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Abstract. Recent work has demonstrated how to calculate conditional
mediated effects for mediation models with zero-inflated count outcomes
in a non-causal framework (O’Rourke & Vazquez, 2019); however, those
formulas do not distinguish between logistic and count portions of the
data distribution when calculating mediated effects separately for zeroes
and counts. When calculating conditional mediated effects for the counts
in a zero-inflated count outcome Y, the b path should use the partial
derivative of the log-linear regression equation for X and M predicting
Y. When calculating conditional mediated effects for the zeroes, the b
path should use the partial derivative of the logistic regression equation
for X and M predicting Y instead of the log-linear equation. This paper
presents adjustments to the analytical formulas of conditional mediated
effects for mediation with zero-inflated count outcomes when zeroes and
counts are differentially predicted. Using a Monte Carlo simulation, we
also empirically show that these adjustments produce different results
than when the distributional form of zeroes is ignored.

Keywords: Mediation analysis · Count outcomes · Zero-inflation · ZIP ·
ZINB · Hurdle models

1 Introduction

Many theories in the social and behavioral sciences specify indirect mechanisms
by which predictors influence outcomes. These mechanisms, also known as medi-
ators, are incorporated into such theories through the use of mediation models.
Mediation models are widely applied to theories of human behavior and test the
indirect influence of a predictor variable (X) on an outcome (Y) via a mediator
(M). Much methodological research on the mediation model has focused on mod-
els where the endogenous variables M and Y are continuously distributed and
assume linear associations, and several extensions have been proposed as well for
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models where M and Y are categorical (i.e., binary or count) variables that are
modeled with logistic or other exponential family distributions (Coxe & MacK-
innon, 2010; Gilula, 2012; Iacobucci, 2012; Imai, Keele, & Tingley, 2010; Mack-
innon, 2008; MacKinnon & Cox, 2012; Mackinnon & Dwyer, 1993; Preacher,
2015; Valeri & VanderWeele, 2013; VanderWeele, Zhang, & Lim, 2016). How-
ever, these methods are not appropriate for use where categorical endogenous
variables contain zero-inflation.

Zero-inflation occurs when the proportion of observations with a value of
zero on a particular variable is larger than what is expected from the variable’s
typical zero-uninflated distribution (for example, Poisson or negative binomial if
a variable is a measure of counts). Zero-inflated (ZI) count variables are common
in the social sciences. For example, consider a study of externalizing behaviors in
middle school; for a given count variable measuring bullying as “number of times
child was a bully in the past month”, many students would have a score of zero
because most children do not engage in bullying behaviors. Another example
from health intervention research would be measuring drinking outcomes in a
study designed to help adults with alcohol use disorder quit drinking. For a
drinking count variable measured as “number of drinks consumed in the past
week”, many participants would have a score of zero because they are actively
trying to refrain from drinking.

The traditional methods cited above for categorical mediation analysis are
not equipped to handle excess zeroes in the outcome, and using these models to
fit data with zero-inflated distributions may result in biased estimates. A techni-
cal body of literature does exist for causal inference methods to assess mediation
with categorical variables that contain zero-inflation (Cheng et al., 2018; Wang
& Albert, 2012) but this literature is not as accessible to applied researchers due
to the complexity of its application. The causal literature differs from the gen-
eral linear model (GLM)-based mediation literature in that it requires a working
knowledge of causal inference frameworks that involve formulas for probability,
and causal methods often require additional sensitivity analyses for a formal test
of mediation. Furthermore, the effects involved in mediation from the causal in-
ference literature are defined differently from GLM mediation effects, requiring
the calculation and interpretation of multiple effects to determine mediation even
in simple cases.

Recent work on mediation for ZI counts has applied Geldhof, Anthony, Selig,
and Mendez-Luck (2018)’s method of calculating mediation effects for count data
that are conditional upon values of X to mediation models with zero-inflated
count outcomes using a modeling framework that does not come from causal
inference (O’Rourke & Vazquez, 2019). In this method, mediation effects are
calculated separately for zeroes and counts when Y is zero-inflated. However,
that method does not account for the unique distributional nature of the ze-
roes, as zeroes are predicted using the binomial logistic model while counts are
fitted using the log-linear model. This article illustrates a revised formula for
calculating the mediation effect for the zeroes when zeroes and counts are dif-
ferentially predicted. We also demonstrate via Monte Carlo simulation that the
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revised formula produces different results than the original formula that does
not distinguish between zeroes and counts in a zero-inflated outcome.

1.1 Mediation

The simplest single-mediator model is described by two OLS regression equations
using notation from Mackinnon (2008).

Y = i1 + bM + c′X + e1 (1)

M = i2 + aX + e2 (2)

In these equations, X is the predictor, M is the mediator, and Y is the outcome.
From Equation 1, the influence of M on Y is known as the b parameter, and the
influence of X on Y controlling for M is known as the c′ parameter (also known
as the “direct effect”). From Equation 2, the influence of X on M is known as
the a parameter. The parameters i1 and i2 are model intercepts and e1 and e2
are model errors. The mediated effect that is the focus of this article is speci-
fied as the product of the a and b parameters (ab), commonly referred to in the
mediation literature (and hereafter referred to) as the “mediated effect”. Other
specifications of the mediated effect and their equalities with respect to count
outcomes are described elsewhere (Coxe & MacKinnon, 2010; MacKinnon, Lock-
wood, Brown, Wang, & Hoffman, 2007; Mackinnon, 2008; O’Rourke & Vazquez,
2019).

Two common approaches to significance testing in mediation are the causal
steps (Baron & Kenny, 1986; Judd & Kenny, 1981; MacKinnon, Lockwood, Hoff-
man, West, & Sheets, 2002) and product of coefficients (Sobel, 1982) approaches.
The recommended test from the causal steps approach is the Joint Significance
test, which has the best balance of power and Type I error (MacKinnon et al.,
2002). The Joint Significance test uses individual z− or t−tests of estimates of
the respective a and b parameters to assess significance: if both tests are sta-
tistically significant, we can conclude that mediation is present. The product of
coefficients approach was developed using a derived asymptotic standard error
(Sobel, 1982) to compute a z−test for the mediated effect ab. More recently,
it has become common to assess significance of the mediated effect by using
bootstrapping to create asymmetric confidence intervals for ab (MacKinnon,
Lockwood, & Williams, 2004). Bootstrapping is used because ab is a product of
two variables and so it is not normally distributed (Aroian, 1947; Craig, 1936),
meaning traditional formulas that assume a normal distribution of z produce
biased confidence intervals for ab.

Mediation analysis is conducted with count outcomes in a similar manner
to the approach described above. The difference is that instead of a normal
distribution of continuous Y (the assumption under linear regression), the count
outcome Y is assumed to have a Poisson distribution, negative binomial (NB)
distribution if overdispersed, or beta-binomial distribution if overdispersed with
a restricted upper bound. If Y is a count outcome, Poisson, NB, or beta-binomial
regression can be used to fit the model specified in Equation 1, and (assuming
continuous M) Equation 2 can be assessed as usual with linear regression.
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1.2 Zero-Inflated Counts

Each of the models described for count outcomes has a ZI counterpart: the ZI
Poisson (ZIP), ZI negative binominal (ZINB), or ZI beta-binomial (ZIBB) mod-
els. These are known as zero-inflated generalized linear models (ZI-GZLMs).
Hurdle models, similar to ZI-GZLMs, can also be used to model ZI count out-
comes. However, zeroes are treated differently in hurdle models compared with
ZI models. ZI-GZLMs assume that there are two kinds of zeroes: “structural”
(i.e., excess) zeroes that will never take on another value, and “sampling” zeroes
that have some potential to be non-zero. (For the remainder of this paper, when
we refer to the zeroes in Y, we are referring to the structural zeroes that are
modeled separately from the counts and sampling zeroes.) Hurdle models do not
make the structural vs. sampling zero distinction, but instead assume that all
zeroes are generated from the same process. In other words, hurdle models treat
all zeroes as structural excess zeroes that are the only source of overdispersion
in the data, and these models do not include an additional probability mass
which distinguishes structural zeroes from counts and sampling zeroes in other
ZI-GZLMs.

In ZI-GZLMs, the probability of an occurrence of an excess zero is modeled
as follows.

z ∼ Bernoulli(π) (3)

Where π is the probability of observing excess zeroes. Assuming a ZI Poisson
distribution (the simplest in terms of parameterization because mean and vari-
ance are assumed to be equal), and where λ is the mean count from the Poisson
distribution, the probability mass function of a ZIP model is as follows.

P (Y = 0) = π + (1− π)e−λ (4)

P (Y ̸= 0) = (1− π)(
λY

Y !
)e−λ (5)

1.3 Mediation for Zero-Inflated Counts

One recent non-causal method of assessing mediation for count outcomes sug-
gested computing multiple conditional mediated effects for chosen values of the
predictor X (Geldhof et al., 2018), representing the nonlinear relation between
X and Y as several conditionally linear relations that differ across values of
X (Stolzenberg, 1980). This method was extended to mediation models for ZI
count outcomes (O’Rourke & Vazquez, 2019) by calculating two separate sets
of conditional mediated effects: one for the zeroes and one for the counts. For
a model with any measurement level of X, continuous M, and ZI count Y, b
paths were calculated separately for structural zeroes and counts using the first
partial derivative with respect to M of the loglinear mediation regression equa-
tion shown in Equation 1. This loglinear mediation regression equation is given
below.

Ŷ = ei1+bM+c′X (6)
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The first partial derivative of Equation 6 being the following.

bLL =
∂Ŷ

∂M
= b(ei1+bM+c′X) (7)

The formula in Equation 7 for bLL (b path from the loglinear equation) was
used in conjunction with the a path from Equation 2 to calculate conditional
mediated effects as follows.

a ∗ bLL (8)

Two sets of k conditional mediated effects were calculated separately for zeroes
and counts using the formula in Equation 8, with k being equal to the number
of chosen values of X (this number would typically be k = 2 for binary X, k = 3
for continuous X at low, medium. and high values) and M fixed at its mean.
Equation 8 was used to calculate sets of conditional mediated effects for both
ZIP and ZINB models, as both Poisson and negative binomial models utilize log
link functions.

1.4 Distributional Form for Zeroes

The method described above produced the desired sets of conditional mediated
effects, however, using the partial derivative formula bLL for both the structural
zeroes and the counts disregarded the form of the assumed distribution for the
structural zeroes. Specifically, the structural zeroes are modeled with a logistic
distribution. Therefore, the logistic regression for predicting structural zeroes
has a logit link function of

ln(
π

1− π
) (9)

The mean function corresponding to this logit link function is as follows.

Ŷ =
ei1+bM+c′X

ei1+bM+c′X + 1
(10)

Taking the first partial derivative of Equation 10 with respect to M gives us bLG

(the b path from the logistic mediation regression equation).

bLG =
∂Ŷ

∂M
= b

ei1+bM+c′X

(ei1+bM+c′X + 1)2
(11)

This would result in a conditional mediated effect for the zeroes of

a ∗ bLG (12)

Both of the first partial derivative formulas for b presented here are known
quantities for estimating a mediation path with either a count or binary non-ZI
endogenous variable (Geldhof et al., 2018; Li, Schneider, & Bennett, 2007), but
they have not been used in tandem to handle two-part mediation models for ZI
endogenous variables.
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The current paper aims to utilize both of these formulas for the b path, and
to demonstrate that using the b path from the logit link function bLG when
calculating mediated effects for the zeroes results in different estimates of the
conditional mediated effects than using the b path from the log link function
bLL for both zeroes and counts. In the next section, we describe a Monte Carlo
simulation study that demonstrates that the formulas produce different esti-
mates of the conditional mediated effects for the zeroes (hereafter referred to as
“conditional mediated effects”).

2 Simulation Study

2.1 Simulation Conditions

We conducted a Monte Carlo simulation in R 4.2.3 in conjunction with Mplus
version 8.10 (Muthén & Muthén, 2017). In this simulation study, we manipu-
lated two factors: Sample size (N = 100, 250, 500, 750, and 1500) and population
distribution of the counts in the outcome (Poisson vs. negative binomial). Simu-
lation manipulations resulted in 2 x 5 = 10 conditions. Sample sizes were chosen
to represent a range from small to large samples based on sample sizes commonly
observed in the behavioral sciences. Manipulation of sample size allowed for us
to examine possible effects of sample size on results by examining whether the
difference in estimates of the conditional mediated effect grew smaller as sample
size increased. The Poisson and negative binomial distributions for counts were
chosen as the two distributions that are most commonly observed and practically
applied with ZI-GzLMs. Differences in estimates of the conditional mediated ef-
fects were expected to be stable across the two levels of distribution of the count
outcomes.

Population parameter values were not varied over conditions, and the param-
eter values used in each simulation model are given in Table 1.

Table 1. Simulation Study Parameter Values

Parameter Population Value

a 0.59
b (Zeroes) -0.14
b (Counts) 0.14
c′ (Zeroes) -0.01
c′ (Counts) 0.01
µM 0
σM 1
µY (Zeroes) 0
µY (Counts) 3
ϕ* 1

*for ZINB models only
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Parameter value magnitudes were chosen to reflect large (0.59) effect size for
a and small (0.14) effect sizes for b as established in prior simulation research
on single mediator models (Fritz & MacKinnon, 2007; MacKinnon et al., 2002;
O’Rourke & MacKinnon, 2015), and parameter value signs were chosen such
that conditional mediated effects would differ in sign for the zeroes and counts,
as discussed below. The c’ path was assigned a very small effect size in accor-
dance with a model that would approach full mediation, a condition where c’ =
0 (Mackinnon, 2008), but still would factor into calculations of conditional me-
diated effects. Table 2 shows population calculations of the conditional mediated
effects across values of X based on the parameter values given in Table 1, using
both the log link and logit link b paths.

Table 2. Calculation of Population Conditional Mediated Effects for Log Link and
Logit Link Formulas

Log Link Function b path

X = 0 X = 1

General Formula a ∗ b(ei1+bM+c′X) a ∗ b(ei1+bM+c′X)

ei1+bM+c′X e0+(−0.14)(0)+(−0.01)(0) = 1 e0+(−0.14)(0)+(−0.01)(1) = 1.01

b(ei1+bM+c′X) −0.14 ∗ 1 = −0.14 −0.14 ∗ 1.01 = −0.141

a ∗ b(ei1+bM+c′X) 0.59 ∗ −0.14 = −0.0826 0.59 ∗ −0.141 = −0.0834
Conditional Mediated Effect -0.0826 -0.0834

Logit Link Function b path

X = 0 X = 1

General Formula a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2
a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2

ei1+bM+c′X e0+(−0.14)(0)+(−0.01)(0) = 1 e0+(−0.14)(0)+(−0.01)(1) = 1.01
ei1+bM+c′X

(ei1+bM+c′X+1)2
1

(1+1)2
= 0.25 1.01

(1.01+1.01)2
= 0.2499

b ei1+bM+c′X

(ei1+bM+c′X+1)2
−0.14 ∗ 0.25 = −0.035 −0.14 ∗ 0.2499 = −0.0349

a ∗ b ei1+bM+c′X

(ei1+bM+c′X+1)2
0.59 ∗ −0.035 = −0.0207 0.59 ∗ −0.0349 = −0.0206

Conditional Mediated Effect -0.0207 -0.0206

2.2 Data Generation and Data Analysis

The R MplusAutomation package (Hallquist & Wiley, 2018) was used to simu-
late data. For each of the conditions, 500 replications with complete data were
simulated. The paths related to mediation (b and c’ ) were specified to be equal
in magnitude but opposite in sign for the zeroes and counts in Y in accordance
with commonly observed patterns of results in applied ZI-GZLMs. Binary X
was simulated with a Bernoulli distribution with X ∈ 0, 1, and M was simulated
with a continuous Gaussian distribution M ∼ N(0, 1). The counts in Y were
simulated to have a mean of 3 and the zeroes in Y, a mean of 0. Replications for
Y with a ZIP distribution did not include a dispersion parameter, and when Y
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was simulated to have a ZINB distribution, the dispersion parameter was ϕ = 1
as specified by the variance of Y in the Mplus MODEL command.

After all datasets were generated, the R MplusAutomation package was then
used to create and run Mplus scripts analyzing all replications within each con-
dition and then import results into R. This process was repeated for each of
the 10 conditions. For each replication, a ZI-GZLM was fitted to the data using
Maximum Likelihood estimation. Conditional mediated effects were calculated
at X = 0 and X = 1 using the Mplus “Model Constraint” command. For the
zeroes in Y, sets of conditional mediated effects were calculated using both the
original method with bLL for the b path and the revised method with bLG for
the b path. This resulted in four conditional mediated effects for comparison in
further analyses. Bootstrapped confidence intervals were also generated to assess
significance of each conditional mediated effect. Sample Mplus and R scripts can
be found on the GitHub project at https://github.com/horourke/MZI2.

2.3 Simulation Study Outcomes and Outcome Analyses

We assessed differences in results for the conditional mediated effect estimates by
examining relative parameter difference (i.e., relative bias for the abLG estimate).
The relative difference was calculated as the difference between the population

value of abLG and the respective estimates âbLL and âbLG, over the population
value of abLG.

abLG − âbLL

abLG
(13)

abLG − âbLG

abLG
(14)

Efficiency was calculated using the standard deviations of the raw estimates
of the conditional mediated effects averaged across each condition. We also ex-
amined statistical power for each condition, calculated as the proportion of repli-
cations for which the p value associated with each conditional mediated effect
was less than .05 and the bootstrapped confidence intervals of each conditional
mediated effect did not include zero.

In preparation for analysis of the relative difference outcome, data were re-
structured to long format such that use of the b formula (bLL vs. bLG) could
be coded as an additional binary predictor of a given outcome. Analyses con-
ducted in R examined the impact of the condition on the dependent variable
of interest at the replication level, with one replication considered as one obser-
vation. Analysis of variance (ANOVA) was used to investigate the differences
in study conditions for relative parameter differences. Analyses were conducted
separately for each outcome at X = 0 and X = 1. Factors representing study con-
ditions in each ANOVA were sample size, population distribution of the counts
in the outcome, and method of calculating the b path. In addition to main ef-
fects, all possible two- and three-way interactions were included as predictors
in each ANOVA. Only ANOVA estimates that were significant at p < .05 with

https://github.com/horourke/MZI2
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corresponding partial η2 values of .02 (small amount of variance explained) or
higher were considered meaningfully significant for the interpretation of results.

3 Results

3.1 Relative Difference

The average relative difference over replications for each condition is shown in
Table 3. Results from the ANOVAs for both X = 0 and X = 1 indicated that only
the method of calculating the b path (bLG vs. bLL) was a meaningfully significant
predictor of relative difference. Method of calculating the b path explained 20.6%
and 15.1% of the variability in the outcome respectively, which were large effect
sizes (X = 0: p < .001, partial η2 = .206; X = 1: p < .001, partial η2 = .151).

Table 3. Relative Difference of Conditional Mediated Effects Collapsed Across Con-
ditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 2.917 -0.052 4.620 -0.101
250 3.226 0.017 3.857 -0.005
500 3.089 0.011 3.330 0.000
750 3.062 0.007 3.176 0.000
1500 3.065 0.009 3.074 0.006

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 3.105 -0.001 4.599 -0.049
250 3.243 0.029 3.765 0.011
500 3.089 0.012 3.282 0.003
750 3.076 0.012 3.169 0.007
1500 3.066 0.012 3.073 0.010

Examining Table 3 for X = 0, the average relative difference was around 3
or above for all conditions for abLL estimates. When using the abLG formula
to calculate conditional mediated effects, the average relative difference only
reached an absolute value above .05 for the ZINB model at the smallest sample
size, and the average relative difference was otherwise extremely small for all
conditions using the abLG formula.

For X = 1, results from Table 3 indicate that the average relative difference of
the estimates of abLL ranged from [3.073, 4.620] for all conditions, with average
relative difference decreasing as sample size increased1. As with calculations for

1 Sample size was a statistically significant predictor of relative difference for the
ANOVA where X = 1, however the partial η2 < .02.
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X = 0, the average relative difference of the conditional mediated effects using
the abLG formula only reached an absolute value above .05 for the condition
fitting the ZINB model at the smallest sample size, and the average relative
difference was otherwise not problematic (i.e., below an absolute value of .05)
for all conditions using the abLG formula.

3.2 Efficiency

For all values of X and regardless of sample size and distribution of outcomes,
estimates of abLG had smaller variability (i.e., were more efficient) than for esti-
mates of abLL, as shown by the averaged standard deviations of the estimates in
Table 4. The difference in efficiency between the two sets of conditional mediated
effect estimates decreased monotonically as sample size increased such that the
conditional mediated effect estimates calculated with abLL were least efficient at
the smallest sample sizes.

