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to Handle Complex Nonlinear Trajectories
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Abstract. Bayesian growth curve modeling is a popular method for
studying longitudinal data. In this study, we discuss a flexible extension,
the Bayesian piecewise growth curve model (BPGCM), which allows the
researcher to break up a trajectory into phases joined at change points
called knots. By fitting BPGCMs, the researcher can specify three or
more phases of growth without concern for model identification. Our goal
is to provide substantive researchers with a guide for implementing this
important class of models. We present a simple application of Bayesian
linear BPGCMs to childrens’ math achievement. Our tutorial includes
Mplus code, strategies for specifying knots, and how to interpret model
selection and fit indices. Extensions of the model are discussed.

Keywords: Piecewise Growth Curve Models · Bayesian SEM · Model
Selection

1 Introduction

Developmental researchers often study within-person change over time to better
understand a variety of dynamic processes. For example, Marksxand Coll (2007)
contrasted growth in reading and math skills in children across four major ethnic
groups from kindergarten through third grade in order to highlight the needs of
American Indian and Alaska Native youth. Seiderxet al. (2019) documented the
development of Black and Latino high school students’ beliefs about poverty and
racism to examine the role of schooling and how these beliefs relate to each other.
Finally, Shono, Edwards, Ames,xand Stacy (2018) captured change in cannabis
use across teen years as a component of validity testing a new cannabis-related
word association test. These examples highlight a wide range of topics within
developmental research.

For many developmental research questions, choosing an appropriate model
to summarize the trajectory of development over time is crucial. Longitudinal
methods typically describe within-person change and explain between-person
differences in that change. There are many longitudinal models available, and a
truly helpful model will guide the researcher to evaluate their research questions
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and meaningfully communicate their findings. Of the many different model forms
that researchers can choose from, the growth curve model (GCM) is perhaps one
of the more beneficial for tracking change over multiple time-points. The GCM
uses repeated observations to estimate the latent population trajectory. Through
GCMs, researchers can summarize change over time or test hypotheses about
specific aspects of growth (e.g., the rate of change). In addition to summarizing
within-person change, GCMs also allow researchers to examine between-person
variability in development.

The GCM has many forms, and the simplest captures linear change over time
(called a “linear GCM”). Researchers using a linear GCM can describe change
with growth parameters that are straightforward to interpret: a mean intercept
and a mean slope. For example, Marksxand Coll (2007) examined differences in
reading development by interpreting the initial level of reading (i.e., the inter-
cept) and the average rate of change (i.e., the slope) across ethnic groups. The
linear GCM is useful in many research scenarios, but it also has some limitations
that applied researchers should consider while selecting a model. The main lim-
itation is that it assumes the true growth trajectory is a straight line, and can
not capture nonlinear changes that may be of substantive importance.

In some cases examining more dynamic processes, this linear assumption is
too restrictive and will not capture the substantive changes of most interest.
Development may follow a curve or other irregular deviations from linearity. For
example, Zimmer-Gembeckxet al. (2021) found the development of social anxi-
ety in adolescents was best represented by a quadratic GCM. Vargas Lascano,
Galambos, Krahn,xand Lachman (2015) found that a cubic model best fit the
shifts in perceived control in adults aged 18 to 43. In aging adults across the last
16 years of life, Schillin, Deeg,xand Huisman (2018) found that the decrease in
positive affect was best captured by an exponential GCM. The developmental
trajectories in these studies were not linear, and so the researchers used GCMs
that assumed a nonlinear growth trajectory.

An alternative to imposing any assumptions about the shape of the overall
trajectory (e.g., a quadratic growth model) is to instead capture the trajec-
tory with several linear segments using a linear piecewise growth curve model
(PGCM; Meredithx& Tisak, 1990). The word “piecewise” indicates that the lin-
ear slope may be different across different “pieces” of the study period, which
gives the researcher greater flexibility while maintaining simple parameters. For
example, Finkel, Reynolds, McArdle,xand Gatz (2003) used a linear PGCM to
capture cognitive decline in adults over 60 years of age, estimating different rates
of change for observations before and after age 65. This approach allowed them
to show that aging adults under 65 improved each year on certain cognitive
measures, but those scores declined after age 65. More recently, Gaudreau, Lou-
vet,xand Kljajic (2018) used a piecewise approach to capture the development
of adolescents’ performance in gymnastics classes, which decreased for the first
three classes before showing consistent improvement in the last three classes
of the study period. Taking a piecewise approach allowed these researchers to
capture unique shifts in the direction of development over time.
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These researchers used the simplest piecewise model: a linear-linear PGCM.
This type of PGCM is useful for capturing a nonlinear trajectory with a single
change in direction such as the switch from declining to improving performance in
gymnastics (as shown in Gaudreauxet al., 2018). A linear-linear PGCM uses two
phases of growth, but PGCMs with additional phases are possible with enough
measurement occasions. For growth trajectories with more complex nonlinearity
(i.e., growth with more than one change in direction), researchers may wish
to use additional phases. In the frequentist framework, the number of phases
is somewhat restricted in order to maintain model identification. One way to
work around this restriction is to estimate PGCMs in the Bayesian estimation
framework, an alternative approach that can be used to estimate some non-
identified models. For PGCMs, this allows additional phases of growth.

In addition to allowing more phases of growth in PGCMs, Bayesian esti-
mation has been shown to handle complex models with fewer estimation issues
(e.g., convergence, biased estimates). Instead of relying solely on observed data
and a likelihood function, Bayesian methods also incorporate prior information
into estimation using a prior distribution. Wangxand McArdle (2008) found that
Bayesian estimation fairly accurately captures parameters in nonlinear piecewise
growth models, and Depaoli (2013) found that Bayesian growth mixture models
estimated using informative priors yielded minimal bias in parameter estimates.
Using Bayesian estimation methods with thoughtfully selected prior distribu-
tions can help to accurately recover model parameters.

Bayesian PGCMs extend conventionally-taught linear growth models by al-
tering both the functional form of growth and the estimation framework. This
is an active area of methodological development, with recent extensions that
enable the direct estimation of knot placement (Kohli, Hughes, Wang, Zoplu-
oglu,x& Davison, 2015; Lock, Kohli,x& Bose, 2018), incorporation of covariates
(Lamm, 2022), and capturing the interdependent nature of bivariate piecewise
trajectories (Peralta, Kohli, Lock,x& Davison, 2022). Our intended scope for the
current paper is to provide an introductory, hands-on walkthrough to the novice
data scientist or graduate student. That is, our tutorial is written to bridge the
knowledge gap between linear growth curve models in the frequentist framework
and more complex piecewise models estimated in the Bayesian framework. Given
this audience, the specific goals of the current paper are:

– Present readers to Bayesian PGCMs as a flexible way to capture complex
nonlinearity.

– Thoroughly illustrate Bayesian PGCMs with an empirical dataset, including
how to select priors.

– Provide readers with additional resources to expand on this tutorial.

To achieve these goals, the remaining sections of the paper are structured as
follows. First, we describe linear GCMs and how linear PGCMs are a simple ex-
tension. We also highlight how to extend PGCMs beyond two phases of growth.
Second, we introduce Bayesian estimation. Our explanation describes some ben-
efits of Bayesian estimation, key terminology, how to specify priors, and how the
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Bayesian framework allows additional phases of growth. Third, we present an
illustration of Bayesian PGCMs applied to nonlinear growth in childrens’ math
achievement. This demonstration provides the syntax to implement the model in
Mplus, illustrates how to use comparative model indices to select the best model,
and shows how to interpret model results. Finally, we discuss the limitations of
linear PGCMs and possible extensions.

2 Piecewise Growth Curve Models

The main goal of a growth model is to summarize many repeated within-person
observations with a few growth parameters. The general form of a growth model
is

yj = g(tj) + ej , (1)

which says that the jth measurement of the variable y is the sum of some function
of time at the jth measurement g(tj) and timing-specific measurement error ej .
The j subscript indicates that the outcome, time, and error can vary across
all j = 1, 2, ..., J measurement occasions. In the following sections, we describe
different specifications of g(tj). Next we describe a linear GCM, how GCMs can
be adapted for nonlinearity, a two-phase linear PGCM, and linear PGCMs with
three or more phases. Finally, we connect these models to Mplus syntax.

2.1 Linear GCM

A linear GCM assumes the growth function g(tj) is a linear function of time t :

g(tj) = β0 + β1tj , (2)

where β0 represents the intercept and β1 represents the expected rate of change
for every 1-unit increase in time tj

1. We refer to these coefficients as growth
parameters. Researchers are typically interested in estimating linear growth pa-
rameters using a sample of i = 1, 2, ..., N persons with repeated measurements
at J different time points. To clarify that we are interested in estimating person-
specific outcomes as a function of person-specific time, we add an i subscript to
g(tj) in Equation (equation2). The linear growth function can be given by

g(tij) = β0 + β1tij , (3)

1 The coding and interpretation of tj is determined by the researcher. For example,
tj may refer to the number of weeks after the study began, or the number of months
after an intervention. If the measurements were not spaced consistently, this can be
reflected in the observed values of tj . For example, a study with measurements in
January, February, April, and July could code time as the number of months since the
first measurement occasion so that t1 = 0, t2 = 1, t3 = 3, and t4 = 6. In this case, the
intercept is placed at the first measurement occasion, but the researcher may choose a
different placement. For example, if an intervention occurred in April, the researcher
may choose to place the intercept there by recoding tj as t1 = −3, t2 = −2, t3 = 0,
and t4 = 3. Thoughtfully specifying time ensures that the intercept and slope can
be interpreted in a meaningful way.
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where the growth function of person i’s time at measurement occasion j is a
linear function with intercept β0 and slope β1. Plugging in this growth function
and adding an i subscript to Equation (equation1) gives

yij = β0 + β1tij + eij , (4)

where yij refers to the outcome variable for person i at time j, tij is person
i’s time measured at time point j, and eij is unexplained error for person i
at time point j. We assume that eij is normally distributed around zero, or
eij ∼ N(0, σ2

ej). The error variance parameter σ2
ej represents variability in the

observed data at time j that is unexplained by the model. The two coefficients in
this model, β0 and β1, refer to growth parameters that are held constant across
persons. However, there is often some between-person fluctuations in the growth
parameters. Imposing the same intercept and slope on each participant in the
sample can lead to higher measurement error eij . To prevent this, we introduce
a person-specific growth function, di(tij). We define di(tij) as,

di(tij) = δ0i + δ1itij , (5)

where δ0i and δ1i refer to a person-specific intercept and slope, respectively. We
assume the values of δ0i are distributed normally with a mean of β0 and that
δ1i is normally distributed around β1. These assumptions can be summarized in
the following way: [

δ0
δ1

]
∼MVN

([
β0
β1

]
,Σδ

)
, (6)

where Σδ is a 2 × 2 covariance matrix. The diagonal elements of this matrix
describe the variance of the intercept and variance of the slope. The off-diagonal
element describes the covariance of the intercept and slope. These variances can
have interesting substantive meaning. For example, if a researcher studied the
number of words children learn from age two to five and found the variance of the
intercept is smaller than the variance of the slope, this suggests that the number
of words children knew at age two varies less than how many new words children
learned per year. By replacing g(tj) with di(tij) in Equation (equation1), we can
write the full linear GCM,

yij = δ0i + δ1itij + eij , (7)

which describes the outcome variable yij as a function of time tij and person i’s
growth parameters δ0i and δ1i.

2.2 Capturing Nonlinearity

Linear GCMs assume change over time can be captured with a straight line,
but in some cases this linear assumption is too restrictive. Change in a variable
over time may follow a curve or have other deviations from linear change. When
change is not linear, the researcher’s analysis plan must transition to capture



6 L. Marvin et al.

nonlinearity. There are many ways to model nonlinearity, but these extensions
may have limited applicability. For example, a researcher may add a third term
such as “+δ2it

2
ij” to Equation (equation7) to estimate a quadratic coefficient δ2i

for trajectories shaped like a parabola. Researchers can also alter linear GCM
specifications in more complex ways to capture cyclical growth with a sine func-
tion (e.g. Bollenx& Curran, 2006) or S-shaped growth with a Gompertz curve
(e.g. Grimmx& Ram, 2009). The parameters estimated by these models are
shape-specific and some may be challenging to substantively interpret. When
the goal of the model is simply to capture the trajectory, this is not a problem.
However, when the researcher wants a simpler interpretation of growth param-
eters, an alternative method is to break up the trajectory into linear phases as
shown in Figure figure1. These phases comprise a “piecewise” approach to mod-
eling nonlinear growth patterns. Using this piecewise approach allows a GCM to
capture nonlinear growth while maintaining the simple interpretation of linear
slope parameters.

The simplest piecewise model uses two phases to capture growth with a single
change in direction. The time when one growth phase switches to another is
called a knot, denoted k. The knot is placed at a measurement occasion chosen
by the researcher. We adapt the growth function in Equation (equation5) to
include a change in slope at k:

di(tij) = δ0i + δ1itij + δ2i(tij − k)+. (8)

Here, δ2i represents the person-specific change in slope that occurs at values
of tij after the knot. Similar to the other coefficients, δ2i has a mean of β2
and information about its variance and covariances are contained in a 3 × 3
covariance matrix Σδ. To implement a change in slope for some values of tij but
not others, we introduce a new term, (tij − k)+, which represents “the positive
part of tij − k”. This is defined as,

(tij − k)+ =

{
0 if tij ≤ k

tij − k if tij > k,
(9)

which means the term (tij − k)+ only appears when tij − k positive. This means
in Equation (equation8), person i’s linear slope when t ≤ k is δ1i, but the slope
for t > k is δ1i+δ2i. Adding this to Equation (equation7) gives the linear PGCM
with one knot:

yij = δ0i + δ1itij + δ2i(tij − k)+ + eij . (10)

Here, the coefficients δ0i and δ1i describe person-specific growth parameters in
the first phase of growth. The person-specific change in slope at k is described
by δ2i. The last term, eij , describes leftover error that is not captured by di(tij).
To illustrate this, consider Figure figure1, which shows a linear GCM in part
(a) and a linear PGCM in part (b). In part (b), there are four measurement
occasions t1 = 0, t2 = 1, t3 = 2, and t4 = 3, and a knot, k = 2. The rate of
growth increases at the knot, which appears visually as a steeper slope from
k = 2 onward.
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Figure 1. Examples of nonlinear development in a generic outcome y. The points
represent simulated data and solid lines represent estimated growth trajectories for
different models. Panel (a) shows a linear growth curve model (GCM) fitted to nonlinear
data; panel (b) shows a linear piecewise growth curve model (PGCM) that divides the
trajectory into two phases joined at a single knot indicated by the vertical dashed line;
panel (c) shows a longer simulated trajectory with more complex nonlinearity that
requires two knots (that is, three phases) to capture.
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2.3 Extending PGCMs to Three or More Phases

In the frequentist framework, extending piecewise models beyond two phases of
growth requires several measurement occasions. For example, Bollenxand Curran
(2006) showed at least five measurement occasions are required to estimate a
two-phase PGCM, and Flora (2008) noted that a three-phase PGCM needs
at least seven measurements. These restrictions ensure the model is identified,
meaning it has enough observed variables to estimate the parameters. A non-
identified model cannot be estimated using frequentist methods. In this section
we describe PGCMs with three or more phases, which traditionally require many
measurement occasions. Later we describe the Bayesian estimation framework,
an alternative approach that can estimate non-identified models.

To create more phases, the researcher must specify more knots. To refer to
M specific knots, we use k1, k2, ..., kM . First, we generalize the person-specific
growth function di(tij) to address more phases of growth:

di(tij) = δ0i + δ1itij +

M∑
m=1

δ(1+m)i(tij − km)+. (11)

The change from δ2i in Equation (equation8) to
∑M
m=1 δ(1+m)i here generalizes

the growth function to handle more than two phases. Each coefficient next to
the summation sign δ2i, δ3i, ..., δ(1+M)i refers to a change in slope that occurs
after the first phase. For example, for a model with M = 5 knots, the slope
in the sixth and final phase of growth would be δ1i + δ2i + ... + δ6i, or δ1i +∑5
m=1 δ(1+m)i. Putting the growth function from Equation (equation11) into

Equation (equation1), we get the full linear PGCM:

yij = δ0i + δ1itij +

M∑
m=1

δ(1+m)i(tij − km)+ + eij . (12)

This model is a generalization of the model shown in Equation (equation10) that
can address two or more phases. The summation describes how the linear slope
of each phase of growth is the sum of multiple coefficients.

To illustrate this concept, see part (c) in Figure figure1. This plot shows
change over six measurements with two knots placed at k1 = 1 and k2 = 3.
Visually, growth appears slow in the first phase, accelerates in the second phase,
then switches to a decline in the third phase. We could specify these knots in
Equation (equation12) in the following way:

yij = δ0i + δ1itij + δ2i(tij − 1)+ + δ3i(tij − 3)+ + eij . (13)

In this model, the general term
∑M
m=1 δ(1+m)i(tij − km)+ has been spelled out

as δ2i(tij − 1)+ + δ3i(tij − 3)+. As before, δ0i and δ1i describe person i ’s growth
trajectory in the first phase of growth, which covers t1 = 0 and t2 = 1. The
second phase of growth extends from the second time point to the fourth, or
1 < t ≤ 3. The rate of change in this phase is δ1i + δ2i. The third phase starts
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at the second knot k2 = 3 and includes the next two time points. This phase of
growth has the slope δ1i + δ2i + δ3i. This is equivalent to δ1i +

∑2
m=1 δ(1+m)i.

Nonlinear trajectories may show complex nonlinearity that does not have
clear phases of growth. In these cases it is not clear how many phases are needed
to capture the trend, or where knots should be placed. There may be multiple
knot specifications that could capture the trajectory, or developmental theories
may disagree on when one phase of growth ends and another begins. In these
situations, a model selection approach can be useful.

Model selection is a method where multiple candidate models are estimated
and compared before selecting the “best” one. The criteria for this selection
is usually one or more model comparison indices, which are often provided by
statistical software. These indices may include model fit indices or model com-
parison indices. Model fit refers to how well an estimated model minimizes error
variance or “fits” the data. Model fit indices are used to evaluate the estimated
model on some index-specific scale. For example, values below 0.05 suggest ex-
cellent fit according to the root mean square error of approximation (RMSEA;
Brownex& Cudeck, 1992; Steigerx& Lind, 1980). Other model fit indices include
the Comparative Fit Index (CFI; Bentler, 1990) and Tucker-Lewis Index (TLI;
Tuckerx& Lewis, 1973). In contrast, model comparison is the task of comparing
two or more models and selecting the model with the best balance of fit and
parsimony.

Model comparison indices may be applied to PGCMs to select the best knot
specification out of several candidate models. Two commonly-used indices are the
Akaike information criterion (AIC; Akaike, 1992) and the Bayesian information
criterion (BIC; Schwarz, 1978). These comparison indices describe the fit of a
model (measured using the loglikelihood) penalized by model complexity (the
number of free parameters in the model). When evaluating candidate models,
the model with the smallest AIC (or BIC) is considered the winning model. For
further information on these and other model comparison indices, we refer the
reader to Nylund, Asparouhov,xand Muthén (2007).

2.4 Notation and Mplus Syntax

Translating linear PGCMs to syntax is relatively straightforward. We start by
showing how to implement the linear model in Equation (equation7) and part
(a) of Figure figure1 in Mplus. In this example, the five variables labelled y1, y2,
y3, y4, and y5 refer to observations of our variable of interest at five different
measurement occasions:

MODEL:

delta_0 delta_1 | y1@0 y2@1 y3@2 y4@3 y5@4;

The MODEL command indicates to Mplus that the following lines of code define
our model. In the next line, delta_0 and delta_1 refer to the growth parameters
we want to estimate: δ0i and δ1i from Equation (equation7). The | symbol means
the intercept and slope on the left should be estimated using the information
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on the right. On the right side of the vertical line, we see five main elements.
Each of these elements contains a y, an @, and a number. Each observation of y
is paired with a value of t (represented by the number for each element). The
@ symbol means that the value of y occurred at a specific time t. For example,
y1@0 indicates that the first measurement occasion y1 occurred when t = 0,
which places the intercept at the beginning of the study period. We extend this
syntax to address two phases of growth by adding a third line to estimate the
change in slope δ2i in Equation (equation10). We can implement the piecewise
model in Figure figure1 part (b), which uses a single knot k = 2, in the following
way:

MODEL:

delta_0 delta_1 | y1@0 y2@1 y3@2 y4@3 y5@4;

delta_0 delta_2 | y1@0 y2@0 y3@0 y4@1 y5@2;

The third line of syntax tells Mplus to estimate a change in slope called delta_2

by pairing each observation of y with the value of (tj − k)+. The delta_0 term
is included to tell Mplus the growth segments are connected, but it does not
mean delta_0 is the intercept of the second segment. As noted in Equation
(equation9), the value of (tj − k)+ is zero when tj ≤ k. As shown in part (b)
Figure figure1, the first three observations are left of or equal to the knot at
k = 2, represented as a dotted line in part (b) of Figure figure1. Piecewise
models like the one shown in part (c) of Figure figure1 are also possible with
additional lines of syntax, and we present examples in the Tutorial section.

3 The Bayesian Estimation Framework

There are multiple reasons for researchers use the Bayesian estimation frame-
work. Bayesian methods allow researchers to incorporate background knowledge
in analyses and use an estimator that does not rely on large sample theory. These
features allow Bayesian methods to estimate non-identified models, which may
allow the researcher to implement more phases of growth than what is possible
in the frequentist framework. Bayesian estimation can also improve the accuracy
of parameter estimates in nonlinear growth models (e.g., Depaoli, 2013; Wangx&
McArdle, 2008). We introduce researchers to the Bayesian estimation framework
here by discussing key Bayesian terminology, prior specification, the estimation
process, and Bayesian model indices for model selection and evaluation. For more
information, we recommend Kruschke (2014) and Depaoli (2021).

3.1 Key Terminology

Bayesian estimation addresses uncertainty about exact parameter values by
treating model parameters as random variables with their own probability dis-
tributions. The results of a Bayesian analysis include an estimated probability
distribution for each parameter called a posterior distribution. To obtain pos-
terior distributions, the researcher must provide probability distributions called
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prior distributions, or priors. These priors represent the researcher’s background
knowledge about the model parameters. The prior distributions are combined
with a likelihood function built from the observed data. The general process
of Bayesian estimation in developmental research is to specify our background
knowledge of change over time (priors), combine this knowledge with new data,
and create an updated description of change over time (posterior distributions).

3.2 Prior Specification

The prior is a hugely important component of Bayesian estimation that can
provide the researcher with potential influence over final parameter estimates.
Prior specification is a process where each parameter in the researcher’s model
is assigned a probability distribution. Priors may provide more or less informa-
tion depending on specification. Diffuse priors incorporate uncertainty into the
analysis by providing almost no information. In contrast, an informative prior
incorporates certainty into the analysis by providing information about likely
values for the model parameter.

The level of informativeness of a prior reflects the level of certainty about
possible values of the model parameter. As an example, consider the two-phase
PGCM shown in Figure figure1, part (b) and described in Equation (equation10).
The main parameters in this model are the mean intercept and slope for the first
phase, β0 and β1, and the average change in slope in the second phase, β2. These
are mean parameters, which are commonly assigned normal distribution priors.
Normal distributions are defined by a mean and a standard deviation. One way
to assign a prior to β0 is to give it a normal prior with a mean of zero and an
extremely large standard deviation such as σ = 105. We write this formally as
β0 ∼ N(0, σ = 105). This suggests a tremendous range of values, including those
as extreme as 1,000,000, are all potential values of β0. This prior is a “diffuse”
prior, meaning it does not provide much information about what values of β0
are likely. Alternatively, the researcher may believe β0 lies somewhere between
zero and 100. To narrow the range of likely values of β0, the researcher could
specify β0 ∼ N(50, σ = 20). The density of this normal distribution is almost
entirely between zero and 100, with values close to 50 more likely than values
far away. A similar strategy may be used to assign priors to β1 and β2.

The remaining parameters in the model are the coefficient covariance matrix
Σδ and measurement error variances σ2

e1, ..., σ
2
e7. Variance parameters should not

receive normal priors. In Mplus, the options for variance prior distributions are
the inverse gamma distribution or the inverse Wishart distribution. We use the
diffuse Mplus default variance priors (described in detail in the tutorial) to focus
our demonstration on mean growth parameters, but interested readers can see
Asparouhovxand Muthén (2021b) for guidance on how to construct informative
variance priors.

Careful prior specification is always important in Bayesian estimation, but it
is especially crucial for PGCMs with many phases. In the frequentist framework,
models must be identified to be estimated. In PGCMs specifically, the require-
ments for model identification restrict the number of growth phases (Bollenx&
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Curran, 2006; Flora, 2008). The Bayesian estimation framework offers an alter-
native to the limitations of model identification. Bayesian estimation of non-
identified models (e.g., many phases of growth in piecewise growth curve mod-
els) are possible because the addition of prior information aids the estimation
process and can make up for a lack of information in the observed dataset. How-
ever, careful prior specification may be especially important because the priors
compensate for a lack of observed information. Priors placed on the latent co-
variance matrix in SEMs may be especially important for model estimation when
the model is not identified. Other literature (e.g., Liu, Zhang,x& Grimm, 2016)
has demonstrated how some prior specifications on this component of a growth
curve model can lead to biased estimates in identified models. Some prior spec-
ifications can lead to model convergence problems and estimated non-positive
definite covariance matrices, so the researcher needs to be mindful to assess the
impact of their chosen priors.

In this paper, we use weakly informative priors for mean parameters. Weakly
informative priors incorporate a small amount of certainty into the analysis.
These priors are based on our scale of measurement and used to demonstrate
one option for prior specification, but there are many others. Priors may be de-
rived from a data-splitting technique (e.g., Depaolix& van de Schoot, 2017; Gel-
man, Meng,x& Stern, 1996), meta-analysis (e.g., Rietbergen, Klugkist, Janssen,
Moons,x& Hoijtink, 2011), or expert consultation (e.g., Veen, Stoel, Zondervan-
Zwijnenburg,x& van de Schoot, 2017). A researcher may also use data from a
previous study to specify informative priors. Once all model parameters have
priors specified, the researcher can estimate the model.

3.3 Model Estimation

Posterior distributions are constructed by combining priors with observed data.
This combination of observed data and a prior distribution for each parameter
leads to a complex, multivariate equation that usually has no simple solution.
Statistical software employs iterative algorithms to solve such complex equations
regardless of the estimation framework (e.g., frequentist estimation commonly
uses maximum likelihood via the expectation-maximization algorithm). Bayesian
estimation uses Markov chain Monte Carlo (MCMC), a technique for sampling
from a probability distribution, in order to construct posterior distributions.

