelse(pp.logistic > .5, 1, 0)

a.logistic <- mean(outcomeTest == pc.logistic)
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f1.logistic <- F1_Score(pc.logistic , outcomeTest)

In the first line of code, using the predict() function, the logistic.model
object and our predTest data (reminder that this is the holdout sample created
during cross-validation earlier) we can create our predictions. By specifying type
= "response", the function will return predicted probabilities. In our second
line, the predicted probabilities are transformed into predicted classes such that
if the probability of them belonging to class 1 is at least 0.5, they are assigned to
class 1 otherwise class 0. The third line calculates accuracy. The value obtained
using the coefficient estimates from the LASSO model is an accuracy score of
0.86. The value obtained using the coefficient estimates from the logistic model
is 0.89. The F-score for both the LASSO model and the logistic model is 0.92.
Note that the accuracy changes across models, but the F-score remains the same.
This indicates that the models likely differ only in their true negative results, as
that measure is not included in the calculation of the F-score.

Despite the strong performance of LASSO on this data, LASSO does have
limitations (Algamal & Lee, 2015). First, it is unable to select more variables
than there are observations. Second, LASSO will select a single variable in the
presence of multicollinearity regardless of that variable’s predictive capacity. Zou
and Hastie (2005) proposed a new regularization technique called Elastic Net to
combat these first two limitations.

Elastic Net. Elastic Net differs from LASSO through the use of an additional
penalty to the regression equation. Elastic Net implements both the ℓ1 penalty,
or the LASSO penalty, and the ℓ2 penalty, or the ridge penalty, to the regression
equation. With the inclusion of both penalties, the optimization function for
Elastic Net is as follows:

LElasticNet(β) =

n∑
i=1

[yixiβ − log(1 + exiβ]− λ1

m∑
j=1

β2
j − λ2

m∑
j=1

|βj | (6)

The first summation represents the log likelihood and is exactly the same as
was seen in Equation 4. The second summation is new to the reader as it is
the ridge penalty, which adds a penalty proportional to the squared value of
the coefficients (Hoerl & Kennard, 1970). Here λ1 is the regularization hyperpa-
rameter that controls the degree of shrinkage such that larger values lead to the
selection of fewer variables. The third summation is the LASSO penalty, which
only differs from Equation 4 in that we now use λ2 (instead of just λ) to denote
the regularization hyperparameter that controls the degree of shrinkage from the
LASSO penalty. The values for λ1 and λ2 can be equal or can be set to differ-
ent values to allow differential application of the penalties. By incorporating the
ridge penalty, Elastic Net can select multiple correlated variables while removing
irrelevant ones (Algamal & Lee, 2015). For more on the ridge penalty, see work
by McDonald (2009). This makes Elastic Net more suitable than LASSO for
datasets with highly correlated predictors, such as dummy-coded variables.

Sample size considerations should also be made when researchers are consid-
ering using Elastic Net. The recommendations are similar to those for LASSO in
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that conservative estimates suggests that researchers should have 10 observations
per candidate variable similar to LASSO (Peduzzi et al., 1995, 1996). However,
this recommendation comes from the general regression literature, and thus,
may not hold with regularization. Recent simulation studies have investigated
the performance of Elastic Net in small sample sizes (e.g., 50 – 100 participants)
and found that methods perform well (Bain et al., 2023; Kirpich et al., 2018;
Wen et al., 2019).

We can obtain our lambda.min value using the cv.glmnet() function, just
as we did for LASSO. However, we change the value for alpha from alpha = 1
to alpha = 0.5. We can then use this value to build our final Elastic Net model
(the second piece of code below). We can then use the variables with non-zero
coefficients from our final Elastic Net model (en.model.min) to build a standard
logistic regression model (logistic.en.model) to get unbiased coefficients, as
was done for LASSO. Two of the selected items include MQ11, and S5 11. MQ11
reads, “Once you are aware of the sound(s), because of the sound(s), how often
do you actively avoid certain situations, places, things, and/or people in antic-
ipation of the sound(s).” Individuals with misophonia are known to employ a
variety of coping strategies (including avoidance) to deal with their triggering
sounds, so this variable makes sense theoretically. S5 11 reads, “Please rate your
typical reaction to the following stimuli, if produced by another person: Repeti-
tive barking.” This item is interesting, because some research has found that not
all sounds must be human made to be triggers for individuals with misophonia,
for example, this is a sound most often made by dogs, not people. However, it
is theoretically sound.

elasticNet <- cv.glmnet(x = predTrain ,

y = outcomeTrain , type.measure = "class",

alpha =0.5, family="binomial", nfolds = 10)

en.model.min <- glmnet(x=predTrain y=outcomeTrain ,

alpha =0.5, family="binomial",

lambda = elasticNet$lamda.min)
selected <- trainDat %>% select(MQDX , MQ4 , MQ11 ,

MQ12 , MQ13 , MQ15 , MQ16 , MQ17 , S5_2, S5_7, S5_11,

S5_24, S5_25, S5_27, S5_31, S5_32, S5_35, S5_36,

S5_38, S5_40, S5_42, S5_53, S5_56, S5_57, S5_68,

S5_74, S5_75, S5_78, S5_82)

logistic.en.model <- glm(MQDX ~.,

family=binomial(link = "logit"),

data = selected)

Coefficient estimates from the Elastic Net model and unbiased coefficients
from a standard logistic model can be seen in Table 4. An accuracy of 0.88 was
obtained using the coefficient estimates from the Elastic Net model, while an
accuracy of 0.80 was obtained using the coefficient estimates from the logistic
model. The F-score obtained using the coefficient estimates from the Elastic Net
model is 0.94, while the logistic model produces an F-score of 0.88. The code
below illustrates how to obtain the 0.80 accuracy value and 0.88 F-score from
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the unbiased logistic regression model. The only change the reader would need
to make to obtain the estimates from the final Elastic Net model instead would
be to substitute en.model.min for logistic.en.model.

pp.en.logistic <- predict(logistic.en.model ,

data.frame(predTest), type = "response")

pc.en.logistic <- ifelse(pp.logistic > .5, 1, 0)

a.en.logistic <- mean(outcomeTest == pc.logistic)

f1.en.logistic <- F1_Score(pc.en.logistic ,

outcomeTest)

Table 4. A table containing the variables selected by the Elastic Net model and their
corresponding estimated coefficients obtained directly from the Elastic Net model as
well as the coefficients estimated by implementing a logistic model (non-biased coeffi-
cients).