Table 4. Efficiency of Conditional Mediated Effects Collapsed Across Conditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 0.152 0.036 0.242 0.033
250 0.090 0.021 0.119 0.021
500 0.061 0.015 0.073 0.015
750 0.047 0.012 0.053 0.011
1500 0.034 0.008 0.037 0.008

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 0.147 0.034 0.221 0.032
250 0.086 0.021 0.109 0.020
500 0.059 0.014 0.069 0.014
750 0.045 0.011 0.050 0.011
1500 0.033 0.008 0.035 0.008

3.3 Power

Power values by condition can be found in Table 5. For conditional mediated
effects where X = 0, there were negligible differences in power between the
methods of calculating the b path. For conditional mediated effects where X =
1, power was slightly larger for estimates of abLG than for estimates of abLL.
Power increased as the sample size increased for all conditions, and there were
negligible differences in power between the ZIP and ZINB conditions. Power
never reached a level of .8 (Cohen, 1988) in any of the conditions, likely due to
the small magnitude of the b paths.
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Table 5. Power of Conditional Mediated Effects Collapsed Across Conditions

ZINB

X = 0 X = 1

n abLL abLG abLL abLG

100 0.000 0.008 0.000 0.018
250 0.068 0.106 0.000 0.118
500 0.214 0.250 0.050 0.258
750 0.400 0.418 0.222 0.420
1500 0.692 0.700 0.612 0.702

ZIP

X = 0 X = 1

n abLL abLG abLL abLG

100 0.000 0.020 0.000 0.032
250 0.090 0.120 0.000 0.134
500 0.274 0.298 0.084 0.308
750 0.432 0.442 0.286 0.446
1500 0.728 0.730 0.670 0.732

4 Discussion

We used a Monte Carlo simulation to demonstrate the differences in results using
log-linear vs. logistic regression equations for zeroes when calculating conditional
mediated effects in a mediation model where Y is a ZI count. The conditional
mediated effects for the zeroes in Y were calculated using two different b path
formulas, bLL and bLG, where bLG used the distributional form of the zeroes.
Comparing estimates of abLL and abLG, we found that the conditional mediated
effects differed significantly in magnitude at both values of X, for both ZINB
and ZIP models and across all sample sizes examined. Specifically, results for
relative difference showed that estimates of abLL were significantly different from
estimates of abLG, and that this difference held across sample sizes and outcome
distributions. Conditional mediated effects for zeroes calculated using the bLG

formula were also more efficient, and when X was non-zero, had slightly higher
power. These results indicate that the choice of b path formula has a meaningful
impact on the interpretation of results for the conditional mediated effects and
should be considered when using this method to conduct mediation analysis with
ZI count variables.

For conditional mediated effects calculated at non-zero X, power was slightly
higher for abLG than for abLL. This means that when using the different for-
mulas for b, we may make different conclusions about the significance of the
conditional mediated effects when X is non-zero (for example, we could observe
that the conditional mediated effect abLL[X=1] was not significant and abLG[X=1]

was significant), which further highlights the importance of considering the dis-
tributional form of the zeroes when conducting mediation analysis where ZI
counts are present in the data.
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In this paper, we focused specifically on the mediation model that contained
Y as a ZI count, meaning we discussed the issue of separate distributions of
zeroes and counts with respect to only the b path (from M to Y) in mediation.
However, this issue is applicable as well to models with a ZI count mediator, in
which case we would calculate an a path using a log-linear regression equation
for counts in M and an a path using a logistic regression equation for zeroes in
M. Furthermore, it would be possible to use this method in a model where both
M and Y are ZI counts. Under such circumstances, the a path for the counts
in M could be calculated using the first partial derivative with respect to X of
the log-linear transformation of Equation 2, and the b path for the counts in Y
could be calculated using Equation 7. The a and b paths for the zeroes in M
and Y would then be calculated using the first partial derivatives of the logit
transformations of their respective regression equations (Equation 11 for the b
path).

The utilization of these formulas can also be applied to future methodolog-
ical work on mediation analysis with ZI count variables. The method described
in this paper that is an extension of O’Rourke and Vazquez (2019) can be ex-
tended to more complex models that are frequently used by applied researchers,
such as models that incorporate time (i.e., longitudinal models). This process of
mediation can be expanded to ZI-GZLMs for repeated measures nested within
individuals that are fitted in the multilevel modeling framework.

It is important for researchers to have accessible methods of assessing me-
diation in complex nonlinear models. This paper advances accessible methodol-
ogy in the pursuit of best practices for investigating mediators when data are
nonnormal. The simulation results presented here highlight the complexity of
calculating mediated effects in models where ZI counts are present.
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Abstract. Machine learning methods are being increasingly adopted in behav-
ioral research. Lasso regression performs variable selection and regularization,
and is particularly appealing to behavioral researchers because of its connection
to linear regression. Researchers may expect properties of linear regression to
translate to lasso, but we demonstrate that this assumption is problematic for mod-
els with categorical predictors. Specifically, we demonstrate that while the coding
strategy used for categorical predictors does not impact the performance of linear
regression, it does impact lasso’s performance. Group lasso is an alternative to
lasso for models with categorical predictors. We investigate the discrepancy be-
tween lasso and group lasso models using a real data set: lasso performs different
variable selection and has different prediction accuracy depending on the coding
strategy, while group lasso performs consistent variable selection but has different
prediction accuracy. Using a Monte Carlo simulation, we demonstrate a specific
case where group lasso tends to include many variables when few are needed,
leading to overfitting. We conclude with recommended solutions to this issue and
future directions of exploration to improve the implementation of machine learn-
ing approaches in behavioral science. This project shows that when using lasso
and group lasso with categorical predictors, the choice of coding strategy should
not be ignored.

Keywords: Lasso regression · Categorical predictors · Regularization

1 Introduction

Many behavioral research questions involve categorical predictors, including edu-
cation, ethnicity, religion, gender, or experimental conditions. Unlike numerical predic-
tors, which typically have a natural scale, to be included in statistical models categorical
predictors require researchers to select a method for encoding these variables (i.e., rep-
resenting the categories using a numeric system). Thus, a single categorical predictor
can be represented in a model using different sets of variables, each set embodying the
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same predictor but representing different contrasts of the categories. This special prop-
erty of categorical predictors motivates our exploration of categorical predictors in the
case of linear regression and two machine learning algorithms: least absolute shrinkage
and selection operator (lasso; Tibshirani, 1996) and group lasso regression (Yuan & Lin,
2006). We explore both variable selection and prediction accuracy for these models and
how they are impacted by using different coding strategies for categorical predictors
using a real-world data set.

We use a data set focusing on stress during COVID-19 as the primary outcome,
measured in over 100,000 participants (Yamada et al., 2021). The stress score is an
aggregated score from the Perceived Stress Scale (PSS-10) on a 1-5 scale. The data
set includes categorical predictors, such as Education, Gender and Marital Status, and
continuous predictors, such as Age and Trust in the Country. The overall goal is to
predict participant’s Stress using the available predictors.

In the remainder of this section, we introduce the three analytical approaches exam-
ined in this paper: linear regression, lasso regression, and group lasso regression. We
focus on the application of these methods with a continuous outcome and one or more
categorical predictors. After introducing these methods, we demonstrate their use with
the applied example, exploring peculiar behavior of the machine learning approaches
that does not occur with linear regression.

1.1 Linear Regression With Categorical Predictors

Categorical predictors need to be encoded into a set of variables to be included
in regression models. Different coding strategies can be implemented, such as dummy,
contrast, sequential, or Helmert coding. Tables 1–4 show different ways to encode a cat-
egorical variable, Education, with 7 categories (no education, up to 6 years of school,
up to 9 years of school, up to 12 years of school, some college or equivalent, college
degree, PhD/doctorate). Dummy coding uses only 0’s and 1’s to indicate category mem-
bership. One category is selected as the reference category (or reference group) and is
assigned a score of 0 on all indicators. For other categories, only the indicator corre-
sponding to the category is coded as 1 and all other indicators are set to 0 (Table 1).
Contrast coding is similar to dummy coding, but the reference category which is coded
as all 0 in dummy coding is now coded with all -1 instead, changing the interpreta-
tion of the intercept and slope coefficients (Table 2). Sequential coding compares each
category to the previous category (Table 3), while Helmert coding examines how each
category is compared to the average of all subsequent categories (Table 4). Note that
if a categorical variable has k categories, k−1 indicators are needed, regardless of the
coding strategies used. This type of design matrix is defined as nonsingular because
the matrix is invertible. The design matrix has to be nonsingular for linear regression
but this is not necessarily the case for lasso or group lasso. In Appendix B we discuss
singular matrix options for lasso regression.

In linear regression, each coding scheme represents categories using a different nu-
merical system, which leads to different interpretations of their coefficients. However,
each coding scheme always predicts the category mean for each category (or adjusted
means if covariates are included), and the explained variance is the same regardless of
coding choice (Darlington & Hayes, 2016). Therefore, researchers can choose coding
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Table 1: Dummy Coding
Education D1 D2 D3 D4 D5 D6
1. no education 0 0 0 0 0 0
2. up to 6 years of school 1 0 0 0 0 0
3. up to 9 years of school 0 1 0 0 0 0
4. up to 12 years of school 0 0 1 0 0 0
5. some college or equivalent 0 0 0 1 0 0
6. college degree 0 0 0 0 1 0
7. PhD/doctorate 0 0 0 0 0 1

Note. No education is selected as the reference group (coded 0 on all indicators) and every other
category scores 1 on a single indicator and 0 on all other indicators.

Table 2: Contrast Coding
Education C1 C2 C3 C4 C5 C6
1. no education 1 0 0 0 0 0
2. up to 6 years of school 0 1 0 0 0 0
3. up to 9 years of school 0 0 1 0 0 0
4. up to 12 years of school 0 0 0 1 0 0
5. some college or equivalent 0 0 0 0 1 0
6. college degree 0 0 0 0 0 1
7. PhD/doctorate -1 -1 -1 -1 -1 -1

Note. PhD/doctorate is selected as the omitted category (coded -1 on all indicators) and every
other category scores 1 on a single indicator and 0 on all other indicators.

strategies among all these options according to their needs without concern about model
performance. Dummy and contrast coding are often used for nominal categorical vari-
ables, while sequential and Helmert coding are particularly helpful when categories are
ordered.

When using different coding strategies, the regression coefficients have different
interpretations. For example, a researcher might want to know whether Stress during
the COVID-19 pandemic can be predicted by Education. The seven categories within
the variable Education are encoded by 6 indicators. Linear regression fits the following
model:

Yi = β0 +β1X1i +β2X2i +β3X3i +β4X4i +β5X5i +β6X6i + εi, (1)

where Yi is the outcome value for the ith observation (person), X ji is the jth variable
to convey category membership for the ith observation, and εi is the error term for the
ith observation. Equation 1 is the general equation for all coding strategies. If different
coding strategies are used, the intercept β0 and coefficients for different indicators, β1
through β6, have different meanings. For example, suppose the fitted linear regression
model (with Ŷi representing the predicted value for the ith observation) is

Ŷi = 2+0.3X1i +1.5X2i +0.2X3i +0.5X4i −0.2X5i −0.4X6i. (2)

The interpretation of these coefficients would depend on which coding strategy was
used. If dummy coding was used with no education as the reference group (as in Table
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Table 3: Sequential Coding
Education S1 S2 S3 S4 S5 S6
1. no education 0 0 0 0 0 0
2. up to 6 years of school 1 0 0 0 0 0
3. up to 9 years of school 1 1 0 0 0 0
4. up to 12 years of school 1 1 1 0 0 0
5. some college or equivalent 1 1 1 1 0 0
6. college degree 1 1 1 1 1 0
7. PhD/doctorate 1 1 1 1 1 1

Note. The lowest category scores 0 on all indicators. Each subsequent category scores 1 on one
more indicator than the previous.

Table 4: Helmert Coding
Education H1 H2 H3 H4 H5 H6
1. no education -6/7 0 0 0 0 0
2. up to 6 years of school 1/7 -5/6 0 0 0 0
3. up to 9 years of school 1/7 1/6 -4/5 0 0 0
4. up to 12 years of school 1/7 1/6 1/5 -3/4 0 0
5. some college or equivalent 1/7 1/6 1/5 1/4 -2/3 0
6. college degree 1/7 1/6 1/5 1/4 1/3 -1/2
7. PhD/doctorate 1/7 1/6 1/5 1/4 1/3 1/2

Note. The lowest indicator scores −(k−1)/k on the first indicator and 0 on all subsequent
indicators. The next highest scores 1/k on the first indicator, −(k−2)/(k−1) on the second
indicator, and 0 on all subsequent indicators. The next highest scores 1/k on the first indicator,
1/(k−1) on the second indicator, −(k−3)/(k−2) on the third indicator, and 0 on all
subsequent indicators. And so on.

1), we would interpret the coefficient for X4, 0.5, as the difference between the average
stress score of individuals with no education and the average stress score with some
college education. However, if contrast coding was used (as in Table 2), 0.5 would in-
dicate the difference between the average stress score of individuals with up to 12 years
of school and the average score of all categories. If sequential coding was used (as in
Table 3), 0.5 would be interpreted as the difference between the average stress score of
individuals with some college education and the average stress score of individuals with
up to 12 years of school. If Helmert coding was used (as in Table 4), 0.5 would indicate
that on average individuals with up to 12 years of school are 0.5 points less stressed
than the average of those who have some college education, those who have a college
degree and those who have a PhD/Doctorate. The interpretations of the coefficients are
inseparable from the coding strategy used.

Different selections of reference categories in dummy and contrast coding and or-
dering of categories in Helmert and sequential coding can also produce coefficients with
different meanings. For example, if no education is the reference category for dummy
coding, β0 represents the average stress score for people with no education and β1
through β6 will represent the difference between no education and the corresponding
coded category. On the other hand, if up to 6 years of school is the reference cate-
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gory, β0 represents the average stress for individuals with up to 6 years of school, and
β1 through β6 will represent the difference between “up to 6 years of school” and the
corresponding coded category.

Though different ways to code categorical variables produce different model coef-
ficients, they do not affect the predictions/prediction accuracy of linear regression. To
demonstrate that linear regression with a categorical predictor will predict the same cat-
egory means for each coding scheme, we used Education to predict Stress. We randomly
sampled 10,000 participants from the COVID-19 Stress Data (Yamada et al., 2021) to
serve as our sample data set, and then we randomly split our sample into training (80%)
and test (20%) data. Next, we fit linear regression on the training data set with four
different coding strategies from Tables 1 - 4 applied to the variable Education. Table 5
contains the model coefficients.

Table 5: Linear Regression Example for Coding
Coefficient Dummy Contrast Sequential Helmert

β0 2.852 2.955 2.852 2.955
β1 0.031 -0.103 0.031 0.121
β2 0.110 -0.072 0.079 0.107
β3 0.145 0.007 0.035 0.036
β4 0.161 0.041 0.016 0.001
β5 0.138 0.058 -0.023 -0.022
β6 0.139 0.035 0.001 0.001

Note. Each column of the table represents one coding strategy and rows represent the
coefficients of the indicator X j for each coding strategy.

Using the values of X1–X6 from Table 1–4 and the coefficient estimates from Table
5, we reconstruct the predicted score (i.e., category mean) for the “some college or
equivalent” category for dummy, contrast, sequential, and Helmert coding respectively.

2.852+0.031(0)+0.110(0)+0.145(0)+0.161(1)+0.138(0)+0.139(0) = 3.013 (Dummy)

2.955−0.103(0)−0.072(0)+0.007(0)+0.041(0)+0.058(1)+0.035(0) = 3.013 (Contrast)

2.852+0.031(1)+0.079(1)+0.035(1)+0.016(1)−0.023(0)+0.001(0) = 3.013 (Sequential)

2.955+0.121(
1
7
)+0.107(

1
6
)+0.036(

1
5
)+0.001(

1
4
)−0.022(−2

3
)+0.001(0) = 3.013 (Helmert)

The predicted score for “some college or equivalent” using dummy coding is the same
as that for contrast, sequential, and Helmert coding. Following a similar procedure,
it can be shown that all predicted scores match the category means for each coding
strategy (Cohen, Cohen, West, & Aiken, 2003; Darlington & Hayes, 2016).

Since predicted scores are the same across coding strategies in linear regression, this
means prediction accuracy is also the same across the different coding strategies. In our
example data, prediction accuracy quantifies how far a model’s predicted stress scores
are from the observed stress scores of participants in the test data. We use Mean Squared
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Error (MSE) to measure the prediction accuracy. Mathematically, MSE is calculated as

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2, (3)

where n represents the number of observations in the test data; Yi represents the ob-
served outcome value of the ith observation in the test data; and Ŷi represents the pre-
dicted outcome value of the ith observation from the model (which is generated using
the training data). When we calculate the MSE of four linear regression models each
fit using one of the four coding strategies mentioned previously, we find that all models
have the exact same MSE of 0.13674. This illustrates that prediction accuracy is not
affected by coding strategy when using linear regression.

While these results may seem trivial and require only a basic understanding of linear
regression to understand, they stand in stark contrast to similar results we will examine
in alternative regularized regression approaches. In summary, linear regression models
with different coding strategies predict the same scores (i.e., category means) and give
the same prediction accuracy, though they produce different coefficients. These proper-
ties persist when there are additional predictors (categorical and/or continuous) in the
model, where the predicted scores (which are now adjusted means) are the same for all
coding strategies, and thus prediction accuracy is always the same as well.

1.2 Lasso and Group Lasso Regression

In contrast to linear regression, lasso regression is useful when the proposed model
involves many predictors, but only a few may be true predictors of the outcome (i.e.,
sparsity). Lasso is gaining popularity in behavioral science presumably because it shares
many properties with linear regression, an already common statistical approach in the
field (McNeish, 2015). For example, a lasso model fit to the COVID-19 data using
Education to predict Stress would share the same equation as linear regression given
in Equation 1. However, the values of the β j coefficients would differ between the
two methods because linear and lasso regression differ in the way they estimate the
vector containing these regression coefficients, β . In linear regression, the estimated
coefficient vector is calculated as follows,

β̂linear = argmin
β

(|Y −Xβ |22), (4)

where |·|2 is the notation for the L2 norm. Lasso, on the other hand, adds a penalty term
governed by the penalty parameter λ to regulate the size of the coefficients:

β̂lasso = argmin
β

(|Y −Xβ |22 +λ |β |1), (5)

where |·|1 is the notation for the L1 norm.1 When λ is nonzero, nonzero values of
β result in increases in λ |β |1, and so Equation 5 reaches its minimum when both the

1 Another alternative to lasso is ridge regression which is expressed by Equation 5 except with
an L2 norm instead of an L1 norm for the regularization term. In Equation 5, the L1 norm
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prediction error and the size of the elements of β are considered. A large λ value results
in the coefficients in β being shrunk toward or equal to zero so fewer predictor variables
are selected in the model (where “selected” means that the coefficient is nonzero in the
final solution). A small λ value, on the other hand, results in less shrinkage so more
predictor variables can be selected into the model. Linear regression is actually a special
case of lasso regression when λ is set to zero.

While lasso has many benefits over linear regression (Hastie & Tibshirani, 2018;
McNeish, 2015; Tibshirani, 1996), when applying lasso regression to models with cat-
egorical predictors, additional considerations must be made. Lasso regression models
select variables based on the penalty parameter λ and the sizes of the entries in coef-
ficient vector β . However, as we demonstrated with linear regression, using different
coding strategies for a categorical predictor creates models with different coefficient
vectors. This means that the choice of coding strategy may result in different variable
selection in lasso regression models. The issue of coding strategies is related to the
issue of variable scaling with continuous predictors, which also influences variable se-
lection and prediction accuracy in lasso regression models. One common solution to
this problem is to standardize all continuous predictors before applying lasso regres-
sion (Marquardt, 1980). In this way, the effect of scaling is excluded from the variable
selection of lasso regression with continuous predictors. While dichotomous variables
can be standardized, different coding strategies representing more than two categories
do not result in the same standardized solution. Given this, there is reason to believe
that the performance of lasso regression with categorical variables may be impacted by
the choice of coding strategies for those variables.

A generalization of lasso regression which may also be impacted by coding strategy—
but in different ways—is group lasso regression. Group lasso, as opposed to lasso, per-
forms variable selection by selecting groups of variables rather than individual variables
(Yuan & Lin, 2006). This is particularly valuable for the case of categorical predictors
because the set of indicators for each variable forms a natural group. The mathematical
formula for estimating the coefficient vector β in group lasso is

β̂group = argmin
β

(|Y −Xβ |22 +λ

G

∑
g=1

∣∣βIg

∣∣
2) (6)

where G represents the number of groups of variables, and βIg represents the coefficient
vector of that corresponding group. Other notation is the same as Equation 5. Using
the L2 norm within each group g is what allows group lasso to either select all or
none of the variables within each group. Also, multiplying by λ after summing the L2
norms of all groups penalizes each group instead of each individual indicator variable.
These differences provide group lasso with distinct properties: When all variables are
considered one group, group lasso performs as ridge regression. On the other hand,
when all the variables are their own group, group lasso performs as lasso regression.

penalizes the absolute value of the coefficients, used by lasso; while in ridge regression, the
L2 norm penalizes the squares of all coefficients. Given this property, ridge regression is not
as effective at penalizing parameters to zero compared to lasso regression (Tibshirani, 1996).
Therefore, lasso regression is preferred for variable selection.
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The advantage of group lasso is that when there are multiple groups of more than one
variable, the result is a combination of within-group ridge regression and across-group
lasso regression.

The group lasso has special properties with respect to variable selection. Within a
group, group lasso typically includes or excludes all variables because of the within-
group ridge regression. Given its unique properties with respect to variable selection,
group lasso has been recommended as a useful alternative to lasso regression when
dealing with models with categorical variables (Detmer, Cebral, & Slawski, 2020; Mc-
Neish, 2015); however, no prior research has explored the sensitivity of group lasso to
different coding strategies. In group lasso, all indicators for a categorical variable are
defined as a group, and the algorithm should either include all indicators associated
with one categorical predictor or exclude all these indicators.