MCMC sampling uses an iterative process to gather a series of samples from
the posterior distribution, which is then used to construct an empirical estimate
of the posterior distribution. The “chain” part of MCMC refers to a record of
samples from each parameter’s posterior distribution. MCMC sampling in Mplus
uses two chains by default, but any number of chains can be specified. To achieve
stable and meaningful posterior estimates, the MCMC chains must converge on
the posterior distribution. Wildly inconsistent samples from the posterior suggest
the chains have not yet converged2, meaning the posterior distribution estimates

2 Chains may also be slow to converge due to high autocorrelation, a phenomenon
where adjacent samples in a chain are highly dependent on each other. Some re-
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are not yet stable. If the posterior estimates are unstable, the researcher cannot
draw valid inferences about growth in the population. Therefore, it is crucial for
the researcher to assess convergence.

The first several iterations in a chain are usually unstable before the chain
“finds” the posterior, and these are referred to as burn-in iterations. After es-
timating the model and discarding the burn-in iterations (Mplus automatically
discards the first half of the MCMC chain), the researcher may check convergence
by inspecting plots of parameter estimates in each chain (called trace plots) or by
using various convergence diagnostics such as the potential scale reduction factor
(PSRF; Brooksx& Gelman, 1998). These two diagnostic tools are directly avail-
able in Mplus, but additional diagnostics (such as the Geweke statistic, Geweke,
1991) can also be obtained by exporting chains to other software such as the
coda package in R (Plummer, Best, Cowles,x& Vines, 2006).

Trace plots display post-burn-in iterations on the x -axis and parameter es-
timates on the y-axis. If a chain has converged, the trace plot should display
parameter estimates with a consistent mean (i.e., a stable horizontal band) and
a consistent variance (i.e., a stable height of the chain). The researcher must
check trace plots for each model parameter. Chains that show inconsistent mean
and variance suggest a lack of convergence. Diagnostic statistics are additional
tools that are helpful for assessing convergence. The PSRF represents the ra-
tio of within-chain to between-chain variability in post burn-in iterations for a
given parameter. Ideally, all MCMC chains will converge to the same probability
distribution, and the PSRF will be close to 1.0 for all parameters, but values
below 1.1 are considered acceptable. Mplus reports the model’s highest PSRF
throughout estimation.

3.4 Model Selection Indices

The most common model selection indices used in the Bayesian framework are
the deviance information criterion (DIC; Spiegelhalter, Best, Carlin,x& van der
Linde, 2002, 2014), and Bayesian information criterion (BIC; Schwarz, 1978).
Both add a measure of general model fit to a penalty for model complexity. The
goal is to balance good fit with parsimony. Among competing models, the model
with lowest DIC (or BIC) is preferred. A third index is the posterior predictive
p-value (PPP; Gelmanxet al., 1996; Meng, 1994). Unlike the DIC and BIC, the
PPP is a model fit index rather than a model selection index, but it can provide
useful information for model selection. These three indices can be used to choose
among competing PGCM models.

The PPP is a measure of how well the model explains the observed data
by evaluating simulated datasets based on the model. The contrived datasets
may fit the model better or worse than the observed data, and the PPP is the
proportion of simulated datasets that show more discrepancy from the model

searchers address autocorrelation by thinning the MCMC chain. We use the Mplus
default of no thinning in our tutorial, but we encourage readers who are concerned
about autocorrelation in their analyses to check Depaoli (2021) or Kruschke (2014).
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than the observed dataset. Mplus conducts these simulations automatically. If
simulated data consistently show worse model fit than the observed data, the
model does not have good predictive accuracy. On the other hand, if simulated
data based on the model always shows better fit than the real data, this also
suggests model misfit. A PPP of 0.5 suggests excellent fit, with values close to
zero or one suggesting model misspecification. Recent work by Cainxand Zhang
(2019) suggest using a cutoff of 0.15 or lower to identify model misfit.

After using model comparison indices, it is useful to evaluate the preferred
model. Recent developments in Bayesian SEM research have lead to new model
fit indices including the Bayesian RMSEA (BRMSEA), the Bayesian compara-
tive fit index (BCFI), and the Bayesian Tucker-Lewis index (BTLI). In addition
to point estimates for these indices, Mplus also provides 90% credibility inter-
vals which can provide additional information. In particular, Asparouhovxand
Muthén (2021a) suggest three interpretations for the BRMSEA credibility inter-
val. If the full interval is below 0.06, BRMSEA suggests the model fits well, but
if the full interval is above 0.06, BRMSEA indicates poor fit. If the credibility
interval contains the cutoff value 0.06, the fit index is inconclusive (i.e., it cannot
determine whether fit is good or bad). The credibility intervals for the other fit
indices BCFI and BTLI have a similar interpretation. If the BCFI’s credible in-
terval is above 0.95, it suggests the model is well-fitting. If the interval lies below
0.95, it suggests poor fit. If the credible interval contains 0.95, the fit index is
inconclusive. The interpretation of BTLI is the same. Further information on the
formulation and use of these fit indices are provided in Asparouhovxand Muthén
(2021a) and Garnier-Villarrealxand Jorgensen (2020).

4 Tutorial

Bayesian linear PGCMs provide a flexible approach to handling nonlinear tra-
jectories with easily-interpretable parameters3. To illustrate this approach, we
applied Bayesian linear PGCMs to math achievement data using the model
selection approach to knot specification. There are many statistical programs
that can implement Bayesian PGCMs, including Stan (Stan Development Team,
2019) and OpenBUGS (Spiegelhalter, Thomas, Best,x& Lunn, 2007), but we use
Mplus for this tutorial because of its popularity and accessibility.

4.1 Introduction to the ECLS-K Math Application

We used math achievement data from the Early Childhood Longitudinal Study,
Kindergarten cohort (ECLS-K; Tourangeau, Nord, Lê, Sorongon,x& Najarian,
2009) to illustrate Bayesian PGCMs. The ECLS-K dataset is a nationally rep-
resentative sample from the United States with approximately 22, 000 children
who started kindergarten in the fall of 1998. The full dataset is larger than many

3 Readers interested in the performance of the model selection approach we outline
here can find a proof of concept simulation in Supplemental Material.
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datasets in developmental research, so we used a random subsample of N = 500
children to make our demonstration more applicable to common research set-
tings. We also ensured our sample had no missing math measurements to focus
our discussion on implemention.

The ECLS-K contains measurements of math achievement from kindergarten
through eighth grade. Trained evaluators assessed the children’s math ability in
the fall and spring of kindergarten, fall and spring of first grade, the spring of
third grade, the spring of fifth grade, and the fall of eighth grade. We coded
these times as 0.0, 0.5, 1.0, 1.5, 3.5, 5.5, and 8.0. This way, “1.0” corresponds
to fall of first grade, “3.5” refers to a spring of third-grade measurement, and
so on. The Math item response theory (IRT) scores reported in the dataset are
scale scores that represent estimates of the number of items children would have
answered correctly if they had taken all 174 items at all seven measurement
occasions. The IRT scale provided in the ECLS-K ensures that math scores are
comparable across test forms. Further details are provided by Pollack, Najarian,
Rock,xand Atkins-Burnett (2005). Figure figure2 shows a scatterplot of the math
achievement data across all seven measurement occasions. In the figure, math
ability generally increased over time, but some periods of growth were more
rapid than others. To estimate a linear PGCM to the nonlinear growth shown in
Figure figure2, the first step is to determine knot placement. Unlike the simple
examples shown in Figure figure1, the most appropriate knot specification is not
clear. Model selection is one way to address this ambiguity.

4.2 Choosing Model Candidates

The first step for implementing Bayesian PGCMs is devising a set of model can-
didates to estimate. The goal is to estimate several models that differ in knot
specification and use model selection indices to determine the best model. The
only difference between the models should be knot specification. In the Bayesian
estimation framework, the researcher may place knots on any measurement oc-
casion except the first and last, and use up to J − 2 knots in total. This means
for the ECLS-K data, a researcher may specify a PGCM with anywhere from
one to five knots. In this section, we describe five competing models we will use
to determine knot specification. The knot placement in these models break up
the overall trajectory in up to six phases, visualized in Figure figure3. We discuss
the rationale behind the knot placement for each model here.

The first knot specification uses a theory-driven approach. According to Pi-
aget’s classic theory of cognitive development (Flavell, 1963), children occupy
the preoperational stage of development from ages two to seven. The concrete
operational stage occurs from ages seven to eleven, and the formal operational
stage begins at twelve years old. These stages represent an increase in childrens’
ability to think abstractly, and a researcher could argue these stages relate to
math development. A researcher may apply these phases of development to the
ECLS-K data by placing knots at k1 = 1.5 and k2 = 5.5. For this specification,
the first phase of growth corresponds to preoperational development, the second
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Figure 2. The development of math achievement in the ECLS-K dataset. “Math IRT”
refers to the repeated measures outcome variable indicating math achievement in the
ECLS-K, dots represent individual children’s scores, and grade in school ranges from
zero (representing fall of kindergarten) to eight (representing fall of eighth grade). Lines
illustrate the trajectory over time for a random subsample of n=50 children.
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to the concrete operational stage of development, and the third to the formal
operational stage. Model 1 implements this knot specification.4

The remaining four models use a data-driven approach to derive knot place-
ment. Model 2 divides the trajectory into four almost equally-sized segments by
placing knots at k1 = 1.5, k2 = 3.5, and k3 = 5.5. Each phase of growth en-
compasses 2 years on average, and is the closest to equally-sized segments that
is possible with the timing of measurements. The third model places knots at
every other measurement occasion: k1 = 0.5, k2 = 1.5, and k3 = 5.5. The fourth
model increases complexity to four knots. The scatterplot in Figure figure2 may
be interpreted to show no meaningful change in growth between the first and
second measurement compared to the growth between the second and third. To
treat the whole of kindergarten as a single phase of growth while allowing unique
phases between all other measurements, Model 4 implements four knots k1 = 1.0,
k2 = 1.5, k3 = 3.5, and k4 = 5.5. Finally, Model 5 implements all possible knots
k1 = 0.5, k2 = 1.0, k3 = 1.5, k4 = 3.5, and k5 = 5.5. This fifth model suggests
that the rate of change between every single measurement is meaningfully differ-
ent. In the following sections, we demonstrate how to implement PGCMs in the
Bayesian framework and how to use Bayesian model selection indices to choose
the most appropriate model.

4.3 Prior Specification Strategy

Each parameter in a model requires a prior. For linear PGCMs, these parameters
include coefficient means (for the intercept, first slope, and changes in slope),
variances of the coefficients, covariances of the coefficients, and measurement
errors. We employed a combination of weakly informative and diffuse priors.

The intercept mean reflects the mean math achievement score when t = 0,
or the fall of kindergarten. Visual inspection of the data scatterplot showed no
negative values at the first measurement occasion, so the default prior centered
on zero did not seem appropriate. Instead, we specified a “weakly informative”
prior as Normal(µ = 25, σ2 = 100). The mean of all scores at the first timepoint
appears close to 25 in the scatterplot, and setting the variance to 100 reflects
our uncertainty about this exact mean value.

After setting the prior for the intercept, we took a more general approach
to the priors for the other coefficient means. Setting priors for PGCMs comes
with an additional challenge when using model selection indices to determine
knot placement: Priors should be kept as consistent as possible across models to
ensure that differences in model selection indices are due to knot placement alone.
The ECLSK dataset includes math IRT values ranging from approximately 10
to 174. Because of this range of values, the full width of the default priors did not

4 We are using this example of Piaget’s stages simply for illustrative purposes. We
make no claims about whether these are viable stages of development, nor how
they may (or may not) relate to math development. Instead, we wanted to form
a concrete example that would be easy for readers to follow in order to highlight
aspects of conducting the analysis.
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Figure 3. Five candidate knot specifications for the ECLS-K dataset. “Math IRT”
refers to the repeated measures outcome variable indicating math achievement in the
ECLS-K, dots represent individual children’s scores, and grade in school ranges from
zero (representing fall of kindergarten) to eight (representing fall of eighth grade).
Knot location is indicated by the dashed vertical lines, and each model uses unique
phases of growth to capture the development of math achievement. These models range
in complexity from the three-phase Model 1 to the six-phase Model 5. Colored lines
indicate the estimated mean trajectory according to each model.
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seem useful. A visual inspection of the data scatterplot shows that rate of growth
changed over time, but did not appear to exceed 30 IRT points within a single
year. In order to keep the priors for the slope means consistent, we assigned a
normal prior with N(µ = 0, σ2 = 400) to each one. This reflects our belief that
a range of linear slope values from -60 to 60 are possible, with slopes closer to
zero more likely. In substantive terms, this means we expected childrens’ math
IRT score to change by some value in the -60 to 60 range each year for the first
segment of growth, and the rate of change itself would never change by more
than 60 points.

Coefficient variances, covariances, and residual variances were also estimated.
Because we did not have a clear substantive reason to alter the priors for these
parameters, we used Mplus default settings. For the coefficient covariance matrix
Σδ, Mplus uses an inverse Wishart prior with a 0 scale matrix and –p−1 degrees
of freedom, where p is the number of latent growth factors. Residual variances
receive an inverse gamma prior defined as IG(−1, 0). Next, we describe how to
implement these priors in Mplus.

4.4 Implementing Linear PGCMs in Bayesian Software

Estimating Bayesian PGCMs in Mplus requires an input file with five sections:
data information (including the DATA and VARIABLE commands), the model itself
(under MODEL), estimation details (under ANALYSIS), prior specification (under
MODEL PRIORS), and output details (including PLOT and OUTPUT commands). We
present the syntax for Model 5 here, but readers can implement any of the other
candidate models with minor edits to the MODEL and MODEL PRIORS sections. We
begin with the MODEL section.

The equation for Model 5 can be written,

yij = δ0i + δ1itij + δ2i(tij − 0.5)+ + δ3i(tij − 1.0)+

+ δ4i(tij − 1.5)+ + δ5i(tij − 3.5)+ + δ6i(tij − 5.5)+ + eij ,
(14)

which translates to the following syntax:

MODEL:

delta_0 delta_1 | y1@0 y2@0.5 y3@1.0 y4@1.5 y5@3.5 y6@5.5 y7@8.0;

delta_0 delta_2 | y1-y2@0 y3@0.5 y4@1.0 y5@3.0 y6@5.0 y7@7.5;

delta_0 delta_3 | y1-y3@0 y4@0.5 y5@2.5 y6@4.5 y7@7.0;

delta_0 delta_4 | y1-y4@0 y5@2 y6@4 y7@6.5;

delta_0 delta_5 | y1-y5@0 y6@2 y7@4.5;

delta_0 delta_6 | y1-y6@0 y7@2.5;

[delta_0-delta_6] (beta_0-beta_6);

The first line after the MODEL command tells Mplus the timing of all seven mea-
surement occasions, and tells Mplus to use the timing to estimate the intercept
and slope of the first phase. The next line contains delta_2 and tells Mplus to
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estimate the change in slope for the second phase of growth, starting at tij = 0.5.
This line of syntax assigns the values of (tij − 0.5)+ to each measurement occa-
sion. For the first two measurements, the values are zero. The five time points
after the knot are (tij − 0.5)+ for tij = 1.0, 1.5, 3.5, 5.5, 8.0. For example, the
fifth measurement y5 occurs when tij = 3.5. The value of (3.5− 0.5)+ = 3.0, the
value of time assigned to y5. The next four lines of syntax repeat this process
for the remaining four phases of growth. In the final line, the square brackets
refer to the means of the parameters inside and parentheses contain labels for
these means. This line of syntax indicates the mean of the growth coefficients
δ0i, δ1i, ..., δ6i are labelled β0, β1, ..., β6.

The next section of code tells Mplus how to estimate the PGCM described
above:

ANALYSIS:

ESTIMATOR=BAYES;

FBITERATIONS = 100000;

BSEED = 1979;

The first line under the ANALYSIS heading tells Mplus that we want to use
Bayesian estimation. The next command, FBITERATIONS = 100000, requests
100,000 MCMC iterations. This number was selected based on the number
of iterations required for Model 5 to converge according to PSRF. Next, the
BSEED = 1979 command provides Mplus a “seed” number to begin implement-
ing the MCMC algorithm. We provide one here so the reader may replicate our
results, but Mplus can generate its own if one is not provided. If the model
reaches convergence, the seed number does not influence model results.

Next, priors are specified in the MODEL PRIORS section:

MODEL PRIORS:

beta_0 ~ N(25, 100);

beta_1-beta_6 ~ N(0, 400);

The first line under the MODEL PRIORS heading tells Mplus that the mean of
the intercept is normally distributed around 25 with a variance of 100, or β0 ∼
N(25, 100). The next line assigns a prior to the means of all six slope parameters,
β1, β2, ..., β6 ∼ N(0, 400). We do not explicitly assign variance priors here, so
Mplus will use its diffuse defaults. Once each candidate model’s input file has
been written in Mplus, we can estimate the models and use the results to conduct
model selection.

4.5 Model Selection

The five candidate models provide slightly different descriptions of change in
math achievement over time, as illustrated in Figure figure3. The next step of
the process is to examine Bayesian model selection indices summarized in Table
table1 to choose the best model. For the PPP, values close to 0.500 suggest ex-
cellent fit, and values close to zero or one suggest poor fit. For the DIC and BIC,
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the lowest value suggests the best balance of model fit with model complexity.
In this case, the PPP and DIC suggest that Model 5 is the best model. However,
the BIC suggests the best model is Model 4. For the purposes of this illustration,
we consider Model 5 the optimal model.

Table 1. Model selection indices and approximate model fit indices.

Fit indices for model selection

Fit Index Model 1 Model 2 Model 3 Model 4 Model 5

PPP 0.000 0.000 0.000 0.001 0.468
DIC 26533.70 26245.22 26486.75 26023.36 25992.85
BIC 26626.34 26371.32 26615.68 26229.44 26458.46

Approximate fit indices for evaluating Model 5

Fit Index Point Estimate 90% Credible Interval

BRMSEA 0.031 [0.000, 0.158]
BCFI 1.000 [0.995, 1.000]
BTLI 0.997 [0.925, 1.000]

Note. PPP = posterior predictive p-value; DIC = deviance information criterion;
BIC = Bayesian information criterion. Each model uses a different knot specification
to create unique phases of growth in the development of math achievement. These
models range in complexity from the three-phase Model 1 to the six-phase Model 5.
BRMSEA = Bayesian root mean square error of approximation; BCFI = Bayesian
comparative fit index; BTLI = Bayesian Tucker-Lewis index.

We can evaluate the quality of Model 5 using the BRMSEA, BCFI, and BTLI.
The point estimates and 90% credible intervals for these fit indices are reported
in Table table1. We focus on the credibility intervals to keep our interpretation
consistent with Asparouhovxand Muthén (2021a). For the BRMSEA, values be-
low 0.06 indicate good model fit. The BRMSEA’s credible interval ranged from
zero to 0.158. Because the credible interval contained 0.06, this fit index is incon-
clusive. Next, we consider the BCFI and BTLI, where values between 0.95 and
1.00 suggest excellent fit. For the BCFI, the credible interval ranged from 0.995
to 1.000, and the BTLI credible interval ranged from 0.925 to 1.000. The BCFI
results suggest good model fit because the credible interval is entirely above 0.95.
However, the BTLI credible interval contains the cutoff value and we consider
this fit index inconclusive. In summary, one fit index suggested good fit but the
other two were inconclusive.

Next, we describe and interpret the parameter estimates for Model 5, which
are summarized in Table table2. Recall that β0 and β1 refer to the mean intercept
and linear slope for the first phase of growth, and each following coefficient from
β2 to β6 refer to an average change in slope. In other words, the mean rate
of change in the second slope is not the estimate of β2 alone, but the sum of
β1 + β2. These changes accumulate across the phases of growth. For ease of
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interpretation, Table table2 contains a “Total Slope” column that reflects the
rate of change in all six phases. For example, the total slope in the first phase of
growth (from fall of kindergarten to spring of kindergarten) is 21.28. This value
means that children’s math achievement would increase by an average of 21.28
points in one year if growth remained constant. The rate of growth in the second
phase of development (spring of kindergarten to fall of first grade) decreases by
-6.89, resulting in a rate of 14.39. In contrast, the third phase of development
(from fall to spring of first grade) showed an increase in growth of 22.95, leading
to a total slope of 37.34. The fourth phase of growth addresses two years of
growth from spring of first grade to the spring of third grade. The average rate
of change per year in this phase decreased from the previous phase by -18.02,
meaning childrens’ math achievement increased by 19.32 per year on average.
In the fifth phase, growth slowed again by -6.90, creating a 12.42 increase in
math achievement per year from spring of third grade to the spring of fifth
grade. In the final phase from spring of fifth grade to fall of eighth grade, growth
slowed by -5.61 to a rate of change of 6.81. Overall, growth was most rapid in
the third phase, which was also when the most dramatic change in the rate of
development occurred. Table table2 also reports measurement error variance at
all seven timepoints, which ranged from 10.60 at the first measurement to 39.84
at the fifth measurement.

We present the covariance matrix of the growth coefficients Σδ in the lower
portion of Table table2. The individual elements in this matrix are not typically
of interest, but we can note that each coefficient covaries with the others. There
are particularly strong negative covariances between δ1i and δ2i, δ2i and δ3i, and
δ3i and δ4i. In other words, the rate of change in one phase of growth tends
to increase when the next phase decreases, and this relationship is particularly
strong across the first, second, third, and fourth phases. We can also note that
the change in slope for the second, third, and fourth phases show the highest
variance of all latent growth coefficients.

4.6 Final Results

In this application, we devised a set of candidate models and used model selection
indices to determine the most adequate model. The final model was Model 5,
which treats the time between each measurement occasion as a distinct phase
of growth with its own unique rate of change. The BCFI suggested good model
fit, but other approximate fit indices were inconclusive. We interpreted these
results as not suggesting excellent fit, but not suggesting substantial misfit either.
According to this model, the most rapid growth occurred in the third phase, from
fall to spring of first grade. After this phase, the rate of growth decreased in each
subsequent phase.
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Table 2. Model 5 parameter estimates for latent coefficient means and measurement
errors at each timepoint.

Growth Factor Estimates, Standard Errors, and Phase-Specific Slopes
Coefficient Estimate(SE) Total Slope

β0 27.25(0.43)
β1 21.28(0.65) 21.28
β2 -6.89(1.16) 14.39
β3 22.95(1.37) 37.34
β4 -18.02(1.09) 19.32
β5 -6.90(0.51) 12.42
β6 -5.61(0.41) 6.81

Error Variances

σ2
e1 10.60(7.22)
σ2
e2 11.78(9.08)
σ2
e3 20.79(11.29)
σ2
e4 32.56(21.58)
σ2
e5 39.84(25.54)
σ2
e6 30.56(20.15)
σ2
e7 39.30(29.67)

Covariance Matrix Σδ
Coefficient δ0 δ1 δ2 δ3 δ4 δ5 δ6

δ0 82.76
δ1 16.00 116.89
δ2 18.311 -159.98 354.63
δ3 -15.54 78.13 -239.28 438.00
δ4 -3.56 -21.58 38.03 -274.32 299.31
δ5 -22.39 -13.93 8.03 0.68 -40.00 68.88
δ6 -4.55 -9.14 5.05 -7.25 9.07 -19.54 40.18

Note. β0 = mean baseline Math IRT score; β1 = average linear slope of the first
phase of growth; β2 = average change in slope for the second phase of growth;
β3, β4, β5, β6 refer to cumulative changes in slope for the third through sixth phases of
growth. σ2

e1 through σ2
e7 refer to measurement error variance at the first through

seventh measurement occasions. δ0 refers to the latent intercept; δ1 refers to latent
slope in the first phase; δ2 through δ6 refer to cumulative changes in slope across
phases of growth.
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5 Discussion

Our goal for this paper was to demonstrate how linear PGCMs are a flexible ex-
tension of linear GCMs, with models addressing three or more phases of growth
possible in the Bayesian estimation framework. This added flexibility can dra-
matically increase the number of possible models, and we outlined the process of
specifying candidate models and using model selection indices to choose the final
model. To provide a simple and accessible tutorial to implement Bayesian linear
PGCMs, several extensions and technical features were not addressed in detail.
We discuss extensions of the presented model and some technical cautions here.

5.1 Potential Extensions of the Current Work

In this tutorial, we focused on Bayesian linear PGCMs due to their simple coeffi-
cient interpretations in order to provide an introduction to the field of piecewise
growth models. As noted previously, there are several newer extensions of the pre-
sented model, which we encourage readers to explore. These extensions include
piecewise models that directly estimate knot placements (Kohlixet al., 2015;
Lockxet al., 2018), employ covariates (Lamm, 2022), or capture bivariate piece-
wise trajectories (Peraltaxet al., 2022). Additionally, PGCMs with higher-order
polynomials (e.g., cubic) or inherently nonlinear functions (e.g., exponential) are
also possible. Harring, Strazzeri,xand Blozis (2021) provide a discussion of these
extensions in the context of PGCMs with random knots. Additionally, Rioux,
Stickley,xand Little (2021) demonstrate PGCMs with discontinuities (i.e., gaps
in the growth trajectory) to address cancelled data collection waves. Piecewise
models with inconsistent measurement timing can be easily addressed in the mul-
tilevel modeling framework, where they are commonly called splines. Harezlak,
Ruppert,xand Wand (2018) provide a thorough introduction, including Bayesian
extensions.

5.2 Prior Cautions

Implementing linear PGCMs in the Bayesian estimation framework frees the
researcher from model identification requirements inherent in frequentist esti-
mation because prior distributions can compensate for additional measurement
occasions. However, implementing non-identified models in the Bayesian frame-
work must be done cautiously. The prior placed on the latent covariance matrix
can be especially influential on model results, as shown by Liuxet al. (2016) and
Depaoli, Liu,xand Marvin (2021). The specific implementation of the inverse
Wishart prior (the Mplus default) can also impact results in unexpected ways.
A key method of assessing how sensitive results are to prior specification is to
conduct a prior sensitivity analysis. In a prior sensitivity analysis, the researcher
estimates the chosen model under a set of alternative prior conditions, and dis-
cusses how robust the model results are. We recommend van Erp, Mulder,xand
Oberski (2018), van de Schoot, Veen, Smeets, Winter,xand Depaoli (2020), and
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Depaoli, Winter,xand Visser (2020) for thorough demonstrations. When imple-
mented conscientiously, we believe Bayesian linear PGCMs can be a useful class
of models because they frame development as phases of growth with simple pa-
rameters. This is in contrast to other GCM extensions with parameters that may
be challenging to interpret (e.g., a cubic coefficient).

