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Abstract. Data in social and behavioral sciences typically contain mea-
surement errors and also do not have predefined metrics. Structural equa-
tion modeling (SEM) is commonly used to analyze such data. This article
discuss issues in latent variable modeling as compared to regression anal-
ysis with composite-scores. Via logical reasoning and analytical results as
well as the analyses of two real datasets, several misconceptions related
to bias and accuracy of parameter estimates, standardization of vari-
ables, and result interpretation are clarified. The results are expected to
facilitate better understanding of the strength and limitations of SEM
and regression analysis with weighted composites, and to advance social
and behavioral data science.

Keywords: Measurement error · Attenuation · Standardization · Scales
of latent variables

1 Introduction

Two key features of data in social and behavioral sciences are measurement er-
rors and no predefined metrics. Associated with the features are latent variables
whose scales need to be subjectively chosen. These features pose challenges to
data analysis and result interpretation. A conventional method to address the
issue of measurement errors is structural equation modeling (SEM), while stan-
dardized solution is used to address the issue of lack of metrics. In particular,
textbooks contain formulas showing that the least-squares (LS) method yields
attenuated or biased regression coefficients when predictors contain measure-
ment errors, and SEM effectively addresses the issue. Textbooks on regression
analysis and SEM also contain formulas for computing the regression coefficients
with standardized variables (e.g., Bollen, 1989; Cohen, Cohen, West, & Aiken,
2003; Loehlin & Beaujean, 2017), which are available in the output of com-
monly used software and routinely reported in papers. Because the notions that
measurement errors cause biased estimates and standardized solutions facilitate
result interpretation have been imprinted and routinely taught in the discipline,
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a rigorous examination on their validity not only facilitates better understanding
of these concepts but also advances behavioral data science.

The purpose of this article is to bring attention of both quantitative and ap-
plied researchers to these potential issues, and for proper and better applications
of multivariate methods. In particular, we aim to answer the following questions.

Q1. In social and behavioral sciences, measurements and latent variables typ-
ically do not have predefined scales. We need to fix the scales of latent
variables subjectively for the parameters of a model to be identified. Under
SEM, what is the effect of different scaling options on the accuracy of param-
eter estimates and the related z-statistics? How can we use the information
to serve our purpose?

Q2. Do measurement errors cause attenuated or biased estimates for the LS
method of regression analysis with weighted composites? A weighted com-
posite in this article is a linear combination of values of indicators for a latent
variable.

Q3. Does SEM yield more accurate parameter estimates than LS regression with
weighted composites?

Q4. Between SEM and regression analysis with weighted composites, to what
level the estimated regression coefficients can be compared with their SEM
counterparts?

Q5. Does standardization advance result interpretation or only facilitate model
identification?

We will answer the above questions by combining recent findings from the litera-
ture, logical reasoning and analytical results, and fresh numerical results via the
analyses of two real datasets. As we are going to show, results do not necessarily
support the widely held notions regarding attenuation, bias, accuracy and effi-
ciency of parameter estimates for SEM and regression analysis with composites
that contain measurement errors.

Most existing studies comparing SEM and regression analysis with compos-
ites are conducted by comparing the values of parameter estimates and their
standard errors (SEs). For logical and proper analyses of data that do not have
predefined metrics, we propose a new approach under which methods are com-
pared by the sizes of the signal-to-noise ratio (SNR) of their estimates. For a
parameter estimate γ̂ based on a sample of size N , the SNR is defined as

τ =
γ

SD
,

where γ and SD are respectively the expected values of γ̂ and [Var(
√
Nγ̂)]1/2 or

their probability limits as N increases. The new approach is a natural product
of our effort in answering the above 5 questions.

The rest of the article is arranged as the following. First, we review the lit-
erature for related work and to clarify our contributions. Second, we describe
our view on SEM and regression analysis with weighted composites, including
key elements to answer the posed questions. Third, we provide a logical analysis
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on the utility of standardization. Fourth, two empirical examples are provided
and patterns over the results are summarized. Fifth, our answers to the above
five questions are subsequently presented by combing the results from our anal-
ysis and the results of the examples. Sixth, summary, discussion and take-home
messages are provided to conclude the article.

2 Review of the Literature and Clarification of
Contributions

There are studies in the psychometric literature that might be regarded as related
to the development of the current article. We will review them below to clarify
the differences between the existing studies and the topics we are going to cover.
Some of our results as well as the framework under which our study is conducted
will also be previewed in this section.

2.1 Parameters and z-statistics are scale dependent

It is well known that, in SEM, the scale of a latent variable can be set by 1)
fixing one of the loadings of its indicators at a given value, typically 1.0; or
2) for an independent latent variable, fixing its variance at a given value. The
choices among the indicators as well as between 1) and 2) are equivalent in the
sense that the resulting model implied covariance matrix remains the same. But
they can yield quite different parameter estimates. Gonzalez and Griffin (2001)
noted that different ways to scaling latent variables can also result in different
z-statistics. This implies that the results of null hypothesis testing by the Wald
test (or z-test for a single parameter) depend on how the scales of the latent
variables are fixed. Subsequently, Gonzalez and Griffin recommended using the
likelihood ratio statistic (Tml) or its difference for parameter inference, because
Tml remains the same across different scalings of latent variables. However, one
has to run a separate model to conduct the likelihood ratio test for each single
parameter; whereas the z-statistics for all the parameters are in the default
output of standard software following a single run of the base model. This might
be why the z-test is widely used in practice. In addition, the validity of Tml as a
χ2 statistic depends on the normal distribution assumption1 even asymptotically.
In contrast, SEs and the corresponding z-statistics based on the sandwich-type
covariance matrix are asymptotically valid without the need for the normality
assumption.

The sensitivity of z-statistics to the scales of latent variables reflects the
dependency of statistical power of the Wald test on model parameterization.
Instead of treating this sensitivity as an undesired feature, we should make use
of it to serve the purpose of data analysis. In particular, if a test with a greater

1 While there exist conditions for Tml to follow a chi-square distribution when data
are not normally distributed, there is not an effective way to verify the so-called
asymptotic robustness conditions in practice.
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power is desired, we can choose scales that correspond to the greatest z-statistics.
Let’s call an indicator whose loading is fixed at 1.0 an anchor. An analytical re-
sult in Yuan and Fang (2023b) implies that the SNR for the path coefficient
between two latent variables increases as the anchor of the dependent latent
variable becomes more reliable, where they assumed that all the indicators for
the independent latent variable are parallel. A better understanding of the re-
lationship between the z-statistics and the properties of the anchors is needed
for the general case. For such a purpose, we will further study the following two
characteristics of the z-statistics: 1) What properties of the anchors affect the
value of z-statistics? and 2) Are the z-statistics for all path coefficients of the
structural model equally affected by the changes of scales of the latent variables?
These characteristics are not examined in Gonzalez and Griffin (2001).

2.2 Model identification versus theoretical assumption

Steiger (2002) discussed scenarios for fixing the scale of a latent variable using
equality constraints, and fixing a factor loading at 1.0 is regarded as a particular
constraint. He emphasized that additional constraints beyond the minimal need
to fix the scales of latent variables will affect the value of Tml. That is, the model
implied covariance matrix will vary when different extra constraints are imple-
mented. The same message has also been given by others (e.g., Bentler, 2006).
In this article, we are not interested in the effect of extra constraints beyond the
minimal need for scaling latent variables. Instead, for the scaling issue, we exam-
ine how the values of the SNRs and z-statistics are affected by the psychometric
properties of the indicators used to fix the scales of latent variables. The value
of Tml remains the same among these choices. Steiger (2002) also discussed sta-
tistical issues due to interactions of extra constraints in standardized solutions.
We will also discuss standardization but our interest is on issues related to sub-
stantive and statistical interpretations instead of issues caused by interactions
of extra constraints.