1.3 Motivation

With the increasing use of lasso techniques across scientific fields, but especially
within the social and behavioral sciences, many researchers rely on their intuitions
about the similarities between lasso and linear regression to understand, use, and in-
terpret the results of lasso regression. This could be particularly problematic for models
with categorical predictors. Prediction accuracy in linear regression is unaffected by the
selection of coding strategy; however, lasso regression conducts regularization by min-
imizing regression coefficients, which differ across coding strategies. This may lead to
different prediction accuracy and variable selection depending on the coding strategy
used when using lasso. Since group lasso treats the variables in a group as a whole set,
it seems less likely that its variable selection will be impacted by the choice of coding
strategy. However, the prediction accuracy of group lasso may still be impacted by the
coding strategy.

To explore the potential impacts of coding strategy on important characteristics of
lasso and group lasso regression, we combine both real data analysis and simulation.
First, using the COVID stress data set described previously, we demonstrate the use
of lasso and group lasso regression with categorical variables, where different coding
strategies of categorical variables impact two aspects of model performance: variable
selection and prediction accuracy. Next, we use a Monte Carlo simulation to demon-
strate a specific case where group lasso may tend to overfit the training data. In the last
section, we explore other potential solutions, important future directions, and general
conclusions.

2 Real Data Analysis with COVID Stress Data

We used the COVID stress data set with the same sample of 10,000 participants
and the same training/test data sets used in Section 1.1 to explore how coding strategies
affect models estimated by lasso and group lasso. In the models, we included six cat-
egorical predictors (where a predictor with k categories was represented by k−1 indi-
cator variables): Education (7 categories), Employment status (6 categories), Gender (3
categories), Isolation status (4 categories), Marital status (4 categories), and Mother’s
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education (7 categories). We also included seven continuous predictors in the models.
Thus, after coding all categorical variables and adding the seven continuous variables,
the models predicted the outcome Stress with 6+5+2+3+3+6+7 = 32 variables.
In total, we trained eight different models using lasso and group lasso with four coding
strategies: dummy, contrast, sequential, and Helmert. We used 10-fold cross-validation
on the training data to select the penalty parameter from the model with the best predic-
tion accuracy, so the penalty parameter that was selected is different across models with
different coding strategies.2 We then examined if the variable selection and prediction
accuracy of these lasso and group lasso models were affected by the choice of coding
strategy.

2.1 Variable Selection

We first examined differences in the variable selections of the four lasso models.
Results are shown in Table 6. Focusing on the Education variable, we illustrate how
the use of different coding strategies can result in conflicting findings. Both the dummy
coding model and the sequential coding model have a predictor which represents the
difference between no education and 6 years of education. After applying lasso, the
dummy coding model includes this predictor, whereas the sequential coding model
excludes this predictor. Based on these results, using the dummy coded model, a re-
searcher might conclude that COVID stress differs across the no education and 6 years
of education groups, whereas using a sequential coded model, the opposite conclusion
would be made.

Fitting similar dummy-, contrast-, sequential-, and Helmert-coded models with group
lasso, we found that the results differed notably from the traditional lasso. While lasso’s
variable selection was affected by the choice of coding strategy (see Table 6), the group
lasso’s variable selection seemed stable across different coding strategies, with all pre-
dictor variables selected to remain in all four models. Thus, based on the applied data
analysis, it seems that variable selection is not impacted by the coding strategy for
group lasso, though this should be subject to additional investigation. This suggests that
if researchers are interested in using lasso for variable selection and have categorical
predictors, using group lasso could avoid the arbitrary choice of coding strategy. How-
ever, group lasso was not successful in reducing the set of potential predictors, and thus,
it may suffer from a limitation of being overly inclusive. We explore this issue more in
a simulation.

2.2 Prediction Accuracy

In this section, we investigate whether prediction accuracy is affected by the choice
of coding strategy using both lasso and group lasso. We examined the prediction accu-
racy in two ways: predicted category scores and MSE of the model applied to the test
data set.

2 Note that even with the same penalty parameter, models with different coding strategies or
reference categories will still have different variable selection and prediction accuracy.
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Predicted Category Scores We first examined whether the predicted stress score for
each Education group is the same with different coding strategies in lasso and group
lasso models. In this section, We generated the predicted score for each category using a
model with only Education as a predictor, so the models contained 6 indicator variables
in total. While this model is oversimplified, it eases the direct comparison between the
true means of each group and the predicted scores.

The predicted category scores for lasso models fit using the four different coding
strategies are shown in Table 7, with the final column providing the actual category
means for Education observed in the training data. First off, it is important to note
that category scores shown in the table were rounded. Thus, some category scores that
were very close to the actual category scores were rounded to the same value, but there
were no lasso models where the predicted scores were exactly equal to the group means
like they would have been in linear regression. Also, it is evident in the table that the
predicted means often differ depending on the coding strategy used. For five of the
seven categories, the dummy-coded model estimated the category mean most accurately
among all models.

Table 7: Predicted Category Scores for Different Coding Strategies by Lasso
Dummy Contrast Sequential Helmert Training Mean Test Mean

None 2.864 2.879 2.864 2.872 2.852 2.912
6 years 2.883 2.897 2.888 2.896 2.883 2.824
9 years 2.962 2.961 2.965 2.973 2.962 2.857
12 years 2.997 2.995 2.999 2.997 2.997 3.038
Some college 3.013 3.012 3.008 3.008 3.013 3.009
College 2.990 2.990 2.991 2.991 2.990 2.999
PhD/Doctorate 2.991 2.992 2.991 2.991 2.991 3.008

Note. Rows represent Education categories, and the middle four columns give the model
predicted values with different coding strategies. The last two columns give the actual mean of
each category observed in the training and test data, respectively. The closest value to the
training mean is bolded and the closest value to the test mean has a grey background color in
each row.

The results of the predicted category scores for the four group lasso models, shown
in Table 8, are very similar to the lasso models: Group lasso estimated each category
score within a categorical variable differently depending on the coding strategy used.
Thus, although variable selection is not impacted by the coding strategy used for group
lasso, the predicted category score is impacted by the choice of coding strategy. Also,
among all group lasso models, the dummy-coded model generated the most accurate
category scores for four of the seven categories. Thus, regardless of whether lasso or
group lasso was used, the dummy-coded model estimated the majority of the category
means better than the other three models. It is unclear whether this finding would remain
true with other data sets, however.

The results in Table 7 and 8 show that different coding strategies result in different
predicted category scores. While this is an important finding, it is equally important
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Table 8: Predicted Category Means for Different Coding Strategies by Group Lasso
Dummy Contrast Sequential Helmert Training Mean Test Mean

None 2.828 2.863 2.879 2.868 2.852 2.912
6 years 2.886 2.892 2.906 2.894 2.883 2.824
9 years 2.965 2.962 2.954 2.963 2.962 2.857
12 years 2.997 2.996 2.994 2.996 2.997 3.038
Some college 3.013 3.012 3.011 3.012 3.013 3.009
College 2.990 2.990 2.991 2.990 2.990 2.999
PhD/Doctorate 2.991 2.991 2.991 2.990 2.991 3.008

Note. Same as Table 7.

to understand why this occurs and whether the degree of difference is predictable and
understandable rather than random variability due to estimation. A core aspect of lasso
and group lasso models is shrinkage: different coding strategies will result in different
model intercepts and coefficients, because the degree of shrinkage is different across
coding strategies.

To visualize the shrinkage effect of each coding strategy, we plotted the predicted
scores from each lasso model along with each model’s intercept in Figure 1. In the
dummy-coded model, the predicted scores are all shrunk slightly toward the no edu-
cation category score (since it is the intercept in this model) relative to the contrast-
coded model, where the scores are instead all pulled closer to the grand mean (i.e., the
model’s intercept). The predicted scores from the sequential-coded and Helmert-coded
models, on the other hand, are shrunk closer towards each other more than those from
the dummy-coded or contrast-coded models, reflecting the fact that shrinkage in se-
quential coding and Helmert coding relies not on the intercept, but on the differences
between neighboring categories or the average of multiple neighboring categories. For
example, the 9 years and the some college categories are shrunk closer to the college
category or Phd/Doctorate category in sequential-coded and Helmert-coded models. In
summary, models fit with different coding strategies have different shrinkage patterns,
and so predicted scores differ across these models, leading to different prediction accu-
racy. These results suggest that one way to select a coding strategy is to consider the
pattern of shrinkage which seems most reasonable.

Model Fit Next, we recorded MSEs calculated from models including all six categor-
ical variables and all seven continuous variables, to the test data set (Table 9). Model
fit (MSE) differs by coding strategy for both lasso and group lasso. Contrast-coded
models yielded the best MSE for both lasso and group lasso regression. This exposes
uncertainty regarding which coding strategy should be used when lasso or group lasso
regression is applied. While some differences in MSE are expected due to the stochas-
tic nature of procedures like cross-validation used to choose the penalty parameter (λ ),
it is notable that the MSEs were more variable for the group lasso models than they
were for the lasso models, suggesting that choice of coding strategy could result in
a much less optimal model (possibly worse than linear regression) when using group
lasso. We explore this issue more in the Monte Carlo simulation. In Appendix A, we
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Figure 1: Graphical Presentation of Category Means for Education Recreated by Lasso
Models with Different Coding Strategies. Intercept values are different across cod-
ing strategies. The intercept value is the estimated category mean for no education in
dummy and sequential coding and the average of the category means in contrast and
Helmert coding.

demonstrate similar issues with the choice of reference group or category order across
different coding strategies, and in Appendix B we demonstrate that the use of singular
design matrices (e.g., including dummy codes for all categories) does not ameliorate
this issue.

Table 9: Model Fit (MSE) for Different Coding Strategies by Lasso and Group Lasso
Regression

Coding strategies Dummy Contrast Sequential Helmert
Lasso Regression 0.13669 0.13660 0.13675 0.13677
Group Lasso Regression 0.13711 0.13689 0.13691 0.13695

Note. Rows represent different lasso methods, and columns represent models with different
coding strategies. The lowest value (best prediction) in each row is bolded.

2.3 Summary

Choice of coding strategy has the potential to affect both variable selection and
prediction accuracy in lasso regression models. As a result, depending on the coding
strategy used, an analyst may end up with different variables included in their model,
different predicted scores, and different prediction accuracy. With both the model’s vari-
able selection and predictive performance dependent on how categorical predictors are
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represented in the model, it is not a choice that should be taken lightly. Ideally, there
would be a method which provides the same variable selection and the same predicted
scores regardless of the coding strategy chosen.

Group lasso partly addresses the issues caused by the choice of different coding
strategies in lasso regression, because group lasso’s variable selection is not affected
by the coding strategy used. Therefore, if researchers use group lasso to select which
variables contribute to the outcome variable, they do not need to worry that different
coding strategies may result in different conclusions. However, coding strategies still
affect the prediction accuracy of group lasso models. Therefore, if researchers aim to
predict the outcome variable by using group lasso regression, they need to be aware
that different coding strategies can result in different prediction accuracy. In addition,
because group lasso is selecting more variables into the model, the robustness of group
lasso across coding strategies may come at the cost of prediction accuracy. Comparing
the MSEs between the lasso models and group lasso models, the lasso models typically
have lower MSE (i.e., better prediction accuracy) than group lasso.

This trade-off between prediction accuracy and robustness leads to some additional
concerns about the group lasso. There seems to be a trade-off between including a set
of predictors in a model, as compared to when a specific predictor. For example, if
the average stress for all levels of education was the same except for those with PhDs,
would group lasso still select the education set of variables into the model? Will the set
of indicators for the categorical variables be selected if there is only one category that
differs from the other categories within that variable? If this group is selected into the
model, this means that many additional parameters would also be included to capture an
effect that is only attributable to one indicator variable. Alternatively, if the group is not
selected, then the predictive ability of the group lasso model may suffer. This problem
does not occur with lasso, as it is able to include a single indicator variable to represent
one category differing from the rest. Next, we explore this specific case and examine if
group lasso’s ability to include groups of variables leads to issues with overfitting.

3 Monte Carlo Simulation

In this section, we use a Monte Carlo simulation to explore a potential weakness of
group lasso: overfitting. Group lasso may select more variables than necessary into the
model, leading to larger variance and lower prediction accuracy. We explore a partic-
ularly extreme data generation case, where across all categories within one categorical
variable, only one category differs from the rest. We call this category the dominant
category and refer to all others as non-predictive categories. A non-predictive category
is always used as the reference category in the analysis. While the simulation is much
simpler than cases that would occur in real data analysis, it provides a clear demonstra-
tion of a pattern that is likely to occur and be problematic and hard to identify in more
complex situations.

Simulation Method The data was generated such that the dominant category had a
nonzero category mean, while non-predictive categories all had category means of zero.
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All categorical variables were encoded using dummy coding. A second predictor vari-
able was generated to follow a standard normal distribution. The outcome variable was
created by adding the category mean, the value of the continuous variable, and a random
error term drawn from a standard normal distribution. For optimal prediction, both the
continuous predictor and the indicator variable which estimates the difference between
the dominant category and other non-predictive categories should be included in the
model, while the variables associated with non-predictive categories should not.

As previously mentioned, the number of categories within categorical predictors
may affect how the coefficients are estimated and how the model selects predictors in
group lasso. Therefore, we varied the number of non-predictive categories (2,3,4). To
examine how the effect size would affect group lasso’s prediction accuracy and variable
selection, we also simulated different dominant category means (0.1, 0.2, 0.3). For each
combination of number of categories and effect size, we randomly generated 500 data
sets with a sample size of 1200.

For each data set, we first split the data set into training and test sets randomly based
on an 8:2 ratio. Then we fit lasso and group lasso models with the same training data.
We selected the penalty parameter using the same cross-validation methods used in
previous sections. For each model, we calculated the MSE, whether the model included
the dominant category, and whether the model included the non-predictive categories.
We calculated the average prediction accuracy of each method as well as the proportion
of models that included the dominant category and the proportion that included non-
predictive categories across each condition. For group lasso, these two proportions were
always the same because group lasso either includes or excludes all categories within
the categorical predictor.

Simulation Results We first found that in all conditions lasso had a higher prediction
accuracy than group lasso, indicated by lower MSEs (Table 10). Though the differ-
ences in MSE of lasso and group lasso were small, they were consistent across different
conditions. Secondly, for both group lasso and lasso regression, when the number of
non-predictive categories increased, the probability for models to include the dominant
category decreased, but the probability for lasso was consistently greater than or equal
to that for group lasso (Figure 3). This means that lasso is more likely to include the
dominant category than group lasso across the number of non-predictive groups. Figure
2 shows that when the number of non-predictive categories stayed the same, the prob-
ability for group lasso to include non-predictive categories increased when the effect
size increased, while the probability for lasso remained relatively flat. For both mod-
els, the probability of including non-predictive categories decreased as the number of
non-predictive categories increased.

Returning to the potential issue of overfitting in group lasso, consider the case where
the dominant group mean is large. Figure 2 shows that when the dominant group mean
was 0.3, group lasso had a higher probability than lasso of including non-predictive
categories. In this case, group lasso could overfit the data because group lasso was more
likely to include categories that were not supposed to be in the model. This also explains
group lasso’s lower prediction accuracy than lasso in Table 10 when the dominant group
mean was large.
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Table 10: Differences in MSE of Lasso and Group Lasso Models for Monte Carlo Sim-
ulation

Number of Non-predictive Categories
Dominant Category Mean 2 3 4

0.1 0.0028 0.0029 0.0003
0.2 0.0020 0.004 0.0008
0.3 0.0029 0.0029 0.0030

Note. Values larger than zero mean that the MSE for group lasso is larger than the MSE for
lasso.

Figure 2: Comparison of Probabilities of Including Non-Predictive Categories under
Different Numbers of Categories for Lasso and Group Lasso Models



Lasso with Categorical Predictors 31

Figure 3: Comparison of Probabilities of Including the Dominant Category under Dif-
ferent Dominant Category Means for Lasso and Group Lasso Models
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Simulation Summary Using Monte Carlo simulation, we demonstrated conditions
under which group lasso may be likely to have issues with overfitting. When one or just
a few categories differ from the rest, lasso may be more efficient with better prediction
accuracy than group lasso. In these cases, group lasso is likely to include the categorical
variable, including all non-predictive categories. Therefore, if researchers use group
lasso to build predictive models, they may want to examine if one or two categories
have relatively dominant means within categorical variables in advance, or if this pattern
is hypothesized to occur they might prefer lasso. Looking for these effects may be
particularly difficult in cases with many predictors where limited theoretical knowledge
are driving the modeling, which is often the case when lasso is used. The differences
must be conditional on all other variables in the data, not just examining the group
means. If there are many categorical predictors in the model, exploratory analyses could
be undertaken for each categorical variable, but this could a be tedious undertaking.
Overall, this simulation demonstrates that there may be situations in which group lasso
is not optimal for handling categorical predictors, especially if prediction accuracy is a
high priority.

4 Discussion

In this paper, we demonstrate that lasso and group lasso models are sensitive to de-
cisions about coding strategy for categorical predictors (e.g., dummy or sequential) and
the choice of reference group/order of the categories (Appendix A). Linear regression
does not have this problem, as the model fit and predicted values do not vary depend-
ing on the coding strategy. Group lasso presents a partial solution by having consistent
variable selection across coding strategies. However, this consistency may come at a
cost of reduced prediction accuracy. Ultimately, this leaves open the question of which
coding strategy should be chosen. In the next section, we explore potential solutions to
this issue with categorical predictors in lasso-based models.

4.1 Exploring Potential Solutions

Regardless of which of the following solutions researchers choose, one thing is
always required: transparency. In searching the literature for examples of applications of
lasso with categorical predictors, we found very few teams reported the coding strategy
or order of categories used. Researchers using categorical variables in lasso or group
lasso regression need to report how they coded the variables (both coding strategy and
variable order/reference group) as this is imperative for reproducing or replicating their
results. The following are a few proposed solutions, none of which seem satisfactory
for all cases. As such, we weigh the pros and cons of each and consider cases when
each approach might be most acceptable.

Prioritize Interpretability In cases where one coding strategy provides better inter-
pretability of the model coefficients than another strategy, the most interpretable coding
strategy could be chosen. This comes at the risk of having a worse predictive model,
since the idea of interpretability is still very much rooted in the origins of inferential
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rather than predictive statistical models. In particular, because the coefficient estimates
in lasso regression are biased, they should not be interpreted directly. Rather, after vari-
able selection is completed, common recommendations are to fit a linear regression
model that only includes the selected variables (Hastie, Robert, & Wainwright, 2015).
It would be unusual to include a coding strategy in the follow-up linear regression that is
different from the strategy used in the lasso regression. Thus, researchers should choose
the coding strategy for each categorical variable that would be most interpretable if that
variable was selected by a variable selection procedure to remain in the model. Coding
schemes like Helmert coding require the presence of all predictors to have the intended
interpretation, and should perhaps only be used in concert with group lasso (ensuring
all predictors are selected in or out of the model) if interpretability is the top priority.
Notably, machine learning approaches are often used in cases where there are many
variables included in the analysis, and relatively little theory regarding which variables
should be predicting the outcome. This could make it difficult for the researcher (or an-
alyst) to decide which coding scheme would be “most interpretable,” especially consid-
ering the many possible combinations of coding schemes and variable orders/reference
groups.

Prioritize Robust Variable Selection Based on the real data analysis and the simula-
tion results, the group lasso is robust to coding strategy choices with respect to variable
selection. Prediction accuracy is not necessarily optimized for the group lasso. How-
ever, when the goal is to select variables, and especially when it is conceptually useful
to keep or drop all indicators for each categorical variable, group lasso seems to be an
optimal choice. Nevertheless, this may come at a cost of prediction accuracy, particu-
larly if categorical variables follow the dominant group pattern explored in the Monte
Carlo simulation above, where one group is distinct from all other groups.

Prioritize Prediction Another option when estimating lasso or group lasso models
would be to try many different coding strategies in order to select the one with the best
overall prediction accuracy. This process should likely be completed using the train-
ing data so it does not influence the final prediction accuracy estimate acquired using
an independent sample of the data. This approach can be very computationally inten-
sive. With multiple categorical variables in the data set, trying different combinations
of coding strategies would result in maximized prediction accuracy.

Notably, if prediction accuracy is of the highest priority, alternative machine learn-
ing approaches typically have higher prediction accuracy than lasso approaches, and
many are robust to coding strategy. Techniques like classification and regression trees
(CART) are unaffected by coding strategy because categorical predictors are treated as
a single variable (Finch & Schneider, 2007). Realistically, researchers may be balancing
their comfort with advanced analytic methods and their priority of prediction accuracy.
CART methods do not provide the ”regression-like” estimates which many behavioral
scientists rely on for interpreting their results.
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4.2 Future Directions

There are several future directions we believe would be particularly beneficial for
improving the state of research in the area of (group) lasso regression with categorical
predictors. The first is the concept of intercept penalization. The typical practice within
lasso is not to penalize the intercept (Wu & Lange, 2008), but the interpretation of the
intercept varies greatly depending on which coding scheme is used. For example, when
dummy coding is used, the intercept is the average of the reference group. Alternatively,
when contrast coding is used, the intercept is the average of all groups. Ultimately,
this means that different group means have differential penalization depending on the
coding strategy used (as reflected in Figure 1). Thus, it is worth investigating whether
penalizing the intercept may be appropriate in certain cases, and whether this would im-
prove prediction accuracy (just as penalizing all other regression coefficients improves
prediction accuracy in lasso). This question remains largely unexplored and would be
informative to researchers who are interested in improving prediction accuracy.