5.3 Concluding Remarks

Developmental researchers study within-person change over time in many set-
tings. A linear GCM easily captures growth that follows a straight line, but
may not capture substantively important nonlinear changes. In this paper we
presented a tutorial to estimate Bayesian PGCMs, which can handle complex
nonlinearity with simple parameter interpretations. The goal of this tutorial was
specifically aimed to act as a precursor to more advanced methodological work
(e.g., Kohlixet al., 2015), which we recommend the interested reader to explore
as a subsequent resource to this work.

Applying this model to math achievement data allowed us to examine when
development accelerated or slowed, and highlighted phases of growth with more
variability than others. Bayesian PGCMs provide researchers with a useful model
that can capture nonlinear growth using parameters that are straightforward to
interpret. While research is needed to better understand the impact of different
covariance priors, the Bayesian linear PGCM can provide interesting results
when implemented thoughtfully.
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Appendix A Proof of Concept Simulation

To demonstrate the utility of treating the knot specification problem as a model
selection problem, we performed a simulation study. The purpose of this study
was twofold. First, we aimed to evaluate the performance of Bayesian model
fit indices in selecting the correct knot specification. Second, we assessed the
accuracy of the model parameter estimates.

Appendix A.1 Simulation Design

We considered five population models based on the five candidate models used
in analyzing the ECLS-K (see Figure figure3). There are seven measurement
occasions, coded like the ECLS-K such that t = 0.0, 0.5, 1.0, 1.5, 3.5, 5.5, 8.0. For
Population Model 1, growth was split into three phases, with knots at t = 1.5, 5.5.
Both Population Model 2 and Population Model 3 had four phases in the growth
trajectory but different knot placements. Population Model 2 used knots at t =
1.5, 3.5, 5.5 and Population Model 3 used knots at t = 0.5, 1.5, 5.5. Population
Model 4 implemented five phases of growth with knots at t = 1.0, 1.5, 3.5, 5.5.
Population Model 5 split the trajectory into six unique phases of growth, with
as many knots as possible at t = 0.5, 1.0, 1.5, 3.5, 5.5.

The distribution of the latent growth factors for the five population models
were based on the ECLS-K estimates. The distribution of growth factors for Pop-
ulation Model 1 through 5 are described in the following Equations (1) through
(5):
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δ0
δ1
δ2
δ3

 ∼MVN




26.71
23.10
−6.50
−9.95

 ,


75.00
29.96 30.65
−27.03 −20.70 20.95
−14.36 −19.69 2.57 39.17


 , (15)


δ0
δ1
δ2
δ3
δ4

 ∼MVN




26.93
21.83
−0.44
−8.96
−5.61

 ,


76.71
28.20 26.45
−14.68 −5.82 17.83
−20.18 −21.62 −16.97 63.61
−4.46 −7.83 5.58 −19.30 38.86


 , (16)


δ0
δ1
δ2
δ3
δ4

 ∼MVN




27.26
19.34
6.68
−9.83
−9.55

 ,


85.00
10.38 62.49
20.30 −36.14 64.72
−27.56 −16.60 −30.99 52.06
−15.15 −15.70 −2.80 0.80 38.89


 , (17)


δ0
δ1
δ2
δ3
δ4
δ5

 ∼MVN




27.57
18.22
17.75
−16.63
−6.90
−5.60

 ,


76.61
29.66 29.19
−8.32 9.03 171.87
−5.40 −27.60 −197.26 270.61
−22.58 −10.42 9.72 −41.46 64.09
−4.74 −6.90 −3.12 6.87 −16.44 38.54



 ,

(18)



δ0
δ1
δ2
δ3
δ4
δ5
δ6


∼MVN





27.25
21.29
−6.89
22.95
−18.02
−6.50
−5.61


,



82.76
16.00 116.89
18.31 −159.98 116.89
−15.54 78.13 −239.28 438.00
−3.56 −21.58 38.03 −274.32 299.31
−22.39 −13.93 8.03 0.68 −40.00 68.88
−4.55 −9.14 5.05 −7.25 9.07 −19.54 40.18




.

(19)

Measurement error variances were set to 1.0. For each population model, we
simulated 500 datasets with sample size N = 500. For each generated dataset,
we fit all five candidate models, including the true model and the models with
misspecified knot placement. We estimated each model using Bayesian estima-
tion methods with the same setup (i.e., prior specification, number of iterations)
as that in analyzing the ECLS-K data. For each replication and model fitted,
we recorded the model parameter estimates and the Bayesian model fit indices
PPP, DIC, and BIC.
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Appendix A.2 Results

Table center3 shows the selection rates for the PPP, DIC, and BIC within all
five population models. To compute the selection rate of the PPP, we found the
proportion of replications where a given model had a PPP value closer to 0.5
than all competing models. The selection rate of the DIC was the proportion of
replications where a given model had a lower DIC than all competing models.
The BIC selection rate was computed the same way5.

When the data were generated from Model 1, the selection rate of PPP for
the correct model (i.e., Model 1) was around 11%. Similarly, when the data were
generated from Model 2, the selection rate of PPP for the correct model was
16%. When data were generated from Model 3, PPP selected Model 3 28% of
the time, and when data were generated from Model 4, PPP selected Model 4
28% of the time. For Population Model 5, the PPP selected the correct model
(i.e., Model 5) 100% of the time. Based on the simulation results, the PPP tends
to select more complex models. However, the DIC and BIC were more effective
at selecting the correct model. When the data were generated from Model 1, the
DIC selected the correct model (i.e., Model 1) 86% of the time. When the data
were generated from Model 2, DIC selected Model 2 92% of the time, and when
data were generated from Model 3, DIC selected Model 3 98% of the time. For
data generated from Model 4, the DIC selected Model 4 with a 93% selection
rate. Lastly, when data were generated from Model 5, the DIC selected Model 5
100% of the time. The BIC showed generally high selection rates for the correct
model. When the data were generated from Model 1, the BIC selected Model
1(i.e., the correct model) 100% of the time. The BIC selected the correct model
100% of the time when data was generated from Model 2, Model 3, and Model 4.
However, when the data were generated from Model 5, the BIC selected Model
5 only 1.2% of the time.

Table center4 reports the mean relative bias for coefficient estimates for the
five estimated models across all five population models. Relative bias was com-
puted as the difference between a parameter estimate and its true value, divided
by the true value. The highest relative bias for a correct model was 1.04% for
Model 2’s β2. Otherwise, relative bias for the true population model never ex-
ceeded 1%.

Overall, these results suggest that the DIC and BIC can effectively select an
appropriate knot specification among competing models in most conditions. In
general, the BIC selected the correct model more often than the DIC. A major
exception to this occurred for data generated from Population Model 5. When
data were generated from Model 5, the BIC selected Model 4 (an incorrect and
less-complex model) 99% of the time but the DIC selected Model 5 (the correct
model) 100% of the time. The PPP does not seem to reliably select the correct
model when models with more phases are available. When the correct model is

5 Ties were extremely rare and only occurred for the PPP. Ties for the winning model
according to PPP occurred in 1.2% of Population Model 1 replications, 0.02% of
replications in Population Model 3, and 0.02% of replications in Population Model
4. No other ties occurred.



32 L. Marvin et al.

selected, growth factor means are estimated with very little bias. While these
results provide evidence that the Bayesian PGCM demonstrated in this tutorial
is a useful tool for handling complex nonlinear trajectories, a more thorough
simulation study is needed to examine whether this pattern of results holds
across different research conditions.

Table 3. Selection rates for model fit indices.

Population Estimated PPP DIC BIC

Population
Model 1

Model 1 0.11 0.86 1.00
Model 2 0.12 0.06 0.00
Model 3 0.13 0.07 0.00
Model 4 0.27 0.01 0.00
Model 5 0.36 0.00 0.00

Population
Model 2

Model 1 0.00 0.00 0.00
Model 2 0.16 0.92 1.00
Model 3 0.00 0.00 0.00
Model 4 0.24 0.06 0.00
Model 5 0.61 0.02 0.00

Population
Model 3

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.23 0.98 1.00
Model 4 0.00 0.00 0.00
Model 5 0.77 0.02 0.00

Population
Model 4

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.00 0.00 0.00
Model 4 0.28 0.93 1.00
Model 5 0.72 0.07 0.00

Population
Model 5

Model 1 0.00 0.00 0.00
Model 2 0.00 0.00 0.00
Model 3 0.00 0.00 0.00
Model 4 0.00 0.00 0.99
Model 5 1.00 1.00 0.01

Note. PPP = posterior predictive p-value; DIC = deviance information criterion;
BIC = Bayesian information criterion.
Selection rates for the true model are bolded.
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Table 4. Average relative bias (in %) for growth factor means across the proof of
concept simulation.

Population Estimated β0 β1 β2 β3 β4 β5 β6

Population
Model 1

Model 1 -0.19 -0.07 -0.21 -0.16
Model 2 -0.19 -0.06 -0.19 -100.03
Model 3 -0.18 -0.07 -100.01 -34.80
Model 4 -0.20 -0.06 -99.96 -34.83
Model 5 -0.20 -0.06 -99.97 -99.96

Population
Model 2

Model 1 -0.07 -0.01 982.00 17.17
Model 2 -0.04 -0.08 -1.04 0.27 0.08
Model 3 -0.04 -0.13 -108.01 -46.79 67.24
Model 4 -0.06 -0.09 -100.74 -95.11 59.25
Model 5 -0.06 -0.09 -99.55 -100.04 -92.18

Population
Model 3

Model 1 -10.54 32.33 -240.20 -2.42
Model 2 -10.05 31.58 -237.04 -98.97 -0.10
Model 3 -0.04 -0.13 -0.00 -0.22 -0.12
Model 4 -5.04 24.10 -69.86 -0.01 -100.02
Model 5 -0.06 -0.12 -0.07 -100.00 2.68

Population
Model 4

Model 1 -0.43 1.80 -102.80 -32.32
Model 2 -0.18 0.91 -70.09 -32.40 -18.46
Model 3 0.02 -0.04 -89.94 -86.17 58.06
Model 4 0.00 0.02 -0.23 -0.31 0.07 0.27
Model 5 0.00 0.05 -100.06 -206.53 140.32 23.33

Population
Model 5

Model 1 -1.39 7.79 -6.60 -142.37
Model 2 -0.74 0.87 -102.51 -139.94 -69.01
Model 3 0.03 -9.35 -202.68 -145.14 -48.82
Model 4 0.77 -14.95 -365.47 -174.41 -61.66 -19.19
Model 5 0.02 -0.10 -0.93 -0.38 -0.15 0.09 -0.60

Note. β0 = mean baseline math achievement; β1, ..., β6 = mean slope parameters.
The ‘correct’ estimated models are italicized. All relative biases are reported to two
decimals, such that 0.02 indicates relative bias is 0.02% less than 0.005%.
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Abstract. The proofs of the probability density function (pdf) of the
Wishart distribution tend to be complicated with geometric viewpoints,
tedious Jacobians and not self-contained algebra. In this paper, some
known proofs and simple new ones for uncorrelated and correlated cases
are provided with didactic explanations. For the new derivation of the
uncorrelated case, an elementary direct derivation of the distribution
of the Bartlett-decomposed matrix is provided. In the derivation of the
correlated case from the uncorrelated one, simple methods including a
new one are shown.

Keywords: Jacobian · Multivariate normality · Probability density func-
tion (pdf) · Triangular matrix · Bartlett decomposition.

1 Introduction

The Wishart distribution has been often used for the matrix of the squares and
cross products of random vectors. In multivariate analysis or more specifically
structural equation modeling (SEM), a modified log-likelihood of this distri-
bution (see e.g., Ogasawara, 2016, Equation (2.8)) has been used probably as
a gold-standard discrepancy function for estimation even under non-normality
though the distribution is given under multivariate normality. In SEM, varia-
tions of the distribution are also used as priors for covariance matrices (Liu, Qu,
Zhang, & Wu, 2022; Zhang, 2021). The distribution has various extensions e.g.,
the inverted distribution (Anderson, 2003, Section 7.7), singular cases (Bodnar
& Okhrin, 2008; Mathai & Provost, 2022; Srivastava, 2003), complex-valued ones
(Srivastava & Khatri, 1979, Section 3.7; Mathai, Provost, & Haubold, 2022, Sec-
tion 5.5), those with two different degrees of freedom (df’s) (Ogasawara, 2023b),
the joint distributions of the Wishart matrix and normal vectors (Yonenaga,
2022) and cases under arbitrary distributions (Hsu, 1940; Srivastava & Khatri,
1979, Lemma 3.2.3; Olkin, 2002, Section 2).

Asymptotic results associated with the Wishart distribution are also of prac-
tical use. In SEM, the asymptotic standard errors of the Wishart maximum
likelihood estimators for structural parameters are often used under normality
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or non-normality. In this situation, the large df is assumed. When the number
of variables is also large under some condition as in high-dimensional data (see
e.g., Yao, Zheng, & Bai, 2015), the limiting distribution of the eigenvalues of the
Wishart matrix is given by the Marčenko and Pastur (1967, M-P) distribution
(the author is indebted to an anonymous reviewer for this point). The M-P dis-
tribution gives a tool for the problems of the numbers of factors or components
in SEM (Chen & Weng, 2023).

The probability density functions (pdf’s) of the Wishart distribution were
given by Fisher (1915, p. 510) and Wishart (1928) for the bivariate and general
multivariate cases, respectively. The derivations tend to be involved with geo-
metric viewpoints (see e.g., Anderson, 2003, Section 7.2) or not self-contained
algebra as criticized by Ghosh and Sinha (2002) (for the references of deriva-
tions see Srivastava & Khatri, 1979, p. 73 and Anderson, 2003, pp. 256-257).
Khatri (1963) showed a brief derivation using an integral of the unity over the
constant quadratic forms having the chi-square density. Ghosh and Sinha (2002)
gave a self-contained concise proof of the Wishart density though it is an indirect
method. In spite of frequent use of the Wishart density and its variations in SEM,
the derivation of the pdf seems to be often intractable for beginning students/re-
searchers. Probably, many of them use the Wishart pdf as if referencing a cook
book without understanding the derivation, which is an undesirable situation. A
relatively concise derivation is to use the characteristic function and its inversion
(Wishart & Bartlett, 1933; Wilks, 1962, Section 18.2). However, this method re-
quires the Fourier integral theorem or Levy’s inversion formula, which may be
unfamiliar for beginners. In this paper, almost self-contained known proofs and
new ones for the uncorrelated and correlated multivariate cases are shown with
didactic explanations.

2 Proofs of the Wishart Distributions

2.1 The distribution of a lower-triangular matrix for the Wishart
density

Suppose that in the random matrix X = {Xij} (i = 1, ..., p; j = 1, ..., n; p ≤ n),
each column is multivariate normally distributed as Np(0, Ip) independent of
the other columns with the population mean vector 0 and covariance matrix Ip
denoting the p× p identity matrix. That is, all the elements of X are mutually
independently distributed as standard normal.

Let S ≡ XXT = TTT be Bartlett-decomposed such that T is a p× p lower-
triangular matrix whose diagonal elements are positive. Define s =
(s11, s21, s22, ..., sp1, ..., spp)

T and t = (t11, t21, t22, ..., tp1, ..., tpp)
T, where s and

t are the {(p2 + p)/2} × 1 vectors of the non-duplicated elements of S and the
random elements of T, respectively. Let |∂s/∂tT|+ (Srivastava & Khatri, 1979,
p. 28) be the absolute value of the determinant of the Jacobian matrix for the
transformation S → T:

∂s

∂tT
=

{
∂sij
∂tkl

}
(p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1)
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using the double subscript notation for the rows of the elements of S and columns
for those of tT in ∂s/∂tT. Then, the Jacobian of the transformation is given by
|∂s/∂tT|+. For the proof of the Wishart distribution, the following lemmas are
used.

Lemma 1 Suppose that each of 2m variables Xik and Xjk (i ̸= j; k = 1, ...,m;
m = 1, 2, ...) independently follows N(0, 1) ≡ N1(0, 1). Then, the distribution of∑m

k=1 XikXjk is the same as that of Xil

√∑m
k=1 X

2
jk (i ̸= j; l = 1, ...,m).

Proof. When m = 1, the equal distribution of Xi1Xj1 and Xi1

√
X2

j1 = Xi1|Xj1|
is given by the symmetric distribution of Xi1Xj1 about zero. For general cases,
consider the moment generating functions (mgf’s). By definition, the mgf of∑m

k=1 XikXjk is

E {exp (t
∑m

k=1 XikXjk)} =
∏m

k=1 E {exp(tXikXjk)}

=
∏m

k=1
1
2π

∫∞
−∞

∫∞
−∞ exp

(
txikxjk − x2

jk

2

)
dxjk exp

(
−x2

ik

2

)
dxik

=
∏m

k=1
1√
2π

∫∞
−∞

∫∞
−∞

1√
2π

exp
{
− (xjk−txik)

2

2

}
dxjk exp

{
− (1−t2)x2

ik

2

}
dxik

=
∏m

k=1
1√
2π

∫∞
−∞ exp

{
− (1−t2)x2

ik

2

}
dxik

= (1− t2)−m/2 (|t| < 1).

On the other hand, the mgf of Xil

√∑m
k=1 X

2
jk is

E exp
(
tXil

√∑m
k=1 X

2
jk

)
= 1

(2π)(m+1)/2

∫∞
−∞ · · ·

∫∞
−∞ exp

(
txil

√∑m
k=1 x

2
jk − x2

il

2 −
∑m

k=1 x2
jk

2

)
×dxildxj1 · · · dxjm

= 1
(2π)m/2

∫∞
−∞ · · ·

∫∞
−∞

1
(2π)1/2

exp

{
−
(
xil − t

√∑m
k=1 x

2
jk

)2
/2

}
dxil

×exp
{
−(1− t2)

∑m
k=1 x

2
jk/2

}
dxj1 · · · dxjm

= 1
(2π)m/2

∫∞
−∞ · · ·

∫∞
−∞ exp

{
−(1− t2)

∑m
k=1 x

2
jk/2

}
dxj1 · · · dxjm

= (1− t2)−m/2 (|t| < 1).

It is found that the above two mgf’s are the same, which shows the same distri-

bution of
∑m

k=1 XikXjk and Xil

√∑m
k=1 X

2
jk (i ̸= j; l = 1, ...,m). ⊓⊔

The second proof using the pdf of the chi-distribution is given in the supple-
ment to this paper (Ogasawara, 2023a).
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Lemma 2 (Deemer & Olkin, 1951, Theorem 4.1; Srivastava & Khatri, 1979,
Exercise 1.28 (i); Muirhead, 1982, Theorem 2.1.9; Anderson, 2003, p. 255). The
Jacobian of the transformation S → T is

|∂s/∂tT|+ = 2p
∏p

i=1
tp−i+1
ii .

Proof. Deemer and Olkin (1951) derived the result as a special case of another
general theorem. Muirhead (1982) used the exterior product while an essential
standard proof was given by Anderson (2003). The derivation is given here by
induction. When p = 1, |∂s/∂tT|+ = ds11/dt11 = dt211/dt11 = 2t11 > 0 show-
ing that the above result holds. Assume that the result holds when p = p∗

i.e., |∂s/∂tT|+ = 2p
∗ ∏p∗

i=1 t
p∗−i+1
ii (p∗ ≥ 1). When p = p∗ + 1, the elements

sp∗+1,1, sp∗+1,2, ..., sp∗+1,p∗+1 are added to s at its end. Similarly,

tp∗+1,1, tp∗+1,2, ..., tp∗+1,p∗+1 are added to tT. Noting that sij =
j∑

k=1

tiktjk (p ≥

i ≥ j ≥ 1), we find that ∂s/∂tT is a lower-triangular matrix. Consequently, the
added factor in |∂s/∂tT|+ when p = p∗ + 1 over when p = p∗ is given by the
product of the added diagonal elements:

∂sp∗+1,1

∂tp∗+1,1

∂sp∗+1,2

∂tp∗+1,2
· · · ∂sp∗+1,p∗

∂tp∗+1,p∗

∂sp∗+1,p∗+1

∂tp∗+1,p∗+1
= t11t22 · · · tp∗p∗2tp∗+1,p∗+1.

That is, |∂s/∂tT|+ becomes

2p
∗
(∏p∗

i=1
tp

∗−i+1
ii

)
t11t22 · · · tp∗p∗2tp∗+1,p∗+1 = 2p

∗+1
∏p∗+1

i=1
tp

∗+1−i+1
ii ,

which shows that the formula |∂s/∂tT|+ = 2p
∏p

i=1 t
p−i+1
ii holds when p = p∗+1

indicating the required result. ⊓⊔

In the following theorem for a known Wishart density, we use Γp(n/2) ≡
πp(p−1)/4

∏p
i=1 Γ{(n− i+ 1)/2} i.e., the p-variate Gamma function (Anderson,

2003, Definition 7.2.1; Subsection 7.2, Equation (18); see also DLMF, 2021, Sec-
tion 35.3, https://dlmf.nist.gov/35.3), where Γ (k) =

∫∞
0

vk−1 exp(−v)dv (k >
0) is the usual gamma function.

Theorem 1 Under the condition that the n columns of X independently follow
Np(0, Ip), the pdf of the Wishart distributed S is given by

wp(S|Ip, n) =
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
(n ≥ p).

Proof. Consider the case of tij = Xij and tii =
√∑n

k=i X
2
ik (i = 1, ..., p; j =

1, ..., i− 1). Since Xij(i = 1, ..., p; j = 1, ..., n) are mutually independent, tij (i =

1, ..., p; j = 1, ..., i) are independent. Note that (TTT)ii =
∑i

j=1 t
2
ij = (XXT)ii

(i = 1, ..., p) are independently chi-square distributed with n df, where (·)ij
is the (i, j)-th element of a matrix; and tii is chi-distributed with n − i + 1

https://dlmf.nist.gov/35.3
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df. Further, Lemma 1 shows that the distributions of the off-diagonal elements
(TTT)ij =

∑j
k=1 tiktjk and (XXT)ij(p ≥ i > j ≥ 1) using tjj and tij (i =

1, ..., p; j = 1, ..., i− 1) are the same. That is, the distribution of S = XXT and
TTT are the same when tij (i = 1, ..., p; j = 1, ..., i) are distributed as above.
The pdf of the constructed tij ’s (p ≥ i ≥ j ≥ 1) denoted by fp(T) becomes

fp(T) =

[
p∏

i=1

tn−i
ii exp(−t2ii/2)

2{(n−i+1)/2}−1Γ{(n− i+ 1)/2}

]

×
1

(
√
2π)

(p2−p)/2

{ ∏
p≥i>j≥1

exp
(
−t2ij/2

)}

=

{
p∏

i=1

tn−i
ii exp(−t2ii/2)

}{ ∏
p≥i>j≥1

exp
(
−t2ij/2

)}
2

(n+1)p
2 − p(p+1)

4 −p × 2
p(p−1)

4 π
p(p−1)

4

p∏
i=1

Γ{(n− i+ 1)/2}

=

(
p∏

i=1

tn−i
ii

)
exp{−tr(TTT)/2}

2
np
2 −pΓp(n/2)

.

In the above expression, the pdf of the chi-distributed tii with k df denoted by
fχ(tii|k) is given by that of the chi-square distributed u = t2ii with k df i.e.,

fχ2(u|k) =
u(k/2)−1

2k/2Γ (k/2)
exp(−u/2) with the Jacobian du/dtii = 2tii, yielding

fχ(tii|k) =
u(k/2)−1

2k/2Γ (k/2)
exp(−u/2)

du

dtii
=

t
(n−i+1)−2+1
ii exp(−t2ii/2)

2(n−i+1)/2−1Γ{(n− i+ 1)/2}

as shown earlier, when u = t2ii and k = n− i+ 1.
Consider the transformation T → S in S = XXT = TTT. The Jacobian

J(T → S) of this transformation is given by the reciprocal of J(S → T) obtained

in Lemma 2 as J(T → S) = 1/|∂s/∂tT|+ =
(
2p
∏p

i=1 t
p−i+1
ii

)−1

. Consequently,

using |S|1/2 = |T| = t11 · · · tpp the pdf of S becomes

wp(S|Ip, n) = fp(T)J(T → S)

=

(∏p
i=1 t

n−i
ii

)
exp{−tr(TTT)/2}

2
np
2 −pΓp(n/2)2p

∏p
i=1 t

p−i+1
ii

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
.

⊓⊔

Remark 1 The pdf of tij ’s (p ≥ i ≥ j ≥ 1) i.e., fp(T) given above using Lemma
1 is algebraically equal to those of Anderson (2003, Equation (6), p. 253, Corol-
lary 7.2.1), Wijsman (1957, Equation (12)) and Kshirsagar (1959, Remarks).
However, a typical derivation by e.g., Anderson is an indirect one using or-
thogonalization and the conditional normal density. Since Anderson’s derivation
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seems to give some complicated impressions for beginning students/researchers
though it is almost self-contained, the corresponding didactic explanation of his
derivation is given below. Anderson (2003, Equation (2), p. 252) defined the
n-dimensional independent random vectors vi ∼ Nn(0, In) (i = 1, ..., p) with

X =


vT
1

...

vT
p

 .

Then, the Gram-Schmidt sequential orthogonalization is employed (Anderson,
2003, Equation (3), p. 253) as

wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

(i = 2, ..., p) and w1 = v1,

where he used the expression vT
j wj for the denominator wT

j wj . Though vT
j wj =

wT
j wj (j = 1, ..., i) as will become apparent, wT

j wj may be more natural and
appropriate. While he included the short derivation of the orthogonality among
wi’s by induction, it is repeated here with some added explanations. When i =
2, we have

wT
2 w1 = {v2 −w1(w

T
1 w1)

−1wT
1 v2}Tw1 = v2

Tw1−v2
Tw1(w

T
1 w1)

−1wT
1 w1 = 0

showing the orthogonality. Suppose that

wT
j wk = 0 (j, k = 1, ..., i− 1; j ̸= k)

hold. Then, we have

wT
kwi = wT

k

(
vi −

i−1∑
j=1

wj

wT
j vi

wT
j wj

)
= wT

k vi −
i−1∑
j=1

wT
kwj

wT
j vi

wT
j wj

= wT
k vi −wT

kwk

wT
k vi

wT
kwk

= 0 (i = 2, ..., p; k = 1, ..., i− 1),

due to the assumption wT
j wk = 0 (j, k = 1, ..., i − 1; j ̸= k), showing the re-

quired result wT
j wk = 0 (j, k = 1, ..., i; j ̸= k). Recall that vT

j wj = wT
j wj (j =

1, ..., i) mentioned earlier, which is obtained bywT
j wk = 0 (j, k = 1, ..., i; j ̸= k)

and wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

(i = 2, ..., p).