Variable Elastic Net Estimate Logistic Estimate

(Intercept) -5.796 -1732.902
MQ4 0.133 15.606
MQ11 0.046 20.788
MQ12 0.119 81.502
MQ13 0.103 -6.765
MQ15 0.057 101.386
MQ16 0.075 5.368
MQ17 0.086 145.615
S5 2 0.023 -6.618
S5 7 0.091 12.560
S5 11 -0.051 -190.866
S5 24 -0.095 -39.021
S5 25 0.262 31.171
S5 27 0.031 94.479
S5 31 0.165 58.559
S5 32 0.092 97.889
S5 35 0.147 56.132
S5 36 0.088 38.234
S5 38 0.036 30.691
S5 40 0.048 111.532
S5 42 0.032 42.788
S5 53 -0.020 12.132
S5 56 0.190 94.590
S5 57 0.259 -87.586
S5 68 0.081 126.088
S5 74 0.018 5.356
S5 75 0.197 -17.256
S5 78 -0.089 -101.315
S5 82 0.033 -2.060
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Elastic Net also has some limitations. Namely, it may struggle with datasets
containing many more variables than observations, it is sensitive to outliers, and,
given that it is designed for linear relationships, it may not capture complex
non-linear relationships between predictors and the response variable effectively
(Wang, Cheng, Liu, & Zhu, 2014).

Genetic Algorithm (GA) Unlike LASSO and Elastic Net, which utilize in-
ternal regression models as embedded methods, the genetic algorithm (GA) op-
erates as a wrapper method. As a reminder, this means that the user must
specify which model it should use (i.e., a user could wrap the GA around a logis-
tic regression model or something more complex like a random forest or SVM,
depending on the nature of their data). As mentioned, wrapper methods each
follow their own algorithmic strategy to explore potential solutions (i.e., poten-
tial sets of variables to select). One wrapper method that may be familiar to
readers is stepwise regression, which builds a model iteratively by either adding
or removing variables based on a given criteria (e.g., Akaike Information Criteria;
AIC). It uses a greedy approach, selecting the variable at each step that yields
the greatest immediate improvement in the chosen criterion (e.g., the largest
decrease in AIC). The GA also operates a greedy algorithm; however, its search
strategy differs.

Instead of adding or removing a single variable (as is done in stepwise re-
gression), the GA, inspired by the principles of natural selection and evolution,
mimics the process of biological evolution to refine potential solutions iteratively.
Through crossover, mutation, and selection mechanisms, the GA explores and
evolves a population of potential solutions over successive generations, gradu-
ally improving the overall quality of solutions. Figure 3 illustrates the general
structure of the genetic algorithm, depicting its iterative process of generating,
evaluating, and evolving solutions. Each iteration refines the population, guiding
the search towards promising regions of the solution space.

Figure 3. The basic algorithmic steps of the Genetic Algorithm.
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For a comprehensive understanding of the genetic algorithm and its applica-
tion to variable selection, interested readers are encouraged to refer to the work
by Bain et al. (2023). Their research provides detailed insights into the underly-
ing principles, implementation strategies, and practical considerations associated
with the GA’s use in solving two-group classification problems.

There are no accepted sample size recommendations for the GA for variable
selection. The required sample size depends heavily on the complexity of the
underlying model, the number of predictors, and the strength of the signals. As
a rough guideline, samples sizes in the range of 100-500 are often used, but larger
samples may be necessary for high-dimensional problems (Cateni et al., 2010;
Leardi, 2000).

For this paper, logistic regression is chosen as the model around which the
GA will wrap. The optimization function used in this paper is the Hubert and
Arabie (1985) Adjusted Rand Index (ARI). ARI is a measure of agreeability
between predicted classifications and true (or known) classifications and can be
calculated in the following way:

ARI =
RI −RIExpected

max(RI)−RIExpected
(7)

RI =
a+ d

a+ b+ c+ d
(8)

RIExpected =
2(a+ b)(a+ c)

(a+ b+ c+ d)2
(9)

Here, a is the number of pairs of individuals (or observations) that are in the
same class in both the true labels and the predicted labels, b is the number
of pairs of individuals that are in the same class in the true labels but are in
different classes in the predicted labels, c is the number of pairs of individuals
that are in different classes in the true labels but are in the same class in the
predicted labels, and d is the number of pairs of individuals that are in different
classes in both the true labels and predicted labels.

The implementation of the GA used in this tutorial comes from the ga()

function in the GA package (Scrucca, 2013, 2017). To implement the GA, the
following code can be run:

ga.solution <- ga(fitness = function(vars)

gaOpt(vars=vars , IV.train=data.frame(predTrain),

DV.train=outcomeTrain),

type = "binary", nBits = ncol(predTrain),

names = colnames(predTrain), seed = 123456 ,

run=5

)

Here, we set type to binary to indicate that we want binary representations
of decision variables. This hyperparameter may need to change depending on
the nature of the variables of interest. Second, we set nBits to be equal to
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the number of predictor variables to indicate that all variables in the dataset
could be selected. A seed is set for reproducibility. The run hyperparameter has
been set to five, indicating that the algorithm should terminate if there is no
improvement in the optimization function after five iterations. Note that one of
the parameters in this function is the gaOpt() function. The gaOpt() function is
a self-defined, user-specified function that could take on a different name. How-
ever, regardless of the name, the function must be passed as a hyperparameter in
the ga() function. The R code needed to implement this optimization function
with a logistic regression model can be seen below. For more information on the
hyperparameters of the GA function and their default values, see Table 5.