Current defaults in software suggest that the field norm for coding strategy is dummy
coding. The current research has demonstrated that dummy coding is a potentially risky
choice as a default, as the choice of reference group can greatly impact the model, and
the shrinkage is toward a group mean. Alternatively, contrast coding may make it an
appealing default for researchers unsure about which coding strategy to use. Because
the interpretation of the intercept for contrast coding is the average across all groups,
the penalization of the groups is symmetric about this average. This means that when
a coefficient is dropped from the model, the group that is indicated by this predictor
is assumed to be equal to the grand mean. This method contrasts with dummy coding
where all estimated group means are shrunk towards the reference group score. As a
result, the selection of the reference group in contrast coding has less of an impact on
parameter estimates than it does in dummy coding, because by selecting a reference
group in dummy coding, that group’s score is not at all penalized (if the intercept is
not penalized). The interpretation of the intercept from contrast coding also aligns with
how intercepts would be interpreted if there were no categorical variables in the model
and all continuous predictors were standardized (i.e., sample average). Thus, contrast
coding stands as a reasonable default if researchers are unsure of which coding strategy
to choose; however, the use of contrast coding should be studied further in a variety of
contexts to assess its appropriateness as a potential default.

Another observation our team made during this investigation was that group size
mattered quite a lot with respect to how much predicted group scores varied across dif-
ferent coding strategies. In particular, in the COVID stress data, the no education group
was particularly small (N = 77 out of 10,000 observations). This resulted in two prob-
lems that merit further investigation. The first is how group size can impact estimates
and interact with the selection of coding strategy/reference group. Previous research by
Choi, Park, and Seo (2012) has already shown that variability in the number of groups
that categorical predictors contain can influence whether lasso or group lasso produces
better prediction accuracy and recovery of model coefficients. As can be seen in Figure
1 and Table 7, the estimated means for the no education group in the COVID stress data
were very unstable and varied more across coding strategies than any other group. Sim-
ilarly, in Table 12 in Appendix A, we can see that the estimates of all of the Education
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group means have the greatest bias when no education is used as the reference group.
Future research should examine how variability in the sizes of those groups can impact
the fitting of lasso and group lasso models

A second issue brought up by having small groups is the difficulty of splitting test
and training data sets. This may become particularly problematic when there are many
categorical variables that include many groups. Previous researchers have resolved to
combine groups that are particularly small (e.g., racial/ethnic minorities; Webb et al.,
2019). It is unclear how this practice impacts estimates for these groups, however, and in
general combining groups is actively discouraged for other analytic methods (Tarantola
& Dellaportas, 2005). Methods for splitting the data such as block randomization may
provide more accurate predictions for small groups if the groups can be evenly split
across the training and test sets.

4.3 Conclusion

Overall, our findings suggest that researchers should be cautious and purposeful
about selecting their coding strategies when using lasso or group lasso. These choices
will impact both variable selection and prediction accuracy when using lasso and pre-
diction accuracy when using group lasso. However, just because variable selection is
not impacted in group lasso does not mean this method should always be preferred. In a
simulation study, we demonstrated cases where group lasso may have lower prediction
accuracy than lasso, particularly when there is a dominant group (one group that dif-
fers from all other groups). The choices of which method to use (lasso or group lasso),
what coding strategy to use, and which group order/reference category to use should
depend on the researcher’s priorities. How categorical variables are represented in lasso
or group lasso models must be transparently reported to maximize reproducibility and
replicability. Future research should explore specific practices in this area such as pe-
nalization of the intercept, the use of contrast coding, and how small groups should be
accounted for to optimize prediction accuracy for these groups.

Behavioral scientists are quickly adopting useful tools developed in statistics and
computer science which fit under the broad area of machine learning and artificial intel-
ligence. The use of these tools will likely improve the ability of behavioral researchers
to predict out-of-sample data, which may be particularly important in clinical settings
and precision medicine. However, it is important to acknowledge that these new tools do
not necessarily perform in the same ways that many researchers expect based on their
training, which is primarily in linear regression and ANOVA frameworks (Aiken, West,
& Millsap, 2008). Ensuring that the differences between these more traditional statis-
tical frameworks and the newly developed machine learning frameworks are clearly
defined will improve the implementation of these new methods throughout the field of
behavioral science.
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Appendix A Different reference categories

In addition to the analyses presented in the primary manuscript, we also examined
how variable selection and prediction accuracy in lasso and group lasso models differ
across choices within a specific coding strategy. These choices include reference cate-
gories (dummy and contrast coding) and the order of categories (sequential and Helmert
coding). We tested whether the category chosen as the reference category in the dummy
coding strategy matters for variable selection and prediction accuracy. Consider, for ex-
ample, the dominant group case where all groups have the same mean except one group.
If that one group is selected as the reference category, then all k−1 predictors should be
selected into the model, because all other groups are different from the reference. If any
other group is selected as the reference group, then only 1 predictor should be selected
into the model (the indicator for the difference between the one deviant group and the
reference). While the pattern of means is not different, the reference group may have a
large impact on the size of the coefficients and the number of non-zero coefficients.

We fit lasso and group lasso models with all six dummy-coded categorical variables
and seven continuous variables using the COVID stress data. To explore how choices of
reference categories affect estimated coefficients, we fit seven models for each regres-
sion method with differences only in their choices of reference categories in the variable
Education. The reference categories were chosen and fixed for all other categorical vari-
ables. Therefore, the differences between these models can only be attributed to the dif-
ferent choices of the reference category of the variable Education. While this example
uses dummy coding, we believe the results would generalize to other coding strategies
(e.g., choice of the reference group for contrast coding, order of groups for Helmert and
sequential coding).

Appendix A.1 Variable Selection

Table 11 shows the coefficients of indicators for Education. The size of the coeffi-
cients varies depending on which group is the reference, which could pose a problem
for lasso regression because coefficients and the penalty parameter decide whether the
variable will be selected into the model, according to Equation 5. Different coefficients
are not necessarily a problem by themselves; however, these results demonstrate cer-
tain asymmetries that are concerning. When coefficients vary from model to model,
the variable selection can differ. For example, when “none” was the reference category,
the college category was not selected into the model (i.e., the none and college cate-
gories are assumed to be equal). However, when “college” was chosen as the reference

https://doi.org/10.1038/s41597-020-00784-9
https://doi.org/10.1111/j.1467-9868.2005.00532.x
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category, the none category was selected into the model (i.e., the none and college cat-
egories are treated differently). This marks a particularly concerning lack of symmetry
between these lasso models.

Table 11: Model Coefficients for Different Reference Categories by Lasso
Reference Category

Variables None 6 years 9 years 12 years Some college College PhD/Doctorate
Intercept 2.637 2.574 2.649 2.668 2.657 2.641 2.649
None . -0.013 -0.076 -0.092 -0.083 -0.068 -0.075
6 years -0.068 . -0.079 -0.095 -0.086 -0.071 -0.078
9 years 0.010 0.065 . -0.006 0 0.009 0.002
12 years 0.033 0.084 0.024 . 0.017 0.032 0.024
Some college 0.017 0.067 0.008 -0.006 . 0.016 0.008
College 0 0.049 -0.008 -0.024 -0.015 . -0.008
PhD/Doctorate 0.005 0.057 0 -0.015 -0.006 0.005 .

Note. Each column represents one model, and each row represents the coefficients for Education
produced by each model.“.” is the reference category for the corresponding model, and 0 means
that lasso does not select the corresponding predictor to be included in the model.

Group lasso models included all categories within the variable Education when dif-
ferent categories were chosen as the reference categories, meaning that all categories
were treated as different in all group lasso models. Group lasso ensures stable perfor-
mance of variable selection across reference categories.

We also explored the effect of different reference categories in education on other
predictors and found that choosing different reference categories affects the coefficients
and variable selection of other predictors (categorical and continuous) in lasso models.
Group lasso models, on the other hand, still performed consistent variable selection for
predictors that did not have their reference categories changed. In our case, group lasso
models always included all categories within the other five categorical predictors and
all seven continuous predictors.

Appendix A.2 Prediction Accuracy

We examined the prediction accuracy from two aspects: predicted category scores
and model fit, varying the reference group used in dummy coding education.

Predicted Category Scores Predicted values for each category were different in both
lasso and group lasso models from Tables 12 and 13. For the no education category,
lasso models with different reference categories predicted different values, ranging from
2.982 to 2.915. Group lasso models also predicted different values for the no education
category, ranging from 2.983 to 2.991. This indicates that with different choices of
reference categories, predicted values vary from model to model for both lasso and
group lasso.
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Table 12: Predicted Category Means and Prediction Accuracy for Different Reference
Categories by Lasso

Reference Category
Category None 6 years 9 years 12 years Some college College PhD/Doctorate
None 2.982 2.920 2.915 2.915 2.915 2.915 2.915
6 years 2.914 2.933 2.912 2.912 2.912 2.912 2.912
9 years 2.992 2.998 2.990 3.001 2.998 2.992 2.992
12 years 3.015 3.017 3.014 3.006 3.014 3.014 3.014
Some college 2.999 3.001 2.998 3.000 2.998 2.998 2.998
College 2.982 2.983 2.982 2.982 2.982 2.983 2.982
PhD/Doctorate 2.988 2.990 2.990 2.991 2.991 2.987 2.990

MSE 0.13669 0.13678 0.13674 0.13684 0.13675 0.13674 0.13674
Note. Each column represents one model, and each row (besides the last) represents the
predicted category means for Education produced by each model (with all continuous predictors
set to their means and all other categorical variables set to their modes). The last row contains
the MSE of the corresponding model.

Table 13: Predicted Category Means and Prediction Accuracy for Different Reference
Categories by Group Lasso

Reference Category
Category None 6 years 9 years 12 years Some college College PhD/Doctorate
None 2.986 2.986 2.986 2.990 2.991 2.983 2.987
6 years 2.971 2.978 2.974 2.983 2.981 2.971 2.975
9 years 2.988 2.987 2.968 2.979 2.975 2.965 2.969
12 years 3.002 3.001 3.004 2.991 2.992 2.985 2.988
Some college 2.996 2.996 2.997 2.996 3.004 3.003 3.004
College 2.983 2.983 2.983 2.983 2.983 2.996 2.997
PhD/Doctorate 2.988 2.988 2.988 2.990 2.990 2.987 2.983

MSE 0.13711 0.13719 0.13709 0.13727 0.13709 0.13708 0.13710
Note. Same as Table 12

Figure 4 visualizes the shrinkage effect when different reference categories were
chosen in lasso models using Education to predict Stress. In this case, the intercept is
the predicted category mean of each model’s reference category because models are
coded by dummy coding strategies. Similar to Figure 1, we can conclude that recreated
category scores shrink towards the reference value for dummy coding.

Model Fit Model fit, measured by MSE, for both lasso and group lasso models are
shown in Table 12 and 13. MSEs were generally different across reference categories.
Note that MSEs in Table 12 and 13 were rounded. Although some MSEs were very
close to each other and were rounded to the same value, they were not exactly the same,
which would be the case if linear regression was used.
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Figure 4: Graphical Presentation of Category Means for Education Recreated by Lasso
Models with Different Reference Categories. Intercept values are different across refer-
ence categories. In dummy coding, the intercept value is the estimated category mean
of the corresponding reference category.

Appendix B Singular Design Matrices

STATA is a commonly used statistical software that can implement lasso regression,
and in STATA categorical predictors are handled by including a singular design matrix
StataCorp (2019). In this section, we examine this alternative method for creating the
design matrices for categorical variables. When we introduced categorical variables, we
noted that for a variable with k categories, k−1 indicators are created for this variable.
Different coding strategies use different matrices to represent the k− 1 indicators and
model coefficients represent differences between categories and the reference value, as
this is common practice for linear regression. The researcher must then choose the ref-
erence category for analysis. However, there is another way to create the design matrix
for categorical predictors where the researcher does not need to explicitly choose the
reference category. Instead of using k − 1 indicators for a categorical variable with k
categories, we use k indicators. This design matrix allows lasso or group lasso to essen-
tially select the reference values. Mathematically, this type of design matrix is defined
as singular, because the matrix is not invertible. Singular design matrices cannot be
used for linear regression, but lasso and group lasso regression can accommodate sin-
gular design matrices, making this a unique potential solution to the variable selection
and prediction accuracy issue related to categorical variables in lasso and group lasso.

Can singular design matrices solve the inconsistency in lasso’s variable selection
and prediction accuracy or group lasso’s prediction accuracy across coding strategies?
To create singular design matrices, we appended a linearly independent column with
only 1 in the first row to the matrices in Table 1 and 3, and a linearly independent col-
umn with only 1 in the last row to matrices in Table 2 and 4. If using singular design
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matrices solves the issues of variable selection and prediction accuracy, these two prop-
erties should be equivalent across these four design matrices. To test this, we used the
same data set and applied the same process as before to fit lasso and group lasso models
with Education serving as the only predictor variable. Table 14 shows the coefficients
of the categorical variable Education in lasso models as an example of lasso’s vari-
able selection. Using a singular design matrix for categorical variables, different coding
strategies still lead to different lasso model’s variable selection. Contrastingly, group
lasso selected all categories and performed the same variable selection. For example,
the contrast-coded lasso model treated the 9 years of education and PhD categories
as the same, while these two categories were always treated as different in the other
three lasso models and the four group lasso models. In addition, lasso and group lasso
models using different coding strategies led to different prediction accuracies, shown
in Table 15 and 16. This means that using singular design matrices does not solve the
inconsistent variable selection or prediction accuracy for lasso, nor does it solve the
inconsistency in prediction accuracy for group lasso. There are infinitely many singular
design matrices that could be used, and if they all result in different solutions, this does
not provide strong evidence that the identity matrix system used by StataCorp (2019)
would perform optimally.

Table 14: Model Coefficients Using Singular Design Matrix with Lasso
Coding strategies Dummy Contrast Sequential Helmert
Intercept 2.991 2.961 2.873 2.961
1. no -0.109 -0.081 0.015 0.103
2. 6 years -0.086 -0.063 0.076 0.095
3. 9 years -0.006 0 0.034 0.023
4. 12 years 0 0.034 0.010 0
5. some college 0.016 0.051 -0.017 -0.017
6. college degree 0 0.028 0 0
7. PhD 0 0 -0.009 0

Note. Each column represents one model, and each row represents the coefficient for an
indicator of Education produced by the corresponding model. A 0 means that lasso does not
select the corresponding category into the model.
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Table 15: Predicted Category Means and Prediction Accuracy for Different Coding
Strategies using Singular Design Matrices with Lasso

Coding Strategy
Category Dummy Contrast Sequential Helmert Observed Mean
None 2.882 2.881 2.864 2.873 2.852
6 years 2.905 2.898 2.888 2.897 2.883
9 years 2.986 2.961 2.964 2.973 2.962
12 years 2.991 2.995 2.999 2.997 2.997
Some college 3.007 3.012 3.008 3.008 3.013
College 2.991 2.990 2.991 2.991 2.990
PhD/Doctorate 2.991 2.992 2.991 2.991 2.991

MSE 0.15630 0.15620 0.15616 0.15621 /
Note. Each column (besides the last) represents one model, and each row (besides the last)
represents the predicted category means for Education produced by each model. The last
column contains the category means observed in the training data set. The last row contains the
MSE of the corresponding model.

Table 16: Predicted Category Means and Prediction Accuracy for Different Coding
Strategies Using Singular Design Matrices with Group Lasso

Coding Strategy
Category Dummy Contrast Sequential Helmert Observed Mean
None 2.873 2.869 2.878 2.871 2.852
6 years 2.892 2.890 2.909 2.891 2.883
9 years 2.962 2.961 2.955 2.962 2.962
12 years 2.996 2.996 2.994 2.996 2.997
Some college 3.012 3.012 3.010 3.012 3.013
College 2.990 2.990 2.991 2.990 2.990
PhD/Doctorate 2.990 2.991 2.991 2.990 2.991

MSE 0.15619 0.15619 0.15622 0.15619 /
Note. Same as Table 15
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Abstract. Latent growth curve models (LGCM) are widely used in lon-
gitudinal data analysis, and robust methods can be used to model error
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1 Introduction

Latent growth curve models (LGCM) are widely used in longitudinal studies,
and LGCM performs well in the identification of intraindividual changes and
investigation of interindividual differences in intraindividual changes (McArdle
& Nesselroade, 2014). LGCM can estimate linear and nonlinear growth trajecto-
ries flexibly or freely estimate the shape of growth trajectory by observed data.
Researchers may employ either the maximum likelihood estimation method or
the Bayesian method to model LGSM. The Bayesian methods have advantages
on handling difficulties in longitudinal data such as unequally spaced measure-
ments, nonlinear trajectories, non-normally distributed data, and small sample
sizes (Curran, Obeidat, & Losardo, 2010).

Influential outliers and non-normally distributed data can lead unreliable
estimates and inferences. Conventional methods such as deleting outliers may
result in underestimated standard errors (Lange, Little, & Taylor, 1989). Robust
statistical modeling methods have been developed to handle the violation of the
normality assumption. For example, the t-distribution is more robust to outliers,
and using t-distribution to model errors is one of the robust modeling strategies
(Lange et al., 1989). Robust modeling using t-distributions is easy to understand
and applied in both maximum likelihood and Bayesian methods (Lange et al.,
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1989; Zhang, 2016; Zhang, Lai, Lu, & Tong, 2013). The degree of freedom of t-
distributions can be estimated or predetermined, and a large degree of freedom
means the t-distribution approaches a normal distribution (Zhang et al., 2013).
Based on simulation studies, the robust method using the t-distributions for the
error term demonstrates good performance for heavy-tailed data in growth curve
models, and it efficiently estimates the standard error (Zhang, 2016; Zhang et
al., 2013).

This tutorial aims to present how to implement robust Bayesian growth curve
models using R and the JAGS programs. To begin, it provides a brief introduction
to LGCM, including the latent basis growth curve models (LBGM), the linear
growth curve models, and quadratic growth curve models. Then it introduces
commonly used priors and convergence diagnostic methods. Finally, a real data
set is used to demonstrate how to implement robust LGCM, and how to interpret
the estimated parameters.

2 Models and notations

2.1 General latent growth curve models

Latent basis growth curve models A LGCM with one variable Y can be
written as:

Yi = τ +Λbi + ϵi (1)

bi = β + ui (2)

Yi is a T × 1 vector in which T is the total number of measurement occasions,
and Λ is a T × q factor loading matrix, and it decides the shape of the growth
trajectory. The ϵi is assumed to follow a q-variate normal distribution ϵi ∼
MN(0,Φ). bi is an q × 1 vector and it represents the latent variables used to
describe the change. β is a q × 1 vector that represents the fixed effect (the
means of bi) and ei is the individual deviation from the fixed effect β. ui follows
a multivariate normal distribution with q dimensions as ui ∼ MN(0,Ψ).

LBGM is a special case of the general LGCM. It assumes the error variance
is the same for all measurements (homogeneity) by simplifying Φ = Iσ2

e . And
it also assumes measurement errors are uncorrelated. The parameters in LBGM
are:

Λ =


1 0
1 1
1 λ1

...
...

1 λT−2

 bi =

(
biL
biS

)
,

β =

(
βL

βS

)
Ψ =

(
σ2
L σLS

σLS σ2
S

)
.
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LBGM contains two latent variables: bL and bS . bL represents the intercept
and bS represents the growth slope. The specification of factor loadings of bS
determines the shape of the growth curve. Here, the first and second-factor
loadings on bS are fixed at 0 and 1 for identification purposes, while other factor
loadings are freely estimated. This assumption implies that the growth unit is
the difference between the first two measurements. Another common practice is
to fix the first and last factor loadings at 0 and 1, respectively, with the unit
representing the difference between the first and last measurements. βL and βS

represent the average intercept and slope across all individuals, respectively. σ2
L

and σ2
S represent variances, reflecting the individual differences in intercept and

slope. σLS represents the covariance between the intercept and slope.

The linear growth curve model The specification of Λ decides the shape
of growth. When the factor loadings of bS are equally spaced, it becomes a
linear growth curve model. A linear growth curve model assumes a linear change
pattern and the slope bS represents a linear slope. The factor loading matrix is:

Λ =


1 0
1 1
1 2
...

...
1 T − 1

 .

The quadratic growth curve model The quadratic growth curve model
estimates a nonlinear change by including the quadratic slope biQ, and the model
can be presented as:

Λ =


1 0 0
1 1 1
1 2 22

...
...

...

1 T − 1 (T − 1)
2

 bi =

biL
biS
biQ

 ,

β =

biL
biS
biQ

 Ψ =

 σ2
L σLS σLQ

σLS σ2
S σSQ

σLQ σSQ σ2
Q

 .

2.2 Robust growth curve models

The general LGCM assumes ϵi follow a multivariate normal distribution (ϵi ∼
MN(0,Φ)), while robust growth curve models use other distributions to for ϵi.
Zhang (2016) presented and summarized how to use Student’s t, exponential
power, and the skew normal distributions to build robust LGCM.
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Student’s t-distribution The robust growth curve models can be specified
by modeling ϵi by a student’s t-distribution: ϵi ∼ MTT (0, Φ, k), where k is the
degrees of freedom. The robust LGCM with a Students’ t-distribution performs
better than the traditional growth curve model with a multivariate normal dis-
tribution when dealing with heavy-tailed data and outliers (Zhang, 2016; Zhang
et al., 2013).