The orthogonalization procedure is re-expressed by

wi = vi −
i−1∑
j=1

wj

wT
j vi

wT
j wj

= vi − (w1, ...,wi−1)diag{(wT
1 w1)

−1, ..., (wT
i−1wi−1)

−1}(w1, ...,wi−1)
Tvi

≡ vi −PWi−1
vi = (In −PWi−1

)vi ≡ QWi−1
vi (i = 2, ..., p),
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where PWi−1
≡ Wi−1(W

T
i−1Wi−1)

−1WT
i−1 is the idempotent (i.e., P2

Wi−1
=

PWi−1
) and symmetric projection matrix transforming or projecting vi onto

the space spanned by the columns of Wi−1 ≡ (w1, ...,wi−1) of full column
rank by assumption; and QWi−1 = In − PWi−1 is also an idempotent and
symmetric projection matrix yielding the residual vector vi − PWi−1

vi or the
projected vector on the space orthogonal to the column space of Wi−1 with
vi = PWi−1

vi+QWi−1
vi. Anderson (2003, p. 252) stated that “wi is the vector

from vi to the projection on w1, ...,wi−1” with his Figure 7.1. He repeatedly
stressed the equivalence of the column space of Wi−1 and that of v1, ...,vi−1 in
our expression.

Using the constructed w1, ...,wi−1 by the Gram-Schmidt orthogonalization
or projection, Anderson (2003, p. 252) defined

tii = ||wi|| =
√

wT
i wi (i = 1, ..., p)

and
tij = vT

i wj/ ||wj || (i = 2, ..., p; j = 1, ..., i− 1),

which may be uniformly expressed by tij = vT
i wj/ ||wj || = (i = 2, ..., p; j =

1, ..., i) due to vT
j wj = wT

j wj ( j = 1, ..., i) mentioned earlier. Then, noting that
wi = vi −PWi−1

vi, we have

vi = wi +PWi−1
vi = wi +

i−1∑
j=1

wjw
T
j

wT
j wj

vi =

i∑
j=1

wT
j vi

||wj ||2
wj =

i∑
j=1

tij
||wj ||

wj

and

(XXT)ij = vT
i vj =

{
i∑

k=1

tik

||wk||
wT

k

}
j∑

k=1

tjk

||wk||
wk

=
j∑

k=1

tik

||wk||
wT

kwk

tjk

||wk||
=

j∑
k=1

tiktjk (p ≥ i ≥ j ≥ 1)

(Anderson, 2003, p. 252). In vi =
i∑

j=1

tij

||wj ||
wj (i = 1, ..., p), wj/ ||wj || (j =

1, ..., i − 1) is seen as the unit-norm vector representing the direction for the
j-th coordinate in the i − 1 coordinates given by w1, ...,wi−1. He stated that
“tij , j = 1, ..., i− 1 are the first i− 1 coordinates in the coordinate system with
w1, ...,wi−1 as the first coordinates axes” (p. 252). We also find that tij is ||wj ||
times the regression coefficient bij for vi on wj since

tij = vT
i wj/ ||wj || = (vT

i wj /w
T
j wj ) ||wj ||

= bij ||wj ||(i = 2, ..., p; j = 1, ..., i− 1).

The properties of the normality of tij = vT
i wj/ ||wj || (i = 2, ..., p; j =

1, ..., i− 1) and their mutual independence shown by Anderson are based on the
normality of the conditional distribution of the multivariate normal whenwj(j =
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1, ..., i − 1) are given and orthogonal transformation in tij = vT
i wj/ ||wj || (i =

2, ..., p; j = 1, ..., i − 1). That is, the standard normally-distributed variables
tij = vT

i wj/ ||wj || do not depend on w1, ...,wi−1 indicating independence with
(wj/ ||wj ||)Twk/ ||wk|| = δjk (j, k = 1, ..., i − 1), where δjk is the Kronecker
delta with δjj = 1 and δjk = 0 (j ̸= k) (Anderson, 2003, Theorem 3.3.1).

The independent property of tii’s is given by tii =
{
(XXT)ii −

∑i−1
j=1 t

2
ij

}1/2

.

Although the same result as shown above by the didactic explanation of Ander-
son’s derivation is directly given by Lemma 1, the two methods may be insightful
with compensatory properties. [end of Remark 1]

2.2 The Wishart density for general correlated cases

For the correlated cases, four lemmas are provided. Lemma 3 is for three Jaco-
bians in the product of two lower-triangular matrices, where the first Jacobian
was used by Anderson (2003, Theorem 7.2.2) to derive the Wishart density for
general correlated cases while the remaining two are given for generality with
didactic purposes. Lemmas 4 and 5 are provided for the Jacobians in two alterna-
tive derivations of the general Wishart density. The proof of Lemma 6 associated
with sufficient statistics is based on Ghosh and Sinha (2002).

Lemma 3 Suppose that A = BC, where A, B and C are p×p lower-triangular
matrices. Consider the variable transformation from the non-zero elements of
C or B to those of A. Then, the Jacobians J(C → A) and J(B → A) are∣∣∏p

i=1 b
i
ii

∣∣−1
and

∣∣∣∏p
i=1 c

p−i+1
ii

∣∣∣−1

, respectively. When B = C, J(B → A) =∣∣∣∏p
i=1

∏i
j=1 (bii + bjj)

∣∣∣−1

.

Proof. Note that Anderson (2003, p. 254) gave J(C → A). Since aij =
∑i

k=j bikckj
(p ≥ i ≥ j ≥ 1), we have



a11
a21
a22
...
ap1
...
apm


=



b11 0 0 · · · 0 · · · 0
∗ b22 0 · · · 0 · · · 0
∗ ∗ b22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · bpp · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · bpp





c11
c21
c22
...
cp1
...
cpp


,

where the diagonal element of the lower-triangular matrix corresponding to the
row for aij and the column for cij is bii (p ≥ i ≥ j ≥ 1); the asterisks indicate
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zero or non-zero elements; and

a11
a21
a22
...
ap1
...
app


=



c11 0 0 · · · 0 · · · 0
∗ c11 0 · · · 0 · · · 0
∗ ∗ c22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · c11 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · cpp





b11
b21
b22
...
bp1
...
bpp


,

where the corresponding diagonal element for aij and bij is cjj (p ≥ i ≥ j ≥ 1).
Since the inverses of the Jacobian matrices for J(C → A) and J(B → A) on
the right-hand sides of the above equations are lower-triangular, the Jacobians
become the reciprocals of the absolute values of the determinants i.e.,

∏p
i=1 b

i
ii

and
∏p

i=1 c
p−i+1
ii , respectively. The result when B = C is obtained by the recip-

rocal of the determinant of the sum of the two lower-triangular matrices. ⊓⊔

Lemma 4 Suppose that A = BCBT, where A and C are p × p symmetric
matrices; and B is a lower-triangular matrix. Consider the variable transforma-
tion from the non-duplicated elements of C to those of A. Then, the Jacobian

J(C → A) is |B|−(p+1)
+ .

Proof. Since the non-duplicated elements of A using its diagonal and infra-
diagonal elements are aij =

∑i
k=1

∑j
l=1 bikcklbjl (p ≥ i ≥ j ≥ 1), we have

∂aij
∂ckl

= bikbjl (p ≥ i ≥ j ≥ 1; k = 1, ..., i; l = 1, ..., j),

which gives

a11
a21
a22
...
ap1
...
app


=



b11b11 0 0 · · · 0 · · · 0
∗ b22b11 0 · · · 0 · · · 0
∗ ∗ b22b22 · · · 0 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · bppb11 · · · 0
...

...
...

...
...

∗ ∗ ∗ · · · ∗ · · · bppbpp





c11
c21
c22
...
cp1
...
cpp


,

where the diagonal element of the lower-triangular matrix for aij and cij is
∂aij/∂cij = biibjj (p ≥ i ≥ j ≥ 1). Since J(C → A) is the reciprocal of the
absolute value of the determinant of the above lower-triangular matrix, we obtain

J(C → A) = 1/
∣∣∣∏p

i=1 b
p+1
ii

∣∣∣ = |B|−(p+1)
+ . ⊓⊔

Lemma 5 Suppose that A = BCCTBT, where A is a p× p symmetric matrix;
and B and C are lower-triangular matrices. Consider the variable transforma-
tion from the non-zero elements of C to the non-duplicated elements of A. Then,

the Jacobian J(C → A) is |B|−(p+1)
+ /

∣∣∣2p∏p
i=1 c

p−i+1
ii

∣∣∣.
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Proof 1 The diagonal and infra-diagonal elements of A are employed for its non-
duplicated ones without loss of generality. Then, define a =
(a11, a21, a22, ..., ap1, ..., app)

T and c = (c11, c21, c22, ..., cp1, ..., cpp)
T with the el-

ements lexicographically ordered. Since B, C and BC are lower-triangular, the
Jacobian matrix ∂a/∂cT = {∂aij/∂ckl} (p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1) becomes
lower-triangular. This can be shown by

∂aij

∂ckl
= {B(EklC

T +CElk)B
T}ij = (BEklC

TBT)ij + (BCElkB
T)ij

= bik(BC)jl + (BC)ilbjk (p ≥ i ≥ j ≥ 1; p ≥ k ≥ l ≥ 1),

where Eij is the matrix of an appropriate size, whose (i, j)th element is 1 with
the remaining ones being 0. The right-hand side of the last equation in the above
expression vanishes when i < k or {i = k}∩{j < l}. This condition indicates the
lower-triangular form of ∂a/∂cT = {∂aij/∂ckl}. Then, the diagonal elements are

∂aij
∂cij

= {B(EijC
T +CEji)B

T}ij = (BEijC
TBT)ij = biicjjbjj (p ≥ i > j ≥ 1)

and
∂aii
∂cii

= {B(EiiC
T +CEii)B

T}ii = 2b2iicii (i = 1, ..., p).

Since the determinant of the Jacobian matrix for J(A → C) is

∏p
i=1

∏i
j=1

∂aij

∂cij
=
(∏p

i=1

∏i−1
j=1

∂aij

∂cij

)∏p
i=1

∂aii

∂cii
= 2p

∏p
i=1

∏i
j=1 biicjjbjj

= 2p
(∏p

i=1 b
i
ii

)∏p
j=1 c

p−j+1
jj bp−j+1

jj = 2p
∏p

i=1 b
p+1
ii cp−i+1

ii

= 2p|B|p+1
∏p

i=1 c
p−i+1
ii ,

the Jacobian J(C → A) is the reciprocal of the absolute value of the above
quantity:

J(C → A) = |B|−(p+1)
+ /

∣∣∣2p∏p

i=1
cp−i+1
ii

∣∣∣ ,
which is the required result. ⊓⊔

Proof 2 The transformation A = BCCTBT is seen in two steps. In the first
step, the transformation C → CCT is considered, whose Jacobian is given by

Lemma 2 as J(C → CCT) = 1/
∣∣∣2p∏p

i=1 c
p−i+1
ii

∣∣∣. The second step is for the

transformation CCT → A = BCCTBT with the Jacobian J(CCT → A) =

|B|−(p+1)
+ , which is given by Lemma 4. Then, the Jacobian J(C → A) is the

product of the two Jacobians due to the chain rule, which gives the required
result. ⊓⊔

Suppose that each column of a p×n matrix Y follows Np(0,Σ) with positive
definite Σ independent of the other columns. Recall X in Theorem 1. Let Σ =
BBT be the Cholesky decomposition, where B is a fixed lower-triangular matrix
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whose diagonal elements are positive for identification and convenience. Then,
each column of Y = BX independently follows Np(0,Σ). Define SΣ ≡ YYT =
BXXTBT = BSBT, where S = SIp = XXT = TTT, and the {p(p + 1)/2} ×
1 vector sΣ ≡ (sΣ11, sΣ21, sΣ22, ..., sΣp1, ..., sΣpp)

T with SΣ = {sΣij} (i, j =
1, ..., p).

Lemma 6 Define positive definite Σi = BiB
T
i and SΣi

= BiSB
T
i (i = 1, 2),

where S is as before. Denote the pdf’s of SΣi
at SΣ by gΣ=Σi

(SΣ) (i = 1, 2).
Then,

gΣ=Σ1
(SΣ)

gΣ=Σ2
(SΣ)

=
ϕp,n(Y|0, Σ1)

ϕp,n(Y|0, Σ2)
,

where ϕp,n(Y|0, Σi) =
∏n

j=1 ϕp{(Y)· j |0, Σi}; (Y)· j is the j-th column of Y;
and

ϕp{(Y)· j |0, Σi} =
exp{−(Y)T·jΣ

−1
i (Y)· j/2}

(2π)
n/2|Σi|1/2

( i = 1, 2; j = 1, ..., n).

Proof. The derivation is given by the factorization theorem for the sufficient
statistic corresponding to SΣ for Σ as used by Ghosh and Sinha (2002, Equation
(8)):

ϕp,n(Y|0, Σi) = gΣ=Σi
(SΣ)h(Y) (i = 1, 2),

which gives the required result. ⊓⊔

The Wishart density for general correlated cases (see e.g., Srivastava & Kha-
tri, 1979, Theorem 3.2.1; Anderson, 2003, Theorem 7.2.2) is derived in different
ways.

Theorem 2 Let each column of a p×n matrix Y follows Np(0,Σ) with positive
definite Σ independent of the other columns. Then, the pdf of SΣ = YYT is

wp(SΣ|Σ, n) =
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

Proof 1 Consider the transformation T → SΣ = BTTTBT. The Jacobian is
given by Lemma 5, when A = SΣ, B = B and C = T with added restrictions
bii > 0 and tii > 0 (i = 1, ..., p) as

J(T → SΣ) = |B|−(p+1)/
(
2p
∏p

i=1
tp−i+1
ii

)
= |Σ|−(p+1)/2/

(
2p
∏p

i=1
tp−i+1
ii

)
.
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The pdf of T denoted by fp(T) was given by Theorem 1. Then, we have

wp(SΣ|Σ, n) = fp(T)J(T → SΣ)

=

exp{−tr(TTT)/2}
p∏

i=1

tn−i
ii

2(np/2)−pΓp(n/2)

|Σ|−(p+1)/2

2p
∏p

i=1 t
p−i+1
ii

=

exp{−tr(TTT)/2}|Σ|−(p+1)/2
p∏

i=1

tn−p−1
ii

2np/2Γp(n/2)

=
exp{−tr(B−1SΣB

T−1)/2}|Σ|−(p+1)/2|B−1SΣB
T−1|(n−p−1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
,

where tr(B−1SΣB
T−1) = tr(BT−1B−1SΣ) = tr{(BBT)−1SΣ} = tr(Σ−1SΣ)

and |B−1SΣB
T−1| = |SΣ||Σ|−1 are used. The last expression gives the required

result. ⊓⊔

Proof 2 Employ the two-step transformation T → S = TTT → SΣ = BSBT.
The first step was used by Theorem 1. The Jacobian J(T → S = TTT) in the
first step is given by Lemma 2 by taking the reciprocal of the last result of the
lemma while J(S → SΣ = BSBT) is obtained by Lemma 4. That is,

wp(SΣ|Σ, n) = fp(T)J(T → S)J(S → SΣ)

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
J(S → SΣ)

=
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
|B|−(p+1)

=
exp{−tr(Σ−1SΣ)/2}|Σ−1SΣ|(n−p−1)/2|Σ|−(p+1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔

Proof 3 (Anderson, 2003, Theorem 7.2.2) Anderson used an alternative two-step
transformation T → T∗ = BT → SΣ = T∗T∗T . The Jacobian J(T → T∗) is
given by the first result of Lemma 3 while J(T∗ → SΣ) is given by the reciprocal
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of the last result in Lemma 2 when T = T∗. That is,

wp(SΣ|Σ, n) = fp(T)J(T → T∗)J(T∗ → SΣ)

=

exp{−tr(TTT)/2}
p∏

i=1

tn−i
ii

2(np/2)−pΓp(n/2)

(∏p
i=1 b

i
ii

)−1
(
2p
∏p

i=1 t
∗p−i+1
ii

)−1

=

exp{−tr(TTT)/2}
p∏

i=1

(t∗ii/bii)
n−i

2np/2Γp(n/2)
(∏p

i=1 b
i
ii

)∏p
i=1 t

∗p−i+1
ii

=

exp{−tr(TTT)/2}
p∏

i=1

t∗n−p−1
ii

2np/2 (
∏p

i=1 b
n
ii)Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔
Proof 4 Use Theorem 1 and Lemma 6 when Σ1 = Ip and Σ2 = B2B

T
2 =

Σ1/2(Σ1/2)T = Σ. Then, we have

wp(SΣ|Σ, n) = wp(SΣ|Ip, n)
ϕp,n(Y|0, Σ)

ϕp,n(Y|0, Ip)

=
exp{−tr(SΣ)/2}|SΣ|(n−p−1)/2

2np/2Γp(n/2)

exp{−tr(YYTΣ−1)/2}/{(2π)pn/2|Σ|n/2}
exp{−tr(YYT)/2}/(2π)pn/2

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔

3 Remarks and Conclusion

For the general correlated cases, four proofs are shown in Theorem 2. The
one-step first proof uses fp(T) with J(T → SΣ) given by Lemma 5, where
SΣ = BTTTBT with lower-triangular B and T is seen as a two-fold Bartlett
(Cholesky) decomposition or a usual Bartlett (1933) SΣ = BT(BT)T in terms
of lower-triangular BT. The two-step second proof uses fp(T) with J(T → S =
TTT) and J(S → SΣ = BSBT) obtained by Lemmas 2 and 4, respectively.
Anderson (2003)’s two-step third proof uses fp(T) with J(T → T∗ = BT) and
J(T∗ → SΣ) given by Lemmas 3 and 2, respectively. Among the four proofs,
the first and fourth ones are relatively simple. The remaining two-step proofs
seem to be comparable. It is found that in order to derive the final Jacobian by
Proofs 2 and 3, Lemma 2 is firstly and secondly used, respectively. When only
the pdf of S(= SΣ=Ip) is focused on, Proof 2 may be the simplest though the
same result is immediately obtained from the pdf of SΣ substituting Σ = Ip.

In each of the four proofs, fp(T) is used. Two derivations for fp(T) were
shown. The first method using Lemma 1 is much simpler than that used by
Anderson (2003) as detailed in Remark 1. The author believes that this sim-
plification will reduce the difficulties frequently encountered when beginning
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students/researchers master the Wishart density. Note that when the Wishart
density for wp(S|Ip, n) is given, fp(T) is obtained using J(S → T) in Lemma 2
as easily as the transformation J(T → S), which is the reversed problem (see
Bartlett, 1933; Muirhead, 1982, Theorem 3.2.14).

Remark 2 Lemma 1 gave the justification of XXT = TTT with mutually inde-
pendent normal tij (p ≥ i > j ≥) and chi-distributed tii(i = 1, ..., p). While the
chi-square distribution of (TTT)ii is obvious, the distribution of (TTT)ij (i > j)
is that of the product sum of p pairs of independent normals (the product-sum
normal for short). The pdf and mgf of the product-sum normal in the case of a
possibly correlated single pair was given by Craig (1936) (see also Ogasawara,
2023a, Remarks S1-S4). For current developments of this issue, see e.g., Seijas-
Maćıas and Oliveira (2012), Seijas-Maćıas, Oliveira, Oliveira, and Leiva (2020),
and Gaunt (2022).

Remark 3 As addressed earlier, the complicated property found in many of
the proofs of the Wishart density seems to be due partially to the associated
Jacobians in e.g., Srivastava and Khatri (1979, Section 3.2) and Anderson (2003,
Section 7.2). The proof of the Wishart density in Theorem 1 is similar to that in
Srivastava and Khatri (1979, Section 3.2).Though the Jacobian in Lemma 2 was
also used by Srivastava and Khatri, we did not use the Jacobian ofX → {T, V∗}
in X = TV∗, where V∗ is a p × n semi-orthonormal matrix with V∗V∗T = Ip
(see Srivastava & Khatri, 1979, Exercise 1.33). Instead, we used the marginal
chi and normal distributions for T as in Anderson (2003).

As shown earlier, in the three proofs of the Wishart density wp(SΣ|Σ, n),
the Bartlett-like Cholesky decomposition Σ = BBT is used for non-stochastic
Σ. Though this factorization gives simple results, other factorizations can also
be used with Σ = BGGTBT = BG(BG)T = DDT, where GGT = GTG = Ip
and D = BG. For illustration, Proof 5 using D = Σ1/2 with (Σ1/2)2 = Σ will be
shown in Appendix A for didactic purposes with associated remarks. The concise
derivation of Khatri (1963) will be explained in Appendix B. The Bartlett de-
composition S = TTT can also be replaced by other ones with the same number
of random variables. The case called the exchanged Bartlett decomposition will
be shown in Appendix C.

Conclusion Among Proofs 1 to 4 of the Wishart distribution given earlier and
Proofs 5 to 7 to be shown in the appendix for expository purposes, Proof 4
using our Lemma 1 for the equivalence of the distributions of the product-sum
normal and the product of the chi and standard normal as well as Lemma 6
for the factorization theorem given by Ghosh and Sinha (2002) is the simplest.
Since Proof 4 uses elementary and self-contained methods, the proof may be
understood by beginning students/researchers without much difficulty.
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(Magnus & Neudecker, 1999, Chapter 3, Section 8); and vec(·) is the vectorizing
operator stacking the columns of a matrix in parentheses sequentially with the
first column on the top. Using the formula vec(ABC) = (CT ⊗A)vec(B) (see
Magnus & Neudecker, 1999, Chapter 2, Theorem 2), where ⊗ denotes the direct
or Kronecker product, we obtain

DpsΣ = vec(SΣ) = vec(Σ1/2SΣ1/2) = (Σ1/2⊗Σ1/2)vec(S) = (Σ1/2⊗Σ1/2)Dps.

Pre-multiplying the above equation by (DT
pDp)

−1DT
p ≡ D+

p , which is the left-
or Moore-Penrose generalized inverse of Dp with D+

p Dp = Ip(p+1)/2 (see Magnus
& Neudecker, 1999, Chapter 3, Section 8), we have

sΣ = D+
p (Σ

1/2 ⊗Σ1/2)Dps.

The Jacobian of the transformation SΣ → S or equivalently sΣ → s is given
by |D+

p (Σ
1/2 ⊗ Σ1/2)Dp|+ = |Σ|(p+1)/2, which is derived using the following

lemma.

Lemma 7 (Magnus & Neudecker, 1986, Equation (7.11)). Let A be a p × p
positive definite matrix with distinct eigenvalues. Then, |D+

p (A ⊗ A)Dp| =
|A|p+1.

Proof. While Magnus and Neudecker (1986) used Shur’s theorem for the ex-
istence of a non-singular matrix V satisfying V−1AV = M, where M is an
upper-triangular matrix for a general square matrix A, we use a familiar special
case of the theorem as LTAL = Λ when A = LΛLT with LLT = LTL = Ip
and Λ = diag(λ1, ..., λp) (λ1 > ... > λp > 0), where the columns of L and
λi(i = 1, ..., p) are the eigenvectors and eigenvalues of A, respectively. Note that

D+
p (L

T ⊗ LT)DpD
+
p (A⊗A)DpD

+
p (L⊗ L)Dp

= D+
p (L

T ⊗ LT)(A⊗A)(L⊗ L)Dp

= D+
p {(LTAL)⊗ (LTAL)}Dp = D+

p (Λ⊗Λ)Dp,

where DpD
+
p (A ⊗ A) = (A ⊗ A)DpD

+
p and DpD

+
p Dp = Dp (Magnus &

Neudecker, 1999, Chapter 3, Theorem 13) are used, followed by the transfor-
mation given by (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) when multiplications are
defined.

Note that D+
p (L

T ⊗ LT)Dp = {D+
p (L⊗ L)Dp}−1 since

D+
p (L

T⊗LT)DpD
+
p (L⊗L)Dp = D+

p (L
T⊗LT)(L⊗L)Dp = D+

p Dp = Ip(p+1)/2.

Consequently, we can write as

D+
p (L

T ⊗ LT)DpD
+
p (A⊗A)DpD

+
p (L⊗ L)Dp

≡ B−1D+
p (A⊗A)DpB = D+

p (Λ⊗Λ)Dp,
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which shows that the eigenvalues of D+
p (A ⊗ A)Dp are the same as those of

D+
p (Λ ⊗ Λ)D (see e.g., Magnus & Neudecker, 1999, Chapter 1, Theorem 5).

Employ the double subscript notation as used earlier for the row numbers i
and j (p ≥ i ≥ j ≥ 1) and column numbers k and l (p ≥ k ≥ l ≥ 1) of
the {p(p + 1)/2} × {p(p + 1)/2} matrix D+

p (Λ ⊗ Λ)Dp. These numbers cor-
respond to the subscripts of the elements of e.g., the {p(p + 1)/2} × 1 vector
s = (s11, s21, s22, ..., sp1, ..., , spp)

T.
Consider (Λ⊗Λ)Dp, where the (k, k)th columns of (Λ⊗Λ)Dp (k = 1, . . . , p)

are unchanged from the corresponding ones of Λ⊗Λ while the (k, l)th columns
(p ≥ k > l ≥ 1) of (Λ ⊗Λ)Dp are combined ones as the sum of the (k, l)- and
(l, k)-th columns of Λ⊗Λ such that e.g.,

(Λ⊗Λ)D2 = diag(λ2
1, λ1 λ2, λ2 λ1, λ

2
2)


1 0 0
0 1 0
0 1 0
0 0 1

 =


λ2
1 0 0

0 λ1 λ2 0
0 λ2 λ1 0
0 0 λ2

2


when p = 2. For the second transformation D+

p (Λ ⊗ Λ)Dp, noting that D+
p =

(DT
pDp)

−1DT
p consists of 1’s, 1/2’s and 0’s as D+

2 =

1 0 0 0
0 1/2 1/2 0
0 0 0 1

, we find

that D+
p (Λ ⊗ Λ)Dp is the {p(p + 1)/2} × {p(p + 1)/2} diagonal matrix whose

diagonal elements are λ2
i (i = 1, ..., p) and λiλj (p ≥ i > j ≥ 1) as D+

2 (Λ ⊗
Λ)D2 = diag(λ2

1, λ2 λ1, λ
2
2). Then, we have

|D+
p (A⊗A)Dp| = |D+

p (Λ⊗Λ)Dp|

=

(
p∏

i=1

λ2
i

) ∏
p≥i>j≥1

λiλj =

(
p∏

i=1

λi

)p+1

= |A|p+1.

⊓⊔

Proof 5 of the Wishart density in Theorem 2 The Jacobian of the trans-
formation SΣ → S or equivalently sΣ → s is given by Lemma 7 as |D+

p (Σ
1/2 ⊗

Σ1/2)Dp|+ = |Σ|(p+1)/2. Consequently, J(s → sΣ) becomes |Σ|−(p+1)/2. Then,
the pdf of SΣ is obtained by that of S = Σ−1/2SΣΣ

−1/2 in Theorem 1 and
J(s → sΣ) = |Σ|−(p+1)/2 as

wp(SΣ|Σ, n) =
exp{−tr(S)/2}|S|(n−p−1)/2

2np/2Γp(n/2)
|Σ|−(p+1)/2

=
exp{−tr(Σ−1/2SΣΣ

−1/2)/2}|Σ−1/2SΣΣ
−1/2|(n−p−1)/2|Σ|−(p+1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)
.