Table 5. A table containing the hyperparameters of the ga() function and their cor-
responding definitions and default values.

Parameter Description

fitness The hyperparameter containing the optimization function is passed. No
default is set.

type The type of ga that needs to be run is dependent upon the nature of the
outcome variable. ”binary” is selected.

crossover The type of crossover performed. The default for a binary implementation
is found via the ga Crossover() function.

popSize An R function to generate the initial population. To access available
functions, run ga Population().

pcrossover The probability of crossover, default of 0.8 is used.
pmutation The probability of mutation, default of 0.1 is used.
elitism The number of best fitted chromosomes to survive at the end of each

generation, default of max(1, round(popSize*0.05)) is used.
nBits A value specifying the number of bits in a potential solution, set equal to

the number of predictors.
names The variable names.
maxIter The maximum number of iterations to run before the GA search is halted,

default of 100 is used.
keepBest A logical argument specifying if best solutions at each iteration should

be saved, default FALSE.
seed A number allowed to control randomness for reproducibility.
run The number of consecutive generations that can occur without any im-

provement before the GA is halted, default is modified from maxiter to
5.

gaOpt <- function(vars , IV.train , DV.train ){

varNames <- colnames(IV.train)

selectedVarNames <- varNames[vars == "1"]

gaSolutionData <- IV.train[,selectedVarNames]

gaDat <- cbind(gaSolutionData , DV.train)

gaMod <- glm(DV.train ~ ., family = "binomial",

data = gaDat)
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gaProbabilities <- predict(gaMod , IV.train ,

type = "response")

gaPredictedClasses <-

ifelse(gaProbabilities >= .8, 1, 0)

ari <- adjustedRandIndex(gaPred , DV.train)

return(ari)

}

The glm() function is the same function we used to calculate logistic re-
gression models previously. The adjustedRandIndex() function comes from the
mclust package (Scrucca, Fop, Murphy, & Raftery, 2016). The gaOpt() function
takes us through the steps of finding the ARI for the selected subset of variables.
First, the names of all candidate variables are acquired, then the names of the
variables selected by the GA are found, and we select only those columns from
our train data. Since we had previously removed the dependent variable (the
misophonia diagnosis) from the dataset, we must recombine our selected vari-
ables and our outcome variable into one matrix (line 5 above, here called gaDat).
Next, the logistic regression model is built using these selected variables. Then
the predicted probabilities are obtained, transformed into predicted classes (such
that an individual is given a positive misophonia diagnosis if their probability of
diagnosis is at least .8, which was chosen because only about 20% of our sample
belongs to class 1). Finally, the ARI of the model is calculated and returned to
the ga() function. To view the selected subset of variables from the ga() func-
tion, one calls, ga.solution@solution[1,]. Note, the returned solution (given
by ga.solution@solution) contains many potential subsets of variables, but
by referencing only the first row (using the indexing [1,]), the optimal subset
of variables as determined by the GA can be accessed. Two of the selected items
include item MQ18 and S5 3. Variable MQ18 reads, “Once you are aware of the
sound(s), because of the sound(s), how often do you become physically aggres-
sive” which is theoretically justifiable as individuals with misophonia are known
to have disproportional, often violent, reactions to their triggers. Variable S5 3
reads,“Please rate your typical reaction to the following stimuli, if produced by
another person: Swallowing,” which is justifiable as it pertains to throat noises.

allVarNames <- colnames(predTrain)

selectedVarNames <-

allVarNames[ga.solution@solution [1 ,]==1]

selectedVars <-

data.frame(predTest[,selectedVarNames],

outcomeTest)

ga.model <- glm(outcomeTest~., family="binomial",

data=selectedVars)

Since the ga() function does not have a specified method for model building, but
rather simply returns a list of variable selections, one must first build a model
to obtain an accuracy value for the selected variables. Given that the internal
model we specified was a logistic regression model, it makes sense to use a simple
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logistic model, which can be built using the following code. The coefficients from
this model can be seen in Table 6. After building the model, an accuracy and
F-score can be obtained using the following code:

p <- predict(ga.model , newx = predTest)

c <- ifelse(p >= .8, 1,0)

accuracy <- mean(c == outcomeTest)

f1 <- F1_Score(c,outcomeTest)

Table 6. A table containing the variables selected by the GA and their corresponding
estimated coefficients in the logistic regression model.

Variable Coefficient Variable Coefficient

(Intercept) 72.896 S5 42 -8.713
MQ4 -7.952 S5 45 8.668
MQ6 -3.454 S5 46 -10.066
MQ8 -5.707 S5 49 -1.448
MQ17 -6.154 S5 50 5.708
MQ18 21.166 S5 51 -0.198
S5 2 9.767 S5 52 -8.592
S5 3 -3.703 S5 53 -2.791
S5 4 -0.814 S5 55 -13.721
S5 6 3.907 S5 57 3.470
S5 7 -18.858 S5 58 -2.086
S5 8 1.915 S5 60 -16.660
S5 9 14.258 S5 62 4.408
S5 10 10.305 S5 63 5.143
S5 11 -11.589 S5 64 -0.372
S5 12 43.946 S5 65 4.143
S5 13 -36.764 S5 66 -8.781
S5 18 10.628 S5 68 -13.752
S5 19 2.410 S5 69 7.001
S5 20 -6.446 S5 72 12.343
S5 21 -0.442 S5 73 19.055
S5 23 3.657 S5 76 -9.715
S5 25 2.824 S5 77 -4.178
S5 26 1.490 S5 78 5.347
S5 27 4.120 S5 79 -7.315
S5 31 -4.880 S5 81 7.567
S5 32 -14.408 S5 83 -4.304
S5 33 -11.206 S5 84 -1.235
S5 38 5.880 S5 86 5.970
S5 41 11.462 S5 87 -14.504