2.3 Accuracy and precision of parameter estimates

For a mediation model with three latent variables, Ledgerwood and Shrout
(2011) compared bias and SEs of parameter estimates between SEM and re-
gression analysis via average scores. They used “accuracy” and “precision” to
substitute for the statistical terminology bias and SEs, and showed that SEM
yields estimates with greater accuracy but less precision. While Ledgerwood
and Shrout (2011) contain several interesting observations, they missed two key
points. The first is that values of parameters under SEM depend on the scales
of the latent variables and those under regression analysis depend on the scales
of the composites (Yuan & Deng, 2021). Thus, accuracy or bias is not a sub-
stantively grounded concept for statistical modeling of variables whose metrics
are artificially assigned. The second is that SEs are typically proportional to the
values of the parameter estimates, precision is also not a meaningful quantity
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to compare between SEM and regression analysis with composite scores. Con-
sequently, the conclusions of Ledgerwood and Shrout (2011) for the comparison
between SEM and regression analysis with composites are problematic. In addi-
tion, the use of parallel indicators in their Monte Carlo studies also made their
results of regression analysis with the average scores too optimistic, since the
average score enjoys the maximum reliability (Bentler, 1968; Yuan & Bentler,
2002). Existing results indicate that, following regression analysis with compos-
ites, the estimates of the regression coefficients, their SEs, and the resulting
R-square are all related to the reliabilities of the composites (Cochran, 1970;
Fuller, 2009).

Instead of comparing different methods by the accuracy or precision of their
parameter estimates, we compare methods via their SNRs. We will argue that the
SNR is a natural quantity to compare for modeling variables without predefined
metrics.

2.4 Factor score vs average score

McNeish and Wolf (2020) discussed rationales in forming composites and sug-
gested treating sum scores as factor scores based on a factor model with parallel
measurements. They also recommended factor-scoring items according to the fac-
tor model under which the scales are validated instead of using the sum scores by
default. A followup discussion by Widaman and Revelle (2022) gave a different
perspective on the merit of sum scores. They compared parameter estimates by
different scoring methods and noticed little difference. In the current article, we
are interested in comparing SEM and regression analysis with weighted compos-
ites, and regard both sum scores and factor scores as special cases of weighted
composites. In particular, results on SNRs for the estimated path coefficients
indicate that larger differences exist between SEM and regression analyses with
weighted composites than among regression analyses with differently formulated
composites (Yuan & Fang, 2023b).

2.5 Standardized score versus raw score

Variable standardization and treating the standardized coefficients as effect-size
measures are common practices in social and behavioral sciences. Their pros and
cons have been discussed under different contexts. Aiming to set out guidelines
for what to report and how best to report effect sizes, Baguley (2009) listed
advantages of simple (unstandardized) effect sizes but the measures need to
have metrics that are well understood or substantiated if not predefined. Pek
and Flora (2018) provided an informed discussion on why unstandardized effect
sizes tend to be more informative than standardized ones in primary research
studies. While their focus is on effect sizes with manifest variables, they stated
(p. 214) “We agree that standardization of effects associated with latent variables
(e.g., factors in a factor analysis) is useful, but assert that observed variables,
and consequently effect sizes based on them, should not always be standardized.”
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Kim and Ferree (1981) distinguished the operation of standardization of
scales from the use of standardized coefficients. If the groups under consideration
do not have comparable distributions, their discussion discourages standardizing
variables on the basis of group-specific means and variances. Olejnik and Algina
(2000) showed that measures of effect size are affected by the research design
used, and warned that effect sizes may not be comparable across different de-
signs when different random components (e.g., individual difference factors) are
included in computing the pooled variances for standardizing the effect sizes.
They also reviewed various factors that may contribute to the misinterpreta-
tion/understanding of effect size.

McGrath and Meyer (2006) discussed the differences of Cohen’s d and the
point-biserial correlation coefficient (rpb). Both of which can be used when one
variable is dichotomous and the other is quantitative. Termed the proportions of
0 and 1 for the dichotomous variable as the base rates, they showed that rpb is a
base-rate-sensitive effect-size measure, whereas d is base-rate-insensitive. Stan-
dardization is also widely used in epidemiology when estimating and comparing
group means, where it is a different operation than z-scoring the variables. Still
the group distributions matter in standardizing the means, as was showed by
(Schoenbach & Rosamond, 2000, Chapter 6).

While the pros and cons of standardization have been extensively addressed,
none of the articles discuss the issue of standardization in SEM. Part of our
interest in this article is to examine the aspects of the usefulness of standard-
izing latent variables. In particular, our focus is on variables that do not have
predefined metrics.

2.6 Properties and results of factor scores

Since factor scores will be repeatedly mentioned in our discussion, we briefly
review their properties here. First, because latent variables are not observable,
there exists an issue of indeterminacy with their scales and orientation. How-
ever, parameters of a factor or SEM model can be uniquely estimated once the
scales of all latent variables are fixed and the model is identified. Then both the
Bartlett-factor scores (BFSs) and the regression-factor scores (RFSs) based on
the parameter estimates can be uniquely computed (Lawley & Maxwell, 1971).
Unless explicitly mentioned, factor scores in this article always refer to either
the BFSs or the RFSs.

It is well-known that the BFS possesses the maximal reliability among all
weighted composites (see e.g., Yuan & Bentler, 2002). Yuan and Deng (2021)
showed that the RFSs are proportional to the BFSs. That is, one can get the
values of the BFSs from those of the RFSs via a linear transformation, condi-
tional on the estimated factor loadings, factor covariances, and error variances.
Thus, the RFSs also possess the maximum reliability. In addition, Yuan and
Deng (2021) noted that the two types of factor scores are also equivalent in con-
ducting regression analysis in the sense that they yield the same R-square value.
Note that the RFSs can be computed jointly for all the factors or separately
for each single factor. Yuan and Deng (2021) also noted that when the RFSs
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are computed separately, the regression coefficients following RFS-regression are
proportional to those following BFS-regression. When the RFSs are computed
jointly, the two sets of regression coefficients can still be computed from each
others but using a linear transformation.

Skrondal and Laake (2001) noted an important property of factor-score (FS)
regression. That is, regression analysis with BFSs as the outcome variables and
the jointly computed RFSs as the predictors yields path coefficients that are
mathematically identical to those under SEM. This property was also discussed
in Croon (2014) and Devlieger, Mayer, and Rosseel (2016), and will be noted in
our following discussion.

2.7 Monte Carlo studies comparing parameter estimates

There are Monte Carlo studies comparing the empirical bias, SEs or mean-
squared errors (MSE) of parameter estimates across methods (e.g., Forero &
Maydeu-Olivares, 2009). For a model whose population values of parameters are
held constant, the method that yields the smallest bias or SE or MSE is preferred
under the conditions being considered. The finding is still statistically meaningful
even when the variables do not have predefined metrics, as in typical simulation
studies (e.g., Shi & Tong, 2017; Zhang & Yang, 2020). However, because bias, SE
and MSE are scale dependent, additional thoughts are needed to compare the
estimates under regression analysis against those under SEM, especially when
variables do not have predefined metrics.