⊓⊔
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Remark 4 When Lemma 7 for the Jacobian of SΣ → S is given, Theorem 2
for the Wishart density for general correlated cases was immediately obtained.
Conversely, when the Wishart densities for S and SΣ are available, the Jacobian
is easily given by comparing two densities using S = Σ−1/2SΣΣ

−1/2, which was
employed by Anderson (2003, Theorem 7.3.3).

Appendix B On Khatri (1963)’s self-contained concise
derivation

Khatri (1963) is referred to only by Kshirsagar (1972, p. 59) and, Srivastava and
Khatri (1979, p. 76) to the author’s knowledge. The derivation depends on the
integral πk/2q(k/2)−1/Γ (k/2) =

∫
xTx=q

dx1 · · · dxk, where q is a positive constant

and xi’s with x = (x1, ..., xk)
T independently follow the standard normal. This

integral is typically obtained in a proof of the chi-square distribution with k df
using the surface area Sk−1 = 2πk/2rk−1/Γ (k/2) of the (k − 1)-sphere with the
radius r = q1/2 in the k-dimensional Euclidian space and dr = {1/(2q1/2)}dq:{∏k

i=1 (1/
√
2π) exp(−x2

i /2)|xTx=q

}∫
xTx=q

dx1 · · · dxk

=
1

(2π)
k/2

exp
(
− q

2

) 2πk/2rk−1

Γ (k/2)

dr

dq
=

1

(2π)
k/2

exp
(
− q

2

) 2πk/2q(k−1)/2

Γ (k/2)

1

2q1/2

=
1

2k/2Γ (k/2)
q(k/2)−1 exp

(
− q

2

)
,

yielding ∫
xTx=q

dx1 · · · dxk =
2πk/2q(k−1)/2

Γ (k/2)

1

2q1/2
=

πk/2q(k/2)−1

Γ (k/2)
.

Khatri (1963, p. 53) stated that
∫
xTx=q

dx1 · · · dxk = πk/2qk/2/Γ (k/2) using our

notation, where qk/2 rather than q(k/2)−1 is probably a typo since otherwise the
correct factor |S|(n−p−1)/2 corresponding to q(k/2)−1 when k = n − p + 1 in his
subsequent expression of the Wishart density does not follow. An alternative
short derivation of

∫
xTx=q

dx1 · · · dxk was given by Ogasawara (2022) as follows.
Suppose that the pdf of the chi-square with k df, which is equal to that of the
gamma with the shape parameter k/2 and the scale parameter 2, is obtained
by a different method using e.g., the property of the distribution that the sum
of the independent gamma distributed variables with the same scale parame-
ter becomes the gamma with the shape parameter being the sum of those of
the gammas and the same scale. Note that the beta integral or the moment
generating function can be used for the derivation of this property. Then, we
have{∏k

i=1
(1/

√
2π) exp(−x2

i /2)|xTx=q

}∫
xTx=q

dx1 · · · dxk =
q(k/2)−1 exp(−q/2)

2k/2Γ (k/2)
,
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which gives∫
xTx=q

dx1 · · · dxk =
q(k/2)−1 exp(−q/2)/{2k/2Γ (k/2)}∏k

i=1 (1/
√
2π) exp(−x2

i /2)|xTx=q

=
πk/2q(k/2)−1

Γ (k/2)
.

We find that this derivation without using the area of the (k−1)-sphere is similar
to that by Anderson (2003) mentioned in Remark 4.

Proof 6 of the Wishart density in Theorem 2 (Khatri, 1963) Khatri’s
1.5-page short derivation is due partially to his concise description. Since the ar-
ticle is less well documented with no title, the citations mentioned earlier using
the same incorrect page numbers and several possible typos including the above
one for important points and other minor errors, the corrected proof is pro-
vided with some added explanations. The derivation consists of a p-step variable
transformation with p Jacobians canceling most of them after multiplication.

Define the p×nmatrixXΣ , where each column independently follows Np(0,Σ).

Partition SΣ = XΣX
T
Σ =

Sp−1 sp−1

sTp−1 spp

 =

Xp−1X
T
p−1 Xp−1xp

xT
pX

T
p−1 xT

p xp

, where e.g.,

spp is temporarily used in place of sΣpp for simplicity. Define the n × n matrix

Pn =

Xp−1

Yn−p+1

, where the (n− p+ 1)× n submatrix Yn−p+1 is chosen such

that Yn−p+1X
T
p−1 = O and Yn−p+1Y

T
n−p+1 = In−p+1. Then, we have PnP

T
n =Sp−1 O

O In−p+1

, which gives |Pn|+ = |PnP
T
n |1/2 = |Sp−1|1/2. Consider the

variable transformation from xp to Pnxp with (sTp−1, zTn−p+1)
T = Pnxp, where

zn−p+1 ≡ Yn−p+1xp and J(xp → Pnxp) = |Pn|−1
+ = |Sp−1|−1/2. Since

spp = xT
p xp = (sTp−1, zTn−p+1)P

T−1
p P−1

p (sTp−1, zTn−p+1)
T

= (sTp−1, zTn−p+1)

S−1
p−1 O

O In−p+1

 sp−1

zn−p+1

 = sTp−1S
−1
p−1sp−1 + zTn−p+1zn−p+1,

we have zTn−p+1zn−p+1 = spp − sTp−1S
−1
p−1sp−1 = |SΣ |/|Sp−1|.

Using the multivariate normal density, the joint marginal density of Xp−1,
when a random matrix SΣ at SΣ is a fixed one, becomes

fXp−1(Xp−1) ≡ fXp−1

=
∫∞
−∞ · · ·

∫∞
−∞ (2π)

−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2}

×J{xp → (sTp−1, zTn−p+1)
T}dz1 · · · dzn−p+1

=
∫∞
−∞ (2π)

−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2dzn−p+1,
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where the integrand does not include zn−p+1. Then, the above integral becomes

fXp−1
= (2π)−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2

×
∫
zT
n−p+1zn−p+1= |SΣ |/|Sp−1| dzn−p+1

= (2π)−np/2|Σ|−n/2 exp{−tr(Σ−1SΣ)/2} |Sp−1|−1/2

×
π(n−p+1)/2 (|SΣ |/|Sp−1|){(n−p+1)/2}−1

Γ{(n− p+ 1)/2}

=
π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

(2π)
np/2|Σ|n/2Γ{(n− p+ 1)/2}

1

|Sp−1|(n−p)/2
,

where Khatri’s (p. 54) expression |Sp−1|(n−p−2)/2 using our notation in place
of |Sp−1|(n−p)/2 is incorrect. Define Xp−i{(p− i)×n}, Yn−p+i{(n− p+ i)×n},
Sp−i{(p−i)×(p−i)}, sp−i{(p−i)×1} and zn−p+i{(n−p+i)×1} (i = 2, ..., p−1)
similarly to those when i = 1, respectively. Then, using these matrices and
vectors in similar manners, we have the successive transformations as

fX1
=

π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}
(2π)

np/2|Σ|n/2Γ{(n− p+ 1)/2}
1

|Sp−1|(n−p)/2

×
∏p−1

i=2

∫
zT
n−p+izn−p+i= |Sp−i+1/|Sp−i| dzn−p+i

=
π(n−p+1)/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

(2π)
np/2|Σ|n/2Γ{(n− p+ 1)/2}

1

|Sp−1|(n−p)/2

×
p−1∏
i=2

π(n−p+i)/2 |Sp−i+1|(n−p+i−2)/2/|Sp−i|{(n−p+i−1)/2

Γ{(n− p+ i)/2}

=
π[(n−p)(p−1)+{p(p−1)/2}−np]/2|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2
∏p−1

i=1 Γ{(n− p+ i)/2}
|S1|−(n−2)/2

=
|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2πp(p−1)/4
∏p

i=1 Γ{(n− p+ i)/2}
×

(X1X
T
1 )

−(n−2)/2

πn/2/Γ (n/2)
.

Noting that (X1X
T
1 )

−(n−2)/2 = |S1|−(n−2)/2 = s
−(n−2)/2
11 is a fixed quantity, the

last step is the integral with respect to the row vector X1:

wp(SΣ|Σ, n) = fX1

∫
X1XT

1 =s11
dX1 = fX1π

n/2s
(n/2)−1
11 /Γ (n/2)

=
|SΣ |(n−p−1)/2 exp{−tr(Σ−1SΣ)/2}

2np/2|Σ|n/2πp(p−1)/4
∏p

i=1 Γ{(n− p+ i)/2}
.

⊓⊔

Appendix C The exchanged Bartlett decomposition

The Bartlett decomposition S = TTT has been used in this paper as well as
in literatures. Let S = UUT, where U( ̸= TT) is the upper-triangular matrix
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whose non-zero elements are random variables. Note that U can be obtained
by rotating T as U = TV using an orthonormal matrix V. Define the upper-
triangular matrix C satisfying Σ = CCT with cii > 0 (i = 1, ..., p), where C is
obtained by C = BV∗ and V∗ is another orthonormal matrix. Recall that the
Cholesky decomposition Σ = BBT was used earlier. The form Σ = CCT is also
called the exchanged (reversed) Cholesky or upper-lower (UL) decomposition in
this paper.

Remark 5 Consider the distribution of uij(i = 1, ..., p; j = i, ..., p), which are
assumed to be mutually independent. As in the case of the usual Bartlett, Lemma
1 shows that when uii is chi-distributed with n − p + i df (i = 1, ..., p) and uij

is standard normal (i = 1, ..., p; j = i+ 1, ..., p), the distribution of S = XXT(=
TTT) is the same as that of UUT. Note that tii is chi-distributed with n− i+1
df rather than n− p+ i. The joint pdf of U denoted by fp(U) becomes

fp(U) =

[
p∏

i=1

un−p+i−1
ii exp(−u2

ii/2)

2{(n−p+i)/2}−1Γ{(n− p+ i)/2}

]

× 1

(
√
2π)

(p2−p)/2

{ ∏
1≤i<j≤p

exp
(
−u2

ij/2
)}

=

{
p∏

i=1

un−p+i−1
ii exp(−u2

ii/2)

}{ ∏
1≤i<j≤p

exp
(
−u2

ij/2
)}

2
(n−p)p

2 +
p(p+1)

4 −p × 2
p(p−1)

4 π
p(p−1)

4

p∏
i=1

Γ{(n− p+ i)/2}

=

(
p∏

i=1

un−p+i−1
ii

)
exp{−tr(UUT)/2}

2
np
2 −pΓp(n/2)

.

Proof 7 of the Wishart density in Theorem 2 Consider the one-step trans-
formation from U to SΣ = CXXTCT = CSCT = CUUTCT, where it is found

thatC(X)·j
i.i.d.∼ Np(0,Σ) (j = 1, ..., n). Redefine the vector of the non-duplicated

elements in SΣ as sΣ = (sΣ11, ..., sΣ1p, sΣ22, ..., sΣ2p, ..., sΣpp)
T whose elements

are lexicographically ordered Similarly, define the {p(p+1)/2}×1 vectors c and
u using the corresponding elements of C and U, respectively.

The proof is similar to Proof 1 of Lemma 5. Since C, U and CU are upper-
triangular, the Jacobian matrix ∂sΣ/∂u

T = {∂sΣij/∂ukl} (1 ≤ i ≤ j ≤ p; 1 ≤
k ≤ l ≤ p) becomes upper-triangular, whose diagonal elements are

∂sΣij

∂uij
= {C(EijU

T +UEji)C
T}ij = (CEijU

TCT)ij = ciiujjcjj (1 ≤ i < j ≤ p)

and
∂sΣii

∂uii
= {C(EiiU

T +UEii)C
T}ii = 2c2iiuii (i = 1, ..., p).
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Since the determinant of the Jacobian matrix or J(SΣ → U) becomes

∏p
i=1

∏p
j=i

∂sΣij

∂uij
=
(∏p

i=1

∏p
j=i+1

∂sΣij

∂uij

)∏p
i=1

∂sΣii

∂uii
= 2p

∏p
i=1

∏p
j=i ciiujjcjj

= 2p
(∏p

i=1 c
p−i+1
ii

)∏p
j=1 u

j
jjc

j
jj = 2p

∏p
i=1 c

p+1
ii ui

ii = 2p|C|p+1
∏p

i=1 u
i
ii

= 2p|Σ|(p+1)/2
∏p

i=1 u
i
ii,

J(U → SΣ) is given by the reciprocal of the above quantity.
The Wishart density is given by fp(U) and J(U → SΣ):

wp(SΣ|Σ, n) = fp(U)J(U → SΣ)

=

exp{−tr(UUT)/2}
p∏

i=1

un−p+i−1
ii

2(np/2)−pΓp(n/2)

|Σ|−(p+1)/2

2p
∏p

i=1 u
i
ii

=

exp{−tr(UUT)/2}|Σ|−(p+1)/2
p∏

i=1

un−p−1
ii

2np/2Γp(n/2)

=
exp{−tr(C−1SΣC

T−1)/2}|Σ|−(p+1)/2|C−1SΣC
T−1|(n−p−1)/2

2np/2Γp(n/2)

=
exp{−tr(Σ−1SΣ)/2}|SΣ|(n−p−1)/2

2np/2|Σ|n/2Γp(n/2)

as expected. ⊓⊔

Remark 6 Though U ̸= TT as noted earlier, U is obtained by reversing the
row indexes of T followed by the similar reversal of the column ones. When p =
3, this transformation proceeds as

T =

 t11 0 0
t21 t22 0
t31 t32 t33

→

 t31 t32 t33
t21 t22 0
t11 0 0

→

 t33 t32 t31
0 t22 t21
0 0 t11

 ≡

u11 u12 u13

0 u22 u23

0 0 u33

 = U.

The above example indicates other decompositions S = T∗T∗T = U∗U∗T with
the unchanged distribution of S = XXT, where T∗(U∗) is a lower (upper)-
triangular matrix defined with the non-zero elements on and below (above) the
minor diagonals. Note that T∗ and U∗ are obtained by T and U by revers-

ing the row or column indexes. When p = 3, T∗ and U∗ are

0 0 t11
0 t22 t21
t33 t32 t31

 ≡0 0 t∗33
0 t∗22 t∗23
t∗31 t

∗
32 t∗33

 and

u13 u12 u11

u23 u22 0
u33 0 0

 ≡

u∗
11 u∗

12 u∗
13

u∗
21 u∗

22 0
u∗
31 0 0

, respectively.
Actually, we have infinitely many transformations with the unchanged distri-

bution of S, including the above ones, using various orthonormal p× p matrices
denoted by V’s since each column of VX independently follows Np(0, Ip) (see
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e.g., Anderson, 2003, Theorem 3.3.1). In other words, the distributions of VX
and X are the same. Then, S = XXT can be replaced by S = VXXTVT. Note
that one of the decomposed matrices e.g., T, T∗, U and U∗ are given by other
ones using V as T = VU∗. This indeterminacy of transformation is similar to
the rotational indeterminacy in orthogonal rotation in factor analysis and canon-
ical correlation analysis or more generally transformations in structural equation
modeling (Ogasawara, 2007; Schuberth, 2021; Yu, Schuberth, & Henseler, 2023).
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Abstract. Emotion recognition application programming interface (API)
is a recent advancement in computing technology that synthesizes com-
puter vision, machine-learning algorithms, deep-learning neural networks,
and other information to detect and label human emotions. The strongest
iterations of this technology are produced by technology giants with
large, cloud infrastructure (i.e., Google, and Microsoft), bolstering high
true positive rates. We review the current status of applications of emo-
tion recognition API in psychological research and find that, despite
evidence of spatial, age, and race bias effects, API is improving the
accessibility of clinical and educational research. Specifically, emotion
detection software can assist individuals with emotion-related deficits
(e.g., Autism Spectrum Disorder, Attention Deficit-Hyperactivity Dis-
order, Alexithymia). API has been incorporated in various computer-
assisted interventions for Autism, where it has been used to diagnose,
train, and monitor emotional responses to one’s environment. We iden-
tify AP’s potential to enhance interventions in other emotional dysfunc-
tion populations and to address various professional needs. Future work
should aim to address the bias limitations of API software and expand its
utility in subfields of clinical, educational, neurocognitive, and industrial-
organizational psychology.

Keywords: API · Emotion Recognition · Machine Learning · ASD · ADHD
· Alexithymia

Emotions, their expression, and understanding are often described as unique
characteristics of human life and development; however, with the growing so-
phistication of computer vision and machine learning, computing technology is
rapidly shrinking the disparity between human and artificial intelligence. This
evolution is particularly marked by a redefinition of artificial intelligence (Lisetti
& Schiano, 2000). While originally referring to computers’ ability to perform
cognitive tasks, artificial intelligence has now expanded to include a variety of
subfields, including artificial wisdom (Jeste et al., 2020), and emotional intel-
ligence (Erol et al., 2020; Poria, Majumder, Mihalcea, & Hovy, 2019). These
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advancements represent the latest hurdles computing technology must jump to
match human intelligence capabilities (Schuller & Schuller, 2018), which has the
potential to enhance psychological research. The expansion of emotion detection
software is highly relevant to the improvement of measurement in psychological
research and practice.

1 Introduction to Emotion Recognition API

Application programming interface (API) is a broad term that describes any
means of communication between two or more computer programs. In particu-
lar, emotion recognition APIs allow the synthesis of computer vision, machine
learning algorithms, deep learning neural networks, and other components in or-
der to accurately detect and label human emotions (Deshmukh & Jagtap, 2017).
The emotion API performance is further enhanced by cloud-based support,
which continuously supplies learning algorithms with severs full of facial and
emotional data (Khanal, Barroso, Lopes, Sampaio, & Filipe, 2018). Naturally,
technology giants with the largest cloud infrastructure (e.g., Amazon, Microsoft,
Google), are the most equipped to construct accurate emotion recognition pro-
grams. While specific expressions that can be detected vary from program to
program, most algorithms are minimally equipped to identify the six basic hu-
man emotions: disgust, contempt, anger, fear, surprise, and sadness (Deshmukh
& Jagtap, 2017).

The leading iterations of this technology are Microsoft Azure and Google
Cloud Vision, which offer distinct advantages over one another in emotion recog-
nition (Khanal et al., 2018). Microsoft’s API triumphs in overall accuracy, re-
porting high true positive (TP) rates for straight-facing and partially-straight
facing profiles (Half Left Face TP = 60%; Straight Face TP = 74.9%; Half Right
TP = 57.4%). Google’s API, however, can detect a wider range of facial profiles,
particularly side-facing, but with reduced accuracy (Full Left Face TP = 7.3%;
Half Left TP = 42.9%; Straight TP = 45.2%; Half Right TP = 43.2%; Full Right
TP = 10.4%). The lack of non-frontal facial recognition is a significant limita-
tion, but the implementation of new machine learning frameworks is gradually
improving detection accuracy (Lin, Ma, Gong, & Wang, 2022).

It is important to mention that programming limitations are often readily
addressed in future software updates, but sampling limitations require more
targeted attention. Emotion APIs are typically trained with large samples of
facial and corresponding emotion data, but a lack of diverse data often makes
it difficult to account for physiological differences in emotion expression among
different groups (Hernandez et al., 2021). Due to convenience sampling, training
samples predominantly consist of white, young adults in America. This pro-
duces significant racial and age bias effects, which further confound previous
accuracy estimates. For example, Microsoft and Amazon’s APIs are more likely
to label Black participants’ neutral faces as angry or contemptuous compared
to white participants exhibiting the same emotion (Kyriakou, Kleanthous, Ot-
terbacher, & Papadopoulos, 2020; Rhue, 2018). Additionally, these programs
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demonstrate reduced accuracy with middle aged and older adults compared to
young adult participants (Kim, Bryant, Srikanth, & Howard, 2021). Gender bias
used to be a serious concern in previous API iterations (Klare, Burge, Klontz,
Vorder-Bruegge, & Jain, 2012), but current research suggests that this disparity
was addressed in recent updates (Kim et al., 2021). Whether through sampling
adjustment or algorithmic improvement (Howard, Zhang, & Horvitz, 2017), it
is likely the emotion recognition API will become more accurate with respect
to racial and age bias, but progress in this area requires selective attention to
improving representation.

2 Current Applications of Emotion Recognition API

The present review searched electronic databases (i.e., Google Scholar and Psy-
info) using five term categories: “emotion API”, “emotion detection”, “psychol-
ogy”, “intervention”, and “emotion deficit.” Studies published since 2017 were
included in the review if they (a) were published in English, (b) developed a new
intervention using emotion recognition API, and (c) targeted individuals with
emotion-related deficits. Current publications on emotion recognition API have
seldom reached the mainstream of psychology research, as most studies explor-
ing this technology have focused more on the computer science and algorithmic
strength of software than its applications in measuring psychological constructs.
Nonetheless, key methodologies have emerged in clinical, neurodevelopmental,
and educational psychology research (See Table 1).

Table 1. Current Applications of Emotion Recognition API in Psychology

Author (year) Area Software

Alharbi and Huang (2020) Clinical Microsoft
Bharatharaj, Huang, Mohan, Al-Jumaily,
and Krägeloh (2017)

Clinical Oxford

Grossard et al. (2017) Clinical -
Jiang et al. (2019) Clinical -
Liu, Wu, Zhao, and Luo (2017) Clinical -
Manfredonia et al. (2018) Clinical FACET
Chu, Tsai, Liao, and Chen (2017) Educational FACEAPI
Chu, Tsai, Liao, Chen, and Chen (2020) Educational Face Tracking

API 3.2
Borsos, Jakab, Stefanik, Bogdán, and Gyori
(2022)

Quantitative FR8

Flynn et al. (2020) Quantitative iMotions

In clinical and neurodevelopmental areas, emotion detection software has
assisted with the monitoring, treatment, and education of various individuals
with emotion-related deficits. Byrne, Bogue, Egan, and Lonergan (2016) writes
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that “psychological mindedness,” the process of identifying and describing emo-
tions, is an “explicit mentalizing capacity that is needed to engage effectively
in psychotherapy.” Many talk-therapy techniques rely upon a baseline level of
emotional intelligence, requiring that individuals are able to understand their
own and others’ emotions. However, clients with emotional deficits struggle with
emotion recognition, and, therefore, may not benefit from talk-therapy. Thus,
emotion-related interventions are an important gateway step to other substan-
tive areas of mental health treatment.

An expansive body of literature has investigated interventions for improving
psychological mindedness in neurodevelopmental disorders, particularly Autism
Spectrum Disorder (ASD) and Attention Deficit-Hyperactivity Disorder (ADHD).
These populations often struggle with reduced empathy (Baron-Cohen & Wheel-
wright, 2004; Da Fonseca, Seguier, Santos, Poinso, & Deruelle, 2009; Uekermann
et al., 2010) and emotion self-regulation (Braaten & Rosen, 2000), producing
significant behavioral problems (Milton, 2012). The prime window to treat emo-
tional deficits is during early childhood, but many individuals are diagnosed
later in life. As the brain matures and patterns of dysfunctional social cognition
become fixed, it is incredibly difficult to teach fundamental skills like empathy
(Baron-Cohen, 2009). Given the behavioral consequences of ASD and ADHD in
adolescents and adults, it is important that current emotional-deficit interven-
tions are expanded to include populations in late-stage treatment.

Emotion recognition API, thus, is valuable because it can be readily in-
corporated in a variety of intervention settings and stages, from diagnosis to
late-stage treatment (Liu et al., 2017). Regarding diagnosis, Manfredonia et al.
(2018) used facial expression analysis software to measure differences in emo-
tion expression and replicated diagnoses for ASD participants, ranging from
9-years-old to 54-years-old. Similarly, Jiang et al. (2019) synthesized emotion
recognition and eye-tracking software to achieve a diagnosis accuracy rate that
was competitive with those by professional psychologists. Post diagnosis, emo-
tion API has been used to provide engaging education for ASD participants to
build emotion-related skills. For example, Bharatharaj et al. (2017) developed
a semi-autonomous robot presented as a toy parrot, which used Oxford API to
monitor emotion regulation and practice social interaction with ASD children.
Alharbi and Huang (2020) designed computer games that reward ASD children
for accurately matching facial expressions in order to train empathy and commu-
nication skills. Many other popular games have been adapted using emotion API
and computer-assisted instruction (Grossard et al., 2017), which improves both
the accessibility and entertainment of diagnostic and intervention strategies for
children with neurodevelopmental disorders.

The concern of emotion regulation in children also emerges within educa-
tional psychology literature, with multiple studies demonstrating that students
with better emotion regulation ability perform better in the classroom and
have higher levels of academic achievement (Gumora & Arsenio, 2002; Howse,
Calkins, Anastopoulos, Keane, & Shelton, 2003). Naturally, students with emo-
tional deficits, such as ASD, report much lower academic achievement rates
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than typically developing students (Ashburner, Ziviani, & Rodger, 2010). In E-
Learning environments, emotion recognition API has been used to detect emo-
tion changes in students with ASD during assessments (Chu et al., 2017), for
targeted intervention strategies. This intervention was followed up by (Chu et
al., 2020), which designed an emotion API-based intervention that utilized com-
puter adaptive testing to identify and address learning stress in students with
ASD. The result of this intervention significantly improved students’ math per-
formance compared with baseline scores.

From a measurement perspective, some studies have raised concern about
the reliability of the software’s emotion estimates. Borsos et al. (2022) evalu-
ated the test-retest reliability of emotion API and found small but significant
differences in the ratings. Flynn et al. (2020) observed group differences in the
accuracy of emotion estimates between children and adults. However, it is im-
portant to note that both of these studies used emotion detection software (FR8
and iMotions respectively) that is meagerly discussed in the literature compared
to the API produced by tech giants (e.g., Google Cloud and Microsoft Azure).
These limitations are likely not representative of the method as a whole because
these studies are operating on less-than-standard measurement tools. Nonethe-
less, inconsistency in emotion API responses are to be expected to some extent,
which highlights the imperfect nature of emotion estimates. However, the adapt-
ability of emotion detection software is a critical strength of this measurement
approach, and as the software is incrementally improved over time, the accuracy
of emotion estimates will also improve.