Accuracy and F-score values of 1 are obtained, indicating a perfect fit, as
with the past models built in this tutorial. Current literature indicates that the
GA is prone to overfitting (Frohlich, Chapelle, & Scholkopf, 2003; Leardi, 2000;
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Loughrey & Cunningham, 2005), suggesting the model would not fit quite as
well if a new sample was collected, despite the accuracy of the model fit for the
test sample used in this tutorial.

2.2 Support Vector Machines

Support Vector Machines (SVM) are a class of supervised learning models widely
employed in classification and regression tasks (Fernandez et al., 2011; Karat-
zoglou, Meyer, & Hornik, 2006). SVMs operate by finding the optimal hyperplane
that maximizes the margin between different classes of data points. By maximiz-
ing the margin between classes, SVM achieves good generalizability and is robust
to outliers (Singla & Shukla, 2020; Xu, Caramanis, & Mannor, 2009). SVM can
handle both linearly separable and non-linearly separable data by using a ker-
nel function that artificially projects the original data into a higher-dimensional
space (Karatzoglou et al., 2006).

Elastic SCAD SVM SVM, by itself, is a classification algorithm. However,
researchers have created implementations of SVM that simultaneously perform
classification and variable selection (Becker et al., 2011; Bierman & Steel, 2009;
Tharwat & Hassanien, 2019). This tutorial uses an approach like LASSO and
Elastic Net in that it selects variables via the addition of a penalty that comes
from the penalizedSVM package (Becker et al., 2011). The penalty utilized in
this tutorial is the Elastic smoothly clipped absolute deviation (SCAD) penalty,
which when included in an SVM, reads:

SVMESCAD = minb,w[sign(w
Tx+ b) +

p∑
j=1

PSCADλ1(Wj) + λ2∥w∥22] (10)

where λ1 controls the degree of shrinkage applied by the SCAD (PSCADλ1(Wj))
penalty and λ2 controls the degree of shrinkage applied by the Elastic Net
(λ2∥w∥22) penalties. Higher values of either λ increase the degree of shrinkage
applied by their given penalty. For more information on the SCAD penalty, see
work by Becker et al. (2011). Just as with Elastic Net, the λ1 and λ2 values can
be equal or set individually to differentially apply the penalties. The initial part
of the equation (sign(wTx+b) is the base equation for an SVM where w is the
weight vector, x is the input feature vector, b is the bias term vector, sign(.) is
the sign function, which returns +1 if the argument is positive, -1 if negative,
and 0 if zero. All hyperparameters are set to default values in this tutorial. In
addition, data needs to be restructured for this function. For a clearer under-
standing of the additional hyperparameters in the svmfs() function, see Table
7.

Generally, research shows that SVMs improve as sample sizes increase (Bain
et al., 2023). However, some research has shown that sample sizes as small as 80
produce adequate classification models (average RMSEA below 0.01; Figueroa,
Zeng-Treitler, Kandula, & Ngo, 2012), though the required size may increase as
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Table 7. A table containing the hyperparameters of the svmfs() function as well as
their corresponding definitions.

Parameter Description

x Matrix of the input or predictor variables where the columns are the
variables, and the rows are the observations.

y A numerical vector of class labels, -1, 1.
fs.method The feature (or variable) selection method. Available methods in-

clude ’scad’, ’1norm’ used for LASSO, ’DrHSVM’ for Elastic Net,
and ’scad+L2’; for Elastic SCAD.

bounds For an interval grid search a list of values for lambda1 and lambda
2 must be provided to the model.

grid.search The inner validation method used to obtain the values for lambda1
and lambda2.

inner.val.method Whether or not the plots of DIRECT algorithm should be shown.
show Specification of how hyperparameters should be recoded or if no

recoding should occur.
parms.coding By specifying a seed, the results become reproducible. It is included

here for the sake of those readers following along.
seed Matrix of the input or predictor variables where the columns are the

variables, and the rows are the observations.

models become more complex (Guo, Graber, McBurney, & Balasubramanian,
2010). We are aware of no sample size recommendations exist for a penalized
SVM such as this. The svmfs() function can be applied in the following manner.

Bounds <- t(data.frame(log2lambda1=c(-10, 10),

log2lambda2=c( -10 ,10)))

colnames(bounds)<-c("lower", "upper")

svm.model <- svmfs(x=predTrain , y = svmTrainOutcome ,

fs.method = "scad+L2", bounds=bounds ,

grid.search = "interval", inner.val.method = "cv",

show = "none", parms.coding = "none",

seed =123456)

The output of the model created using the svmfs() function has its own
nomenclature that requires explanation. First, rather than referring to the coef-
ficients as coefficients, the model uses the w parameter (coming from the term
beta weight). The b parameter illustrates the intercept of the SVM hyperplane
and can be thought of like the b0 of a regression model. The xind parameter tells
the user the index (or column location) of the variables selected in the dataset.
The full output can be seen in Table 8. Two items selected by this model were
MQ16 and S5 66. Variable MQ16 reads, “Once you are aware of the sound(s),
because of the sound(s), how often do you have violent thoughts” and S5 66
reads, “Some sounds are so unbearable that I have shouted at people for making
them, to make them stop”. Both of these items are related to typical responses
to triggers by those with misophonia and therefore make theoretical sense.
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To examine the accuracy of this model, the same predict function can be
used as was implemented previously, but the outputted predictions will require
some restructuring, as they come in the form of a factor with underlying numeric
values 1 and 2 and they need to have numeric values of 0 and 1. The Elastic
SCAD SVM model obtained an accuracy of 0.83 and an F-score of 0.91. The
code required to calculate that accuracy and F values are below.