Note that bias is defined as the expected value of an estimator minus its pop-
ulation value. The regression coefficients under regression analysis with compos-
ites naturally don’t have the same population values as their SEM counterparts.
But for data that do not have predefined metrics, we can make the two sets of
population values identical by properly choosing the scales for the composites or
the latent variables. We will formally discuss how to compare estimates across
the two classes of methods in the following sections.

3 Structural Equation Modeling versus Regression
Analysis with Composites

In this section we present the elements for logically comparing SEM against
regression analysis with weighted composites.

3.1 Theoretical constructs by latent variables versus by composites

While latent variables and composites are conceptually different, we regard both
of them as representatives of the theoretical constructs. But their degrees of
alignment are subject to judgment. It is commonly believed that theoretical
constructs are virtually modeled under SEM while weighted composites always
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contain measurement errors. However, the goodness of fit2 of an SEM model
is unlikely to be perfect, implying that the Greek letters in a path diagram
only approximately represent the theoretical constructs. Such a discrepancy sys-
tematically changes the values of the parameters from those of an ideal model-
population match (Yuan, Marshall, & Bentler, 2003), causing biased parameter
estimates and biased interpretation. Similarly, the reliabilities of the compos-
ites also vary3 as the number of indicators vary, implying that the degree of
alignment between the theoretical constructs and the weighted composites also
varies. However, the bias due to model misspecification under SEM has been
often ignored whereas “bias” caused by measurement errors has been repeatedly
warned in textbooks (e.g., Allen & Yen, 1979).

In the development of this article, we do not explicitly consider the approx-
imating nature of latent variable models. But we admit that there always exist
differences between theoretical constructs and the latent variables in practice.
Although the setup implicitly favors latent variable models, as was typically
done in the field, we will discuss the rationale and provide the evidence that
regression analysis with weighted composites yields different but more efficient
parameter estimates than SEM instead of biased estimates.

3.2 Consistency

Measurements in social and behavioral sciences typically do not have pre-defined
metrics in the first place. For such data, Yuan and Deng (2021) and Yuan and
Fang (2023b) pointed out that the sizes of parameters under SEM do not enjoy a
substantive interpretation since they are determined by the scales of latent vari-
ables that are subjectively assigned. Two researchers modeling the same dataset
via the same model estimated by the same method (e.g., normal-distributed-
based ML) can have very different parameter estimates for the same path coeffi-
cient. For this path coefficient, it is impossible for a third researcher who conducts
regression analysis with composites to obtain an estimate that is consistent with
those under SEM before the two SEM modelers have their difference dissolved.
Thus, it does not make sense to claim that LS regression analysis with weighted
composites yields biased estimates without a unique set of target population
values even under SEM.

Let us consider a simple case to understand the details. With a measurement
model

y = λyη + ey, x = λxξ + ex,

2 Even if a test statistic for the overall model structure is statistically not significant,
we are still unable to confirm that the model is correctly specified, since a non-
significant statistic only implies that there is not enough power to reject the current
model.

3 The content of the true score of a composite might also vary as more indicators are
added even when a single factor model fits the corresponding variables adequately
(Bentler, 2017).
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one can estimate the regression relationship between the two latent variables via
the structural model

η = γ0 + γ1ξ + ζ,

where ξ and η are the latent variables, and ex, ey and ζ are the error terms. Al-
ternatively, one can also directly work with the regression model for the observed
variables

y = a+ bx+ e.

Under the commonly used assumptions about the independence of the error
terms for SEM and using σ to denote the population covariance of the variables
in its subscript, standard covariance algebra yields

b =
σxy
σxx

=
λxλyσξη

λ2xσξξ + σexex
=
ρxλxλyσξη
λ2xσξξ

=
ρxλyγ1
λx

, (1)

where ρx is the reliability of x. Equation (1) implies that, regardless of the value
of ρx, b = γ1 whenever λx = ρxλy holds. We can also adjust the values of λx
and λy by rescaling ξ and η to make the value of b greater than that of γ1.
Alternatively, given the population values of ρx, σxy and σxx, the value of γ1
can be made equal to any pre-specified value (except 0) by adjusting the value of
λx and λy. We will further illustrate this via a real data example in a following
section.

3.3 Parameter comparison

A common theme in Ledgerwood and Shrout (2011), McNeish and Wolf (2020),
Widaman and Revelle (2022), and others is the comparison of the raw values of
parameter estimates by different methods. In this article we emphasize that the
population values of parameters as well as their estimates are not of substantive
interest for models involving latent variables measured by indicators that do not
have predefined metrics. In particular, population values of the model parameters
depend on scales that are artificially assigned.

Although there is no point to directly compare the values of parameters
under regression analysis with weighted composites against those under SEM,
they have the following relationship:

1) γ = 0 if and only if γw = 0, where γ = (γ1, γ2, . . . , γp)
′ and γw =

(γw1, γw2, . . . , γwp)
′ are the vectors of regression coefficients of a given de-

pendent latent variable under SEM and regression analysis with weighted
composites, respectively (Buonaccorsi, 2010, Eq. 5.7 on page 109).

2) When the (joint) regression-factor scores are used as the predictors and the
Bartlett-factor score is used as the dependent variable in regression analysis
with weighted composites, there also exist γw = γ and γ̂w = γ̂ (Skrondal &
Laake, 2001). Then the two types of estimates can be substituted for each
other, although they are obtained by different methods.
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3) Regression analysis with equally weighted composites can also yield parame-
ter estimates that are mathematically identical to those under SEM accord-
ing to

y = a+ b1x1 + . . .+ bpxp + e
= a+ (h1b1)(x1/h1) + . . .+ (hpbp)(xp/hp) + e,

(2)

where the y and xjs are equally weighted composites and the hjs are subject
to choice (e.g., hj = γj/bj).

However, for arbitrarily chosen scales, bj and γj may not be equal. They even
can have different signs.

Instead of judging the goodness of an estimate by its accuracy or precision,
we propose to compare the efficiency of parameter estimates by the size of their
SNR4, which plays a key role in statistical inference. Let’s term this proposal
the new framework in contrast to the old framework that compares methods
by precision and accuracy of parameter estimates, the following remarks are in
order.

4) The new framework allows us to face and address the issue of dependency for
the values of parameters or their estimates on the scales of latent variables,
especially for data and variables that have no predefined metrics.

5) The new framework naturally facilitates the comparison of efficiencies of
estimates for parameters that do not have the same population value. For
example, the population value of a path coefficient under SEM depends on
how the scales of the involved latent variables are fixed. However, the SNRs
for the estimates of this path coefficient can be compared across different
scaling options, and the one with the largest SNR is the most efficient esti-
mate.

6) When the population value of a parameter is uniquely defined across meth-
ods, as in a Monte Carlo study where the scales of latent variables are iden-
tically scaled across methods, an estimate with a smaller SE is more efficient
and corresponds to a greater SNR than that with a greater SE. We will
further discuss the issue of empirical bias in Monte Carlo studies in the
concluding section.

7) Parallel to Cohen’s d, the SNR also serves as a summary statistic.

In addition, strengths of SEM and regression analysis with composites can be
fairly compared and utilized under the new framework. We will have more results
on this point via examples in a following section.