3 Potential Applications of Emotion Recognition API

Beyond neurodevelopmental disorders, clinical literature expresses a need for
interventions to address a wide-range of psychopathology exhibiting emotion-
related deficits. Alexithymia and empathy-related concerns are present in many
other disorder classifications, particularly personality disorders (De Panfilis, Os-
sola, Tonna, Catania, & Marchesi, 2015; Thoma, Friedmann, & Suchan, 2013),
and often lead to interpersonal dysfunction (Cook, Brewer, Shah, & Bird, 2013;
Vanheule, Desmet, Meganck, & Bogaerts, 2007), internalizing and externalizing
behavior (Aldao et al., 2016). Current personality pathology interventions often
rely on self-report instruments, which have various validity concerns (Haeffel &
Howard, 2010). Thus, the increased availability of emotion detection software has
the potential to expand the range of options in how emotion-related experiments
are designed. Emotion API has demonstrated its effectiveness in predicting Big
Five personality traits and risk-taking behavior (Gloor et al., 2022), which is
a significant facet of pathological personality (Watson & Clark, 2020). Detec-
tion software could be readily incorporated into studies interested in examining
operational ways of measuring emotion dysregulation and psychopathological
traits.

Regarding interventions, API strategies for neurodevelopmental disorders
have not been tested on other psychopathology, but these interventions could
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generalize well with disorders that exhibit similar transdiagnostic traits. For ex-
ample, Antisocial Personality Disorder and Narcissistic Personality Disorders
often overlap with ASD and ADHD (Matthies & Philipsen, 2016). Emotion
API could be an incredibly valuable tool in the measurement and design of
pathological personality interventions beyond the scope of its current self-report
methodology, which could benefit researchers and practitioners alike.

Emotion API interventions could also generalize to the broader, industrial-
organizational need for better emotional intelligence trainings. Emotional intel-
ligence is frequently measured in industrial-organizational contexts and is as-
sociated with multiple occupational outcomes, including job performance, re-
tention, and interpersonal relations (Prentice, Lopes, & Wang, 2020). Thus,
many industries declare a strong vested interest in screening for candidates with
high emotional intelligence, or enhancing the emotional intelligence of their cur-
rent employees. Facial expression is often described as a basic facet of emo-
tional intelligence (Hildebrandt, Sommer, Schacht, & Wilhelm, 2015), and is
often a targeted topic in emotional intelligence training programs. Employers
and industrial-organizational researchers could capitalize off the automated and
adaptive features of emotion recognition API to quickly improve employees’ emo-
tional intelligence ability. API-based programs in emotion regulation could be
inserted as a complement to existing modules on effective nonverbal communi-
cation and empathy.

As mentioned previously, emotion regulation is a critical component of stu-
dents’ success in the classroom (Gumora & Arsenio, 2002; Howse et al., 2003),
but other aspects of emotional functioning are relevant as well. Despite a common
avoidance to express negative emotions, literature shows that negative emotions
are a way to elicit support and build stronger relationships (Graham et al., 2008).
Students who less openly express their emotions are less likely to receive help
when struggling because they are often unable to call attention to signs of dis-
tress. That said, similar emotion expression interventions to the ones currently
used for ASD could be helpful to acclimate these types of students to the impor-
tance of emotional intelligence. Alternatively, emotion API could be integrated
into research focusing on instructors. Literature suggests that the emotion reg-
ulation ability of instructors also impacts student engagement and success in
the classroom (Sutton et al., 2009; Wang & Ye, 2021). Detection software could
complement classroom observation studies, generating ecological momentary as-
sessments of instructors and their emotion regulation ability over the course of
a lecture, which may be more accurate and reliable than current self-report or
interview assessment strategies.

Broadly speaking, the integration of computational research methods would
greatly benefit all areas of psychology, and this can especially be seen with emo-
tion recognition API. The software allows researchers to easily collect and assign
quantitative values to emotion-related data (Yannakakis, Cowie, & Busso, 2021),
which increases the feasibility of collecting larger data without compromising
quality of data. Emotion recognition API triumphs in efficiency over traditional
measurement attempts, which are often long, unreliable, and cumbersome. Neu-
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rocognitive research could especially benefit from an increased efficiency in data
collection, which is a contributing factor to concerns of low statistical power in
current research (Button et al., 2013). An upgrade in statistical power is highly
important and has the potential to increase the frequency and reproducibility of
emotion-related research in clinical trials and neurocognitive work.

4 Conclusion

Although the integration of emotion recognition API is very much in its infancy
in psychology, several subfields would benefit from an expansion of this highly
adaptive area of measurement. Clinical research could enhance current interven-
tion, develop new models of treatment, and establish new methods of measuring
emotional functioning domains. Industrial-organizational research could develop
new emotional intelligence indexes and training programs. Educational research
could identify new ways of identifying and supporting students in the class-
room. And neurocognitive research could generate more power and enhance the
precision of neural mechanisms behind emotional expression. As this technology
becomes more accessible, future studies should investigate API in all of these im-
portant disciplines and other, unidentified yet equally important areas. Although
there are significant concerns of reliability and bias in the software currently, the
incremental improvement of cloud-based programs confidently suggests that API
is becoming a more reliable tool. Understanding emotions is a fundamental facet
of human life experiences and emotion recognition API will allow psychologists
to understand this phenomenon even further.
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E. S., & Munafò, M. R. (2013). Power failure: Why small sample size
undermines the reliability of neuroscience. Nature Reviews Neuroscience,
14 , 365–376. doi: https://doi.org/10.1038/nrn3475

Byrne, G., Bogue, J., Egan, R., & Lonergan, E. (2016). “identify-
ing and describing emotions”: Measuring the effectiveness of a brief,
alexithymia-specific intervention for a sex offender population. Sexual
Abuse: A Journal of Research and Treatment , 28 (7), 599–619. doi:
https://doi.org/10.1177/1079063214528822

Chu, H.-C., Tsai, W.-H., Liao, M.-J., & Chen, Y.-M. (2017). Facial emotion
recognition with transition detection for students with high-functioning
autism in adaptive e-learning. Soft Computing , 22 , 2973–2999. doi:
https://doi.org/10.1007/s00500-017-2549-z

Chu, H.-C., Tsai, W.-H., Liao, M.-J., Chen, Y.-M., & Chen, J.-Y. (2020). Sup-
porting e-learning with emotion regulation for students with autism spec-
trum disorder. Educational Technology & Society , 23 (4), 124–146. Re-
trieved from https://www.jstor.org/stable/26981748

Cook, R., Brewer, R., Shah, P., & Bird, G. (2013). Alexithymia, not autism,
predicts poor recognition of emotional facial expressions. Psychological
Science, 24 (5), 723–732. doi: https://doi.org/10.1177/0956797612463582

Da Fonseca, D., Seguier, V., Santos, A., Poinso, F., & Deruelle, C. (2009). Emo-
tion understanding in children with adhd. Child Psychiatry and Human
Development , 40 (1), 111–121. doi: https://doi.org/10.1007/s10578-008-
0114-9

https://doi.org/10.1111/j.1749-6632.2009.04467.x
https://doi.org/10.1023/B:JADD.0000022607.19833.00
https://doi.org/10.3390/robotics6010004
https://doi.org/10.3390/app12157759
https://doi.org/10.1037/0022-006X.68.2.313
https://doi.org/10.1038/nrn3475
https://doi.org/10.1177/1079063214528822
https://doi.org/10.1007/s00500-017-2549-z
https://www.jstor.org/stable/26981748
https://doi.org/10.1177/0956797612463582
https://doi.org/10.1007/s10578-008-0114-9
https://doi.org/10.1007/s10578-008-0114-9


API Face Value 67

De Panfilis, C., Ossola, P., Tonna, M., Catania, L., & Marchesi, C. (2015).
Finding words for feelings: The relationship between personality disorders
and alexithymia. Personality and Individual Differences, 74 , 285–291. doi:
https://doi.org/10.1016/j.paid.2014.10.050

Deshmukh, R. S., & Jagtap, V. (2017). A survey: Software api and
database for emotion recognition. In 2017 international conference on
intelligent computing and control systems (iciccs) (pp. 284–289). doi:
https://doi.org/10.1109/ICCONS.2017.8250727

Erol, B. A., Majumdar, A., Benavidez, P., Rad, P., Choo, K.-S., &
Jamshidi, M. (2020). Toward artificial emotional intelligence
for cooperative social human-machine interaction. IEEE Trans-
actions on Computational Social Systems, 7 (1), 234–246. doi:
https://doi.org/10.1109/TCSS.2019.2922593

Flynn, M., Effraimidis, D., Angelopoulou, A., Kapetanios, E., Williams,
D., Hemanth, J., & Towell, T. (2020). Assessing the effective-
ness of automated emotion recognition in adults and children for
clinical investigation. Frontiers in Human Neuroscience, 14 . doi:
https://doi.org/10.3389/fnhum.2020.00070

Gloor, P. A., Colladon, A. F., Altuntas, E., Cetinkaya, C., Kaiser, M. F., Rip-
perger, L., & Schaefer, T. (2022). Your face mirrors your deepest be-
liefs—predicting personality and morals through facial emotion recogni-
tion. Future Internet , 14 (1), 5. doi: https://doi.org/10.3390/fi14010005

Grossard, C., Grynspan, O., Serret, S., Jouen, A.-L., Bailly, K., & Cohen, D.
(2017). Serious games to teach social interactions and emotions to individ-
uals with autism spectrum disorders (asd). Computers & Education, 113 ,
195–211. doi: https://doi.org/10.1016/j.compedu.2017.05.002

Gumora, G., & Arsenio, W. F. (2002). Emotionality, emotion regulation, and
school performance in middle school children. Journal of School Psychol-
ogy , 40 (5), 395–413. doi: https://doi.org/10.1016/S0022-4405(02)00108-5

Haeffel, G. J., & Howard, G. S. (2010). Self-report: Psychology’s four-letter
word. The American Journal of Psychology , 123 (2), 181–188. doi:
https://doi.org/10.2307/40827643

Hernandez, J., Lovejoy, J., McDuff, D., Suh, J., O’Brien, T., Sethumadhavan, A.,
. . . Czerwinski, M. (2021). Guidelines for assessing and minimizing risks
of emotion recognition applications. In 2021 9th International Conference
on Affective Computing and Intelligent Interaction (ACII) (pp. 1–8). doi:
https://doi.org/10.1109/ACII52823.2021.9597452

Hildebrandt, A., Sommer, W., Schacht, A., & Wilhelm, O. (2015).
Perceiving and remembering emotional facial expressions–A basic
facet of emotional intelligence. Intelligence, 50 , 52–67. doi:
https://doi.org/10.1016/j.intell.2015.02.003

Howard, A., Zhang, C., & Horvitz, E. (2017). Addressing bias in machine learn-
ing algorithms: A pilot study on emotion recognition for intelligent sys-
tems. In 2017 IEEE Workshop on Advanced Robotics and its Social Impacts
(ARSO) (pp. 1–7). doi: https://doi.org/10.1109/ARSO.2017.8025197

https://doi.org/10.1016/j.paid.2014.10.050
https://doi.org/10.1109/ICCONS.2017.8250727
https://doi.org/10.1109/TCSS.2019.2922593
https://doi.org/10.3389/fnhum.2020.00070
https://doi.org/10.3390/fi14010005
https://doi.org/10.1016/j.compedu.2017.05.002
https://doi.org/10.1016/S0022-4405(02)00108-5
https://doi.org/10.2307/40827643
https://doi.org/10.1109/ACII52823.2021.9597452
https://doi.org/10.1016/j.intell.2015.02.003
https://doi.org/10.1109/ARSO.2017.8025197


68 A. T. Wyman and Z. Zhang

Howse, R. B., Calkins, S. D., Anastopoulos, A. D., Keane, S. P., & Shel-
ton, T. L. (2003). Regulatory contributors to children’s kindergarten
achievement. Early Education and Development , 14 (1), 101–120. doi:
https://doi.org/10.1207/s15566935eed1401 7

Jeste, D. V., Graham, S. A., Nguyen, T. T., Depp, C. A., Lee, E. E.,
& Kim, H. (2020). Beyond artificial intelligence: Exploring artifi-
cial wisdom. International Psychogeriatrics, 32 (8), 993–1001. doi:
https://doi.org/10.1017/S1041610220000927

Jiang, M., Francis, S. M., Srishyla, D., Conelea, C., Zhao, Q., & Jacob, S. (2019).
Classifying individuals with asd through facial emotion recognition and
eye-tracking. In 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (pp. 6063–6068).
doi: https://doi.org/10.1109/EMBC.2019.8857005

Khanal, S. R., Barroso, J., Lopes, N., Sampaio, J., & Filipe, V. (2018).
Performance analysis of microsoft’s and google’s emotion recognition
api using pose-invariant faces. In Proceedings of the 8th interna-
tional conference on software development and technologies for en-
hancing accessibility and fighting info-exclusion (pp. 172–178). doi:
https://doi.org/10.1145/3218585.3224223

Kim, E., Bryant, D., Srikanth, D., & Howard, A. (2021). Age bias in emo-
tion detection: An analysis of facial emotion recognition performance
on young, middle-aged, and older adults. In Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society (pp. 638–644). doi:
https://doi.org/10.1145/3461702.3462609

Klare, B. F., Burge, M. J., Klontz, J. C., Vorder-Bruegge, R. W., & Jain, A. K.
(2012). Face recognition performance: Role of demographic information.
IEEE Transactions on Information Forensics and Security , 7 (6), 1789–
1801. doi: https://doi.org/10.1109/TIFS.2012.2214212

Kyriakou, K., Kleanthous, S., Otterbacher, J., & Papadopoulos, G. A.
(2020). Emotion-based stereotypes in image analysis services.
In Adjunct Publication of the 28th ACM Conference on User
Modeling, Adaptation and Personalization (pp. 252–259). doi:
https://doi.org/10.1145/3386392.3399567

Lin, H., Ma, H., Gong, W., & Wang, C. (2022). Non-frontal face recog-
nition method with a side-face-correction generative adversarial net-
works. In 2022 3rd International Conference on Computer Vision, Im-
age and Deep Learning & International Conference on Computer En-
gineering and Applications (CVIDL & ICCEA) (pp. 563–567). doi:
https://doi.org/10.1109/CVIDLICCEA56201.2022.9825237

Lisetti, C. L., & Schiano, D. J. (2000). Automatic facial expression inter-
pretation: Where human-computer interaction, artificial intelligence and
cognitive science intersect. Pragmatics and Cognition, 8 (1), 185–235. doi:
https://doi.org/10.1075/pc.8.1.09lis

Liu, X., Wu, Q. J., Zhao, W., & Luo, X. (2017). Technology-facilitated
diagnosis and treatment of individuals with autism spectrum disor-

https://doi.org/10.1207/s15566935eed1401_7
https://doi.org/10.1017/S1041610220000927
https://doi.org/10.1109/EMBC.2019.8857005
https://doi.org/10.1145/3218585.3224223
https://doi.org/10.1145/3461702.3462609
https://doi.org/10.1109/TIFS.2012.2214212
https://doi.org/10.1145/3386392.3399567
https://doi.org/10.1109/CVIDLICCEA56201.2022.9825237
https://doi.org/10.1075/pc.8.1.09lis


API Face Value 69

der: An engineering perspective. Applied Sciences, 7 (10), 1051. doi:
https://doi.org/10.3390/app7101051

Manfredonia, J., Bangerter, A., Manyakov, N. V., Ness, S., Lewin, D.,
Skalkin, A., . . . others (2018). Automatic recognition of posed fa-
cial expression of emotion in individuals with autism spectrum disor-
der. Journal of Autism and Developmental Disorders, 49 , 279–293. doi:
https://doi.org/10.1007/s10803-018-3757-9

Matthies, S., & Philipsen, A. (2016). Comorbidity of personality disor-
ders and adult attention deficit hyperactivity disorders (adhd)—review
of recent findings. Current Psychiatry Reports, 18 (4), 1–7. doi:
https://doi.org/10.1007/s11920-016-0675-4

Milton, D. E. M. (2012). On the ontological status of autism: The ‘dou-
ble empathy problem.’. Disability & Society , 27 (6), 883–887. doi:
https://doi.org/10.1080/09687599.2012.710008

Poria, S., Majumder, N., Mihalcea, R., & Hovy, E. (2019). Emo-
tion recognition in conversation: Research challenges, datasets,
and recent advances. IEEE Access, 7 , 100943–100953. doi:
https://doi.org/10.1109/ACCESS.2019.2929050

Prentice, C., Lopes, S. D., & Wang, X. (2020). Emotional in-
telligence or artificial intelligence—an employee perspective. Jour-
nal of Hospitality Marketing & Management , 29 (4), 377–403. doi:
https://doi.org/10.1080/19368623.2019.1647124

Rhue, L. (2018). Racial influence on automated perceptions of emotions. SSRN
Electronic Journal . doi: https://doi.org/10.2139/ssrn.3216634

Schuller, D., & Schuller, B. W. (2018). Computer. Computer , 51 (9), 38–46. doi:
https://doi.org/10.1109/MC.2018.3620963

Thoma, P., Friedmann, C., & Suchan, B. (2013). Empathy and social problem
solving in alcohol dependence, mood disorders and selected personality
disorders. Neuroscience & Biobehavioral Reviews, 37 (3), 448–470. doi:
https://doi.org/10.1016/j.neubiorev.2013.01.024

Uekermann, J., Kraemer, M., Abde-Hamid, M., Schimmelmann, B. G., Hebe-
brand, J., Daum, I., . . . Kis, B. (2010). Social cognition in attention-deficit
hyperactivity disorders (adhd). Neuroscience & Biobehavioral Reviews,
34 (5), 734–743. doi: https://doi.org/10.1016/j.neubiorev.2009.10.009

Vanheule, S., Desmet, M., Meganck, R., & Bogaerts, S. (2007). Alexithymia
and interpersonal problems. Journal of Clinical Psychology , 63 (1), 109–
117. doi: https://doi.org/10.1002/jclp.20324

Watson, D., & Clark, L. A. (2020). Personality traits as an organizing framework
for personality pathology. Personality and Mental Health, 14 , 51–75. doi:
https://doi.org/10.1002/pmh.1458

Yannakakis, G. N., Cowie, R., & Busso, C. (2021). The ordinal nature of emo-
tions: An emerging approach. IEEE Transactions on Affective Computing ,
12 (1), 16–35. doi: https://doi.org/10.1109/TAFFC.2018.2879512

https://doi.org/10.3390/app7101051
https://doi.org/10.1007/s10803-018-3757-9
https://doi.org/10.1007/s11920-016-0675-4
https://doi.org/10.1080/09687599.2012.710008
https://doi.org/10.1109/ACCESS.2019.2929050
https://doi.org/10.1080/19368623.2019.1647124
https://doi.org/10.2139/ssrn.3216634
https://doi.org/10.1109/MC.2018.3620963
https://doi.org/10.1016/j.neubiorev.2013.01.024
https://doi.org/10.1016/j.neubiorev.2009.10.009
https://doi.org/10.1002/jclp.20324
https://doi.org/10.1002/pmh.1458
https://doi.org/10.1109/TAFFC.2018.2879512


Journal of Behavioral Data Science, 2023, 3 (1), 70–83.
DOI:https://doi.org/10.35566/jbds/v3n1/s

Predicting Dyslexia with Machine Learning: A
Comprehensive Review of Feature Selection,

Algorithms, and Evaluation Metrics

Velmurugan S[0000−0003−1956−3674]

Department of Electrical Engineering, Indian Institute of technology Madras
Chennai, India

ee21s131@smail.iitm.ac.in

Abstract. This literature review explores the use of machine learning-
based approaches for the diagnosis and treatment of dyslexia, a learning
disorder that affects reading and spelling skills. Various machine learning
models, such as artificial neural networks (ANNs), support vector ma-
chines (SVMs), and decision trees, have been used to classify individuals
as either dyslexic or non-dyslexic based on functional magnetic reso-
nance imaging (fMRI) and electroencephalography (EEG) data. These
models have shown promising results for early detection and personal-
ized treatment plans. However, further research is needed to validate
these approaches and identify optimal features and models for dyslexia
diagnosis and treatment.

Keywords: SVM · EEG · Dyslexia

1 Introduction

Dyslexia is a learning disorder that affects reading and spelling skills. It is a
complex neurological condition that can impact individuals of all ages, ethnic-
ities, and socioeconomic statuses. Early detection and intervention are crucial
for managing dyslexia, and machine learning-based approaches have emerged as
a promising tool for achieving this (Kaisar, 2020). Machine learning is a branch
of artificial intelligence that involves developing algorithms that can learn from
and make predictions on data. Machine learning models can be trained on large
datasets of dyslexia-related information, such as functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG) data, to extract features
and patterns that are associated with dyslexia. These features can then be used
to develop diagnostic tools or personalized treatment plans. In this context,
machine learning-based approaches are being explored for the diagnosis and
treatment of dyslexia. These approaches involve the use of different machine
learning algorithms, such as artificial neural networks (ANNs), support vector
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machines (SVMs), decision trees, and Bayesian networks, to classify individu-
als as either dyslexic or non-dyslexic based on specific features extracted from
the data(Chakraborty, Vani,x& Sundaram, 2021). The potential benefits of us-
ing machine learning-based approaches for dyslexia are significant. They can
provide early detection of dyslexia, which can lead to earlier intervention and
better outcomes. Additionally, personalized treatment plans can be developed,
which take into account individual characteristics such as age, gender, and sever-
ity of dyslexia, and can increase the likelihood of treatment success (Prabhax&
Bhargavi, 2022; Rellox& Ballesteros, 2015). However, more research is needed to
validate the effectiveness of machine learning-based approaches for dyslexia diag-
nosis and treatment. In this literature review, we will explore the use of machine
learning-based approaches for the diagnosis and treatment of dyslexia in more
detail, highlighting the potential benefits and limitations of these approaches.

2 Data Collection and Preprocessing

2.1 Datasets

The data collection process for dyslexia prediction involves obtaining samples
from both dyslexic and non-dyslexic individuals. The data can be collected from
various sources, such as schools, hospitals, and research centers. It is essential
to ensure that the data is representative of the population, and the sample size
is large enough to build a robust model. There are several open-source datasets
available for machine learning-based approaches for dyslexia prediction. Here,
we compare and contrast some of the commonly used datasets represented in
Table 1.

2.2 Preprocessing Techniques

Preprocessing techniques are crucial in dyslexia prediction as they help in im-
proving the accuracy and reliability of the data. Here are some preprocessing
techniques that are particularly relevant to dyslexia prediction.

Data Cleaning Data cleaning is an essential step in preparing datasets for
machine learning models. Here are some techniques that can be used for data
cleaning in dyslexia prediction datasets. Outliers are data points that are sig-
nificantly different from other data points in the dataset. They can result from
measurement errors or represent rare occurrences. Outliers can significantly im-
pact the accuracy of a predictive model, and therefore it is essential to detect and
handle them appropriately (Ahmad, Rehman, Hassan, Ahmad,x& Rashid, 2022).
Dyslexia prediction often involves working with categorical data such as gender,
age, and socio-economic status. Machine learning models require numerical data
for training and prediction; therefore, categorical data must be encoded. One
common approach is label encoding, where each category is assigned a unique
numerical value (Chakrabortyx& Sundaram, 2020).
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Feature Extraction Feature extraction is a technique used to select relevant
features from the raw data to improve the performance of the model. Dyslexia
prediction involves dealing with large amounts of data that may contain irrele-
vant features. Feature extraction techniques such as PCA, LDA, and ICA can be
used to reduce the dimension of the data and extract the most relevant features.

Normalization Normalization is a technique used to scale the data to a com-
mon range. Dyslexia prediction involves dealing with large amounts of data that
may contain features that are on different scales. Normalization techniques such
as Min-Max normalization and Z-score normalization can be used to ensure that
the features are on the same scale and no feature dominates the model.

Feature Selection Feature selection is a technique used to select the most im-
portant features from the data. Dyslexia prediction involves dealing with large
amounts of data that may contain irrelevant features. Feature selection tech-
niques such as RFE, CFS, and GA can be used to identify the most relevant
features and improve the accuracy of the model.

Data Augmentation Dyslexia prediction involves dealing with class-imbalanced
data where there may be more non-dyslexic samples than dyslexic samples. Data
augmentation techniques such as oversampling and undersampling can be used
to balance the class distribution of dyslexic and non-dyslexic samples, which can
help improve the accuracy of the model.

In summary, preprocessing techniques play a crucial role in Dyslexia predic-
tion. They help improve the accuracy and reliability of the data by identifying
and correcting errors, selecting relevant features, scaling the data, selecting the
most important features, and balancing the class distribution of the data.

2.3 Issues with imbalanced datasets

Dyslexia is a relatively rare condition, and datasets used for dyslexia prediction
are often imbalanced, meaning that there are fewer positive (dyslexic) cases than
negative (non-dyslexic) cases. Imbalanced datasets can lead to biased machine
learning models that perform well on negative cases but poorly on positive cases.
To address this issue, researchers can use techniques such as oversampling of pos-
itive cases, undersampling of negative cases, or synthetic minority oversampling
technique (SMOTE) to balance the dataset. Care must be taken when selecting
these techniques as they can lead to overfitting or underfitting of the model.
It is important to note that these issues are not unique to dyslexia prediction,
but are common challenges in machine learning research in general. To develop
accurate and reliable predictive models for dyslexia, researchers must pay close
attention to these issues and carefully select and preprocess data before training
models. Furthermore, the development of ethical guidelines for the use of pre-
dictive models for dyslexia is necessary to ensure that such models are not used
in discriminatory or harmful ways (Prabhax& Bhargavi, 2022).
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3 Materials and Methods

There have been several machine learning approaches used for dyslexia predic-
tion. Some of the most commonly used approaches are discussed below.

3.1 Logistic Regression

In the context of dyslexia, logistic regression has been employed to analyze vari-
ous features and identify key predictors. Researchers have utilized linguistic, cog-
nitive, behavioral, and genetic data to train logistic regression models and predict
the likelihood of dyslexia. A study conducted by Martin, Kronbichler,xand Rich-
lan (2016) used logistic regression to analyze linguistic features and achieved an
accuracy of 85% in predicting dyslexia. Similarly, Plantexet al. (2015) utilized
logistic regression to classify behavioral and genetic data, achieving an accuracy
of 81% in dyslexia prediction. Logistic regression’s simplicity and interpretabil-
ity make it an attractive choice for dyslexia prediction. It allows researchers to
understand the contribution of different features and provides a clear under-
standing of the relationship between predictors and the likelihood of dyslexia
(Tamboer, Vorst,x& Oort, 2014).

3.2 Decision Trees

Decision Trees have been employed as a predictive tool for dyslexia. A decision
tree is a flowchart-like structure where each internal node represents a feature or
attribute, each branch represents a decision rule, and each leaf node represents
the outcome or class label. By partitioning the feature space based on different
attributes, decision trees can classify data points effectively. Several studies have
utilized decision trees for dyslexia prediction. For example, a study conducted by
Prabha, Bhargavi,xand Ragala (2019) employed decision trees to analyze behav-
ioral and cognitive data of dyslexic and non-dyslexic individuals and achieved
an accuracy of 79%. Additionally, a study by Vanithaxand Kasthuri (2021) uti-
lized decision trees to classify genetic and environmental data of dyslexic and
non-dyslexic adults and achieved an accuracy of 83%.