The multivariate t-distribution approaches the multivariate normal distribu-
tion when k increases. In the robust Bayesian methods, k can be specified as an
unknown parameter, and a prior is needed to estimate k. Alternatively, it can
be fixed and some researchers suggested k = 5 (Zhang et al., 2013).

In JAGS, t-distribution can be specified using the function dt(), and this
function will be explained in the following section with an example.

Exponential power distribution The exponential power distribution can
model error term eit with smaller kurtosis than normal distributions, and we
employ the same form of density function and parameters as Zhang (2016) in
this tutorial. The density of exponential power distribution is as follows:

pep(x) = ω(γ)σ−1exp

[
−c(γ)

∣∣x− µ

σ

∣∣2/(1+γ)

]
where

ω(γ) =
(Γ [3(1 + γ)/2])

1/2

(1 + γ) (Γ [(1 + γ)/2])
3/2

and

c(γ) =

(
Γ [3(1 + γ)/2]

Γ [(1 + γ)/2]

)1/(1+γ)

.

Here µ and σ are location and scale parameters, respectively, and γ is a shape
parameter that can be estimated.

Skew normal distribution Both the t-distribution and the exponential power
distribution are symmetric, while the skew normal distribution offers an option
to model asymmetric errors. The density function of a skew normal distribution
is as follows:

psn(x) =
2

ω
ϕ

(
x− µ

ω

)
Φ

(
α
x− µ

ω

)
where µ is a location parameter, ω is a scale parameter, and α is a shape pa-
rameter which can be estimated.

3 Robust growth curve model using JAGS

The following part introduces how to build and interpret the robust LGCM in
JAGS using a real data set, assuming homogeneity across time points.
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3.1 Specification of priors

Priors of LGCM are usually specified as: β ∼ N(µ0, σ
2
0), Φ ∼ W (V,m), σ2

e ∼
IG(α, β) (assuming Φ = IT×Tσ

2
e). For the robust growth curve model with the

t-distribution, the degrees of freedom k is another unknown parameter, and an
uninformative prior is applied to k as follows: k ∼ U(1, 500). In the case of the
exponential power distribution which involves an additional shape parameter γ,
an uninformative prior is assigned to it as follows: γ ∼ U(−1, 1). Similarly, for
the shape parameter α in the skew normal distribution, the prior is specified as
α ∼ U(−5, 5).

3.2 Convergence diagnostic

To check convergence, trace plots are visually inspected. If trace plots indicate
non-convergence, then more iterations and longer burn-in periods are needed.
The length of the chain should be extended until trace plots of all parameters
demonstrate visual convergence.

In addition to visual inspection, various convergence diagnostic tools are
available in R, including the Geweke test (Geweke, 1992), the Heidelberger and
Welch test (Heidelberger & Welch, 1983), Gelman and Rubin test (Gelman &
Rubin, 1992), and the Raftery and Lewis diagnostic (Raftery, Lewis, et al., 1992).
In this tutorial, the Geweke diagnostic is used, which compares the mean differ-
ence between two parts of chains, typically the first and last parts. It employs a
z test to compare the means of two parts, and if the z test statistic rejects the
null hypothesis, it indicates a significant difference.

3.3 Autocorrelation and posterior distribution

The adjacent iterations of the Markov chain may exhibit high dependence, and
serious autocorrelation can indicate problems in model estimation such as a prob-
lem with the sampling algorithm. The autocorrelation problem can be identified
by visual inspections. If visual inspection shows high autocorrelation, increasing
the number of iterations or implementing thinning techniques can be beneficial.
Additionally, it is important to ensure that the posterior distribution makes
substantive sense, taking into account factors such as the parameter’s range
and standard deviation. For instance, it would be unreasonable if the posterior
standard deviation exceeds the parameter’s scale.

4 Examples

This section includes R code and JAGS commands for constructing robust growth
curve models. The t-distribution is offered by JAGS and can be directly imple-
mented. In the following parts, t-distribution is utilized to model and compare
LBGC, linear and quadratic LGCM. To illustrate different robust methods, we
specify linear LGC models using the t, exponential power and skew-normal dis-
tributions.
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The data used in this tutorial were obtained from the Early Childhood Lon-
gitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011), a national lon-
gitudinal program conducted by the National Center for Education Statistics.
ECLS-K:2011 collected information about children’s development during their
elementary school years. For this tutorial, a random subset of data consist-
ing of N = 200 samples was selected from ECLS-K:2011. This subset includes
math scores measured at four different occasions. Math ability assessments were
conducted annually, spanning from the second grade to the fifth grade. De-
tailed information about ECLS-K:2011 can be found in the manual provided by
Tourangeau et al. (2015).

Descriptive analysis revealed that the distributions of the observed math
scores were skewed and exhibited heavier tails than normal distributions, as de-
picted in Figure 1. Additionally, increasing trends in math scores were observed,
and the growth pattern of each individual is illustrated in Figure 2.
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Figure 1. Descriptive plots of math scores

4.1 Specify the JAGS models

t distribution The LBGM model is specified using the JAGS notations as:

# models
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Figure 2. Growth curves of math scores in four waves

model1 <- "model{
# Specify the likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)
# normal
# y[i, j] ˜ dnorm(mu[i, j],tauy)

}
}
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
# Specify the growth trajectory
A3˜dnorm(0,1.0E-6)
A4˜dnorm(0,1.0E-6)
# specify priors
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)



50 R. Li

taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

An R object model1 is constructed using the model block. In the case of a
four-wave of data organized with 200 rows (N = 200) and 4 columns (T = 4),
we use for loops to specify the likelihood for all participants across the four
measurement occasions.

This likelihood reflects the use of a robust Bayesian method. Specifically,
y[i,j] is modeled using univariate t-distributions, which are defined by dt()
with parameters for means mu[i, j], precision tauy, and degrees of free-
dom df. If the data were modeled using a multivariate normal distribution,
i.e., y[i,j] ∼ dnorm(mu[i,j], tauy), the model would represent a tra-
ditional latent growth curve model with normal assumptions.

The next part of the model involves specifying the prior distributions. β is as-
sumed to follow a bivariate normally distribution with β ∼ MN((0, 0)T , 1000I2),
and the covariance of ϵi follows an inverse Wishart distribution (Zhang, 2021).
The error term ϵi is assumed to follow a t-distribution with an estimated k
(ϵi ∼ MTT (0,Φ, k)). Here, a uniform distribution Unif(1, 500) is used as the
prior of k.

The latent variables and means are specified based on the hypothesized
growth curve and priors. The parameter b[i,1] represents the latent inter-
cept of LGCM, and the latent slope is b[i,2]. A3 and A4 are factor loadings of
math scores at the third and fourth measurement occasions, which control the
shape of changes.

If A3 is set to 2 and A4 is set to 3, then the model becomes a linear growth
curve model. Quadratic LGCM involves three latent variables, within b[i,3]
representing the quadratic shape. The coefficients A5 and A6 are fixed at 4 and
9, respectively.

Detailed JAGS models for both the linear and quadratic growth curve models
can be found in the appendix.

Exponential power distribution JAGS does not offer exponential power dis-
tribution or the skew-normal distribution by default. However, the likelihood
can be specified indirectly using the Bernoulli or the Poisson distributions (Nt-
zoufras, 2011).

One approach, known as the “zero trick,” utilizes the Poisson distribution.
A matrix with the same dimensions of the data is created, with all elements



Robust Bayesian growth curve modeling 51

set to zero. The likelihood is reflected in the mean of the Poisson distribution.
Assuming observation yi follows a new distribution and the log-likelihood is
li = logf(yi|θ). The model likelihood can be expressed as:

f(y|θ) =
n∏

i=1

e−(−li+c)(−li + C)0

0!
=

2∏
i=1

fP (0;−li + C).

In this expression, the mean of the Poisson distribution is a constant (C) minus
the log-likelihood (C − li) and C is chosen to ensure the mean of the Poisson
distribution is always positive.

The one trick sets all observations to one and uses the parameter of the
Bernoulli distribution to specify likelihood.

In this paper, the zero tricks were used to specify exponential power and
skew-normal distributions, assuming a linear change trajectory.

The model code is provided in the appedix. In the code, the log gamma
function is specified using command loggam(), and dpois() is used to sample
from the Poisson distribution.

Skew normal distribution The location parameter of the skew normal dis-
tribution is reparameterized as

µ = ω
α√

(1 + α2)2

√
(2/π)

to ensure that the mean of the error is zero. In the code, the standard normal
cumulative density function is specified by phi() and the log density function
of the normal distribution is specified by logdensity.norm().

4.2 Specify iterations,initial values, and saved parameters

After configuring the models, we can proceed by organizing the data in a list,
specifying initial values, and running the JAGS model.

The data is organized in a wide format and stored in a list called datalist,
which includes the number of participants (nsubj) and the number of mea-
surements (ntime). In this setup, we use two chains (nChains = 2), each
with a length of 20,000 iterations (nIter = 20000), and a burn-in period of
10,000 iterations (burnInSteps = 10000). Monitored parameters encompass
the means and variances of intercepts and slopes, and the shape parameters such
as the degrees of freedom. These parameters’ posterior draws will be saved.

# create data set for \texttt{JAGS} model
nsubj = nrow(data)
ntime = ncol(data)
datalist = list(nsubj=nsubj,ntime=ntime,y=data)
# set parameters, adaption, and MCMC chains
parameters = c("mub","sigma2b","sigma2y","df","A3","A4")
adaptSteps =5000 # Adaptive period
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burnInSteps = 10000 # Burn-in period
nChains = 2 # The number of chains
nIter =20000 # The number of kept iterations

Two chains are used in this tutorial, and two sets of initial values are specified:

# specify initial values
inits <- list(list(mub=c(0.7,0.4),

taub=structure(.Data=c(1,0,0,10),
.Dim=c(2,2)),

tauy=10,df=3),
list(mub=c(0.8,0.5),

taub=structure(.Data=c(2,0,0,8),
.Dim=c(2,2)),

tauy=15,df=5))

4.3 Run JAGS models

The package runjags is used in this tutorial and the function run.jags() is
used to read, compile, and run the model, and the model results are saved for
later analysis.

# run JAGS model
set.seed(1234)
out <- run.jags(model=model,

monitor=parameters,
data=datalist, n.chains=2,
inits=inits, method="simple",
adapt=adaptSteps,
burnin = burnInSteps,
sample=nIter,
keep.jags.files=TRUE,
tempdir=TRUE)

4.4 Convergence diagnostic

For convergence checking, we examine both trace plots and Geweke’s test. A
visual inspection of the trace plots reveals that all parameters have converged
after the adaptation and burn-in period. Figure 3 displays the plots of the latent
intercept and slope in the LBGM.

If Geweke’s test values exceeded 2, we doubled the number of iterations
and reran the model. In this particular example, we found no clear evidence of
non-convergence, however, some models exhibited autocorrelation issues in the
slope, as shown in the autocorrelation plots. To address this, longer iterations
or thinning techniques may be employed.

Additionally, posteriors make practical sense by checking the shape and range
in the posteriors plots. For example, the range of possible values for math ability
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Figure 3. Trace, ECDF, posterior and autocorrelation plots of the intercept and the
slope in LBGM with a t distribution
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is from -4.0 to 4.0, and the posterior mean of the intercept was close to the mean
of the observed math score in the second grade.

# Geweke diagnostic
geweke.diag(out$mcmc)
# Trace plots and autocorrelation plots
plot(out)

4.5 Model comparison

Results of LBGM, the linear and quadratic LGC models are summarized in
Table 1. To compare these models, we used the deviance information criterion
(DIC). When the t distribution was employed, the quadratic LGCM exhibited
the lowest DIC.

Table 1. Results for the LBGM, linear and quadratic LGC models with t distribution

LBGM Linear LGCM Quadratic LGCM
Mean L U Mean L U Mean L U

biL 0.73 0.62 0.83 0.76 0.65 0.85 0.74 0.64 0.85
biS 0.46 0.42 0.51 0.37 0.34 0.39 0.42 0.35 0.48
biQ -0.02 -0.04 0.01
σ2
L 0.49 0.38 0.59 0.48 0.38 0.59 0.54 0.42 0.66

σLS -0.05 -0.07 -0.02 -0.04 -0.06 -0.02 -0.11 -0.18 -0.05
σLQ 0.02 0.00 0.04
σLS -0.05 -0.07 -0.02 -0.04 -0.06 -0.02 -0.11 -0.18 -0.05
σ2
S 0.03 0.02 0.03 0.02 0.02 0.03 0.09 0.05 0.13

σSQ -0.02 -0.04 -0.01
σLQ 0.02 0.00 0.04
σSQ -0.02 -0.04 -0.01
σ2
Q 0.01 0.01 0.02
σ2
e 0.03 0.02 0.04 0.03 0.02 0.04 0.03 0.02 0.04
k 3.44 2.30 4.76 3.53 2.31 4.94 3.58 2.04 5.42
A3 1.64 1.51 1.77 2.00 2.00
A4 2.44 2.26 2.64 3.00 3.00
A5 4.00
A6 9.00

DIC 370.79 374.78 283.36

Note. k represents the degrees of freedom. L: 2.5% HPD; U: 97.5% HPD.

The estimated means of the intercept biL from the three models were close.
The estimated factor loadings in LBGM were 1.64 and 2.44 in LBGM, which
suggests the estimated growth shape was different from a linear trend.

The estimated degrees of freedom were smaller than 5 in the three models.
This aligns with the observation that the observed data had heavier tails than
the normal distribution, as shown in Figure 1(Tong & Zhang, 2017). Therefore,
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the estimated degrees of freedom (k) are consistent with descriptive statistics,
affirming that the robust growth curve models are suitable for handling this
dataset.

When dealing with models that use exponential power and skew normal dis-
tributions, it’s important to interpret the DIC (deviance information criterion)
values from JAGS with caution. In these models, the DIC is calculated separately
based on likelihood and posteriors. The deviance, denoted as D(θ; y), is defined
as −2 log(p(x|θ)). The effective model parameters is defined as pD = D̄ − D̂,
and the DIC is calculated as DIC = D̄+ pD. The model using the skew normal
distribution exhibited the lowest DIC value, making it the preferred choice over
the t and exponential power distributions.

Table 2. Results for linear models with t, exponential power, and skew normal distri-
butions

Mean 2.5% HPD 97.5% HPD DIC

t-distribution

biL 0.76 0.65 0.85
biS 0.37 0.34 0.39
σ2
L 0.48 0.38 0.59

σLS -0.04 -0.06 -0.02 374.78
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.03 0.02 0.04
k 3.53 2.31 4.94

Exponential power distribution

biL 0.76 0.66 0.86
biS 0.37 0.34 0.4
σ2
L 0.49 0.39 0.6

σLS -0.04 -0.06 -0.02 392.10
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.07 0.06 0.08
γ 0.91 0.76 1

Skew normal distribution

biL 0.74 0.64 0.83
biS 0.37 0.35 0.4
σ2
L 0.46 0.36 0.56

σLS -0.04 -0.06 -0.02 360.41
σLS -0.04 -0.06 -0.02
σ2
S 0.02 0.02 0.03

σ2
e 0.18 0.15 0.21
α -4.17 -5 -3.01
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4.6 Summary of posteriors

The posterior means of most parameters were almost the same for linear models
using t, exponential power, and skew-normal distributions, see Table 2. For the
linear LGCM with the exponential power error, the estimated shape parameter γ
was 0.91, which suggested a fatter tail of the errors than the normal distribution.
The estimated α in the model using the skew-normal distribution was -4.17 which
indicates the distribution was left-skewed.

5 Summary

LGCM is widely used in longitudinal studies, and the Bayesian approach can
be applied to handle complex conditions. Bayesian approaches can handle the
conditions that data are not normally distributed or the sample size is small.
The robust Bayesian method offers an operable solution for data with heavy
tails or outliers.

This tutorial introduces how to implement robust LGCM with three distri-
butions in JAGS and R in steps. It also covers the model diagnostics and com-
parison, and interpretations of posterior estimations. This tutorial offers some
guidelines for researchers who are interested in robust Bayesian growth curve
models.
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Appendix A Data

data=read.csv("example_data.csv",header = T)
colnames(data)=c("ID",paste("math",rep(1:4),sep=’’))
data=data[,-1]

Appendix B Using the t-distribution for error

# The latent basis growth curve model
model1 <- "model{
# specify the likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)
# normal
# y[i, j] ˜ dnorm(mu[i, j],tauy)

}
}
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
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mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
# specify the growth trajectory
A3˜dnorm(0,1.0E-6)
A4˜dnorm(0,1.0E-6)
# specify priors
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"
# write model out
writeLines(model1, "model1.txt")

# set parameters, adaption, and MCMC chains
parameters = c("mub","sigma2b","sigma2y","df",
"A3","A4","dic")# Specify the estimated parameters
adaptSteps =10000 # Adaptive period
burnInSteps = 10000 # Burn-in period
nChains = 2
nIter =40000 # The number of kept iterations

nsubj = nrow(data)
ntime = ncol(data)

# create data set for JAGS model
datalist = list(nsubj=nsubj,ntime=ntime,y=as.matrix(data))

# specify initial values
inits <- list(list(mub=c(0.7,0.4),

taub=structure(.Data = c(1,0,0,10),.Dim=c(2,2)),
tauy=10,df=3),
list(mub=c(0.7,0.5),
taub=structure(.Data = c(2,0,0,8),.Dim=c(2,2)),
tauy=15,df=5))



Robust Bayesian growth curve modeling 59

# run jags model
set.seed(1234)
out <- run.jags(model=model,

monitor=parameters,
data=datalist, n.chains=2,
inits=inits, method="simple",
adapt=adaptSteps,
burnin = burnInSteps,
sample=nIter,
keep.jags.files=TRUE,
tempdir=TRUE)

# diagnostic
geweke.diag(out$mcmc)
# plots
# trace plots and autocorrelation plots
plot(out)
# Summarize posterior distributions
mcmcChain = as.matrix(out$mcmc)
sum = summary(out$mcmc)

# The linear LGCM
model2 <- "model{
# likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}

A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
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sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

# Quadratic LGCM
model3 <- "model{
# likelihood
for (i in 1:nsubj) {

for (j in 1:ntime) {
# t error
y[i, j] ˜ dt(mu[i, j], tauy, df)

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]+b[i,3]
mu[i,3] <- b[i,1]+A3*b[i,2]+A5*b[i,3]
mu[i,4] <- b[i,1]+A4*b[i,2]+A6*b[i,3]
b[i,1:3] ˜ dmnorm(mub[1:3], taub[1:3,1:3])

}
# linear change
A3 <- 2
A4 <- 3
# quadratic change
A5 <- 4
A6 <- 9
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
mub[3]˜dnorm(0,1.0E-6)
taub[1:3,1:3] ˜ dwish(Omega[1:3, 1:3], 3)
sigma2b[1:3, 1:3] <- inverse(taub[1:3,1:3])
tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
df ˜ dunif(1,500)
Omega[1,1] <- 1
Omega[2,2] <- 1
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Omega[3,3] <- 1
Omega[1,2] <- Omega[2,1]
Omega[1,3] <- Omega[3,1]
Omega[2,3] <- Omega[3,2]
Omega[2,1] <- 0
Omega[3,1] <- 0
Omega[3,2] <- 0
}
"

Appendix C Using exponential power distribution for
error

# A linear LGCM
model4 <- "model{
C <- 100000
lomega <- 0.5*loggam(3*(1+gamma)/2)-log(1+gamma)

-3/2*loggam((1+gamma)/2)
cgamma <- (exp(loggam(3*(1+gamma)/2))

/exp(loggam((1+gamma)/2)))ˆ(1/(1+gamma))
for (i in 1:nsubj) {

for (j in 1:ntime) {
# Exponential power
zeros[i,j] ˜ dpois(zeros.mean[i,j])
zeros.mean[i,j] <- C-le[i,j]
le[i,j] <- lomega-log(sqrt(sigma2y))
-cgamma*abs((y[i,j]-mu[i,j])

/sqrt(sigma2y))ˆ(2/(1+gamma))
}

}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
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tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
gamma ˜ dunif(-1,1)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"

Appendix D Using the skew normal distribution

# A linear LGCM
model5 <- "model{
C <- 100000
xi <- -sqrt(sigma2y)*(alpha/sqrt(1+alphaˆ2))

*sqrt(2/3.1415)
for (i in 1:nsubj) {

for (j in 1:ntime) {
# Exponential power
zeros[i,j] ˜ dpois(zeros.mean[i,j])
zeros.mean[i,j] <- C-le[i,j]
e[i,j] <- y[i,j]-mu[i,j]
# phi(): standard normal cdf
# the log density of x is given by
le[i,j] <- log(2)-log(sqrt(sigma2y))
+logdensity.norm((e[i,j]-xi)/sqrt(sigma2y),0,1)
+log(phi(alpha*(e[i,j]-xi)/sqrt(sigma2y)))

}
}
# growth trajectory
for (i in 1:nsubj){

mu[i,1] <- b[i,1]
mu[i,2] <- b[i,1]+b[i,2]
mu[i,3] <- b[i,1]+A3*b[i,2]
mu[i,4] <- b[i,1]+A4*b[i,2]
b[i,1:2] ˜ dmnorm(mub[1:2], taub[1:2,1:2])

}
A3 <- 2 # linear change
A4 <- 3
mub[1]˜dnorm(0,1.0E-6)
mub[2]˜dnorm(0,1.0E-6)
taub[1:2, 1:2] ˜ dwish(Omega[1:2, 1:2], 2)
sigma2b[1:2, 1:2] <- inverse(taub[1:2, 1:2])
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tauy ˜ dgamma(0.001,0.001)
sigma2y <- 1 / tauy
alpha ˜ dunif(-5,5)
Omega[1,1] <- 1
Omega[2,2] <- 1
Omega[1,2] <- Omega[2,1]
Omega[2,1] <- 0
}
"
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Abstract. Meta-analysis of proportions has been widely adopted across
various scientific disciplines as a means to estimate the prevalence of phe-
nomena of interest. However, there is a lack of comprehensive tutorials
demonstrating the proper execution of such analyses using the R pro-
gramming language. The objective of this study is to bridge this gap
and provide an extensive guide to conducting a meta-analysis of pro-
portions using R. Furthermore, we offer a thorough critical review of
the methods and tests involved in conducting a meta-analysis of pro-
portions, highlighting several common practices that may yield biased
estimations and misleading inferences. We illustrate the meta-analytic
process in five stages: (1) preparation of the R environment; (2) compu-
tation of effect sizes; (3) quantification of heterogeneity; (4) visualization
of heterogeneity with the forest plot and the Baujat plot; and (5) expla-
nation of heterogeneity with moderator analyses. In the last section of
the tutorial, we address the misconception of assessing publication bias
in the context of meta-analysis of proportions. The provided code offers
readers three options to transform proportional data (e.g., the double
arcsine method). The tutorial presentation is conceptually oriented and
formula usage is minimal. We will use a published meta-analysis of pro-
portions as an example to illustrate the implementation of the R code
and the interpretation of the results.