For a model with one dependent latent variable and one independent latent
variable, Yuan and Fang (2023b) rigorously compared the SNRs of the estimated
path coefficients under regression analyses with weighted composites against
those under SEM. They found that, conditional on the population weights, the
SNR under factor score (FS) regression is mathematically greater than that
under SEM. They also defined a multivariate version of SNR and conjectured

4 For a parameter estimate, the SNR is estimated by z/N1/2, where z is the z-statistic
and N is the sample size.
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that its values for the path coefficients under FS regression would be greater than
that under SEM. Note that the SNR plays the role of Cohen’s d in null hypothesis
testing for parameters. Meta analytical results in Deng and Yuan (2023) showed
that, across nine different real datasets and eleven models, SEM yields the least
powerful test, even weaker than path analysis with equally weighted composites.

3.4 Different utilities

SEM and regression analysis with weighted composites are different not only
in their approaches to modeling the theoretical constructs but also in aims and
utilities. For SEM, the relationship among the latent variables is modeled. The
corresponding parameters and their estimates are to govern the relationship
among the latent variables at the population level. In practice, an individual
with greater pretest scores is expected to perform better on the post-tests. This
expected relationship is of interest in many disciplines. We may want to plug the
path coefficients estimated under SEM in the regression equation to predict the
values of individuals corresponding to the latent variable. For such a purpose,
we will have to substitute the independent latent variables by composites of
the individuals. However, except in rare situations, values of composites are not
error-free, including the factor scores that are psychometrically most reliable.

Alternatively, we can start with regression analysis via weighted composites,
and use the estimates of the path coefficients to construct an equation for pre-
diction. The new outcome variable is then predicted according to this equation
using the newly observed scores of the independent variables via weighted com-
posites. Fuller (2009) noted that, even when the independent variables contain
measurement errors, LS estimates of the regression model still yield the best
linear unbiased predictor in the sense that the corresponding MSE is the small-
est. Yuan and Fang (2023a) contain the details showing that the predicted value
based on the SEM estimates becomes less accurate as the reliabilities of the
weighted composites decrease.

Thus, one should start by regression analysis with weighted composites if the
purpose is for prediction. However, SEM is preferred if the aim is to describe the
relationship among the latent variables at the population level. These different
characterizations might be more fundamental than which method generates more
accurate parameter estimates.

The analyses and discussions in this section contain our answers to questions
Q2, Q3 and Q4.

4 Standardization and Bias-correction

The notion that standardized solutions facilitate result interpretation has been
rooted in psychometrics, especially with latent variable modeling and regression
analysis. In this section, we conduct a logical analysis on the utility of standard-
ization. We will also discuss the utility of bias correction. For such a purpose,
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we distinguish measurements that have predefined metrics from those that have
no predefined metrics.

To facilitate understanding of the issue, let’s consider the relationship be-
tween height ξ (inches) and weight η (pounds), and they are assumed to follow
the relationship

η = γ0 + γ1ξ + ζ, (3)

where ζ is the error term in predicting weight by height. In practice, we only
observe x (inches) and y (pounds) due to the deficiencies in technology. A rea-
sonable and also logical measurement model5 in this case is

x = ξ + δ and y = η + ε, (4)

where δ and ε are measurement errors, and they are statistically independent
with the latent variables ξ and η. With a sample (xi, yi) of size N , if we estimate
the model

yi = γ∗0 + γ∗1xi + ei (5)

by the LS method, then the LS estimate γ̂∗1 is expected to be smaller than
the γ1 of Equation (3). In the measurement error literature (e.g., Fuller, 2009),
emphasis was placed on getting a consistent estimate of γ1 by correcting γ̂∗1.
Let the corrected estimate be denoted by γ̃1. Then the value of γ̃1 provides us
the information that, with one inch increase in height, a person is expected to
increase by γ̃1 pounds.

Let’s standardize the variables in Equations (3) and (4), resulting in

ηs = γs1ξs + ζs, xs = λxξs + δs, ys = λyηs + εs. (6)

By the first equation in Equation (6), we would conclude that an individual
with an increase of one SD (inches) in height is expected to increase by γs1
SD (pounds) in weight. Such standardized scales might not prevent us from
understanding the relationship between height and weight if we are familiar
with the two SD units. However, if the SDs are as inexplicable as the values of ξ
or η, then standardization does not facilitate interpretation but only facilitates
identifying a set of unique values of the γ and λ.

In the case of height and weight, the use of standardized scales certainly
hinders our understanding of their relationship. When there are no established
metrics for x and y, the values of their SDs are at least as inexplicable as the
values of x and y themselves. Standardization may even block possible attempts
to think about the issue because it is hard to get a sense out of the SDs even in
the case of height and weight, and each SD depends on the distribution shape
as well as the range of the variable.

For height and weight, the bias-corrected estimate γ̃1 does provide a more
accurate quantification for the relationship between the two variables. When the

5 When repeated measurements on height and weight for each individual are available,
a typical practice is to substitute the x and y in Equation (4) by their respective
averages.
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scales of x or y are arbitrary, as for typical variables in social and behavioral
sciences where data are obtained via Likert items or the averages/sums of such
items, parameters under standardized scales do not advance the understanding
of the relationship of the involved variables. Bias-corrected estimates may not
help with better substantive interpretation either.

Standardized regression coefficients across groups might be comparable if the
ranges and distribution shapes of the groups are similar. Otherwise, equal stan-
dardized coefficients may still imply different relationships between the outcome
variable and the predictors in separate groups.

5 Real-data Examples

In this section we use two real data examples to illustrate some of the points
noted in the previous sections. Because the value of a z-statistic is simply the
value of the SNR multiplied by the square root of the sample size6, comparison
of the z-statistics between different methods will be directly followed from our
comparison of the SNRs.

5.1 Example 1

Data Mardia, Kent, and Bibby (1979; Table 1.2.1) contain test scores on 5
topics from N = 88 students. The five topics are: C1=Mechanics, C2=Vectors,
O1=Algebra, O2=Analysis, and O3=Statistics. The scores for the first two topics
were obtained with closed-book exams and for the last three were with open-
book exams. Tanaka, Watadani, and Ho Moon (1991) fitted the dataset by a two-
factor model, one factor represents the trait for taking closed-book tests, and the
other for taking open-book tests. This dataset has been used to illustrate new
developments in SEM and other multivariate methods (e.g., Cadigan, 1995). We
will use it to show how different methods perform in estimating the regression
parameter between the two constructs. Because this dataset is open to public,
we expect readers to easily replicate our results.

The path diagram for the two-factor model is given in Figure 1, where ξo
and ξc represent the latent traits for taking the open- and closed-book tests,
respectively. Let ϕo = Var(ξo) and ϕc = Var(ξc). Fitting the model implied co-
variance matrix with ϕo = 1.0 and ϕc = 1.0 to the sample covariance matrix by
normal-distribution-based maximum likelihood (NML) yields Tml = 2.073, indi-
cating that the model fits the data very well when referred to χ2

4. The parameter
estimates, their SEs, and the corresponding z-statistics for the confirmatory fac-
tor model are reported in Table 1. The reliabilities of the individual indicators
estimated via the factor model are also included in Table 1 and so are those of
the two Bartlett-factor scores (BFSc, BFSo).

6 The values of the SNR in Tables 2, 3 and 5 are obtained by dividing the z-statistics
by (N − 1)1/2, where N is the original sample size.
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Figure 1. A two-factor model for the open- and closed-book test dataset.

Model For illustration purpose, let’s consider the following two structural mod-
els under SEM

ξc = γcoξo + ζc, and ξo = γocξc + ζo. (7)

That is, we predict the latent trait for the closed-book test by that for the open-
book test, and the latent trait for the open-book test by that for the closed-book
test, respectively. Note that our purpose here is to illustrate the properties of
different methods rather than to testify the causal directions of the two traits.
Actually, the two models in Equation (7) are mathematically equivalent to the
confirmatory factor model in Figure 1 with respect to the overall model structure.