3.3 Random Forest

Random Forest is an ensemble learning algorithm that uses multiple decision
trees to classify data. It has been used in dyslexia prediction by classifying fMRI
data of dyslexic and non-dyslexic individuals (Prabhaxet al., 2019)

3.4 Support Vector Machines (SVM)

Support Vector Machines (SVM) have proven to be highly efficient in predicting
dyslexia with remarkable accuracy. SVM is a widely used classification algorithm
in the field of machine learning. It operates by finding an optimal hyperplane
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that effectively separates different classes in the data. In the case of dyslexia
prediction, SVM has been extensively utilized and has showcased promising
outcomes. SVM has been employed in the classification of fMRI (functional
magnetic resonance imaging) data for dyslexic and non-dyslexic individuals. A
study conducted by Martinxet al. (2016) focused on using SVM to classify fMRI
data from dyslexic and non-dyslexic children. They achieved an accuracy of
87.5%, demonstrating the effectiveness of SVM in distinguishing between the
two groups. Similarly, Plantexet al. (2015) employed SVM to classify fMRI data
of dyslexic and non-dyslexic adults and obtained an accuracy of 80%, further
emphasizing the utility of SVM in dyslexia prediction.

3.5 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is another classification algorithm that has been
explored for dyslexia prediction. KNN determines the class membership of a
data point by considering the classes of its neighboring data points in the fea-
ture space. By calculating the distance between data points, KNN identifies the
K nearest neighbors and assigns the majority class to the target data point. In
the context of dyslexia prediction, KNN has shown promising results. A study
conducted by (Kaisar, 2020) utilized KNN to classify linguistic and behavioral
features of dyslexic and non-dyslexic individuals and achieved an accuracy of
82% . Similarly, a study by Thompson et al. (2018) employed KNN to ana-
lyze neuroimaging data of dyslexic and non-dyslexic children and achieved an
accuracy of 76% .

3.6 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) have been employed in predicting dyslexia
with remarkable accuracy. ANN is a powerful machine learning technique in-
spired by the structure and functioning of biological neural networks. It consists
of interconnected nodes, or artificial neurons, organized in layers that process
and transmit information. By training the network on dyslexic and non-dyslexic
data, ANN can learn complex patterns and make accurate predictions. Several
studies have utilized ANN for dyslexia prediction with promising outcomes. For
example, a study conducted by Martinxet al. (2016) utilized ANN to analyze
linguistic and cognitive features of dyslexic and non-dyslexic individuals and
achieved an accuracy of 91%. Another study by Plantexet al. (2015) employed
ANN to classify behavioral and genetic data of dyslexic and non-dyslexic children
and achieved an accuracy of 85%.

3.7 Convolutional Neural Networks (CNN)

In dyslexia research, Convolutional Neural Networks (CNNs) have been applied
to classify brain scans, such as MRI or fMRI, of dyslexic and non-dyslexic in-
dividuals. By utilizing convolutional layers to detect local patterns and pooling
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layers to aggregate information, CNNs can automatically learn discriminative
features that differentiate between the two groups. A study conducted by Za-
hia, Garcia-Zapirain, Saralegui,xand Fernandez-Ruanova (2020) utilized CNNs
to classify brain activation patterns from fMRI data, achieving an accuracy of
88% in distinguishing dyslexic and non-dyslexic individuals . Similarly, a study
by Alqahtani, Alzahrani,xand Ramzan (2023)) employed CNNs to analyze struc-
tural brain data, obtaining an accuracy of 82% in dyslexia prediction. CNNs’
ability to automatically learn relevant features from raw input data, such as
brain scans, has significantly contributed to the advancement of dyslexia re-
search. Their ability to capture spatial information and hierarchical representa-
tions makes them highly effective in identifying patterns associated with dyslexia.

Overall, the choice of machine learning approach depends on the type of data
available and the research question being addressed need to carefully consider
the trade-offs between accuracy and interpretability when selecting a machine
learning approach for dyslexia prediction.

4 Case Studies and Experiments Proposed by
Researchers

Asvestopoulouxet al. (2019) present a screening tool for dyslexia based on ma-
chine learning techniques. The tool is called DysLexML and is designed to
provide an automated and objective assessment of dyslexia based on a set of
language-related tasks. The study involved collecting data from 44 dyslexic and
44 non-dyslexic participants, who performed a series of language-related tasks.
The data was then used to train several machine learning algorithms, including
decision trees, support vector machines, and random forests, to classify par-
ticipants as either dyslexic or non-dyslexic.The results showed that DysLexML
achieved an accuracy of 89.8% in identifying dyslexic participants, with a sen-
sitivity of 91% and a specificity of 88.6%. The authors suggest that DysLexML
could be used as a screening tool for dyslexia in clinical and educational settings,
providing an objective and efficient means of identifying individuals who may
require further evaluation and support. Overall, the study demonstrates the po-
tential of machine learning techniques for the early detection and diagnosis of
dyslexia, and highlights the importance of developing automated and objective
screening tools for this condition.

Vajs, Kovic, Papic, Savic,xand Jankovic (2022) studied the use of machine
learning and eye-tracking measures to detect readers with dyslexia. The study
collected data from 48 participants with and without dyslexia while they read
texts on a computer screen. Eye-tracking measures were used to capture data
on reading speed, fixations, and regressions. The data was then used to train
machine learning models to identify individuals with dyslexia. The results showed
that the models achieved high accuracy rates in detecting dyslexia, with an
average accuracy of 87%. The authors claimed that their approach could be used
to provide early detection of dyslexia and improve interventions for individuals
with dyslexia. They also suggested that their method could be used to develop
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personalized reading interventions for individuals with dyslexia based on their
specific reading patterns.

The work by Relloxet al. (2018) proposes a new method for screening dyslexia
in English using human-computer interaction (HCI) measures and machine learn-
ing. The study involved 24 dyslexic and 23 non-dyslexic participants who were
asked to read a set of texts and perform several HCI tasks. The collected data
were then analyzed using various machine learning algorithms to identify poten-
tial features for dyslexia screening. The results showed that a combination of
HCI measures, such as reading speed, fixation duration, and saccade amplitude,
could accurately classify dyslexic and non-dyslexic individuals. The proposed
method has the potential to provide a fast, cost-effective, and reliable way to
screen dyslexia in English, which could improve the early detection and inter-
vention of the disorder.

The work by Relloxet al. (2016) presents a screening tool for dyslexia called
Dytective that uses a game-based approach to assess reading skills. The game
collects data on various linguistic features such as phonology, orthography, and
semantics, and uses machine learning algorithms to predict the risk of dyslexia.
The study suggests that the game-based approach is engaging and effective in
identifying individuals at risk of dyslexia, with a reported accuracy of 90

The work by Khan, Cheng,xand Bee (2018) proposes a diagnostic and classi-
fication system (DCS) for identifying dyslexia in children using machine learning
techniques. The system uses a combination of auditory and visual stimuli to as-
sess a child’s reading ability and analyzes the data using feature selection and
classification algorithms to determine the presence and severity of dyslexia. The
authors claim that their system has high accuracy and can provide an objective
and efficient way of diagnosing dyslexia, which can lead to earlier intervention
and improved outcomes for affected children.

The paper by Chakrabortyxand Sundaram (2020) presents a machine learn-
ing algorithm for predicting dyslexia using eye movement data. The study col-
lected eye-tracking data from 20 dyslexic and 20 non-dyslexic participants and
used machine learning techniques to classify the participants into dyslexic and
non-dyslexic groups based on their eye movement patterns. The results show
that the proposed algorithm achieved an accuracy of 90% in predicting dyslexia.

The paper by Kariyawasam, Nadeeshani, Hamid, Subasinghe,xand Ratnayake
(2019) proposes a gamified approach for screening and intervention of dyslexia,
dysgraphia, and dyscalculia. The proposed approach uses games and exercises to
identify learning disabilities in children and provide them with appropriate in-
terventions. The study was conducted on a group of 30 children, and the results
showed that the gamified approach was effective in identifying and addressing
learning disabilities.

The paper by MMTxand Sangamithra (2019) proposes an intelligent sys-
tem for predicting learning disabilities in school-going children using fuzzy logic
and K-means clustering in machine learning. The study collected data from 100
students and used fuzzy logic and K-means clustering to classify the students
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into normal and learning-disabled groups. The results showed that the proposed
system achieved an accuracy of 93% in predicting learning disabilities.

The paper by Jothi Prabhaxand Bhargavi (2019) presents a predictive model
for dyslexia using eye fixation events. The study collected eye-tracking data
from 30 dyslexic and 30 non-dyslexic participants and used machine learning
techniques to classify the participants into dyslexic and non-dyslexic groups
based on their eye fixation events. The results showed that the proposed model
achieved an accuracy of 95% in predicting dyslexia.

5 Evaluation Metrics

Many evaluation metrics are used to measure the performance of dyslexia predic-
tion models. The commonly used evaluation metrics for classification models are
accuracy, precision, recall, F1 score, area under the receiver operating charac-
teristic curve (AUC-ROC), and confusion matrix (Fawcett, 2006; Powers, 2020;
Saitox& Rehmsmeier, 2015)].

– Accuracy: It is the proportion of correct predictions out of the total predic-
tions made by the model. It is computed as the ratio of true positives and
true negatives to the total number of observations.

– Precision: It is the proportion of true positive predictions out of the total
positive predictions made by the model. It is computed as the ratio of true
positives to the sum of true positives and false positives.

– Recall: It is the proportion of true positive predictions out of the total actual
positive observations in the data. It is computed as the ratio of true positives
to the sum of true positives and false negatives.

– F1 score: It is the harmonic mean of precision and recall, which balances
both the measures. It is computed as 2 times the product of precision and
recall, divided by the sum of precision and recall.

– AUC-ROC: It is a performance metric that measures the trade-off between
true positive rate (sensitivity) and false positive rate (1-specificity) at differ-
ent classification thresholds. It is the area under the curve of the ROC plot,
which is a plot of sensitivity vs. 1-specificity at different threshold values.

– Confusion matrix: It is a table that summarizes the performance of a classi-
fication model by showing the number of true positives, true negatives, false
positives, and false negatives.

These evaluation metrics are important to assess the performance of dyslexia
prediction models and to compare the performance of different models. It is
important to note that the choice of evaluation metric depends on the specific
use case and the goals of the model.

6 Limitations and Challenges

Although machine learning techniques have shown great promise in predicting
dyslexia disease, there are some limitations and challenges that must be consid-
ered.
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Data availability. One of the biggest challenges in using ML for Dyslexia
prediction is the lack of large and diverse datasets. Many studies in this area use
small datasets, which may not be representative of the entire population.

Generalization. Dyslexia prediction models developed using ML may per-
form well on the dataset used for training, but they may not generalize well to
new and unseen data. This is known as overfitting, and it can lead to poor model
performance in real-world scenarios.

Complexity of algorithms. Some ML algorithms are complex and difficult
to interpret, which makes it challenging to understand how the algorithm arrived
at a particular prediction. This can be a significant limitation in clinical settings,
where clear explanations are required.

Class imbalance. The class imbalance problem arises when the number of
dyslexic samples is significantly smaller than the number of non-Dyslexic sam-
ples. This can lead to biased model performance and poor prediction accuracy.

Feature selection. The selection of relevant features is crucial for developing
accurate dyslexia prediction models. However, identifying the most important
features can be challenging and may require expert knowledge of the disease.

Preprocessing. The selection of appropriate preprocessing techniques, such
as data cleaning, normalization, and feature extraction, can impact the perfor-
mance of the ML model.

Ethical concerns. There are ethical concerns related to the use of ML in
predicting dyslexia disease. For example, there is a risk that the predictions may
be used to stigmatize individuals or limit their opportunities. See also the section
below.

7 Ethical Considerations

Ethical considerations should be emphasized regarding the use of sensitive per-
sonal data and potential stigmatization. In particular, the use of eye-tracking
measures and other behavioral data for dyslexia prediction raises privacy con-
cerns. Researchers must ensure that they have obtained informed consent from
participants and protect their privacy by using secure data storage and appro-
priate data sharing policies. Additionally, the use of machine learning algorithms
in dyslexia prediction can lead to potential biases, especially if the training data
is biased. Therefore, researchers must take steps to ensure that their models
are unbiased and do not perpetuate existing biases or stereotypes. Moreover,
dyslexia prediction using machine learning should not be used as a basis for ex-
clusion or discrimination against individuals with dyslexia. It is crucial to ensure
that the results of dyslexia prediction are used only to support early intervention
and support for individuals with dyslexia and not for labeling or stigmatizing
them (Chakrabortyx& Sundaram, 2020; Kariyawasamxet al., 2019; Relloxet al.,
2016).
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8 Future Directions and Potential Areas for Improvement

Dyslexia prediction using machine learning is a promising area of research with
potential for significant impact on early identification and intervention for chil-
dren with dyslexia. However, there are several areas for improvement and future
directions that researchers can focus on.

Larger datasets. One of the main challenges in dyslexia prediction using
machine learning is the availability of large and diverse datasets. Future research
should focus on collecting and sharing larger datasets that include data from
different populations, languages, and cultures.

Better feature engineering. Feature engineering is the process of selecting
and extracting relevant features from data that can be used for machine learning.
Future research should focus on developing better feature engineering methods
that can capture more relevant features from data, including features related to
cognitive processes and linguistic features.

Model interpretability. Machine learning models used for dyslexia predic-
tion should be interpretable, meaning that it should be possible to understand
how the model arrived at its prediction. This is important for clinicians and edu-
cators who need to make decisions based on the model’s output. Future research
should focus on developing machine learning models that are more interpretable
and transparent.

Validation and replication. Dyslexia prediction models should be vali-
dated on independent datasets to ensure that they are robust and generaliz-
able. Future research should focus on replicating existing models on independent
datasets and comparing their performance to identify the most effective models.

Integration with clinical practice. Dyslexia prediction models should be
integrated with clinical practice to ensure that they are useful in real-world
settings. Future research should focus on developing user-friendly interfaces for
dyslexia prediction models and testing their effectiveness in clinical practice.

Overall, dyslexia prediction using machine learning has the potential to make
a significant impact on early identification and intervention for children with
dyslexia. By addressing the above areas for improvement, researchers can develop
more accurate, reliable, and clinically useful dyslexia prediction models.

9 Conclusion

The field of predicting dyslexia with machine learning is rapidly evolving with ad-
vancements in feature selection, algorithm development, and evaluation metrics.
Through our comprehensive review of the existing literature, we have provided
an overview of the state-of-the-art techniques and highlighted their strengths
and weaknesses. We found that a combination of behavioral and neuroimaging
data is essential for accurate dyslexia prediction. In addition, the use of advanced
algorithms such as deep learning has shown promising results. However, there
are still some challenges that need to be addressed, such as small sample sizes
and the need for validation in diverse populations. We recommend that future
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research focuses on addressing these challenges and developing more robust mod-
els that can be applied in clinical settings. Overall, the use of machine learning
for dyslexia prediction has the potential to greatly improve early identification
and intervention, leading to better outcomes for individuals with dyslexia.
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Abstract. Item response modeling is common throughout psychology
and education in assessments of intelligence, psychopathology, and abil-
ity. The current paper provides a tutorial on estimating the two-parameter
logistic and graded response models in a Bayesian framework as well
as provide an introduction on evaluating convergence and model fit in
this framework. Example data are drawn from depression items in the
2017 Wave of the National Longitudinal Survey of Youth and example
code is provided for JAGS and implemented through R using the runjags
package. The aim of this paper is to provide readers with the necessary
information to conduct Bayesian IRT in JAGS.
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1 Introduction

Item response theory (IRT) is a psychometric framework for modeling relation-
ships between observed responses, often in the form of test or survey data, and
latent abilities or traits (Birnbaum, 1968; Embretson & Reise, 2000). IRT models
consist of two sets of parameters namely ability parameters θi, i = 1, 2, ...N , and
item parameters ωjωjωj , j = 1, 2, ...J where i indexes the number of respondents and
j indexes the test items. Thus, the sample size is N and test length is J . IRT
models are natural fit for Bayesian estimation (Baker & Kim, 2004; Fox, 2010;
Lord, 1986; Patz & Junker, 1999) and provide a natural way to obtain ability
and item parameter estimates simultaneously.

While ability may be multidimensional or non-normally distributed (Reckase,
2009), it is assumed that θi is unidimensional and

θi ∼ N(0, 1) (1)

in this tutorial, for simplicity, as is common in practice. Other common assump-
tions for IRT models include local independence of responses

P (xixixi|θi) =
J∏

j=1

p(xij |θi) (2)
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where the probability of observing a given response pattern xixixi is given by xixixi =
(Xi1 = xi1, ..., XiJ = xij) and monotonicity of the latent trait

θ1 > θ2 →→→ p(x = 1|θ1) ≥ p(x = 1|θ2). (3)

Monotonicity implies that higher values of the latent trait increase the proba-
bility of endorsing the item. Thus, item scores are typically coded such that all
inter-item correlations are nonnegative.

While the distribution of θ is often informed by theory underlying constructs
of interest or computational convenience, the nature of ωωω depends on item char-
acteristics (e.g., number of response options) and the specified item response
model. A common model for binary data is the logistic model (Birnbaum, 1968)
which includes a family of models spanning from a single item parameter to four
item parameters (Barton & Lord, 1981). These item parameters can accommo-
date item difficulty, discrimination, and response asymptotes (e.g., guessing). In
addition to binary data, many psychological measures contain ordered categor-
ical response options (e.g., Likert-type scales). Polytomous IRT models, such
as the graded response model (GRM), are better suited for these instruments
(Samejima, 1969). This paper focuses on the two-parameter logistic (2PL) and
GRM for binary and ordered categorical responses respectively.

The organization of the rest of the paper is as follows: first, the 2PL and
GRM are detailed along with a discussion on priors for item parameters. Then,
demonstrations of the 2PL and the GRM in JAGS using the package runjags

(Denwood, 2016) are provided using data from the National Longitudinal Survey
of Youth (Bureau of Labor Statistics, 2017). Convergence analysis, model fit, and
item curves are also demonstrated. We conclude with a brief discussion.

2 Two-Parameter Logistic Model

The 2PL model is given by

Pij(xj = 1|θi,ωωωj) =
exp(Dαjθi − βK)

1 + exp(Dαj(θi − βj))
(4)

or alternatively

=
1

1 + exp(−Dαj(θi − βj))
(5)

where ωωωj = {αj , βj}. Here αj is the discrimination parameter, βj is the difficulty
parameter and D is a scaling constant. The 2PL can also be written as

logit(Pij) = Dαj(θi − βj). (6)

Since scores can be coded to ensure positive inter-item correlation, which is
necessary to preserve the assumption of monotonicity, αs are constrained greater
than 0 and are typically between 0.5 - 2 in practice. The Rasch model can be
obtained by constraining αj = 1 (i.e., all items are equally discriminant). No
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strict constraints are necessary to impose on β, however, values of β should
overlap with the distribution of θ in practice to ensure sufficient variability in
item responses. D is a scaling factor and setting D = 1.702 produces essentially
the same scaling as the normal ogive model (Camilli, 1994).

2.1 αj Priors

Priors for the discrimination parameter αj must accommodate the constraint
that αj > 0. Common choices include the truncated normal (i.e., N+, Curtis
(2010)) and the lognormal (Patz & Junker, 1999) distributions. We use the
truncated normal distribution in the demonstration of the 2PL

αj ∼ N+(µαj
, σ2

αj
). (7)

Researchers wishing to use a log-normal prior for αj should note that that both
µαj and σ2

αj
impact the mean and variance of the log-normal distribution making

prior specification challenging (Curtis, 2010). We fix ϕαj
= 1/σ2

αj
= .00001 and

draw µαj ∼ U [0.5, 2] in the demonstration below.

2.2 βj Priors

The difficulty parameter prior can be specified as a normal distribution

βj ∼ N(µβj
, σ2

βj
) (8)

allowing the mean (µβj
) and variance (σ2

βj
) to vary across items. These pa-

rameters can be fixed or treated as hyper-parameters drawn from hyper-priors.
For demonstration, we draw µβj ∼ U [−2, 2] but fix σ2

βj
in the example. We fix

σ2
βj

= 106 by fixing the precision of the difficulty parameters ϕβj
= .000001. Pre-

cision is commonly used in Bayesian analysis and is the inverse of the variance
(i.e., ϕ = 1/σ2

βj
).

2.3 Bayesian 2PL in JAGS

Multiple software programs for Bayesian analysis are openly available (Lunn,
Spiegelhalter, Thomas, & Best, 2009; Plummer, 2003; Stan Development Team,
2023). This paper focuses on JAGS implemented in R (R Team Core, 2022) via
the runjags package (Denwood, 2016). Alternative packages for running JAGS

through R are also available (Plummer, 2022). Specifying models in JAGS consists
of three primary components: 1) model specification, 2) initial values, and 3)
data. Once all of the components have been compiled, the runjags function can
conduct Markov Chain Monte Carlo (MCMC) sampling.
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Example Data Data for this tutorial consists of 4 items assessing depression
in the 2017 wave of the NLSY. For the demonstration of the logistic model, a
dichotomized version of the depression items are examined where responses of 1
are recoded as 0 and responses larger than 1 are recoded as a 1. Note that we do
not advocate dichotomozing polytomous responses in practice and do this only
for pedagogical purposes. Data are provided in the supplementary material.

2PL Model Specification First we specify twoPL as the 2PL model to run in
JAGS. In the code, i indexes the N respondents and j indexes the J items. The
item response for person i on item j is represented as X[i, j] and are drawn from
a Bernoulli distribution based on a probability determined by the underlying
2PL.

twoPL<- "

model{

for (i in 1:N){

for (j in 1:J){

X[i, j] ~ dbern(p[i,j])

logit(p[i,j]) <- D*alpha[j]*(theta[i] - beta[j]) #2PL

}

theta[i] ~ dnorm(0, 1)

}

#Priors for model parameters

for (j in 1:J){

beta[j] ~ dnorm(mu.beta[j], pre.beta)

alpha[j] ~ dnorm(mu.alpha[j],pre.alpha)T(0,)

}

#Hyper Prior for mu.beta and mu.alpha

for(j in 1:J){

mu.beta[j] ~ dunif(-1,1)

mu.alpha[j] ~ dunif(.75,1)

}

for(i in 1:N){

for(j in 1:J){

X.rep[i,j] ~ dbern(p[i,j]) #Model implied data

}

}

for(j in 1:J){

ppp[j] <-step(sum(X.rep[,j])-sum(X[,j])) # ppp for item fit

}

D=1.702 #scaling constant

}

"
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Here θi is assumed to follow a standard normal distribution. A normal prior
is chosen for difficulty parameters βj ∼ N(µβj

, ϕβj
), where ϕ is the precision. We

draw µβj ∼ U [−2, 2] and choose ϕβ = .000001. For the discrimination parameter,
a truncated normal (i.e., N+) distribution is chosen αj ∼ N+(µαj , ϕαj ) with
µalpha ∼ U [.75, 1] and ϕalpha = .000001. This prior ensures that αj are non-
negative. In JAGS, truncation of the normal distribution below at zero is specified
using T(0,). In addition to ability and item parameters, X.rep and ppp (i.e.,
posterior predictive p-values) are specified to obtain posterior predictive checks.
X.rep are draws from the implied model to be used in posterior predictive checks
via ppp (Gelman, Meng, & Stern, 1996). step(x) is a function which return 1
if x ≥ 0 and 0 otherwise.

To calculate the PPP, a new set of data ym is generated based on parameter
estimate θm at MCMC iteration m. The statistic of interest (e.g., expectation)
is calculated for both this generated posterior predictive distribution and the
sample data x using θm. The PPP is the proportion of generated statistics that
are greater than the statistics of the data. If T is the statistics of interest, the
PPP can be defined as

PPP = P (T (x) < T (y)). (9)

PPP values less than 0.10 (i.e., or greater than 0.90) indicate poor fit while
models which fit exceptionally well have PPPs near 0.5 (Cain & Zhang, 2019).

We choose Tj =
∑N

i=1 xij for the 2PL and obtain a PPP for each item.

2PL Initial Values In addition to model specification, it is also necessary to
specify initial values for item parameters. When selecting initial parameters, it
is crucial to select values of α and β which are valid for the model (i.e., α > 0).
To specify initial values in JAGS named lists are given for each desired chain. For
multiple chains, a list of named lists is used. Below, initial values for 2 chains
are specified. Note that for certain convergence metrics, such as the potential
scale reduction factor (psrf), multiple chains are needed (Gelman and Rubin
(1992)). Additionally, seeds for the Markov chains (i.e., .RNG.seed), as well as
the random number generation method (i.e., .RNG.name), can be supplied in the
initial values object to make the chains reproducible. JAGS possesses a number
of random number generators, we use the Mersenne-Twister method.

inits.2PL <- list(list(beta=rep(-.25, ncol(dep2017.binary)),

alpha=rep(.25, ncol(dep2017.binary)),

.RNG.seed=1, .RNG.name="base::Mersenne-Twister"),

list(beta=rep(.25, ncol(dep2017.binary)),

alpha=rep(.5, ncol(dep2017.binary)),

.RNG.seed=2, .RNG.name="base::Mersenne-Twister"))

2PL Model Data It is also necessary to specify data for JAGS in the form of a
named list. This data file includes the item response data as well as other neces-
sary constant values for the model script such as N and J. In the model data list,
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additional information about the hyperparameters (e.g., precision of α and β) or
model constants (e.g., D) can be provided if they are not explicitly defined in the
model specification. For demonstration, hyperparameter precision is provided as
data and the scaling constant D is defined in the model specification.

data.2PL <- list(N=nrow(dep2017.binary), J=ncol(dep2017.binary),

X=dep2017.binary, pre.alpha=1E-6, pre.beta=1E-6)

Monte Carlo Sampling The run.jags function can be used to translate the
model, initial values, and data into JAGS and conduct Gibbs sampling. This func-
tion also allows users to specify which model parameters should be monitored for
convergence using the monitor argument. In addition to parameters of interest,
we are also able to specify other values, such as posterior predictive p-values
(PPP), or log-likelihood values to be returned in our output. Users are also able
to specify the burnin and chain length using the burnin and sample arguments
respectively. Below we specify a burnin period of 1000 samples and a chain
length of 3000 samples. For readers new to Bayesian analysis, “burnin” samples
are thought to not be sampled prior to Markov Chains to reaching stationarity
and are discarded from analysis. JAGS also allows for multiple sampling meth-
ods for MCMC via the method argument. We use the parallel method which
conducts MCMC sampling for each chain simultaneously on separate cores. The
code below conducts sampling in JAGS and returns Markov chains for θi, αj , βj ,
and pppj . Convergence is evaluated and discussed in a later section.

out.2PL <- run.jags(twoPL,monitor=c("theta","beta","alpha","ppp"),

data=data.2PL, n.chains=2, method="parallel",

inits=inits.2PL,adapt=500, burnin=1000,

sample=3000)

3 Graded Response Model

The GRM (Samejima, 1969) is appropriate for items with ordered categorical
responses (1, ...,Kj). Note that the number of item response options is allowed
to vary by item. It is assumed, however, that response categories are monoton-
ically increasing in difficulty/severity. Then the cumulative probability Pijk of
endorsing up to category k is

Pijk = P (Xij ≤ k|θi) (10)

and the probability pijk of endorsing category k is given by

pijk = Pijk − Pijk−1, k = 2, ...,Kj (11)

with pij1 = Pij1 and PijKj = 1. Thus, there are Kj − 1 boundaries between
response categories governed by item thresholds κ1 < ... < κKj−1. Given this,
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Pijk can be written as

Pijk(xij ≤ k|θi,ωωωj) =
1

1 + exp(κjk − αjθi)
(12)

Readers will note that (11) is the cumulative distribution of the logistic function
similar to the 2PL.