Table 8. A table containing all calculated coefficients of all variables in the Elastic
SCAD SVM.

Variable Coefficient Variable Coefficient

(Intercept) -1.209 S5 38 0.003
MQ3 0.002 S5 39 0.003
MQ5 0.003 S5 40 0.001
MQ8 0.003 S5 41 -0.002
MQ11 0.002 S5 42 0.002
MQ12 0.003 S5 43 0.002
MQ16 0.003 S5 49 0.002
MQ17 0.003 S5 53 -0.003
MQ18 0.002 S5 55 0.003
S5 1 0.001 S5 56 0.007
S5 2 0.005 S5 57 0.005
S5 7 0.006 S5 59 0.003
S5 10 -0.003 S5 65 -0.005
S5 11 -0.002 S5 66 0.001
S5 13 -0.001 S5 68 0.004
S5 24 -0.005 S5 69 0.001
S5 25 0.006 S5 72 0.001
S5 26 0.002 S5 74 0.005
S5 28 0.002 S5 75 0.007
S5 31 0.005 S5 78 -0.008
S5 32 0.005 S5 82 0.005
S5 35 0.005 S5 83 0.006
S5 37 0.002 S5 85 0.003

esvm.predictions <- predict(svm.model ,

newdata = svmTestPreds)

esvm.predictions.formatted <-

as.numeric(esvm.predictions$pred.class)-1
esvm.accuracy <-

mean(esvm.predictions.formatted == outcomeTest)

esvm.f1 <- F1_Score(esvm.predictions.formatted ,

outcomeTest)

Limitations of SVM include the researcher’s selection of the kernel function,
computation time, and dimension constraints. By default, the svmfs() function
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utilizes a linear kernel function. Since the kernel is chosen a priori by the re-
searcher, an optimal function must be used for optimal results. SVM models are
computationally more expensive than a simpler classification technique (e.g., lo-
gistic regression) and will take longer to compute. SVM models face the same
degree of freedom problem as LASSO and Elastic Net, which are limited by the
number of observations. As such, an ideal dataset for SVM would contain more
observations than variables.

2.3 Tree Based Models

Random Forest Another powerful classifier is a decision (or classification) tree
(Breiman et al., 2017; Strobl et al., 2009). An example can be seen in Figure 4.
From this decision tree, it can be concluded that anyone whose score on variable
S5 57 is less than 3 and score on variable S5 60 is less than 3 does not qualify
for a misophonia diagnosis. Decision trees are not only powerful classifiers, but
they also produce an output that is easy to interpret. However, decision trees are
prone to overfitting – so much so that overfitting is almost guaranteed (Bengio,
Delalleau, & Simard, 2010). One of the most efficient ways to avoid overfitting
is by using multiple trees (i.e., creating a random forest). Random forest creates
many decision trees using a randomly selected subset of the data to create each
individual tree. The results of all trees are then aggregated to predict the desired
outcome. Some major benefits of a random forest classifier are that it can be used
with an outcome variable that has any number of levels (Brieuc, Waters, Drinan,
& Naish, 2018), meaning that unlike logistic regression, which only works with
binary variables, random forest could handle a variable with 3, 4, or even 10
different levels. However, these trees are only used for classification, meaning
that they do not perform variable selection. Thus, researchers have had to adapt
the classifier to perform variable selection. The utilization of random forest in the
Boruta package performs well in many different conditions (Kursa & Rudnicki,
2010), and, therefore, is the implementation demonstrated in this tutorial.

The Boruta package contains a series of functions pertaining to variable se-
lection techniques using different measures of importance to select the variables.
A measure of importance simply indicates a given variable’s value to the model’s
overall strength. The more useful variables, meaning that they are stronger pre-
dictors of the outcome variable, are deemed more important and thus are more
likely to be selected than those of lesser importance (i.e., less predictive power).
Note that in this paper, mean decreased accuracy is the metric used to calculate
variable importance. The Boruta package also has its own sample size sugges-
tions. The original paper implementing the the package states that for typical
problems, samples of 5-200 are often sufficient, assuming the number of true pre-
dictors is not extremely small compared to the total (Kursa & Rudnicki, 2010).
It notes that as problems get more complex, the sample size should increase.

A simple regression formula statement is used to run the model: outcome
predictors. Because all predictors will be used, a shortcut can be implemented
using a period (.) in place of predictors as seen in the code below. If not, all
variables were to be included in the model, the user would need to type all the
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Figure 4. An example of a decision tree built on the misophonia data using the ctree()
function.

relevant predictors names in the formula statement concatenated with addition
symbols (+). Knowing this, the model can then be built using the following code:

set.seed (123456)

boruta.model <- Boruta(as.factor(MQDX) ~. ,

data=trainDat)

The Boruta() function classifies variables as either important, unimportant,
or of tentative importance. Regarding the misophonia dataset, 15 were deemed
important, 74 were deemed unimportant, and the remaining 17 were placed in
the tentative category. For a list of all variables that were classified in each
category and a visualization of the boruta.model output, see Table 9. Figure
5 illustrates the variability of the importance score calculated for each variable
during the Boruta process and their ultimate classification. A model can be built
using either a) all variables that were not deemed unimportant (non-rejected
variables) or b) only the confirmed important variables. For the purpose of this
tutorial, only variables that have been confirmed important are included in the
model. Two items that were confirmed important are MQ16 and S5 59. Variable
MQ16 was justified in the SVM section as it pertains to having violent thoughts.
S5 59 reads “If I cannot avoid certain sounds I feel helpless.” Helplessness is often
associated with anxiety (i.e., learned helplessness) which is often co-diagnosed
with misophonia, and as such, this variable is theoretically justified.