Parallel to the two structural models in Equation (7), we also estimate the
following regression models

ξ̂c = γ∗coξ̂o + ec, and ξ̂o = γ∗ocξ̂c + eo (8)

by the LS method, where ξ̂c and ξ̂o are composite-scores. There are many ways to
formulate composite-scores, we will only consider equally-weighted composites
(EWC), the BFSs and the RFSs in the study. Note that the EWCs are least
selective among all composites since they don’t use any of the psychometric
properties of the individual indicators, whereas the two types of factor scores
are most selective since they optimally use these properties. Also note that both
the sum scores and the simple averages are special cases of EWCs.

For the structural models in Equation (7), we need to fix the scales of ξo
and ξc in order for the models to be identified. There are 6 different options to
identify each model by fixing two factor loadings at 1.0; 2 options to identify the
model ξo → ξc via fixing ϕo = 1.0; and 3 options to identify the model ξc → ξo
via fixing ϕc = 1.0. Thus, there are 8 different sets of scalings to identify the
model ξo → ξc; and 9 different sets of scalings to identify the model ξc → ξo.
The overall model remains equivalent among these different scalings, with Tml

being the same as that for the confirmatory factor model in Figure 1.
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Table 1. Estimates (Est) of factor loadings (λ), error variances (ψ), factor correlation
(ρ), and reliability (Rel) of the indicators (Ind) and Bartlett-factor scores (BFS) under
the common factor model.

Param. Est SE z Param. Est SE z Ind/BF Rel Est

λc1 12.253 1.843 6.649 ψc1 155.632 31.679 4.913 C1 .491
λc2 10.383 1.379 7.530 ψc2 65.036 18.099 3.593 C2 .624
λo1 9.834 0.929 10.588 ψo1 16.186 7.261 2.229 O1 .857
λo2 11.490 1.403 8.192 ψo2 88.352 16.773 5.268 O2 .599
λo3 12.517 1.667 7.508 ψo3 141.074 24.881 5.670 O3 .526
ρco 0.818 0.073 11.258 BFSc .724

BFSo .896

Table 2. Estimates of the path coefficient, its standard deviation (SD) and the corre-
sponding signal-to-noise ratio (SNR) by SEM, factor-score (FS) regression and equally-
weighted-composite (EWC) regression for the relationship ξo → ξc.

Method Identification Est. SD SNR

SEM λc1 = 1.0, λo1 = 1.0 1.019 1.676 0.608
λc1 = 1.0, λo2 = 1.0 0.872 1.528 0.571
λc1 = 1.0, λo3 = 1.0 0.800 1.459 0.548
λc2 = 1.0, λo1 = 1.0 0.863 1.216 0.710
λc2 = 1.0, λo2 = 1.0 0.739 1.132 0.653
λc2 = 1.0, λo3 = 1.0 0.678 1.094 0.620
ϕo = 1.0, λc1 = 1.0 10.019 16.818 0.596
ϕo = 1.0, λc2 = 1.0 8.490 12.286 0.691

FS-reg λo1 = 1.0, λc1 = 1.0
BFS(ξo) & BFS(ξc) 0.912 1.055 0.865
RFS(ξo) & RFS(ξc) 0.738 0.853 0.865
BFS(ξo) & RFS(ξc) 0.661 0.764 0.865
RFS(ξo) & BFS(ξc) 1.019 1.178 0.865
ϕo = 1.0, λc1 = 1.0
BFS(ξo) & BFS(ξc) 8.973 10.377 0.865
RFS(ξo) & RFS(ξc) 7.253 8.388 0.865
BFS(ξo) & RFS(ξc) 6.496 7.512 0.865
RFS(ξo) & BFS(ξc) 10.019 11.586 0.865

EWC-reg sum(ξo) & sum(ξc) 0.428 0.587 0.730
ave(ξo) & ave(ξc) 0.643 0.880 0.730
sum(ξo) & ave(ξc) 0.214 0.293 0.730
ave(ξo) & sum(ξc) 1.285 1.760 0.730

Note. BFS=Bartlett-factor score, RFS=regression-factor score; sum=sum score,
ave=average score; the estimate with the largest SNR under SEM is in bold while
the one with the smallest SNR is underlined.
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Results The NML estimates of γ for the two models in Equation (7) are given
in the upper panel of Tables 2 and 3, respectively. The standard deviation (SD)
of each γ̂ and the corresponding SNR are also included in the tables. Clearly, the
value of γ̂ under SEM changes as the scalings vary. But we do not regard their
differences as problematic because their population counterparts are different,
and each γ̂ is consistent and efficient for a different γ (assuming data are normally
distributed). As a matter of fact, we can choose the scale of ξo or that of ξc to
make γco or γoc to equal any pre-specified (nonzero) value while the test statistic
for the overall model structure remains at Tml = 2.073.

Table 3. Estimates (Est) of the path coefficient, its standard deviation (SD) and the
corresponding signal-to-noise ratio (SNR) by SEM, factor-score (FS) regression and
equally-weighted-composite (EWC) regression for the relationship ξc → ξo.

Method Identification Est SD SNR

SEM λc1 = 1.0, λo1 = 1.0 0.656 1.101 0.596
λc1 = 1.0, λo2 = 1.0 0.767 1.433 0.535
λc1 = 1.0, λo3 = 1.0 0.835 1.614 0.517
λc2 = 1.0, λo1 = 1.0 0.774 1.266 0.612
λc2 = 1.0, λo2 = 1.0 0.905 1.656 0.546
λc2 = 1.0, λo3 = 1.0 0.986 1.868 0.528
ϕc = 1.0, λo1 = 1.0 8.040 10.424 0.771
ϕc = 1.0, λo2 = 1.0 9.395 14.421 0.651
ϕc = 1.0, λo3 = 1.0 10.235 16.500 0.620

FS-reg λc1 = 1.0, λo1 = 1.0
BFS(ξc) & BFS(ξo) 0.475 0.549 0.865
RFS(ξc) & RFS(ξo) 0.588 0.680 0.865
BFS(ξc) & RFS(ξo) 0.425 0.492 0.865
RFS(ξc) & BFS(ξo) 0.656 0.759 0.865
ϕc = 1.0, λo1 = 1.0
BFS(ξc) & BFS(ξo) 5.821 6.732 0.865
RFS(ξc) & RFS(ξo) 7.201 8.328 0.865
BFS(ξc) & RFS(ξo) 5.213 6.029 0.865
RFS(ξc) & BFS(ξo) 8.040 9.299 0.865

EWC-reg sum(ξc) & sum(ξo) 0.824 1.128 0.730
ave(ξc) & ave(ξo) 0.549 0.752 0.730
sum(ξc) & ave(ξo) 0.275 0.376 0.730
ave(ξc) & sum(ξo) 1.648 2.257 0.730

Note. BFS=Bartlett-factor score, RFS=regression-factor score; sum=sum score,
ave=average score; the estimate with the largest SNR under SEM is in bold while
the one with the smallest SNR is underlined.

In Tables 2 and 3, the largest SNR under SEM was put in bold and the
smallest was underlined. The largest SNR in Table 2 corresponds to the condition
when both ξo and ξc are anchored by the most reliable indicators, whereas the
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largest SNR in Table 3 corresponds to the condition when ξc is scaled by ϕc =
1.0. In both Tables 2 and 3, the smallest SNR under SEM corresponds to the
conditions when both ξo and ξc are anchored by the least reliable indicators.