Keywords: Meta-analysis of proportions · Heterogeneity · Meta-regression
· Double arcsine transformation · Baujat plot

1 Introduction

A meta-analysis is a statistical approach that synthesizes quantitative findings
from multiple studies investigating the same research topic. Its purpose is to
provide a numerical summary of a particular research area, aiming to inform
future work in that area. Meta-analyses of proportions are commonly conducted
across diverse scientific fields, such as medicine (e.g., Gillen, Schuster, Meyer
Zum Bschenfelde, Friess, & Kleeff, 2010), clinical psychology (e.g., Fusar-Poli et
al., 2015), epidemiology (e.g., Wu, Long, Lin, & Liu, 2016), and public health
(e.g., Keithlin, Sargeant, Thomas, & Fazil, 2014), etc. The outcomes derived
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from these studies are often used for decision models (Hunter et al., 2014).
Each individual study included in a meta-analysis of proportions contributes a
specific number of “successes” and a corresponding total sample size (Hamza, van
Houwelingen, & Stijnen, 2008). While the majority of meta-analyses primarily
focus on effect-size metrics that measure a relationship between a treatment
group and a control group–such as standardized mean difference and odds ratio–
the effect-size metric in meta-analyses of proportions is an estimate of the overall
proportion related to a particular condition or event across all included studies
(Barendregt, Doi, Lee, Norman, & Vos, 2013). For instance, a meta-analysis
can be conducted to provide an overall prevalence estimate of homeless veterans
affected by both post-traumatic stress disorder and substance use disorder.

The purpose of this tutorial is to provide an introduction to conducting a
meta-analysis of proportions using the R software (R Core Team, 2022). We dis-
cuss two distinct benefits of choosing R as your primary meta-analysis tool. First,
R is freely available open-source software that offers a comprehensive collection
of R packages, which are extensions developed for specialized applications, in-
cluding meta-analysis. This remarkable feature provides researchers with diverse
possibilities and flexibility when it comes to data manipulation and analysis. Two
widely used R packages for meta-analysis are metafor (Viechtbauer, 2010) and
meta (Schwarzer, Carpenter, & Rücker, 2015). Second, R offers more convenient
options for transforming proportional data than other statistical software. The
two commonly adopted data transformation methods are the logit and the dou-
ble arcsine transformations (though not transforming data is also appropriate
under certain circumstances). Both the metafor and meta packages are capable
of performing these transformations. In contrast, other meta-analysis software
such as Comprehensive Meta-Analysis (CMA) (Borenstein, Hedges, Higgins, &
Rothstein, 2005) and MedCalc (Schoonjans, 2017) can only perform one of these
transformations. Additionally, while CMA and MedCalc automatically trans-
form data, R allows meta-analysts to make a decision on whether to apply data
transformation.

To the best of our knowledge, this is the first tutorial that illustrates the
implementation of such analyses. The tutorial offers an overview of the funda-
mental statistical concepts related to meta-analysis of proportions and provides
hands-on code examples to guide readers through the process in R.1 We use a
dataset from a published meta-analytic study to detail the steps involved. More-
over, we’ve rigorously tested the code in R and validated it using CMA, ensuring
identical results from both software.

Last but not least, this tutorial will explain why common publication bias
assessment procedures aren’t recommended for meta-analyses of proportions.

1 Throughout this tutorial, we’ll present generic code templates for all transformation
methods. However, the main text of this tutorial will focus on code examples for the
logit transformation, given the similarity in coding across all methods. For R code
related to other transformation methods and their associated datasets, please refer
to the supplementary files.
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2 Preparation of the R environment

2.1 R and RStudio

The first step is to download R. The base R program can be downloaded for
free from the Comprehensive R Archive Network (https://cran.r-project.org/).
R provides a basic graphical user interface (GUI), but we recommend that
readers use a more productive code editor that interfaces with R, known as
RStudio (RStudio Team, 2022). This is a development environment built to
make using R as effective and efficient as possible, which is freely available at
https://www.rstudio.com/. It adds much more functionality above and beyond
R’s bare-bones GUI.

Once RStudio is successfully installed on your computer and opened, the first
step is to create a new R Script. To do this, navigate to the “File” menu. Click on
“File”, and in the dropdown menu, select “New File”, then choose “R Script”.
A new tab will open in the top-left pane of RStudio, known as the source editor.
This space is where you’ll write your R code.

2.2 Setting up the working directory

To ensure proper organization of your R files and data, it’s crucial to establish
a working directory for the current R session. A working directory serves as a
centralized location where you can store all your work, including the R code
you’ve written and data files (e.g., .csv files) you wish to import into R for
analysis. To set up a working directory, start by creating a folder named “data”
in your preferred location on the computer, such as the D drive. After doing so,
enter the following code into the source editor:

setwd ("D:/data")

3 Overview of the example data set

3.1 Illustrative example: Prevalence and epidemiological
characteristics of congenital cataract (Wu et al., 2016)

The data set we will use for this tutorial is extracted from a published meta-
analytic study conducted by Wu et al. (2016). They estimated the prevalence of
congenital cataracts (CC) and their main epidemiological traits. CC refers to the
opacity of the lens detected at birth or at an early stage of childhood. It is the
primary cause of treatable childhood blindness worldwide. Current studies have
not determined the etiology of this condition. The few large-scale epidemiological
studies on CC also have limitations: they involve specific regions, limited popu-
lations, and partial epidemiological variables. Wu et al. (2016) aimed to explore
its etiology and estimate its population-based prevalence and major epidemio-
logical characteristics, morphology, associated comorbidities and etiology. The
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original dataset consists of 27 published studies that were published from 1983
to 2014, among which 17 contained data on the population-based prevalence of
CC, 2 were hospital-based studies and 8 were CC-based case reviews. Samples
investigated in the studies were from different regions of the world, including
Europe, Asia, the USA, Africa, and Australia. The sample sizes of the included
studies ranged from 76 to 2,616,439 patients, with a combined total of 8,302,708
patients. The diagnosed age ranged from 0 to 18 years of age. The proportions
were transformed using the logit transformation, which is commonly employed
when dealing with proportional data. This transformation results in a sampling
distribution that is more normal, with a mean of zero and a standard deviation
of 1.83. The authors coded five moderators, including world region (China vs.
the rest of the world), study design (birth cohort vs. other), sample size (less
vs. more than 100,000), diagnosed age (older vs. younger than 1 year old), and
research period (before vs. after the year 2000). All of these potential moderators
are categorical variables. Due to page limits, we will work with only a subset of
the provided moderating variables, including study design and sample size.

3.2 Recommended format for organizing data

Prior to performing a meta-analysis in R, it is important to first organize the
data properly. Table 1 shows an excerpt of the example dataset. Each row in this
table represents the data extracted from a primary study included in the current
meta-analysis. The columns contain variables that will be used to compute effect
sizes, create plots, and conduct further analyses.

Table 1. Data from Wu et al. (2016)

author year authoryear cases total studesg studydesign size samplesize
Stewart-Brown 1988 Stewart-Brown 1988 7 12853 0 Birth cohort 0 < 100000
Bermejo 1998 Bermejo 1998 71 1124654 0 Birth cohort 1 > 100000
SanGiovanni 2002 SanGiovanni 2002 73 53639 0 Birth cohort 0 < 100000
Haargaard 2004 Haargaard 2004 773 2616439 0 Birth cohort 1 > 100000
Stayte 1993 Stayte 1993 4 6687 0 Birth cohort 0 < 100000
Stoll 1997 Stoll 1997 57 212479 0 Birth cohort 1 > 100000
Rahi 2001 Rahi 2001 248 734000 1 Others 1 > 100000
Wirth 2002 Wirth 2002 421 1870000 1 Others 1 > 100000
Hu 1987 Hu 1987 77 207319 1 Others 1 > 100000
Abrahamsson 1999 Abrahamsson 1999 136 377334 1 Others 1 > 100000
Bhatti 2003 Bhatti 2003 199 982128 1 Others 1 > 100000
Nie 2008 Nie 2008 15 15398 1 Others 0 < 100000
Chen 2014 Chen 2014 6 9246 1 Others 0 < 100000
Yang 2014 Yang 2014 8 6299 1 Others 0 < 100000
Pi 2012 Pi 2012 3 3079 1 Others 0 < 100000
Holmes 2003 Holmes 2003 10 33021 1 Others 0 < 100000
Halilbasic 2014 Halilbasic 2014 51 38133 1 Others 0 < 100000

In this data set, we have separate columns for authors’ names and the year
of publication, which will be useful when sorting studies according to the year
of publication in R. Additionally, if we decide to use the forest() function in the
meta package to create forest plots, we need to create a column that combines
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both variables. In this case, we label the column as “authoryear”. It’s important
to note that when importing a data file into R, column names with uppercase
letters will be converted to lowercase. Therefore, we cannot use uppercase or
lowercase letters to differentiate between different columns. Moreover, we cannot
leave a blank space between two words when naming a column. As seen in the
table, we use “authoryear” instead of “author year”, “studydesign” instead of
“study design”, and “samplesize” instead of “sample size”.

The variable “cases” represents the number of the event of interest in the
sample of each study. By dividing “cases” by “total”, we can obtain the propor-
tions needed to compute effect sizes, which are labeled as “yi” in R. R will also
calculate the sampling variance for each “yi” and label them as “vi”. The remain-
ing variables in the dataset are potential moderators, which will be examined in
either a subgroup analysis or a meta-regression. For instance, “study design” is
a potential moderator with two categories or levels: “birth cohort” and “others”.
We have coded each category as either 1 or 0 in the column labeled “studesg”.
For continuous moderators, readers can create columns to store continuous val-
ues, such as the “year” column. This dataset is saved as a comma-separated
values (.csv) file named “data.csv” and is included in the online supplemental
materials for this tutorial. To import it into R, ensure the .csv file is stored in
the working directory.

4 Computation of effect sizes

4.1 Fixed-effect and random-effects model

Before combining effect sizes in a meta-analysis, we need to make a choice be-
tween two modeling approaches for calculating the summary effect size:2 the
fixed-effect and random-effects model (Hedges & Vevea, 1998; Hunter & Schmidt,
2000). The fixed-effect model assumes that studies included in a meta-analysis
are functionally equivalent, sharing a common true effect size. Put differently,
the true effect size is identical across studies, and any observed variation in ef-
fect size estimates is solely due to random sampling error within each study,
known as within-study variance. The random-effects model allows the included
studies to have true effect sizes that are not identical or “fixed” but follow a
normal distribution. In other words, the random-effects model accounts for both
within-study and between-study variances, while the fixed-effect model assumes
that the between-study variance is zero (i.e., between-study heterogeneity does
not exist).

The fixed-effect model applies when participants in the studies are drawn
from a single common population and undergo the same experimental procedures
conducted by the same researchers under identical conditions. For instance, a
series of studies with the same protocol conducted in the same lab and sampling
from the same population (e.g., school children from the same class) may fit
the fixed-effect model. However, these conditions rarely hold in reality. In fact,

2 The “summary effect size” and “overall effect size” are interchangeable terms.
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the majority of meta-analyses are conducted based on studies collected from the
literature. In such cases, we can generally assume that the true effect varies from
study to study. Even when a group of studies focuses on a common topic, they
are often conducted using different methods (Borenstein, 2019). Consequently,
the true effect size is assumed to follow a normal distribution under the random-
effects model.

An additional limitation of the fixed-effect model is that its conclusions are
limited to the specific set of studies included in the meta-analysis and cannot
be generalized to multiple populations. However, most social scientists aim to
make inferences that extend beyond the selected set of studies in their meta-
analyses. As a general rule of thumb, the random-effects model will be more
plausible than the fixed-effect model in most meta-analytic studies because the
random-effects model allows more generalizable conclusions beyond a specific
population (Borenstein, 2019; Borenstein, Hedges, Higgins, & Rothstein, 2009).
However, we discourage the practice of switching to the random-effects model
from the fixed-effect model based solely on the results of heterogeneity tests. We
will discuss the reasons in more depth later.

The random-effects model can be estimated by several methods (although
other methods exist, we will focus on the most popular ones here): the method
of moments or the DerSimonian and Laird method (DL; DerSimonian & Laird,
1986) and the restricted maximum likelihood method (REML; Raudenbush &
Bryk, 1985). In all cases, the summary effect size (i.e., the summary proportion)
is estimated as the weighted average of the observed effect sizes extracted from
primary studies. The weighting for each observed effect size is the inverse of the
total variance of a study, which is the sum of the within-study variance and
the between-study variance (Ma, Chu, & Mazumdar, 2016). These two methods
differ mainly in the estimation of the between-study variance, commonly denoted
as τ2 in the meta-analytic literature. The technical differences between these
methods have been summarized elsewhere (e.g., Knapp, Biggerstaff, & Hartung,
2006; Thorlund, Wetterslev, Awad, Thabane, & Gluud, 2011; Veroniki et al.,
2016) and will not be discussed here.

4.2 Transformation of proportions: the logit transformation and the
double arcsine transformation

When the observed proportions are around 0.5 and the number of studies is
sufficiently large, the proportions follow an approximately symmetrical bino-
mial distribution. Under such circumstances, the normal distribution is a good
approximation of the binomial distribution, and using the raw proportion as
the effect-size metric for analysis is appropriate (Barendregt et al., 2013; Box,
Hunter, & Hunter, 2005; Wang & Liu, 2016). Additionally, based on their simula-
tion study, Lipsey and Wilson (2001) suggested that when observed proportions
derived from primary studies fall between 0.2 and 0.8, and the focus is solely on
the mean proportion across the studies, the raw proportion can be adequately
employed as the effect-size metric. The procedure for calculating the effect size,
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sampling variance, and inverse variance weight for an individual study using the
raw proportion is as follows (Lipsey & Wilson, 2001):

The raw proportion is given by:

ESp = p =
k

n
(1)

with its sampling variance:

V arp = SE2
p =

p (1− p)

n
(2)

and the inverse variance weight:

wp =
1

V arp
=

1

SE2
p

=
n

p (1− p)
(3)

where p is the proportion, k is the number of individuals or cases in the category
of interest, and n is the sample size. ES, SE, Var, and w stand for effect size,
standard error, sampling variance, and inverse variance weight, respectively.

However, when collecting studies for a meta-analysis of proportions, it is
observed that proportional data are rarely centered around 0.5 and often ex-
hibit significant skewness (Hunter et al., 2014). As the proportions deviate fur-
ther from 0.5 and approach closer to the boundaries (particularly when they
are below 0.2 or above 0.8), they become less likely to be normally distributed
(Lipsey & Wilson, 2001). Additionally, using the raw proportion as the effect-
size metric in such situations may underestimate the coverage of the confidence
interval around the weighted average proportion and overestimate the level of
heterogeneity among the observed proportions (Lipsey & Wilson, 2001). Conse-
quently, relying on the assumption of normality may lead to biased estimation
and potentially misleading or invalid inferences (Feng et al., 2014; Ma et al.,
2016).

To address the skewness in the distribution of observed proportions, it is
common practice to apply transformations to the observed proportions collected
for a meta-analysis. This is done to ensure that the transformed proportions con-
form as closely as possible to a normal distribution, thus enhancing the validity
of subsequent statistical analyses (Barendregt et al., 2013). More specifically, all
computations and analyses are performed based on the transformed proportions
(e.g., the natural logarithm of the proportion) and their inverted variances (i.e.,
the study weight). The results, such as the summary proportion and its confi-
dence interval, are presented in the original effect-size metric (i.e., proportion)
for ease of presentation and interpretation (Borenstein et al., 2009).

In practice, the approximate likelihood approach (Agresti & Coull, 1998) is
arguably the predominant framework for modeling proportional data (Hamza et
al., 2008; Nyaga, Arbyn, & Aerts, 2014). There are two main ways to transform
observed proportions within this framework: the logit or log odds transforma-
tion (Sahai & Ageel, 2012) and the Freeman-Tukey double arcsine transforma-
tion (Freeman & Tukey, 1950; Miller, 1978). For the logit transformation, the
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observed proportions are first converted to their natural logarithm of the pro-
portions (i.e., the logit). Following the transformation, the logit transformed
proportions are assumed to follow a normal distribution, and all analyses are
conducted on the logit scale. Subsequently, the logits are converted back into
proportions for reporting and interpretation purposes. The procedure for cal-
culating the logit, its standard error and inverse variance weight for primary
studies, as well as the formula for back-transformation, are as follows (Lipsey &
Wilson, 2001).

The logit is calculated by:

ESl = loge

(
p

1− p

)
= ln

(
p

1− p

)
(4)

with its sampling variance:

V arl = SE2
l =

1

np
+

1

n(1− p)
(5)

and the inverse variance weight:

wl =
1

SE2
l

= np (1− p) . (6)

To convert the transformed values into proportions, use:

p =
elogit

elogit + 1
. (7)

Being widely employed in meta-analyses of proportions, the logit transforma-
tion still has its limitations in certain situations. Two limitations are particularly
noteworthy.

First, the issue of variance instability persists even after applying the logit
transformation (Barendregt et al., 2013; Hamza et al., 2008). The purpose of
data transformation is to bring the skewed data closer to a normal distribution
or at least to achieve more consistent variance. While the logit transformation
generates a sampling distribution that approximates normality to a greater ex-
tent, it fails to stabilize the variance, potentially placing undue weight on studies.
According to the equation for sampling variance (Eq. 5), for a fixed value of n,
the variance changes with p. For instance, consider a situation with two studies of
the same sample size, where an observed proportion close to 0 or 1 yields grossly
magnified variance, while an observed proportion around 0.5 yields squeezed
variance, leading to variance instability (Barendregt et al., 2013).

Second, when the event of interest is extremely rare (i.e. p = 0) or extremely
common (i.e., p = 1), the logits and their sampling variances become undefined.
In practice, the common solution is to add an arbitrary constant 0.5 correction
to the np and n(1-p) for all studies (Hamza et al., 2008). However, this approach
has been shown to introduce additional bias to the results (Lin & Xu, 2020; Ma
et al., 2016).
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Both of the aforementioned problems can be elegantly solved by employing
the variance-stabilizing transformation known as the double arcsine transfor-
mation (Freeman & Tukey, 1950), which is accomplished with the following
equation3:

ESt = sin−1

√
k

n+ 1
+ sin−1

√
k + 1

n+ 1
(8)

The sampling variance is computed by:

V art =
1

n+ 0.5
(9)

The back-transformation is computed by the equation as proposed by Miller
(1978):

p =
1

2

1− sgn (cos t)

[
1−

(
sin t+

sin t− 1
sin t

n′

)2
] 1

2

 (10)

where t denotes the double arcsine transformed value or the confidence interval
around it with sgn being the sign operator. In Eq. (10), the total sample size
denoted by n′ is calculated as the harmonic mean of individual sample sizes
(Miller, 1978). The harmonic mean is defined as:

n′ = m(

m∑
i

n−1
i )−1 (11)

where ni denotes the sample size of each included study and m denotes the
number of included studies. Miller (1978) gives an example in his paper: a meta-
analysis of proportions includes four studies with sample sizes being 11, 17, 21,
and 6, respectively. The harmonic mean of the four sample sizes will be:

n′ =
4

1
11 + 1

17 + 1
21 + 1

6

= 10.9885. (12)

Barendregt et al. (2013) found that Eq. (10) becomes numerically unstable
when sin t is close to 0 or 1, leading to potentially misleading results. This
phenomenon has also been documented by recent publications (Evangelou &
Veroniki, 2022; Lin & Xu, 2020; Schwarzer, Chemaitelly, Abu-Raddad, & Rücker,
2019). Instead of the harmonic mean, Barendregt et al. (2013) and Xu et al.
(2021) recommend using 1/v̄ as the estimate for the total sample size. They
propose that the double arcsine back-transformation be implemented as follows:

p̄ =
1

2

1− sgn(cos t̄)

[
1−

(
sin t̄+

sin t̄− 1
sin t̄

1
v̄

)2
] 1

2

 (13)

3 The metafor package uses different definitions of Eq.8 and 9. For more details, see
https://www.metafor-project.org/doku.php/faq.

https://www.metafor-project.org/doku.php/faq
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where p̄ is the pooled proportion on the natural scale and v̄ is the pooled variance
on the transformed scale. Notice that Eq. (13) uses 1/v̄ instead of the harmonic
mean.