This model is then built using the randomForest() function since Boruta
implements a random forest model internally. The model is built in the following
way.
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Table 9. A table containing the classifications of importance for each variable as
determined by the Boruta() function. Note that the implementation of Boruta used
in this paper utilized mean decreased accuracy as the metric to calculate variable
importance.

Variables Items

Confirmed Important MQ12, MQ13, MQ16, S5 3, S5 34, S5 35, S5 39, S5 40,
S5 53, S5 56, S5 57, S5 59, S5 60, S5 67, S5 75

Rejected MQ1, MQ2, MQ3, MQ4, MQ5, MQ6, MQ7, MQ8, MQ10,
MQ11, MQ14, MQ15, MQ18, MQ20, S5 1, S5 4, S5 6,
S5 7, S5 8, S5 9, S5 10, S5 11, S5 12, S5 13, S5 14, S5 15,
S5 16, S5 17, S5 19, S5 20, S5 23, S5 24, S5 26, S5 28,
S5 29, S5 30, S5 32, S5 33, S5 36, S5 37, S5 41, S5 42,
S5 43, S5 44, S5 45, S5 46, S5 47, S5 48, S5 49, S5 50,
S5 51, S5 52, S5 54, S5 55, S5 58, S5 64, S5 65, S5 66,
S5 68, S5 70, S5 71, S5 72, S5 73, S5 74, S5 76, S5 77,
S5 78, S5 79, S5 80, S5 82, S5 83, S5 84, S5 86, S5 87

Tentative MQ17, MQ19, S5 2, S5 5, S5 18, S5 21, S5 22, S5 25,
S5 27, S5 31, S5 38, S5 61, S5 62, S5 63, S5 69, S5 81,
S5 85

set.seed (123456)

finalBoruta <- getConfirmedFormula(boruta.model)

selectedModel <- randomForest(finalBoruta ,

data=trainDat)

The predictive accuracy of the random forest model can be calculated using the
predict() function, just as it has been for other models. An accuracy of .88 was
obtained for this model and an F-score of 0.93. The algorithm may not perform
well with highly unbalanced classifications or in situations where a given level
contains a very small number of classifications.

2.4 Comparing All Models

For a comparison of the accuracy values and F-scores obtained by all techniques
implemented in this tutorial, see Table 10. From this, we can state that the GA
produced the most accurate model. However, there was no difference in the ac-
curacy of the LASSO non-biased (e.g., the standard regression model built using
variable selected via the LASSO), Boruta, and Elastic Net models. Depending
on the purpose of your model, you may want to use a performance metric other
than accuracy. Within the context of our motivating example, it may be worth
examining the following:

– Sensitivity: Given the individual truly has misophonia, how likely is the
classifier to realize that?

– Specificity: Given the individual truly does not have misophonia, how likely
is the classifier to realize that?
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Figure 5. A plot containing the Z-score transformed estimates of variable importance
scores for each variable in the Boruta() model. Blue boxplots correspond to mini-
mal, average, and maximum Z-scores of a shadow attribute. Red and green boxplots
represent Z-scores of rejected and confirmed attributes respectively. Note that the im-
plementation of Boruta used in this paper utilized mean decreased accuracy as the
metric to calculate variable importance.

– Positive predictive value: Given the classifier claims the individual to
have misophonia, how likely is it that the individual really has misophonia?

– Negative predictive value: Given the classifier claims the individual does
not have misophonia, how likely is it that the individual really does not have
the disease?

While accuracy serves as a useful general indicator of model performance,
it can be misleading, particularly when dealing with unbalanced datasets where
one class is significantly more prevalent than the other. In such cases, a model
can achieve high accuracy by simply predicting the majority class, even if it
performs poorly on the minority class. Therefore, it’s essential to consider al-
ternative performance metrics that provide a more nuanced understanding of
a model’s strengths and weaknesses. For instance, sensitivity (the true positive
rate) measures the proportion of actual positives that are correctly identified,
while specificity (the true negative rate) quantifies the proportion of actual neg-
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Table 10. A table containing the predictive accuracy values obtained by all models
built in this tutorial paper. Methods are listed such that the accuracy values are ordered
from least accurate to most accurate. Significance is determined relative to the previous
model (i.e., Elastic SCAD SVM was determined to have a statistically significant better
accuracy than Elastic Net non-biased) according to a McNemar’s Chi-squared test with
continuity correction. Note significant differences were not evaluated for F-scores.

Method Cross-validated
Accuracy

Cross-validated F-Score

Elastic Net non-biased 0.797 0.881
Elastic SCAD SVM 0.828** 0.905
LASSO 0.859** 0.918
Elastic Net 0.875 0.938
Boruta 0.875 0.930
LASSO non-biased 0.891 0.916
GA 1*** 1

Note: * p < .05, ** p < .01, *** p < .0001

atives that are correctly classified. These metrics are crucial when the cost of
misclassification differs for each class, such as in medical diagnosis where failing
to identify a true case (low sensitivity) can have more severe consequences than
a false positive (low specificity). Precision reflects the proportion of predicted
positives that are actually positive, while recall is synonymous with sensitivity.
Another valuable metric is the Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curve, which comprehensively measures a model’s
ability to discriminate between classes across various thresholds. Researchers
should carefully consider their research question’s specific goals and context to
select the most appropriate performance metrics, ensuring a balanced and in-
sightful evaluation of their models.