The middle panel of Table 2 contains the estimates of γ∗co for the first re-
gression model in Equation (8), where ξ̂o and ξ̂c are factor scores computed
following the NML estimates of the parameters under the identification rules
λo1 = λc1 = 1.0 and ϕo = λc1 = 1.0, respectively. Parallel results for the second
regression model in Equation (8) are displayed in the middle panel of Table 3. In
particular, the SNRs by the LS method for the two regression models in Equa-
tion (8) have the same value. To save space, we did not include the results of FS
regression corresponding to all sets of scalings of the two latent variables, while
their values of the SNR remain to be 0.865. For each identification condition,
there is also a γ̂∗ that has the same value as its SEM counterpart (i.e., 1.019 and
10.019 in Table 2, and 0.656 and 8.040 in Table 3), verifying the noted result by
Skrondal and Laake (2001).

The lower panels of Tables 2 and 3 contain the LS estimates for the regression
models in Equation (8) when ξ̂o and ξ̂c are the sum and/or average scores. They
are denoted by EWC regression (EWC-reg) in the tables. Clearly, the values of
the estimates of γ∗co and γ∗oc for the regression models in Equation (8) depend on
the scales of the composites and so do their corresponding SDs. However, unlike
SEM, the values of the SNR (as well as the corresponding z-statistic) under
FS regression or EWC regression remain the same across different scalings. Note
that the SNRs under EWC regression are smaller than those under FS regression,
because the sum scores are not as reliable as the factor scores.

In Table 2, all the eight SNRs for γ̂ by SEM are smaller than those for γ̂∗

by EWC regression and by FS regression. In Table 3, all the nine SNRs for γ̂
by SEM are smaller than that for γ̂∗ by FS regression; and only one SNR for
γ̂ by SEM is larger than that for γ̂∗ by EWC regression. Thus, using SNR as
a measure for the efficiency of parameter estimates, among the 17 options for
identifying the two SEM models, only in one option SEM outperforms EWC
regression. None of the 17 SEM identification options yields a greater SNR than
FS regression.

Results in Tables 2 and 3 also illustrate the fact that an LS estimate under
regression analysis with weighted composites does not have to be smaller than
its counterpart under SEM. Another interesting fact is that, unlike in regression
analysis under which the SNRs for the coefficients of x → y and y → x are the
same, the SNR under SEM differentiates the path coefficients between ξo → ξc
and ξc → ξo even if the two latent variables are scaled by the same set of anchors
(e.g., λc1 = λo1 = 1.0).

The results for FS regression in Tables 2 and 3 were obtained by treating
the factor scores as the observed variables, which is widely used in practice
(DiStefano, Zhu, & Mindrila, 2009; Widaman & Revelle, 2022). But parameter
estimates used to compute the factor scores contain sampling errors, which affect
the SEs of the resulting γ̂∗. Results in Yuan and Fang (2023b) indicate that
the SEs of the FS regression coefficients by considering the sampling errors in
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the estimated weights tend to be smaller than those by treating weights as
being given, and FS regression may become even more powerful in detecting the
existence of a relationship if the sampling errors in weights are accounted.

5.2 Example 2

Data Table 2 of Weston and Gore (2006) contains a sample covariance matrix
for a dataset with N = 403 cases and p = 12 variables. The dataset was part of a
survey of college students who participated in a vocational psychology research
project. With three indicators for each construct, the 12 variables are respectively
measures of 1) self-efficacy beliefs, 2) outcome expectations, 3) career-related
interests, and 4) occupational considerations. Weston and Gore Jr considered
two structural models. Deng and Yuan (2023) compared the values of z-statistics
of parameter estimates for each model by different methods, where each latent
variable was scaled by only one option. We consider only one of their models,
and our purpose here is to see how the SNRs react to different options for scaling
the latent variables.

Model The path diagram in Figure 2 corresponds to the first model of Weston
and Gore (2006), which posits that the effect of self-efficacy beliefs on career-
related interests is partially mediated by outcome expectations, while the effect
of self-efficacy beliefs on occupational considerations is completely through the
two mediator variables (outcome expectations & career-related interests). The
structural model has four path coefficients: γ11, γ21, β21, β32.

For each latent variable in Figure 2, we can select one of the three factor
loadings and fix it at 1.0 to anchor its scale. So by factor loadings alone there
are 34 = 81 different sets of scalings to identify the model. For the independent
latent variable self-efficacy beliefs (ξ1), we can also fix its variance at 1.0, which
provides additional 33 = 27 different sets of scalings to identify the model. With
a total of 81+27 = 108 ways of model identification, we will only study a subset
of them to illustrate our point, and the selected subsets allow us to see how and
what parameters are affected by the properties of the anchors.

Results Letting ϕ11 = Var(ξ1) = 1.0 and λy11 = λy42 = λy73 = 1.0, fitting
the model in Figure 2 to the vocational-psychology dataset by NML results in
Tml = 416.061, which corresponds to a p-value that is essentially 0 when referred
to χ2

50. With CFI=.913, and RMSEA=.135, the model might not be regarded
as fitting the data adequately although it is substantively derived (see Weston
and Gore, 2006 and references therein). Such a discrepancy between theory and
goodness of model-fit is not unusual in empirical modeling, reflecting our earlier
observation that the theoretical constructs may not be perfectly7 represented by

7 When letting all the four latent variables be freely correlated in Figure 2, we have
Tml = 361.848, which corresponds to a p-value that is essentially 0 when referred to
χ2
48, indicating that discrepancy between the theoretical constructs and the latent

variables also exists in the measurement model.
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Figure 2. A mediated model for self-efficacy belief on occupational considerations (We-
ston and Gore, 2006, N = 403).

Table 4. Parameter estimates (Est), their SEs (SE) and z-statistics for the model in
Figure 2 (p = 12, N = 403, Tml = 416.061, df = 50, p-value=.000; RMSEA=.135, and
CFI=.913). The right column is the reliability (ρ) of the 12 indicators.

Param. Est SE z Param. Est SE z Rel Est

λx1,1 2.381 0.111 21.467 ψx1 1.840 0.179 10.264 ρx1 0.755
λx2,1 2.365 0.108 21.903 ψx2 1.628 0.167 9.768 ρx2 0.775
λx3,1 2.402 0.104 23.145 ψx3 1.186 0.148 8.013 ρx3 0.830
λy1,1 1.000 ψy1 0.882 0.078 11.318 ρy1 0.808
λy2,1 0.976 0.030 32.930 ψy2 0.325 0.048 6.827 ρy2 0.916
λy3,1 0.993 0.032 30.628 ψy3 0.580 0.060 9.621 ρy3 0.863
λy4,2 1.000 ψy4 0.044 0.003 12.853 ρy4 0.394
λy5,2 1.144 0.094 12.229 ψy5 0.027 0.002 11.300 ρy5 0.580
λy6,2 1.011 0.098 10.326 ψy6 0.049 0.004 12.974 ρy6 0.372
λy7,3 1.000 ψy7 0.795 0.100 7.918 ρy7 0.835
λy8,3 0.963 0.040 24.212 ψy8 1.350 0.126 10.705 ρy8 0.734
λy9,3 0.795 0.033 23.934 ψy9 0.962 0.089 10.867 ρy9 0.725
γ11 1.186 0.096 12.364
γ21 0.046 0.009 5.161 σ2