In summary, raw proportions are adequate when the observed proportions
from primary studies fall between 0.2 and 0.8. When observed proportions are
less than 0.2 or greater than 0.8, the logit or double arcsine transformation
is recommended. It is worth noting that some simulation studies have shown
that the double arcsine method slightly outperforms the logit transformation in
terms of relative bias, mean squared error, and 95% coverage (Barendregt et
al., 2013; Xu et al., 2021). Furthermore, the double arcsine method would be a
more appropriate choice when extreme proportions need to be addressed. Last
but not least, we recommend Eq. (13) when applying the back-transformation
of the double arcsine method.

4.3 Calculating the summary effect size in R

In a meta-analysis, effect sizes are weighted by the inverse of their sampling
variances, giving greater weight to larger studies and allowing their effect sizes
to have a greater impact on the overall mean. The weighted average proportion
(i.e., the summary proportion) can be computed as follows (Barendregt et al.,
2013):

ESP = P =

∑
(wipi)∑
wi

=

∑ pi

V arpi∑
1

V arpi

(14)

with its sampling error:

SEp =
√∑

wi =

√∑ 1

V arpi

. (15)

The confidence interval of the weighted average proportion can be expressed
as follows:

PL = P − Z(1−α) (SEP )
PU = P + Z(1−α) (SEP )

(16)

where Z(1−α) = 1.96 when α = 0.05.
We will now proceed with the first step of our meta-analysis. First, readers

need to install and download the necessary R packages. These packages are devel-
oped to run within R and contain a collection of functions that are essential for
conducting meta-analyses. In this tutorial, we will install two packages: metafor
(Viechtbauer, 2010) and meta (Schwarzer et al., 2015). We will primarily rely on
metafor and use meta to create forest plots. To install these packages, execute
the following command:

install.packages(c(" metafor", "meta"))

Once readers have installed a package, it becomes permanently available for
use in R on this specific computer. To use the installed packages, one needs to
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execute the library() function each time you run R. To load metafor and meta
into the current R session, type the following R code:

library(metafor)

library(meta)

We then need to import data.csv into R and create a data frame named
“dat”. This can be achieved by using the read.csv() function and running the
following code:

dat <- read.csv("data.csv", header = TRUE , sep = ",")

The code above represents a standard approach to importing .csv files. It in-
structs R to read a .csv file, interpreting the first row as column names, and
recognizing commas as the separators between values.

To estimate the weighted average proportion, we will use the following func-
tions in metafor : escalc(), rma(), and predict(). These functions, in conjunction
with a range of arguments to be specified within them, provide instructions to
R on how to calculate effect sizes. Note that certain arguments have default
values, such as weighted = TRUE, so users don’t need to specify them. The es-
calc() function estimates an effect size and its standard error for every primary
study included in a meta-analysis. Users have the flexibility to decide whether
to transform these effect sizes and, if so, which transformation method to em-
ploy, by using the measure argument. We will now create a data frame named
“ies” (short for individual effect size) to store calculated effect sizes and standard
errors using the following generic code:

#Only choose one of the three transformation methods

ies <- escalc(xi = cases , ni = total , data = dat ,

measure = "PR")

Here, the variable “cases” contains the number of events. The variable “total”
contains the sample size. We use the argument data to inform R that these
variables are contained in the data frame “dat”. By using the argument measure,
we can specify which computational method to employ for transforming the raw
proportions:

measure = "PR" #No transformation

measure = "PLO" #The logit transformation

measure = "PFT" #The double arcsine transformation

We will then use the function rma() to pool the derived effect sizes. The
function will yield a summary proportion, its standard error, and a 95% con-
fidence interval. Additionally, it will also conduct heterogeneity tests. We can
execute the following code to achieve this:

pes <- rma(yi , vi , data = ies , method = "REML")
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Although naming an object in R is arbitrary, we strongly recommend that
readers assign meaningful names to objects. In this case, if we decide not to
perform a transformation, we will name this object “pes”, which stands for
pooled effect size. If we decide to perform a transformation with either the logit
or the double arcsine, we will name it “pes.logit” or “pes.da”, which stands for
logit or double-arcsin transformed pooled effect size, respectively. The object will
store all of the outcomes. The method argument dictates which of the following
between-study variance estimators will be used (the default method is REML):

method = "DL" #The DL estimator

method = "REML" #The REML estimator

If unspecified, rma() estimates the variance component using the REML esti-
mator. Even though rma() stands for random-effects meta-analysis, the function
can perform a fixed-effect meta-analysis with the code:

method = "FE"

The object “pes.logit” or “pes.da” now contains the estimated transformed
summary proportion. To convert it back to its original, non-transformed scale
(i.e., proportion) and yield an estimate for the true summary proportion, we can
use the predict() function:

#Inverse of logit transformation

pes <- predict(pes.logit , transf = transf.ilogit)

#Inverse of double arcsine transformation

pes <- predict(pes.da , transf = transf.ipft.hm , targ =

list(ni = dat$total))

The argument transf dictates how to convert the transformed proportion
back to proportion. As mentioned earlier, we can follow two methods for back-
transformation (Eq. 10 or Eq. 13). In either case, we set the transf argument
to transf.ipft.hm (the “hm” stands for the harmonic mean). If we opt for the
harmonic mean (n

′
) in Eq. (10) as the estimate for the total sample size, the

sample sizes of primary studies are specified by setting the targ argument to
list(ni = dat$total). If we opt to use 1/v̄ as the total sample size estimate, then
we specify the total sample size as 1/(pes.da$se)2 within the targ argument and
use the following code for back-transformation:

pes <- predict(pes.da , transf = transf.ipft.hm , targ =

list(ni=1/( pes.da$se)^2))

Finally, to see the output for the estimated summary proportion and its 95%
CI, we can use the print() function:

print(pes)

For the sake of readers’ convenience, we provide readers with generic code
for calculating the summary proportion under the random-effects model using
three different transformation methods:
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# Option 1: no transformation

ies <- escalc(xi = cases , ni = total , data = dat ,

measure = "PR")

pes <- rma(yi , vi , data = ies)

print(pes)

# Option 2: the logit transformation

ies.logit <- escalc(xi = cases , ni = total , data =

dat , measure = "PLO")

pes.logit <- rma(yi , vi , data = ies.logit)

pes <- predict(pes.logit , transf = transf.ilogit)

print(pes)

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
ies.da <- escalc(xi = cases , ni = total , data =

dat , measure = "PFT", add = 0)

pes.da <- rma(yi , vi , data = ies.da)

pes <- predict(pes.da , transf = transf.ipft.hm ,

targ = list(ni = dat$total))
print(pes)

Note the use of add = 0 in Option 3. When a study contains proportions
equal to 0, the escalc() function will automatically add 0.5 to the observed data
(i.e., the “cases” variable). Since the double arcsine transformation does not
require any adjustments to be made to the data in such a situation, we can
explicitly switch add = 0.5 to add = 0 to prevent the default adjustment.

Returning to the running example, we chose Option 2 (i.e., the logit trans-
formation) to calculate the summary proportion because all of the observed
proportions in the dataset are far below 0.2:

ies.logit <- escalc(xi = cases , ni = total , measure =

"PLO", data = dat)

pes.logit <- rma(yi , vi , data = ies.logit , method =

"DL", level = 95)

pes <- predict(pes.logit , transf = transf.ilogit)

print(pes , digits = 6)

The argument digits specifies the number of decimal places to which the
printed results should be rounded, with the default value being 4. The argument
level specifies the confidence interval, with the default value set to 95%.4

4 In this particular case, the estimates of τ , τ2, and I2 will fall outside of the 95%
CI for unknown reasons (though the summary proportion will not). The original
authors did not discover this issue. One way to address this issue is by switching to
the 99% CI. However, for the sake of consistency, we will continue to use the 95%
CI throughout this tutorial.
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The estimated summary proportion and its 95% CI are shown in Figure 1.
Interpreting these summary statistics, we find that the summary proportion is
estimated to be 0.000424 and its 95% CI is between 0.000316 and 0.000569.

pred ci.lb ci.ub cr.lb cr.ub

0.000424 0.000316 0.000569 0.000133 0.001347

Figure 1. Summary proportion and its 95% CI

5 Quantification of heterogeneity

Meta-analysis aims to synthesize studies and estimate a more precise summary
effect. An important decision that all meta-analysts face is whether it is appropri-
ate to combine a set of identified studies in a meta-analysis, given the inevitable
differences in their characteristics to varying degrees. Combining studies with
substantially different effect estimates can result in an inaccurate summary effect
and an unwarranted conclusion. For example, in a meta-analysis of proportions
regarding re-offending rates among juvenile offenders in a city, the summary
proportion may fall within a medium range (around 0.5). However, considerable
variation exists among these proportions, with some studies conducted in certain
boroughs reporting small proportions (e.g., under 0.1), while others report very
large proportions (e.g., above 0.9). Simply reporting a moderately large mean
proportion would be misleading, as it fails to acknowledge the significant vari-
ation or inconsistency in effect sizes across the studies. This variation is known
as heterogeneity (Del Re, 2015). We will introduce three quantifying statistics
for heterogeneity in this section: τ2, Q, and I2.

5.1 The between-study variance: τ2

Heterogeneity can be quantified by dividing it into two distinct components:
the between-study variance, which arises from the true variation among a body
of studies, and the within-study variance, resulting from the sampling error.
The true variation can be attributed to clinical and/or methodological diversity,
in other words, the systematic differences between studies beyond what would
be expected by chance, such as experimental designs, measurements, sample
characteristics, interventions, study settings, and combinations thereof (Lijmer,
Bossuyt, & Heisterkamp, 2002; Thompson & Higgins, 2002). In this tutorial, we
focus on the true variation in effect sizes, namely the between-study heterogene-
ity.

We characterize between-study heterogeneity by the variance of the true
effect size underlying the data, τ2, a statistic called tau-squared. Under the
assumption of normality, 95% of the true effects are expected to fall within ±
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1.96 × τ of the point estimate of the summary effect size (Borenstein, Hedges,
Higgins, & Rothstein, 2010). τ2 reflects the total amount of systematic differences
in effects across studies. The total variance of a study consists of the between-
and within-study heterogeneity and is used to assign weights under the random-
effects model (i.e., the inverse of the total variance).

In classic inverse variance meta-analysis, τ2 can be estimated by numerous
methods, as mentioned in Section 4 (e.g., REML, DL). Review and simulation
studies have shown that both methods perform satisfactorily well across various
situations; the differences between their results are negligible and rarely signif-
icant enough to impact the qualitative conclusions (e.g., Hamza et al., 2008;
Thorlund et al., 2011; Veroniki et al., 2016). Nevertheless, it is advisable to ob-
tain the 95% confidence interval around the point estimate of τ2, especially when
the number of included studies is small (less than 5) (Veroniki et al., 2016).

In practice, the DerSimonian and Laird estimator is arguably the most com-
monly used statistical method for meta-analyses of proportions and has become
the conventional and default method for assessing the amount of between-study
heterogeneity in many software packages, such as CMA (Cornell et al., 2014;
Schwarzer et al., 2015). All estimations in this tutorial are based on the DL
method.

5.2 Test of heterogeneity: Cochran’s Q

Using formal tests, the presence of between-study heterogeneity is generally ex-
amined using a χ2 test with a statistic Q (Cochran, 1954) under the null hy-
pothesis that all studies share the same true effect (Hedges & Olkin, 1985). In
other words, the Q-test and its p-value serve as a test of significance to address
the null hypothesis: H0 : τ2 = 0. If the value of the Q-statistic is above the
critical χ2 value, we will reject the null hypothesis and conclude that the effect
sizes are heterogeneous. Under such circumstances, you may consider taking the
random-effects model route. If Q does not exceed this value, then we fail to
reject the null hypothesis.

It is important to exercise caution when interpreting a non-significant p-value
and drawing the conclusion of homogeneous true effects. The statistical power of
the Q-test heavily relies on the number of studies included in a meta-analysis,
and as a result, it may fail to detect heterogeneity due to limited power when the
number of included studies is small (less than 10) or when the included stud-
ies are of small size (Huedo-Medina, Snchez-Meca, Marn-Martnez, & Botella,
2006). Therefore, a non-significant result should not be taken as showing empir-
ical evidence for homogeneity (Hardy & Thompson, 1998). This issue warrants
serious attention, considering that a significant proportion of meta-analyses in
Cochrane reviews involve only five or fewer studies (Davey, Turner, Clarke, &
Higgins, 2011).

Furthermore, it is important to note that the Q-test, in addition to its afore-
mentioned limitation, only assesses the viability of the null hypothesis and does
not provide a quantification of the magnitude of the true heterogeneity in effect
sizes (Card, 2015).
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5.3 I2 statistic

Higgins, Thompson, Deeks, and Altman (2003) proposed a statistic for mea-
suring heterogeneity, denoted as I2, that remains unaffected by the number of
included studies. In essence, it reflects the ratio of the observed heterogeneity,
representing the true between-study variance, to the total observed heterogeneity
(i.e., the sum of between- and within-study variance). As a result, it facilitates
the comparison of heterogeneity estimates across meta-analyses, regardless of
the original scale used in the meta-analyses themselves.

I2 can take values from 0% to 100%. A value of 0% indicates that all het-
erogeneity is caused by sampling error alone, requiring no further explanation.
Conversely, when I2 equals 100%, the entire heterogeneity can be attributed ex-
clusively to genuine differences between studies, thus justifying the application
of subgroup analyses or meta-regressions to identify potential moderating fac-
tors. The thresholds of 25%, 50%, and 75% are commonly used to indicate low,
medium, and high heterogeneity, respectively (Higgins et al., 2003) . Note that
these thresholds only serve as tentative benchmarks for I2. The 95% CI around
the I2 statistic should also be calculated (Cuijpers, 2016; Ioannidis, Patsopoulos,
& Evangelou, 2007).

Relying solely on the value of I2 can be misleading because a 0% I2, ac-
companied by a 95% CI ranging from 0% to 80%, does not necessarily indicate
homogeneity in a small meta-analysis study. Rather, the degree of heterogeneity
remains uncertain in such cases.

An important caveat
Together, the Q-statistic, τ2, and I2 can inform us if the effects are

homogeneous, or consistent. When the effect sizes are reasonably consistent,
it is appropriate to combine them and present a summary effect size in
reports. In cases where moderate and substantial heterogeneity is present,
the summary effect size becomes less informative or even of no value. In such
cases, we strongly suggest that researchers conduct moderator analyses to
thoroughly explore the possible sources of heterogeneity in observed effect
sizes rather than relying solely on the mechanistic calculation of a single
mean effect estimate (Egger, Schneider, & Smith, 1998). We will discuss
moderator analysis in more detail later.

However, it is important to note that the methods used to estimate the
amount of heterogeneity and conduct significance tests for heterogeneity
are not always reliable, potentially leading to misleading interpretations of
the variability of the true effect size. Relying solely on the Q-test is ill-
advised due to its inadequate power to detect low heterogeneity (Chung,
Rabe-Hesketh, & Choi, 2013; Rücker, Schwarzer, Carpenter, & Schumacher,
2008). Furthermore, the rules of thumb benchmarks for I2 only hold true
when the within-study error is relatively constant (Borenstein, Higgins,
Hedges, & Rothstein, 2017). Underestimating between-study heterogeneity
or failing to detect any heterogeneity due to inadequate statistical power
can result in authors fitting the wrong model (i.e., the fixed-effect model),
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leading to inaccurate inferences about the overall effect (Higgins & Thomp-
son, 2002; Thompson, 1994; Thompson & Sharp, 1999).

Heterogeneity tests provide only a single piece of evidence when deciding
between the fixed- and random-effects models. The choice of model should
consider a range of factors, including the sampling frame, the desired type
of inference, expectations about the distribution of the true effect, and the
statistical significance of the heterogeneity tests, among others. Borenstein
(2019) suggested that when studies in a meta-analysis are collected from
the literature, a random-effects model is almost always preferable. This
is because the true effect size is likely to vary across studies unless they
were conducted by the same lab, following identical protocols, and using
consistent materials on the same population. Furthermore, if we intend
to make an inference to comparable populations, as is common in social
sciences, the random-effects model becomes the only appropriate choice.

5.4 Viewing results of the heterogeneity test and statistics in R

To view the results of the heterogeneity test (Cochran’s Q) and the estimates of
between-study variance (τ2) and I2, we still use the print() function:

# Note , if you selected other transformation methods ,

# then type pes.logit or pes.da in print ()

print(pes)

The confint() function computes and displays the confidence intervals for τ2

and I2:

# If you selected other transformation methods ,

# then type pes.logit or pes.da in confint ()

confint(pes)

To display the output of heterogeneity-related results for the running exam-
ple, we can type:

print(pes.logit , digits = 4)

confint(pes.logit , digits = 4)

The output appears in Figure 2. It reveals that τ2 is 0.3256 (95% CI = 0.3296,
1.4997), I2 is 97.24% (95% CI = 97.28, 99.39), and the Q-statistic is 580.5387 (p
<.001), all of which suggests high heterogeneity in the observed proportions.5

5 Again, the values of τ , τ2, and I2 have fallen out their 95% CIs. Readers can fix this
problem by switching to the 99% CI.
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Random -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.3256 (SE

= 0.2033)

tau (square root of estimated tau^2 value): 0.5707

I^2 (total heterogeneity / total variability): 97.24%

H^2 (total variability / sampling variability): 36.28

Test for Heterogeneity:

Q(df = 16) = 580.5387 , p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub

-7.7650 0.1502 -51.7147 <.0001 -8.0593 -7.4707 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

estimate ci.lb ci.ub

tau^2 0.3256 0.3296 1.4997

tau 0.5707 0.5741 1.2246

I^2(%) 97.2439 97.2758 99.3884

H^2 36.2837 36.7079 163.4972

Figure 2. A random-effects model analysis of heterogeneity

6 Visualization of heterogeneity

This section is dedicated to visualization tools and a few formal diagnostic tests
pivotal for heterogeneity analyses. We introduce two essential tools for readers:
the forest plot and the Baujat plot. The forest plot allows for a visual assessment
of the homogeneity across studies, while the Baujat plot can pinpoint studies
that exert a significant impact on the overall effect, heterogeneity, or both. It’s
crucial to introduce the forest plot at this point. It lays the foundation for our
in-depth demonstration of its application in subgroup analyses, which we will
discuss in Section 7.

6.1 Forest plots

A forest plot (as shown in Figure 3) is a graphical representation that effectively
displays the point estimates of study effects along with their corresponding confi-
dence intervals (Lewis & Clarke, 2001). It is composed of a vertical reference line,
an x-axis, and graphical representations of effect size estimates and their 95%
CIs. The x-axis of the forest plot represents the scale of the outcome measure
(in our case, the proportion) and can range from 0 to 1.
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Typically, the vertical reference line is positioned at the point estimate of the
pooled proportion. At the bottom of the reference line lies a colored diamond
shape with its length representing the 95% confidence interval of the pooled
proportion. Each study effect plotted in a forest plot consists of two components:
a colored square symbolizing the point estimate of the study effect size and a
horizontal line through the square representing the confidence interval around
the point estimate. I refer to the horizontal lines as the squares’ ”wings”, if you
will.

The size of a square corresponds to the study’s weight; a larger square signifies
a larger sample size and, therefore, a greater weight. An effect size with a greater
weight carries more influence on the summary effect size and is therefore depicted
by a larger square with a shorter horizontal line (Anzures-Cabrera & Higgins,
2010).

In a forest plot, study effects are determined as homogeneous if all the hori-
zontal lines of the squares overlap (Petrie, Bulman, & Osborn, 2003; Ried, 2006).
The forest plot also allows us to identify potential outliers. This can be achieved
by examining studies whose 95% confidence intervals do not overlap with the
confidence interval of the summary effect size (Harrer, Cuijpers, A, & Ebert,
2021). Furthermore, it is worth noting that if large studies are identified as out-
liers, it may suggest that the overall heterogeneity is high.

Figure 3. An anatomy of a basic forest plot
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6.2 Creating forest plots in R

In this section, we will begin by explaining how to create a basic forest plot using
the meta package. We will also show readers how to create a more sophisticated,
publication-ready forest plot.

We can create a simple forest plot using the following generic code (assuming
that we have loaded the meta package):

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PRAW")

forest(pes.summary)

Using the metaprop() function, we conduct a meta-analysis of proportions
and save the results in an object named “pes.summary”. We then feed these
results into the forest() function to automatically generate a forest plot. The sm
argument in the metaprop() function dictates which transformation method will
be used to convert the original proportions:

PRAW # no transformation

PLO # the logit transformation

PFT # the double arcsine transformation

Forest plots created by the generic code are bare-boned and often fail to meet
publishing standards. The following code can produce publication-quality forest
plots for the running example:

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PLO", method.tau = "DL", method.ci =

"NAsm")

forest(pes.summary ,

common = FALSE ,

print.tau2 = TRUE ,

print.Q = TRUE ,

print.pval.Q = TRUE ,

print.I2 = TRUE ,

rightcols = FALSE ,

pooled.totals = FALSE ,

weight.study = "random",

leftcols = c(" studlab", "event", "n", "effect",

"ci"),

leftlabs = c("Study", "Cases", "Total",

"Prevalence", "95% C.I."),

xlab = "Prevalence of CC (%)",

smlab = "",

xlim = c(0,4),

pscale = 1000,

squaresize = 0.5,

fs.hetstat = 10,
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digits = 2,

col.square = "navy",

col.square.lines = "navy",

col.diamond = "maroon",

col.diamond.lines = "maroon ")

The generated forest plot is shown in Figure 4.