Given that our example pertains to diagnosis, it is possible that one may fa-
vor sensitivity over specificity in that we want to minimize the number of missed
cases. However, it is also possible that we would want to minimize the number of
false diagnoses to save individuals the cost of unnecessary intervention. A con-
fusion matrix (discussed briefly in Appendix B) might be useful. Alternatively,
one could use the AUC of the ROC curve. One should carefully consider these
factors when deciding on the performance metric by which to evaluate a model.

Examining the selected variables reveals interesting method-dependent pat-
terns. Elastic SCAD SVM selected many more variables than LASSO, but had
a worse accuracy. Given this outcome, it may not be ideal to use all variables
selected by Elastic SCAD SVM in this dataset. There was only one variable
(S5 57) that was selected by all five methods. So, there is a clear method ef-
fect on the variables that are deemed to be important. Within the context of
our example, we could interpret this to mean that the question, “Sometimes
in response to sounds, I feel rage that is difficult to control,” is an incredibly
important predictor for misophonia and may capture a defining characteristic of
the disorder. Beyond improving predictive accuracy, understanding why certain
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variables are deemed important can provide valuable insights into the underly-
ing mechanisms or factors driving the outcome of interest. This insight could
guide future research exploring the role of emotional regulation in misophonia
and potentially inform the development of targeted interventions. Furthermore,
the identification of unexpected or previously overlooked variables as important
predictors can spark new research questions and hypotheses. This iterative pro-
cess of variable selection, model building, and hypothesis generation can lead to
a more nuanced and comprehensive understanding of complex phenomena. By
carefully examining the selected variables, researchers can generate hypotheses,
refine theoretical models, and ultimately gain a deeper understanding of complex
human behavior and health outcomes.

3 Discussion

This tutorial provided an overview and a practical guide for the implementation
of LASSO (Friedman et al., 2010), Elastic Net (Friedman et al., 2010), a ge-
netic algorithm (Scrucca, 2013, 2017), Elastic SCAD SVM (Becker et al., 2009),
and random forest via Boruta (Kursa & Rudnicki, 2010) in R v. 4.2.1. Proper
analysis of the output as well as comparisons on the predictive accuracy of each
method are also discussed. More information on R, other useful machine learning
software, and some of these functions were provided in the Appendices. Lastly,
an OSF project containing all code implemented in this tutorial, additional code
the reader may find useful, and the data used is available. For a full link to the
project, see the availability of data and materials section of this paper.

Variable selection allows researchers to find parsimonious models that are also
good predictive or classifying models. Given R’s increasing popularity among
researchers due to the software’s free and open access nature, it is valuable to
the field to provide more guidance on the variable selection methods available in
R. In addition, the extent to which some of these methods overfit data should not
be ignored when implementing them on real-world data. Suppose a researcher is
concerned with creating a generalizable model. In that case, it is recommended
that the results be validated not only through some form of cross-validation
but also through the collection of a new sample. Through this tutorial, we aim
to push the field towards more transparent guidelines and standardization for
the use of variable selection techniques and machine learning in psychological
research.

While variable selection offers numerous advantages, it’s crucial to acknowl-
edge its potential ethical implications, particularly in sensitive applications like
clinical diagnosis or risk assessment (Obermeyer, Powers, Vogeli, & Mullainathan,
2019). If biased or incomplete data is used for training, variable selection algo-
rithms can perpetuate and even amplify existing societal biases, leading to unfair
or discriminatory outcomes (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan,
2021). For example, if a dataset used to predict criminal recidivism is skewed
towards certain demographics, the selected variables might unfairly target indi-
viduals from those groups, even if the variables are not causally related to re-

https://osf.io/pr6j8/?view_only=c778e322f1d54429990067580e615afb
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cidivism. Similarly, in clinical diagnosis, relying on variables that are correlated
with social determinants of health rather than underlying biological mechanisms
could result in misdiagnosis or inadequate treatment for marginalized popula-
tions (Vyas, Eisenstein, & Jones, 2020). Therefore, researchers must carefully
consider the potential for bias in their data and strive to develop and implement
variable selection techniques that prioritize fairness and equity.

Beyond enhancing model performance, variable selection holds significant po-
tential for translational impact in the social and health sciences. By identifying
the most influential predictors, researchers can better understand the underlying
mechanisms driving complex phenomena, leading to more effective interventions,
treatments, and public health strategies. For instance, in personalized medicine,
variable selection can help tailor treatments to individual patients based on
their unique genetic, environmental, and lifestyle factors . Identifying key risk
factors for chronic diseases through variable selection in public health can in-
form targeted prevention programs and resource allocation strategies. Moreover,
in developing psychological interventions, variable selection can aid in identify-
ing the most effective treatment components and tailoring therapies to specific
patient needs and characteristics (Vyas et al., 2020). By focusing research and
interventions on the most impactful variables, variable selection can contribute
more effective and efficient solutions to pressing social and health challenges.

There are many ways a researcher can define accuracy. When interested in
classification, an optimal model is one with minimal classification error, as we
have highlighted throughout this tutorial (Huang, 2015). However, previous re-
search notes that if classification is not the goal, minimal error can be concep-
tualized as selecting variables with the highest relevance to the given outcome
(Peng, Long, & Ding, 2005). With this in mind, it is important that variables
are not falsely discovered (i.e., a variable that is not relevant is selected; Type
I error in selection). An interested reader is pointed to the knockoff package
(Candés, Fan, Janson, & Lv, 2018) and work by Zimmermann, Baillie, Kor-
maksson, Ohlssen, and Sechidis (2024). Another important aspect of variable
selection, especially for the applied researcher, is the stability of a model (i.e.,
how robust a particular model is to small changes in the data). We discussed one
way to address this concern through the concept of cross-validation, however,
there are additional ways one might go about addressing this concern (Bommert
& Lang, 2021; Nogueira, Sechidis, & Brown, 2018). The field would benefit from
additional tutorial papers discussing the balance of these issues with accuracy
to help guide the applied researcher.