ζ1
2.302 0.211 10.913

β21 0.057 0.006 10.003 σ2
ζ2

0.008 0.001 5.542
β32 10.368 0.822 12.615 σ2

ζ3
0.964 0.151 6.396
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Table 5. Values of the signal-to-noise ratio (SNR) of γ̂11, γ̂21, β̂21 and β̂32 for the
model in Figure 2 when ξ1, η1, η2, and η3 are anchored by fixing one of their loadings
(λ) at 1.0, or by letting ϕ11 = Var(ξ1) = 1.0.

anchors of SNR anchors of SNR

ξ1, η1, η2, η3 γ̂11 γ̂21 β̂21 β̂32 η1, η2, η3 γ̂11 γ̂21 β̂21 β̂32
x1, y1, y4, y7 0.631 0.258 0.499 0.629 (ϕ11 = 1.0)

x2, y1, y4, y7 0.636 0.259 0.499 0.629
x3, y1, y4, y7 0.646 0.259 0.499 0.629 y1, y4, y7 0.617 0.257 0.499 0.629

x1, y2, y4, y7 0.652 0.258 0.507 0.629 y2, y4, y7 0.636 0.257 0.507 0.629
x1, y3, y4, y7 0.642 0.258 0.504 0.629 y3, y4, y7 0.626 0.257 0.504 0.629
x1, y1, y5, y7 0.631 0.267 0.569 0.785 y1, y5, y7 0.617 0.266 0.569 0.785
x1, y1, y6, y7 0.631 0.257 0.489 0.609 y1, y6, y7 0.617 0.256 0.489 0.609
x1, y1, y4, y8 0.631 0.258 0.499 0.607 y1, y4, y8 0.617 0.257 0.499 0.607
x1, y1, y4, y9 0.631 0.258 0.499 0.605 y1, y4, y9 0.617 0.257 0.499 0.605

x2, y2, y5, y8 0.656 0.267 0.582 0.743

x1, y2, y5, y8 0.652 0.267 0.582 0.743
x3, y2, y5, y8 0.668 0.268 0.582 0.743 y2, y5, y8 0.636 0.266 0.582 0.743

x2, y1, y5, y8 0.636 0.267 0.569 0.743 y1, y5, y8 0.617 0.266 0.569 0.743
x2, y3, y5, y8 0.646 0.267 0.577 0.743 y3, y5, y8 0.626 0.266 0.577 0.743
x2, y2, y4, y8 0.656 0.259 0.507 0.607 y2, y4, y8 0.636 0.257 0.507 0.607
x2, y2, y6, y8 0.656 0.257 0.496 0.589 y2, y6, y8 0.636 0.256 0.496 0.589
x2, y2, y5, y7 0.656 0.267 0.582 0.785 y2, y5, y7 0.636 0.266 0.582 0.785
x2, y2, y5, y9 0.656 0.267 0.582 0.739 y2, y5, y9 0.636 0.266 0.582 0.739

x3, y3, y6, y9 0.657 0.258 0.493 0.587

x1, y3, y6, y9 0.642 0.257 0.493 0.587
x2, y3, y6, y9 0.646 0.257 0.493 0.587 y3, y6, y9 0.626 0.256 0.493 0.587

x3, y1, y6, y9 0.646 0.258 0.489 0.587 y1, y6, y9 0.617 0.256 0.489 0.587
x3, y2, y6, y9 0.668 0.258 0.496 0.587 y2, y6, y9 0.636 0.256 0.496 0.587
x3, y3, y4, y9 0.657 0.259 0.504 0.605 y3, y4, y9 0.626 0.257 0.504 0.605
x3, y3, y5, y9 0.657 0.268 0.577 0.739 y3, y5, y9 0.626 0.266 0.577 0.739
x3, y3, y6, y7 0.657 0.258 0.493 0.609 y3, y6, y7 0.626 0.256 0.493 0.609
x3, y3, y6, y8 0.657 0.258 0.493 0.589 y3, y6, y8 0.626 0.256 0.493 0.589

Note. The underlined row in each block is for reference against which the other lines
of the block are compared.
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the Greek letters in Figure 2. But the discrepancy between the model and data
has little to do with our illustration, since the results are essentially the same
even if the model fits the data perfectly (i.e., letting the sample covariance matrix
equal the model implied covariance matrix). For reference, Table 4 contains the
estimates of the factor loadings (λ), error variances (ψ), the path coefficients of
the structural model, and the variances of the three prediction errors (σ2

ζ ). The
last column of Table 4 indicate that x3 is the most reliable indicator for ξ1 while
y2, y5 and y7 are the most reliable indicators for η1, η2 and η3, respectively. All
the parameter estimates in Table 4 are statistically significant at the level of .05.

Table 5 contains the values of the SNR for the four path coefficients under 48
different identification conditions (out of 108 options). Results on the left side
of the table are obtained when one of the loadings of ξ1 is fixed at 1.0, while
those on the right side are obtained by letting ϕ11 = Var(ξ1) = 1.0. Note that
the values of the four parameter estimates vary across the 48 sets of scalings,
while Tml = 416.061. Our main interest with this example is the pattern of the
SNRs while they vary with the parameter estimates when the latent variables
are scaled differently.

There are 6 blocks of results in Table 5, and each block has one set of scalings
underlined, which serves the condition for reference. In particular, for each set
of scalings within a given block, only one of the four latent variables is rescaled
compared to the reference condition. The results in Table 5 exhibit the following
patterns.

1) When ξ1 is anchored by x1, x2, x3 or by ϕ11 = 1.0, the SNRs for β̂21 and β̂32
are not affected by the scale change of ξ1. In addition, results not included
in the table also indicate that the values of β̂21 and β̂32 as well as their SDs
are not affected by the scale change of ξ1 either. This is because the paths
represented by β21 and β32 are not directly connected with ξ1 in Figure
2. However, the SNRs or equivalently the z-statistics for both γ̂11 and γ̂21
become greater when ξ1 is anchored by a more reliable indicator.

2) In Figure 2, the paths represented by γ21 and β32 are not directly connected
with η1. When η1 is anchored by different indicators, the SNRs for γ̂21 and
β̂32 are not affected. However, the SNRs for γ̂11 and β̂21 become greater as
the anchor of η1 is more reliable.

3) In Figure 2, the path represented by γ11 is not directly connected with η2.
When η2 is anchored by different indicators, the SNR for γ̂11 is not affected
by the scale change of η2. However, the SNRs for γ̂21, β̂21 and β̂32 become
greater as η2 is anchored by a more reliable indicator.

4) For the same reason, the SNRs for γ̂11, γ̂21 and β̂21 are not affected by the

scale change of η3. The SNR for β̂32 becomes greater as η3 is anchored by a
more reliable indicator.

The results in Table 5 suggested that, the SNR or z-statistic for a parameter esti-
mate is invariant to the scale changes of the latent variables that are not directly
connected with the path that the parameter represents. In contrast, the SNR
for a parameter estimate becomes greater when the directly connected latent
variables are anchored by more reliable indicators. In particular, the greatest
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SNRs for γ̂11, γ̂21, β̂21 and γ̂32 are respectively SNRγ11
= .668, SNRγ21

= .268,
SNRβ21

= .582, and SNRβ32
= .785. They are simultaneously obtained when all

the latent variables are anchored by indicators with the greatest reliability (i.e.,
x3 for ξ1, y2 for η1, y5 for η2, and y7 for η3).