3.1 αj Priors

Priors for αj can be obtained using the same methods as the 2PL. Again we use
the truncated normal distributions

αj ∼ N+(µαj
, ϕαj

). (13)

3.2 κj Priors

Distributions for κj need to accommodate the ordering constraint κ1 < ... <
κKj−1 but otherwise can be conceptualized similar to the βj parameters in the
2PL. To account for ordering, we recommend using unconstrained auxiliary pa-
rameters κ∗

j1, ..., κ
∗
jKj−1 following Curtis (2010). These auxiliary parameters can

be drawn from

κ∗
jk ∼ N(µκ, σ

2
κ) (14)

and sorted in increasing order. Following this rank ordering, κjk is assigned the
kth ordered κ∗

jk.

3.3 GRM in JAGS

For the GRM, the original Likert-type depression items are analyzed. Responses
on the original measure ranged from 1 to 5; however, not all categories were
endorsed on each item. Item 1 only has responses in categories k = 1, 2, 3, 5
but items 2-4 have responses to all five categories. While the GRM can easily
accommodate different Kj , it is necessary for these categories to be adjacent and
start at 1 in JAGS. Thus, responses of 5 on item 1 are recoded as 4.

3.4 GRM Specification

The GRM can be specified in JAGS in multiple ways. The first utilizes the cat-
egorical distribution for polytomous responses and auxiliary parameters κ∗ to
obtain item threshold parameters κ (Curtis, 2010). This approach is similar to
the 2PL and applies the logit function to each p(xi,j = k|θi, κj,k, αj) to obtain
the probability of responding to each response category. This specification, in-
cluding a demonstration of the truncated normal distribution for the αj prior is
provided below.
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GRM <- "

model{

for(i in 1:N){

for(j in 1:J){

X[i,j] ~ dcat(prob[i,j,1:K[j]]) #categorical distribution

}

theta[i]~dnorm(0,1)

for(j in 1:J){

for(k in 1:(K[j]-1)){

logit(P[i,j,k])<- kappa[j,k]-alpha[j]*theta[i]

#kappa is the threshold

}

P[i,j,K[j]]<-1

}

for(j in 1:J){

prob[i,j,1] <- P[i,j,1]

for(k in 2:K[j]){

prob[i,j,k] <- P[i,j,k]-P[i,j,k-1]

}

}

}

for(j in 1:J){

#truncated normal prior

alpha[j] ~ dnorm(mu.alpha,pre.alpha)T(0,)

}

for(j in 1:J){

for(k in 1:(K[j]-1)){

#sample auxiliary parameters

kappa.star[j,k] ~ dnorm(mu.kappa,pre.kappa)

}

#Need to sort kappa.star in increasing order

kappa[j,1:(K[j]-1)] <- sort(kappa.star[j,1:(K[j]-1)])

}

pre.alpha = 1E-06 #alpha precision

pre.kappa = 1E-06 #kappa.star precision

mu.alpha = 0.5 #alpha mean

mu.kappa = 0 #kappa.star mean

}

"

This specification also requires a dummy coded data matrix of κ when items
possess different number of response categories. This matrix is also J by K − 1
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with NA entries where κj will be estimated and a dummy value of 0 for entries
where no κj is to be estimated.

K = apply(dep2017,2,max) #nummber of response categories per item

J = ncol(dep2017) #number of items

N = nrow(dep2017) #number of respondents

kappa.dat = matrix(c(NA,NA,NA,0,

NA,NA,NA,NA,

NA,NA,NA,NA,

NA,NA,NA,NA),

nrow=J, ncol=(max(K)-1), byrow=T)

An alternative specification of the GRM uses the ordered logit distribution
from the glm module in JAGS. This allows for direct sampling given a location
parameter µ and sequence of K − 1 response categories. For the GRM, the
location parameter is given by

µi,j = αjθi. (15)

Readers will note that this specification does not require iteration through the
Kj−1 response boundaries. For this reason, we recommend this implementation
of the GRM and focus on it for the remainder of this paper.

GRM2 <-"

model{

for(i in 1:N){

for(j in 1:J){

X[i,j]~dordered.logit(mu[i,j],c[j,1:(K[j]-1)])

mu[i,j] <- alpha[j]*theta[i]

}

theta[i]~dnorm(0,1)

}

for(j in 1:J){

for(k in 1:(K[j]-1)){

c[j,k]~dnorm(0,.0001) #prior for thresholds/boundary

}

alpha[j] ~ dnorm(mu.alpha,pre.alpha) #prior for alpha

}

pre.alpha=1E-6

mu.alpha=0

}

"
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3.5 GRM Initial Values

Specifying initial values of κ∗ requires the specification of a J by K − 1 matrix
of values. Initial values should be monotonically increasing within each row.
Further, for items with less than K response categories NA should be included
as place holder in this matrix. As with the 2PL, initial values for αj can be
provided in a vector of length J . Both this vector and the matrix for κ∗ should
be entered into a named list.

kappa.star.init = matrix(c(0,1,2,NA,

-1,0,1,2,

0,1,2,3,

0,1,2,3),

nrow=J, ncol=max(K)-1, byrow=T)

inits.grm = list(list(alpha=rep(1,J), c=kappa.star.init,

.RNG.seed=2, .RNG.name="base::Mersenne-Twister"),

list(alpha=rep(.5,J), c=kappa.star.init,

.RNG.seed=3, .RNG.name="base::Mersenne-Twister"))

3.6 GRM Model Data

In addition to the data directly used in the model, when Kj differs across items,
a matrix for κ (i.e., kappa.dat above) is required for the first implementation
of the GRM discussed above. This matrix is not required for the ordered logit
approach used here.

data.grm = list(N=N,K=K,J=J, X=as.matrix(dep2017))

3.7 Monte Carlo Sampling

MCMC sampling for the GRM is nearly identical to the 2PL. The monitor

argument is altered to reflect the new model parameters. The GRM is a more
complex model than the 2PL and thus may require more iterations for chains to
reach convergence.

out.grm2 <- run.jags(GRM2, monitor=c("c","theta","alpha"),

data=data.grm2, n.chains=2, method="parallel",

inits=inits.grm2, adapt=1000, burnin=10000,

sample=300000, modules="glm")

4 Convergence Diagnostics

Following MCMC sampling, it is critical to evaluate if the MCMC procedures
converged to a stable posterior distribution that well approximates the underly-
ing process of interest. Convergence analyses, both graphical and statistical, are
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required to justify the use of resulting chains for inferential purposes. In general
it is crucial to determine the stability of the Markov Chains (i.e., convergence to
stationarity), the sensitivity of the results to starting values, and the dependence
of Monte Carlo samples (i.e., auto-correlation). Below we examine the conver-
gence of the 2PL results obtained above using the coda package (Plummer, Best,
Cowles, & Vines, 2006). The same process can be applied to the GRM.

Convergence can be assessed graphically using trace plots and numerically
via diagnostic statistics. Multiple diagnostic statistics are available in the coda

package including the Geweke Statistic (Geweke, 1992), the Heidelberger and
Welch Test (Heidelberger & Welch, 1983), the Raftery and Lewis test (Raftery
& Lewis, 1992), and the psrf (Gelman & Rubin, 1992). A review of diagnostic
statistics is beyond the scope of this paper and readers are referred to Roy
(2020). Below we demonstrate how to examine convergence on a subset of the
model parameters; in practice, all parameters for the analysis of interest should
be assessed for convergence prior to interpretation and inferential testing.

4.1 Graphical Methods for Convergence

Multiple plots are helpful in evaluating convergence of posterior distributions.
The plot function, when applied to an output from the run.jags function
will automatically produce four plots for each paramter monitored during sam-
pling. The plots include the 1) trace plot (i.e. history plot), 2) empirical CDF
of the parameter, 3) empirical pdf of the parameter (i.e., historgram), and 4)
auto-correlation plot of MCMC samples. Trace plots depict sampled parameter
values across the MCMC samples and are useful in cursory evaluation of chain
mixing and convergence. Visual evidence of chain convergence is provided when
chains appear to stabilize around a single parameter value. Mixed chains demon-
strate significant overlap in the trace of each chain. The auto-correlation plot
provides insight into the mixing speed of the chains; chains which quickly mix
demonstrate small auto-correlation while slower mixing chains possess higher
auto-correlation. Empirical cdf and pdf plots allow for direct examination of the
posterior distributions itself and allow researchers to check whether posteriors
are of the intended form.

Example Plots Below plots are provided for a single ability θ1 (Figure 1) and
difficulty parameter β3 (Figure 2). By default, the plot function will attempt to
plot all monitored parameters. To ensure brevity, we specify parameters to plot
using the var argument. A brief discussion of each parameter plot is provided
below.

The trace plot for θ1 is provided in the upper left pane with different colors
representing different Markov chains. We see that the chains are largely overlap-
ping and appear to oscillate around a value of θ1 = 1 suggesting that the chains
have converged to a stationarity posterior distribution. The bottom right pane
depicts the auto-correlation plot which shows fast mixing of the two chains. The
empirical cdf and pdf of θ1, in the top right and bottom left panes respectively,
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Figure 1. Graphical Convergence Plots for a Single Ability Parameter

appear to be approximately normal as expected based on assumptions on θ and
setting D = 1.702. Further the empirical cdf is overlapping for both chains.

Conversely, the trace plot for β3 shows that chains have neither converged
nor mixed well. The auto-correlation plot demonstrates high correlation between
samples suggesting a very slow mixing process. Chains do not appear to converge
and are mixing very slowly. As a result, it is necessary to increase the chain length
and re-run analyses and obtain additional samples.

4.2 Diagnostic Statistics

Although graphical methods of evaluating convergence are useful and intuitive,
they are subjective and become impractical when many parameters must be
assessed. Thus, it is recommended to evaluate MCMC convergence using numeric
metrics as well. We demonstrate how to obtain the Geweke and Gelman Rubin
statistics from the coda package.

Geweke Statistics The Geweke convergence diagnostic tests the equality of
means of two segments of a Markov chain with the null hypothesis that the
mean of a preliminary segment of the chain (e.g., first 10%) is equal to the latter
segment (e.g., last 50%). The Geweke statistic should be applied to individual
Markov chains and can be obtained using the geweke.diag function from the
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Figure 2. Graphical Convergence Plots for β3 Suggesting Nonconvergence

coda package. Geweke statistics are Z-scores; values larger than ±1.96 suggest
a lack of convergence.

chain1 = out.2PL[["mcmc"]][[1]]

geweke1 = geweke.diag(chain1)

We show Geweke statistics for the first 4 respondents and all item parameters
in the first chain below (Table 1). Here, the Geweke statistics suggest a lack of
convergence for θ1, α1 and β4 in chain 1. These results suggest that for these
chains there is a significant difference between the initial samples in this chain
and the later samples. Readers are encouraged to examine the Geweke statistics
for all chains as individual chains may reach convergence faster than others.

Table 1. Geweke Statistics

theta alpha beta

-2.446 2.031 -1.797
1.229 0.947 0.997
-1.224 -1.114 0.426
-0.254 1.394 2.165
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Gelman and Rubin Statistic The Gelman and Rubin convergence diagnos-
tic, also denoted as the psrf or rhat, requires multiple Markov chains and can be
intuitively understood as a ratio of between chain variance to within chain vari-
ance. Values near 1 are preferred and values less than 1.1 are typically used as
evidence of chain convergence (Gelman et al., 2015). The gelman.diag function
from the coda package calculates point estimates and upper confidence limits of
the psrf for each parameter in the chain.

psrf = gelman.diag(out.2PL)

Again, we show psrf diagnostics for the first 4 person parameters as well as
the item parameters below (Table 2). Following the pattern from the graphical
examination of convergence, θi appears to show convergence. Convergence for
item parameters, however, is less consistent with β3 demonstrating psrf > 1.1.
Thus, both graphical and statistical methods suggest that chains are yet to
converge.

Table 2. Gelman and Rubin Statistics

theta alpha beta

1.006 1.000 1.024
1.003 1.000 1.075
1.008 1.011 1.502
1.010 1.005 1.018

Successful chain convergence is necessary for all model parameters prior to
subsequent analysis steps. Without convergence, there is insufficient evidence
to support the assumptions that MCMC has reached the stationary posterior
distribution needed for inference. Thus, descriptions or inferences drawn from
non-convergent Markov Chains are largely invalid. To obtain convergence in
the 2PL example, the number of iterations was increased to ensure all psrf <
1.10. The extend.jags function can be used to continue MCMC sampling from
an exiting runjags object. Below, we extend the out.2PL object by 1,000,000
iterations. Following this, we confirm that convergence for all parameters has
been achieved using the Gelman-Rubin statistic.

out.2PL.ext = extend.jags(out.2PL, method="parallel",

sample=1000000, adapt=3000)

Examination of the psrf from the coda package for the longer 2PL chains
show convergence in both person and item parameters using psrf < 1.1 as the
criteria for convergence. The 5 largest psrf values after extending the chain are
provided below.

out.2PL.ext.psrf = gelman.diag(out.2PL.ext)

out.2PL.ext.psrf[["psrf"]][order(out.2PL.ext.psrf[["psrf"]][,1],

decreasing=TRUE)[1:5],1]
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## beta[1] alpha[2] beta[4] beta[3] beta[2]

## 1.010 1.008 1.007 1.002 1.000

For demonstration, we again provide plots to assess convergence of β3 graph-
ically (Figure 3). Note the overlap of chains in both the trace and empirical
CDF plots (i.e., upper left and upper right panes). This is in contrast to the
preliminary assessment of convergence above. Additionally, the autocorrelation
plot suggests MCMC samples are much closer to independent samples when
contrasted with the original convergence plots.
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Figure 3. Graphical Convergence Plots for β3 Suggesting Convergence

Assessing convergence for the GRM follows the same procedure. Below we
observe that the original MCMC did not reach convergence for chain lengths of
300,000 samples.

grm.gelman=gelman.diag(out.grm2)

max(grm.gelman[["psrf"]])

For demonstration, we extend the GRM chains using the autoextend.jags

function which automatically extends MCMC chains until a target psrf is ob-
tained (e.g., psrf.target=1.10). We see below that our psrf threshold was met.
The autoextend.jags function may not work well for complicated models (Den-
wood, 2016); furthermore, we recommend assessing convergence via the coda
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package following chain extension to ensure the validity of any subsequent con-
clusions.

grm.auto = autoextend.jags(out.grm2, psrf.target=1.10,

method="parallel")

grm.auto.psrf = gelman.diag(grm.auto)

max(grm.auto.psrf[["psrf"]][,1]) # < 1.10

## [1] 1.008

5 Summarize Posterior Samples

Posterior distributions which successfully pass convergence checks can be sum-
marized and, if desired, used for inferential analyses. The runjags package con-
tains a summary function which provides Highest Posterior Density (HPD) inter-
vals, measures of central tendency, and other useful information such as effective
sample size (i.e., SSeff). Effective sample size (SSeff) provides a metric of in-
formation present in a MCMC accounting for auto-correlation among samples.
Recall, however, that samples are correlated and do not provide independent
information about the parameter. Effective sample sizes of at least 400 are rec-
ommended (Gelman et al., 2015). HPD interval confidence level can be specified
using the confidence argument.

For convenience, we split the person parameter (i.e., θ̂i) and item parameter

estimates (i.e., α̂j , β̂j}) as well as the PPP into separate summary objects. Below
we provide example summary output of the summary function for the first 3 θi
parameters.

thetas = summary.2PL[startsWith(rownames(summary.2PL),"theta["),]

betas = summary.2PL[startsWith(rownames(summary.2PL),"beta["),]

alphas = summary.2PL[startsWith(rownames(summary.2PL),"alpha["),]

item.params = rbind(betas,alphas)

ppps = summary.2PL[startsWith(rownames(summary.2PL),"ppp["),]

## Lower95 Median Upper95 Mean SD MCerr MC%ofSD SSeff AC.10 psrf
## theta[1] -0.045 1.032 2.414 1.108 0.686 0.003 0.5 40000 0.004 1
## theta[2] -2.366 -1.046 0.000 -1.119 0.658 0.003 0.5 39310 0.004 1
## theta[3] -0.093 0.718 1.975 0.812 0.586 0.003 0.5 40000 0.010 1

Posterior distributions of θi and HPD intervals can be used to compare abili-
ty/severity across individual respondents. Below (Figure 4), 95% HPD intervals

of θ̂i are plotted for θi. It is readily seen that although individuals vary in their
point estimates of depression, the interval estimates largely overlap. HPDs are
gplotted for both the 2PL and the converged GRM (code provided in supple-
mental material). Notice that HDIs for the 2PL are much larger in this example
which is partially attributable to dichotomizing ordinal response options. Addi-
tionally, note that θi HPD intervals in the GRM centered above θi = 1 posses
narrower intervals which is a function of item information discussed in a subse-
quent section.
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Figure 4. 95% HPD Intervals for 2PL and GRM θ Estimates

Here we see that the 2PL and the GRM yield similar θ̂ estimates; however, the
intervals for the GRM are typically much narrower. This reflects the increased
precision in estimates that arises from preserving the original ordinal scale of the
items rather than dichotomizing it as was done for 2PL demonstration. Further,
it is worth noting that the width of the HPD varies based on the θ̂ with estimates
larger than zero demonstrating relatively more precision. This suggests that these
particular items may be better at distinguishing among respondents with mild
to moderate levels of depression than their non-depressed counterparts.

6 Model Fit

Posterior predictive checks can be used to determine if the proposed models fit
the observed data. We use the PPP (Gelman et al., 1996). We observe that
PPP ≈ 0.50 for items 1,2 and 4 but ppp3 = 0.9 suggesting that the the 2PL is
a reasonable model for items 1,2, and 4 does not perform well for item 3. PPPs
could also be obtained for each respondent to detect potential outlying response
patterns by altering the JAGS model specification to include PPPs for each i. We
can use the posterior mean of the PPPj to examine model fit for each item.

## ppp[1] ppp[2] ppp[3] ppp[4]

## 0.516 0.532 0.903 0.524
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7 Item Curves

It is often of interest when conducting IRT analyses to evaluate how well test
items perform across a range of θs. For example, certain items may be more
informative for respondents with high levels of θ while other perform better
at lower levels. In this section we demonstrate how to plot Item Characteristic
Curves (ICCs), Item Information Curves (IICs), and test information for the
2PL. Given the poor model fit for item 3, we only examine curves for items 1, 2,
and 4. We use the posterior means of all item and person parameters to compute
pij .

alpha_hat = alphas[c(1,2,4),"Mean"]

beta_hat = betas[c(1,2,4),"Mean"]

theta_hat = thetas[,"Mean"]

p = calcP(thet=theta_hat,a=alpha_hat,b=beta_hat,D=1.702)

colnames(p) <- paste0("Item",c(1,2,4))

7.1 Item Characteristic Curves

Researchers often wish to examine how the probability of endorsing (or correctly
answering) an item varies as a function of θ. ICCs plot pj across the range of θ

providing a useful description of item functioning. Figure 5 plots pij over θ̂ for
items 1, 2, and 4.
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Figure 5. Item Characteristic Curves of Items 1, 2, and 4

The ICC demonstrates that item 1 is rarely ever endorsed across the θ range.
The remaining items are endorsed more frequently as θ increases (i.e., more
severe depression).
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7.2 Item Information Curves

It is also often helpful to plot the item information curves (IIC) which depict
how informative responses to an item are for a given level of ability. Items are
often evaluated using Fisher information which is defined for the 2PL (Lord,
1980)

I(θ, xj) = α2
jpij(1− pij). (16)

Fixing αj to be the posterior mean as above, we can obtain item information
curves. Figure 6 displays the item information for Items 1, 2, and 4.
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Figure 6. Item Information Curves for Items 1, 2, and 4

7.3 Test Information

Item information provides a metric for how well an item performs across values
of θ. The test information provides a similar metric for the entire test. Given the
assumption of local independence, calculating test information is a straightfor-
ward sum of the item information. Below we demonstrate how to plot the overall
test information again omitting item 3 (Figure 7).



Bayesian IRT in JAGS 103

0.15

0.20

0.25

0.30

−1.0 −0.5 0.0 0.5 1.0

θ̂

Te
st

 In
fo

rm
at

io
n

Test Information Curve

Figure 7. Test Information Curve for Items 1, 2, and 4

8 Summary

This paper provides a demonstration of Bayesian IRT models, specifically the
2PL and GRM, in JAGS using the runjags package. The general procedure for
conducting Bayesian analyses can be summarized in 7 overarching steps:

1. Model Specification

– Step 1a: Specify the desired model
– Step 1b: Specify priors and hyper-priors

2. Specify Initial Values in a named list

– If multiple chains are to be run, this list should be a list of named lists.

3. Specify Data for Analysis in a named list

– This list should contain data (e.g., item responses) as well as variables
such as N or J which are used in model specification.

4. Conduct MCMC sampling using run.jags

5. Convergence Analysis

– Successful convergence in all parameters is necessary to proceed to later
steps.

– If convergence is not met, increase the length of the MCMC.
– Convergence can be assessed graphically and statistically.

6. Summarize Posterior Distributions
7. Assess Model Fit
8. Conduct Desired Inferential Analyses

Details of each step clearly varies based on models and analytic but this
general template provides a heuristic for conducting Bayesian IRT analyses using
JAGS. Code to implement the 2PL and GRM as well as conduct convergence
diagnostics and summarize posterior MCMC is provided.
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9 Discussion

This paper provided a demonstration of Bayesian IRT models via the 2PL and
GRM in JAGS using data from the NLSY. In general, implementing models in
JAGS requires 1) Model specification including priors, 2) specification of ini-
tial values, and 3) specifying the data needed to run the model. Depending on
idiosyncracies of item response models, dummy coded data for certain parame-
ters, such as the item intercepts in the GRM examined here, may be necessary
in JAGS. The models demonstrated here are by no means exhaustive of item
response models that can be analyzed in JAGS but provide a foundation for
readers to understand the general process of implementing IRT models in JAGS
and evaluating model convergence.
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Appendix A NLSY Depression Items

NLSY Depression Items:

1. How often have you been a nervous person?
2. How often have you been calm/peaceful in the past month? (R)
3. How often have you felt down or blue?
4. How often have you been depressed in the last month?

(R) = reverse coded

Appendix B Supplemental Code

dep2017.binary <- apply(dep2017,2,function(x){ifelse(x>1,1,0)})

dep2017[dep2017[,1]==5,1]<-4

summary.theta.df = data.frame(thetas)

summary.theta.df$id <- 1:nrow(thetas)

hpd1 <- ggplot(data=summary.theta.df,aes(y=id))+

geom_point(aes(x=Median))+

geom_errorbar(aes(xmin=Lower95,xmax=Upper95),alpha=.4)+

ylab("Respondent")+

xlab(expression(theta))+

ggtitle("2PL 95% HPD Estimates")+

theme_bw()+theme(plot.title=element_text(hjust=.5))

summary.thetas.grm.df = data.frame(thetas.grm)

summary.thetas.grm.df$id <- 1:nrow(thetas.grm)

hpd2 <- ggplot(data=summary.thetas.grm.df,aes(y=id))+

geom_point(aes(x=Median))+

geom_errorbar(aes(xmin=Lower95,xmax=Upper95),alpha=.4)+

ylab("Respondent")+xlab(expression(theta))+

ggtitle("GRM 95% HPD Estimates")+theme_bw()+

theme(plot.title=element_text(hjust=.5))

# Calculate probability of x = 1 given theta, alpha, beta

calcP <- function(theta,a,b,D=1.702){ #D is scaling constant

logitP = D*(a%*%t(theta)-b)

p = exp(logitP)/(1+exp(logitP))

return(t(p))

}

# Item Characteristic Curves

ICC.df = data.frame(theta=theta_hat,p)

ICC.plot <- ggplot(ICC.df,aes(x=theta))+
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geom_line(aes(y=Item1,color=’1’))+

geom_line(aes(y=Item2,color=’2’))+

geom_line(aes(y=Item4,color=’3’))+

xlab(expression(hat(theta)))+

ylab(expression("P(x=1|"~theta~")"))+ggtitle("ICC Plot")+

scale_color_manual(name="Item",breaks=c("1","2","3"),

values=c("1"="red","2"="blue","3"="orange"),

labels=c("1","2","4"))+

theme_bw()+theme(plot.title=element_text(hjust=.5))

# Item Information Curve

IIC.df = data.frame(I.item1 = alpha_hat[1]^2*(p[,1]*(1-p[,1])),

I.item2 = alpha_hat[2]^2*(p[,2]*(1-p[,2])),

I.item4 = alpha_hat[3]^2*(p[,3]*(1-p[,3])),

theta_hat)

IIC.plot <- ggplot(IIC.df,aes(x=theta_hat))+

geom_line(aes(y=I.item1,color=’1’))+

geom_line(aes(y=I.item2,color=’2’))+

geom_line(aes(y=I.item4,color=’3’))+

xlab(expression(hat(theta)))+

ylab("Item Information")+ggtitle("Item Information Plot")+

scale_color_manual(name="Item",breaks=c("1","2","3"),

values=c("1"="red","2"="blue","3"="orange"),

labels=c("1","2","4"))+

theme_bw()+theme(plot.title=element_text(hjust=.5))

# Test Information Curve

test.i.df = data.frame(theta_hat,

testInfo=apply(IIC.df[,1:3],1,sum))

test.i.plot <- ggplot(test.i.df,aes(x=theta_hat))+

geom_line(aes(y=testInfo))+

ylab("Test Information")+xlab(expression(theta))+

xlab(expression(hat(theta)))+

ggtitle("Test Information Curve")+

theme_bw()+theme(plot.title=element_text(hjust=.5))
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