Many additional R packages will perform variable selection using random
forest as well as SVMs, but only one of each was demonstrated in this tutorial.
The demonstrated methods in the current tutorial were selected because they are
commonly used in the psychological sciences, are powerful techniques for classifi-
cation (e.g., diagnosing individuals with misophonia) and variable selection, and
are all freely available to researchers in R. In a similar vein, we have included
only five machine learning methods here but many more exist, and additional
tutorials should be provided to applied researchers about how best to implement



136 C.M. Bain et al.

them following research demonstrating each algorithm’s performance to indicate
which algorithm is best for addressing certain research questions. For the inter-
ested reader, a comparison of the performance of each method demonstrated in
this tutorial can be found in Bain et al. (2023).

4 Conclusion

This tutorial presented an overview and a practical guide for implementing five
variable selection techniques: LASSO (Friedman et al., 2010), Elastic Net (Fried-
man et al., 2010), a genetic algorithm (Scrucca, 2013, 2017), Elastic SCAD SVM
(Becker et al., 2009), and random forest via Boruta (Kursa & Rudnicki, 2010)
in R. Proper analysis of the output as well as comparisons on the predictive
accuracy of each method are also discussed. More information on R, other useful
machine learning software, and some of these functions were provided in the
Appendices. Lastly, an OSF project containing all code implemented in this tu-
torial, additional code the reader may find useful, and the data used is available.
For a full link to the project, see the availability of data and materials section
of this paper.

This paper highlighted the increasing availability of large and complex datasets
in the social and health sciences, requiring a move beyond traditional variable
selection techniques like stepwise regression. This tutorial demonstrates that
modern machine learning methods offer powerful and accessible alternatives for
identifying the most informative variables, improving model accuracy, and gain-
ing a deeper understanding of complex phenomena. By embracing these ad-
vancements and continuing to explore the ethical and interpretive dimensions of
variable selection, researchers can enhance the rigor, reproducibility, and, ulti-
mately, the translational impact of their work. We encourage readers to consult
the documentation for each method for further examples and details. The user is
to refer to each method’s full documentation for additional examples and details.
We hope that this tutorial makes these methods more easily accessible to the
everyday psychological researcher, opens doors to applications of variable selec-
tion in new areas, and leads to a decreased presence of less powerful methods
(e.g., stepwise selection) in the literature.

Availability of Data and Materials

The accompanying code and data utilized in this tutorial can be found here:
https://osf.io/pr6j8/?view only=c778e322f1d54429990067580e615afb. Ad-
ditional supplementary information such as a glossary of key terms, R package
recommendations, etc. are also available through OSF.
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Appendix A

Table 1. Demographic information for the sample used in the illustrative example.

Variable n (%)

Age (Years) M = 18.96, SD = 1.7

Gender
Male 104 (30.3%)
Female 239 (69.7%)
Ethnicity
White 263 (76.7%)
Black/African American 32 (9.3%)
Latino/Hispanic 46 (13.4%)
Asian/Asian American 28 (8.2%)
American Indian/Alaska Native 26 (7.6%)
Native Hawaiian/Other Pacific Islander 2 (0.6%)
Other 2 (0.6%)
Education
Less than high school 2 (0.6%)
High school graduate 129 (37.6%)
Some years of college/university (no
degree)

194 (56.6%)

Vocational training 2 (0.6%)
Associates degree 8 (2.3%)
Bachelor’s degree 5 (1.5%)
Master’s degree 1 (0.3%)

Appendix B

The random forest output contains different information than any other tech-
nique discussed in this paper because it performs a type of cross-validation in-
ternally through looking at something called Out of Bag error (OOB; sometimes
referred to as the out-of-bag estimate). The OOB is an approach to measuring
the prediction error of a random forest model or of other decision tree mod-
els. OOB error is the mean prediction error of a given sample, using only the
trees which did not have that sample in their bootstrapped sample. This sounds
potentially confusing, but it simply means that the OOB error is the average
prediction error of a given sample of data when that sample of data is treated
as a test sample rather than a train sample (i.e., a tree is evaluated on that data
since it has yet to see it). OOB error is also used for other machine learning mod-
els implementing something called bootstrap aggregation (bagging). Bagging is
the official term for only considering a random sample of the data when random
forest creates each tree. It is unique in that it is a random sample that allows
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for repetition, meaning that the records for a single participant could be repre-
sented more than once in the sample. For more on the theory behind bagging,
see work by Ghojogh and Crowley (2023). In addition to the OOB error rate,
the output provides a confusion matrix, something that is often used to discuss
the performance of a classification method. A confusion matrix follows the form
below:

Table 2. Confusion Matrix with Signal Detection Theory Terminology

True 0 True 1

Predicted 0 Correct Rejection Miss
Predicted 1 False Alarm Hit

It is ideal to have a high number of both hits and correct rejections and a low
number of both false alarms and misses. It is possible that one may wish to allow
for more false alarms so as to decrease miss rates in some cases (e.g., a doctor
would likely rather have a false positive screening for cancer than miss a cancer
diagnosis). In other cases, one may want to minimize false alarms (e.g., in the
court system, it is ideal to minimize the number of innocent people who are sent
to jail). Thus, it is incredibly beneficial to understand each of these statistics
when evaluating the performance of a classification model, as they both factor
into calculating accuracy. The randomForest() output provides a classification
error representing the proportion of a given class which has been misclassified
(e.g., a true 0 that was classified as 1 or the reverse). For the model demonstrated,
there is no classification error for either class since perfect accuracy occurred.
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