Note that, while the values of γ̂, β̂ and SNR change when different indicators
are used as anchors, the value of the SNR under SEM will remain the same once
the anchors are chosen regardless of the particular values of the factor loadings.
That is, λo1 = 1.0 or λo1 = 2.3 leads to the same SNR in Tables 2 and 3.
Similarly, the value of the SNR (or z-statistic) remains the same once the scale
of ξc is determined by fixing the value of ϕc regardless of its particular value,
e.g., ϕc = 1.0 or ϕc = 3.5 corresponds to the same SNR. More systematic results
in this direction are presented in Yuan, Ling, and Zhang (2024).

The results of the two examples provide the fact for answering questions Q1,
Q2 and Q3.

6 Answers to Questions Q1 to Q5

Our analysis and results might have already answered the questions posed in the
introduction of the article. As a summary, we will answer them directly in this
section. For clarity, we will also include the original questions.
Q1. Under SEM, what is the effect of different scaling options on the accuracy of
parameter estimates and the related z-statistics? How can we use the information
to serve our purpose?

When a latent variable is anchored by an indicator with greater reliability,
the SNRs and consequently the z-statistics for path coefficients that are directly
related to the latent variables are expected to be greater. However, estimates
of the path coefficients that are not directly related to the latent variables are
not affected nor their SEs. Also, scaling an independent latent variable by fixing
its variance at 1.0 may result in even greater SNRs. Thus, under SEM, we can
obtain more efficient parameter estimates of path coefficients by selecting more
reliable anchors for latent variables.
Q2. Do measurement errors cause attenuated or biased estimates for the LS
method of regression analysis with weighted composites?

Measurement errors alone do not cause biased or attenuated regression coef-
ficients. It is the artificially chosen scales that make the path coefficients under
regression analysis different from those under SEM.
Q3. Does SEM yield more accurate parameter estimates than LS regression with
weighted composites?

SEM does not yield more accurate parameter estimates than LS regression
with weighted composites. When measured by SNR, it is more likely the other
way around. That is, even regression analysis with EWCs may yield more efficient
estimates of path coefficients than SEM, especially when the indicators for each
latent variable are approximately parallel.
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Q4. Between SEM and regression analysis with weighted composites, to what
level the estimated regression coefficients can be compared with their SEM coun-
terparts?

There are three levels that the path coefficients under regression analysis
can be compared with their counterparts under SEM: (1) γw = 0 if and only if
γ = 0, where γ = (γ1, γ2, . . . , γp)

′ and γw = (γw1, γw2, . . . , γwp)
′ are respectively

the path coefficients of a given dependent variable under SEM and regression
analysis with weighted composites. Inference for one set of parameters can be
done by a statistical test on the other set of parameters, simultaneously. (2)
γ = γw when a BFS is used as the dependent variable and the joint RFSs
are used as the independent variables in FS regression. Then, the two sets of
parameters as well as their respective estimates can be substituted for each
other. (3) Regardless of the scales chosen for the variables under each modeling
technique, the size of the multivariate SNR determines the statistical power
in testing γ = 0, and FS regression is expected to correspond to a greater
multivariate SNR and consequently to be more powerful than SEM.
Q5. Does standardization advance result interpretation or only facilitate model
identification?

Whether the measurements have predefined metrics or not, standardization
only facilitates model identification. Unless standard deviation is a widely used
and well-understood unit in a given context, standardization does not advance
our understanding nor facilitates interpretation of the parameter estimates in a
SEM or regression model.

7 Discussion and Conclusion

We studied several widely circulated notions in modeling data with measure-
ment errors but without predefined metrics. While modeling such data poses
many challenges, SEM still offers important information that regression analysis
with composite scores is unable to provide. In particular, SEM gives a platform
to assess the goodness of the overall model structure, unidimensionality of dif-
ferent subscales, individual indicator reliability, and measurement invariance for
group comparison, etc. However, while inference on parameter estimates under
SEM can be statistically sound, substantive interpretation on the size of a path
coefficient becomes a challenge if the measurements do not have predefined or
well-understood scales to start with.

Because path coefficients under both SEM and regression analysis with com-
posites depend on subjectively assigned scales of the involved variables, there is
no point to demand regression analysis to yield estimates that are consistent with
those under SEM. For parameters whose population values depend on subjec-
tively assigned scales, a natural criterion for comparing their estimates is SNR,
which is parallel to Cohen’s d and serves as an index for the efficiency of the
estimate. When all the path coefficients of a dependent variable are considered
simultaneously, FS regression is expected to correspond to a greater (multivari-
ate) SNR than SEM. If the indicators for each latent variable do not greatly
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deviate from parallel, EWC regression is also expected to outperform SEM with
respect to efficiency of the estimated regression coefficients.

In addition to numerical differences between estimates by different methods,
parameters under SEM are to govern the relationship of variables representing
the population, where individuals are treated equally (i.e., a random representa-
tion). In practice, individuals with greater pretest scores are expected to perform
better on the outcome variable, and parameters under regression analysis with
weighted composites are to govern such a relationship. In particular, conditional
on the metrics of the observed and latent variables, the predicted values ac-
cording to the uncorrected LS estimates of the regression model still have the
smallest MSE even if the target is the latent-outcome variable and the pretest
scores are not error-free. But the SNR and R2 of the regression model as well
as the MSE of the predicted value are related to the size of measurement er-
rors. More reliable composites correspond to more accurate estimates of path
coefficients, greater R2 values, and smaller prediction errors.

We have shown that standardization of latent or manifest variables is use-
ful for model identification, not necessarily advancing our understanding of the
relationship among the involved variables nor better interpretation of the pa-
rameters of the model either. That said, we do not exclude a context under
which the distribution of a variable can be well understood in a standardized
scale with mean 0 and variance 1.0. For example, we might transform the distri-
bution of IQ (ξ) by zξ = (ξ − 100)/15 and the value of zξ allows us to judge the
standing of the corresponding ξ in percentile according to the standard normal
distribution N(0, 1). However, this might belong to the case where the scale of
the measurement was known in advance.

Bias can be easily defined and explained for parameter estimates in mod-
eling variables that have predefined metrics. Empirical bias can also be easily
evaluated in Monte Carlo studies even when data do not have predefined met-
rics. However, it is not clear how to interpret bias substantively if the scales
of the variables need to be subjectively assigned. In particular, two researchers
who conduct SEM analyses can have very different parameter estimates for the
same path coefficient while they both are consistent/unbiased. Similarly, one re-
searcher can choose the sum scores while another can choose the average scores
in regression analyses, and they have identical t-statistics and R2. But their pa-
rameter estimates are different. More generally, suppose Researcher A gets an
estimate γ̂a while Researcher B get an estimator γ̂b = cγ̂a, where c > 0 is a con-
stant. We are unable to compare the two estimators with respect to bias since
(if needed) Researcher B can always rescale his estimator to γ̃b = γ̂b/c if the
involved variables do not have predefined metrics. Regardless, we recommend
the one with a greater SNR, and γ̃b and γ̂b are equivalent in the sense that they
have the same SNR.

The first take-home message from this article is that sizes of parameter esti-
mates and their SEs are not meaningful quantities for models involving (latent or
manifest) variables that do not have predefined metrics, and SNR is a logical and
also a natural measure of efficiency of parameter estimates. For the same rea-
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son, the MSE of parameter estimates is not a logical criterion to compare across
methods unless the population values of the parameters are held constant among
the methods or when all the involved variables are on the same metrics. When
the estimands become equal, the most efficient and accurate estimates have the
greatest SNR. The 2nd take-home message is that standardization does not ad-
vance interpretation but offers a way to avoid dealing with the issues of lack of
metrics. Effort needs to be made to develop substantively rationalized metrics
under which parameter estimates are interpreted.
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