Study

Random effects model
Heterogeneity: I2 = 97%, τ2 = 0.3256, χ16

2  = 580.54 (p < 0.01)

Stewart−Brown 1988
SanGiovanni 2002
Stayte 1993
Haargaard 2004
Rahi 2001
Wirth 2002
Hu 1987
Bermejo 1998
Stoll 1997
Abrahamsson 1999
Bhatti 2003
Halilbasic 2014
Chen 2014
Yang 2014
Pi 2012
Holmes 2003
Nie 2008

Cases

7
73

4
773
248
421

77
71
57

136
199

51
6
8
3

10
15

Total

.

12853
53639
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2616439

734000
1870000

207319
1124654

212479
377334
982128

38133
9246
6299
3079

33021
15398

Prevalence

0.42

0.54
1.36
0.60
0.30
0.34
0.23
0.37
0.06
0.27
0.36
0.20
1.34
0.65
1.27
0.97
0.30
0.97

95% C.I.

[0.32; 0.57]

[0.26; 1.14]
[1.08; 1.71]
[0.22; 1.59]
[0.28; 0.32]
[0.30; 0.38]
[0.20; 0.25]
[0.30; 0.46]
[0.05; 0.08]
[0.21; 0.35]
[0.30; 0.43]
[0.18; 0.23]
[1.02; 1.76]
[0.29; 1.44]
[0.64; 2.54]
[0.31; 3.02]
[0.16; 0.56]
[0.59; 1.62]

0 1 2 3 4
Prevalence of CC (%)

Figure 4. A publication-quality forest plot

The arguments in forest() provided above are mostly self-explanatory. They
determine which components of the forest plot are displayed, as well as their
colors, sizes, and positions on the graph. The pscale argument is particularly
noteworthy. Setting “pscale = 1000” means that the prevalence is expressed as
events per 1,000 observations. Consequently, the combined proportion under the
random-effects model is displayed as 0.42h in the forest plot6. It should be
mentioned that due to space constraints, we have only listed the most essen-
tial arguments in the forest() function. Readers are encouraged to refer to the
documentation that comes with the meta package (type ?meta::forest() in R) to
explore additional useful arguments for customizing their own forest plots.

6 Readers should note that showing the permille symbol (h) within code snippets
in LATEX can be challenging. Consequently, the “%” is used in the xlab argument
purely for illustrative purposes. For accurate representation, readers can substitute
the “%” with “h” in R.
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We can sort the individual studies by precision to help us visually inspect
the data. This can be achieved by sorting the included studies using SE or the
inverse of SE:

precision <- sqrt(ies.logit$vi)

We then add the sortvar argument in the forest() function:

sortvar = precision

The new forest plot is shown in Figure 5. This forest plot clearly shows that
the prevalence of CC is higher in smaller studies (those with longer “wings”).
In meta-analyses of comparative studies, a forest plot without indications of
publication bias will exhibit an even spread of studies with varying precision on
both sides of the mean effect size. However, in a meta-analysis of observational
data, an uneven spread of studies may actually reflect a genuine pattern in effect
sizes rather than publication bias, especially when small studies fall to the right
side of the mean. It is also possible that some small studies are not published
due to valid reasons, such as the use of inadequate research methods. Thus, this
uneven distribution of effects warrants further investigation as it may provide
new insights into the topic of interest.

Study

Random effects model
Heterogeneity: I2 = 97%, τ2 = 0.3256, χ16

2  = 580.54 (p < 0.01)

Haargaard 2004
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Nie 2008
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Yang 2014
Stewart−Brown 1988
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Stayte 1993
Pi 2012
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95% C.I.
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[0.28; 0.32]
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Figure 5. A forest plot with sorted studies by precision

A visual inspection of the forest plot identifies several potential outlying
studies, including Wirth (2002), Bhatti (2003), SanGiovanni (2002), Bermejo
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(1998), Halilbasic (2014), Nie (2008), and Yang (2014). Their 95% CIs do not
overlap with that of the summary proportion. In the next step, we will cross-
validate these potential outliers using the Baujat plot.

6.3 Identifying outlying and influential studies with diagnostic tools

When dealing with high between-study heterogeneity in a meta-analysis, one
approach is to identify and exclude outliers, and then reassess the robustness of
the summary effect size. In this section, we will introduce some diagnostic tools
that can identify outlying and influential studies.

A basic Baujat plot is depicted in Figure 6. The horizontal axis of the Bau-
jat plot quantifies each study’s contribution to the overall heterogeneity or the
Cochran Q-test, while the vertical axis measures the impact of each study on
the summary effect size. We’ve divided the Baujat plot into four quadrants with
light blue dotted lines for illustration purposes. Studies situated far to the right
on the horizontal axis (in Quadrants 2 and 3) are significant contributors to
heterogeneity. Those positioned far up on the vertical axis (in Quadrants 1 and
2) substantially influence the overall meta-analysis result. A study’s influence
is deemed substantial if its removal would lead to a drastically different overall
effect.

Figure 6. An anatomy of a basic Baujat plot
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It can sometimes be challenging to differentiate between the concepts of an
“outlier” and an “influential effect size” in the context of meta-analysis. While
an outlying effect size can often be influential, it isn’t always so. Conversely, an
effect size that is influential doesn’t necessarily have to be an outlier (Harrer et
al., 2021). The Baujat plot helps distinguish between outliers that are influential
and those that are not:

– Small studies with effect sizes similar to others typically fall into the lower
left corner of Quadrant 4, indicating they are neither outliers nor influential.

– Small studies with notably different effect sizes than others often appear in
the lower right corner of Quadrant 3. They may be outliers, but their small
sample sizes prevent them from heavily impacting the overall effect size.

– Large studies with effect sizes similar to the majority of effect sizes tend
to populate the upper left corner of Quadrant 1. While these studies have
influential effects, they may not be outliers. Their influence on the pooled
effect size is pronounced because of their extensive sample sizes.

– Large studies with dramatically different effect sizes than the rest tend to
appear in the upper right corner of Quadrant 2. These studies are influential
outliers, exerting the most substantial impact on both the overall effect and
heterogeneity.

It is crucial to conduct several formal diagnostic tests to determine if the out-
lying effect sizes identified in the forest plot and Baujat plot are truly outliers. If
deemed outliers, further investigation is required to determine their actual influ-
ence on the overall effect size. Viechtbauer and Cheung (2010) have proposed a
set of case deletion diagnostics derived from linear regression analyses to identify
influential studies, such as difference in fits values (DFFITS), Cook’s distances,
leave-one-out estimates for the amount of heterogeneity (i.e., τ2) as well as the
test statistic for heterogeneity (i.e., Q-statistic). In leave-one-out analyses, each
study is removed sequentially, and the summary proportion is re-estimated based
on the remaining n-1 studies. This approach allows for the assessment of each
study’s influence on the summary proportion.

Outlying effect sizes can also be identified by screening for externally stu-
dentized residuals exceeding an absolute value of 2 or 3 (Tabachnick, Fidell, &
Osterlind, 2013; Viechtbauer & Cheung, 2010).

As a final note, instead of simply removing outlying effect sizes, meta-analysts
should investigate these outliers and influential cases to understand their occur-
rence. They sometimes reveal valuable study characteristics that may serve as
potential moderating variables.

6.4 Identifying outlying and influential studies in R

In this section, we will use the Baujat plot and diagnostic tests introduced above
to detect outliers and influential studies. The generic code for Baujat plot is
provided below:

baujat(pes) # or pes.logit , pes.da
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For the running example, use the following code to create a customized Bau-
jat plot:

# Create a Baujat plot

bjplot <- baujat(pes.logit ,

symbol =19,

xlim=c(0,15),

xlab=" Contribution to Overall

Heterogeneity",

ylab=" Influence on Summary

Proportion ")

# Label those studies located in the upper quadrants

bjplot <- bjplot[bjplot$x >= 10 | bjplot$y >= 0.4,]

text(bjplot$x , bjplot$y , bjplot$slab , pos=1)

The generated plot can be seen in Figure 7. In this customized Baujat plot, we
have labeled only a few of the more “extreme” studies, specifically: SanGiovanni
(2002) (Study 2), Bermejo (1998) (Study 8), and Halilbasic (2014) (Study12). We
observe that both Study 2 and Study 12 may be considered influential, though
they might not contribute heavily to the overall heterogeneity. In contrast, Study
8 stands out as an influential outlier, as it has a large impact on both the pooled
proportion and heterogeneity.
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Figure 7. A basic Baujat plot
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Next, we screen for large externally studentized residuals (ESR). The code
below calculates the ESR for each study in the current dataset, then sorts them
in descending order based on the absolute values of the z-scores tied to their
respective ESRs:

# Calculate ESR

stud.res <- rstudent(pes.logit) # or pes , pes.da

# Sort ESR by z-values in descending order

abs.z <- abs(stud.res$z)
stud.res[order(-abs.z)]

The test outcome appears in Figure 8. The key here is to locate studies with
z-values that exceed an absolute value of 2 or 3. Since we only have 17 studies
in the running example, we will set the threshold at 2. Therefore, the second,
eighth, and twelfth studies are chosen. They match the studies we previously
identified through the Baujat plot.

resid se z

8 -2.0265 0.5183 -3.9101

2 1.2701 0.5183 2.4505

12 1.2415 0.5541 2.2407

14 1.1563 0.6831 1.6928

17 0.8840 0.6382 1.3853

11 -0.7967 0.6198 -1.2854

6 -0.6895 0.6576 -1.0485

15 0.8618 0.8254 1.0441

9 -0.4925 0.6177 -0.7973

13 0.4459 0.7182 0.6209

4 -0.4063 0.7250 -0.5604

16 -0.3563 0.6727 -0.5297

3 0.3579 0.7743 0.4622

5 -0.2520 0.6444 -0.3911

1 0.2627 0.7021 0.3741

10 -0.1790 0.6231 -0.2872

7 -0.1447 0.6162 -0.2348

Figure 8. Externally studentized residuals results

The following code performs a set of leave-one-out diagnostic tests:

# Option 1: no transformation

# L1O stands for leave -one -out

L1O <- leave1out(pes); print(L1O)

# Option 2: the logit transformation

L1O <- leave1out(pes.logit , transf = transf.ilogit)

print(L1O)
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# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
L1O <- leave1out(pes.da , transf = transf.ipft.hm , targ

= list(ni = dat$total))
print(L1O)

Using the current data set, we execute the following code:

L1O <- leave1out(pes.logit , transf = transf.ilogit)

print(L1O , digits = 6)

The output is shown in Figure 9. The numbers in the first column are the
leave-one-out estimates for the summary proportion, which are derived by ex-
cluding one study at a time from the included studies. For instance, the first
estimate in this column (i.e., 0.000419) is the summary proportion estimate
when the first study in the included studies is removed.

estimate zval pval ci.lb ci.ub Q Qp tau2 I2 H2

1 0.000419 -50.492057 0.000000 0.000310 0.000566 577.938615 0.000000 0.326294 97.404569 38.529241

2 0.000383 -58.124097 0.000000 0.000293 0.000499 405.001830 0.000000 0.236593 96.296313 27.000122

3 0.000418 -50.760057 0.000000 0.000310 0.000565 578.562279 0.000000 0.325980 97.407366 38.570819

4 0.000443 -41.417189 0.000000 0.000308 0.000639 580.526132 0.000000 0.489631 97.416137 38.701742

5 0.000435 -46.319695 0.000000 0.000313 0.000603 575.730710 0.000000 0.383340 97.394615 38.382047

6 0.000449 -45.217145 0.000000 0.000321 0.000626 540.974670 0.000000 0.400959 97.227227 36.064978

7 0.000429 -48.854385 0.000000 0.000315 0.000586 576.473491 0.000000 0.341576 97.397972 38.431566

8 0.000479 -56.505027 0.000000 0.000367 0.000624 404.914535 0.000000 0.236229 96.295515 26.994302

9 0.000439 -48.899481 0.000000 0.000322 0.000598 579.956198 0.000000 0.338978 97.413598 38.663747

10 0.000431 -47.992385 0.000000 0.000314 0.000591 574.985048 0.000000 0.354815 97.391237 38.332337

11 0.000449 -47.824077 0.000000 0.000328 0.000616 548.816035 0.000000 0.353117 97.266844 36.587736

12 0.000387 -55.147300 0.000000 0.000293 0.000511 461.941616 0.000000 0.267048 96.752836 30.796108

13 0.000416 -50.664580 0.000000 0.000308 0.000562 576.843109 0.000000 0.325434 97.399640 38.456207

14 0.000400 -51.312960 0.000000 0.000297 0.000539 563.535902 0.000000 0.318164 97.338235 37.569060

15 0.000412 -51.101371 0.000000 0.000305 0.000555 576.283345 0.000000 0.324438 97.397114 38.418890

16 0.000432 -50.008941 0.000000 0.000319 0.000586 580.534075 0.000000 0.328479 97.416172 38.702272

17 0.000403 -51.136341 0.000000 0.000298 0.000543 559.149838 0.000000 0.317149 97.317356 37.276656

Figure 9. Results of leave-one-out diagnostic meta-analyses

A leave-one-out forest plot can visualize the change in the summary effect
size. The generic code is given below:

# Option 1: no transformation

l1o <- leave1out(pes)

yi <- l1o$estimate; vi <- l1o$se ^2
forest(yi ,

vi ,

slab = paste(dat$author , dat$year , sep = ","),

refline = pes$b ,
xlab = "Leave -one -out summary proportions ")

# Option 2: the logit transformation

l1o <- leave1out(pes.logit)

yi <- l1o$estimate; vi <- l1o$se ^2
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forest(yi ,

vi ,

transf = transf.ilogit ,

slab = paste(dat$author , dat$year , sep = ","),

refline = pes$pred ,
xlab = "Leave -one -out summary proportions ")

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
l1o <- leave1out(pes.da)

yi <- l1o$estimate; vi <- l1o$se ^2
forest(yi ,

vi ,

transf = transf.ipft.hm ,

targ = list(ni = dat$total),
slab = paste(dat$author , dat$year , sep = ","),

refline = pes$pred ,
xlab = "Leave -one -out summary proportions ")

To generate a customized leave-one-out forest plot for the current data set,
use the following code:

l1o=leave1out(pes.logit)

yi=l1o$estimate; vi=l1o$se ^2
forest(yi ,

vi ,

transf=transf.ilogit ,

slab=paste(dat$author ,dat$year ,sep=", "),

xlab="Leave -one -out summary proportions",

refline=pes$pred ,
digits =6)

abline(h=0.1)

The generated forest plot is shown in Figure 10. Each black square repre-
sents a leave-one-out summary proportion. The reference line indicates where
the original summary proportion lies. The further a box deviates from the refer-
ence line, the more pronounced the impact of the corresponding excluded study
will be on the original summary proportion. For instance, if we exclude the study
by SanGiovanni et al. (2002), the new summary proportion becomes 0.00038. If
we exclude Stayte et al. (1993), the new summary proportion becomes 0.000418.
Apparently, excluding the former study has a larger impact on the original sum-
mary proportion than the latter study.
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Figure 10. A leave-one-out forest plot

With these potential influential studies in mind, we now conduct a few more
leave-one-out diagnostics with the influence() function in metafor to verify our
guesses:

inf <- influence(pes.logit)

print(inf , digits =3)

plot(inf)

In Figure 11, studies marked with an asterisk are potential influential studies:

rstudent dffits cook.d cov.r tau2.del QE.del hat weight dfbs inf
1 0.374 0.083 0.007 1.052 0.326 577.939 0.048 4.811 0.083
2 2.451 0.801 0.474 0.813 0.237 405.002 0.066 6.643 0.791 *
3 0.462 0.093 0.009 1.042 0.326 578.562 0.039 3.915 0.093
4 -0.560 -0.242 0.088 1.541 0.490 580.526 0.069 6.896 -0.247
5 -0.391 -0.151 0.027 1.239 0.383 575.731 0.068 6.839 -0.152
6 -1.049 -0.336 0.139 1.289 0.401 540.975 0.069 6.873 -0.339
7 -0.235 -0.077 0.006 1.117 0.342 576.473 0.067 6.658 -0.077
8 -3.910 -0.941 0.653 0.812 0.236 404.915 0.066 6.636 -0.929 *
9 -0.797 -0.223 0.052 1.109 0.339 579.956 0.066 6.569 -0.224
10 -0.287 -0.103 0.011 1.156 0.355 574.985 0.068 6.770 -0.103
11 -1.285 -0.369 0.148 1.152 0.353 548.816 0.068 6.818 -0.371
12 2.241 0.674 0.377 0.900 0.267 461.942 0.065 6.530 0.669
13 0.621 0.136 0.019 1.047 0.325 576.843 0.046 4.578 0.136
14 1.693 0.395 0.153 1.031 0.318 563.536 0.050 5.001 0.395
15 1.044 0.197 0.039 1.032 0.324 576.283 0.034 3.420 0.198
16 -0.530 -0.128 0.017 1.064 0.328 580.534 0.053 5.296 -0.128
17 1.385 0.350 0.120 1.036 0.317 559.150 0.057 5.746 0.350

Figure 11. Results of the influential study test
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The diagnostics plots in Figure 12 show that the second and eighth studies
are colored in red, indicating that they fulfill the criteria as influential studies.
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Figure 12. Influential study diagnostics

Based on the Baujat plot and the outcomes of the diagnostic tests, we deter-
mine that all three studies (Study 2, 8, and 12) can be considered outliers, but
only Study 2 and 8 are deemed influential.

6.5 Removing outlying studies in R

Once all possible outliers are identified, we can remove them with the following
generic code:
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# Depending on the transformation method ,

# measure = "PLO" or measure = "PFT"

# Remember to add "add = 0" when using the

# double arcsine transformation

ies.noutlier <- escalc(xi = cases , ni = total , measure

= "PR", data = dat[-c(study1 , study2 ,) ,])

If we were to exclude Study 2 and Study 8 in the current data set, we would
execute the following code:

# Remove the two studies and calculate individual

# effect sizes

ies.logit.noutlier <- escalc(xi = cases , ni = total ,

measure = "PLO", data = dat[-c(2, 8) ,])

# Conduct meta -analysis with no outliers

pes.logit.noutlier <- rma(yi , vi , data =

ies.logit.noutlier , method = "DL")

pes.noutlier <- predict(pes.logit.noutlier , transf =

transf.ilogit)

print(pes.noutlier , digits = 5)

7 Explanation of heterogeneity with moderator analyses

We’ve determined that our data shows significant heterogeneity. Furthermore,
we identified several outlying studies that notably impact both the overall effect
and the variability of the observed effect sizes. When substantial heterogeneity
remains even after excluding these outliers, one commonly employed strategy
to unearth additional sources of heterogeneity is through moderator analyses.
In fact, a thorough moderator analysis can often yield deeper insights than a
mere estimate of summary effect size. This analysis helps identify and quantify
the extent to which certain study-level characteristics contribute to the observed
heterogeneity.

Subgroup analysis and meta-regression are two major forms of moderator
analysis. Subgroup analysis can be seen as a special case of meta-regression,
which examines the impact of a single categorical variable (Thompson & Higgins,
2002). In fact, meta-regression can accommodate both categorical and continu-
ous moderators of desired numbers. For instance, a meta-regression can include
a series of continuous variables or a mix of both continuous and categorical vari-
ables. In this tutorial, our focus will be on subgroup analysis and meta-regression
with a continuous moderator.

7.1 Meta-regression with a categorical moderator: Subgroup
analysis

When we want to explain heterogeneity with a categorical moderator in a meta-
analysis, subgroup analysis is the method of choice. This approach mirrors the
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logic of ANOVA in primary research (Littell, Corcoran, & Pillai, 2008). In a sub-
group analysis, studies are partitioned into two or more subgroups according to
the categories within the moderator. This moderator represents a specific study
characteristic that can potentially explain a portion of the variability observed
between studies (Hamza et al., 2008). If a subgroup has a unique characteristic
absent in other subgroups (e.g., exposure to a new treatment vs. an old treat-
ment), and the effect sizes between the subgroups show significant differences,
it suggests that the variation in effect sizes (i.e., the true heterogeneity) can
be attributed to this unique characteristic. In essence, the purpose of subgroup
analysis is to ascertain if the chosen moderator accounts for a significant portion
of the true heterogeneity.

To evaluate the influence of a proposed moderator, we apply a weighted least
squares (WLS) regression. In this approach, effect sizes (e.g., those transformed
using logit or double arcsine methods) are regressed against the moderator (Har-
rer et al., 2021):

ESi = β0 + β1C + δi + ei (17)

where ESi is the observed effect size for the primary study i, C is the dummy
variable representing the moderator (or predictor), β1 is the regression coefficient
(or slope), and β0 is the model intercept. δi and ei are error terms. Specifically,
δi is the between-study error for the primary study i, with its variance being
the between-study variance, τ2; ei is the sampling error for the primary study i,
with its variance being the within-study variance. The goal of the meta-regression
model is to estimate the parameters, β0 and β1.

The categorical moderator is introduced in the analysis through dummy cod-
ing (e.g., the “studesg” variable in our data set). Let’s say we have two categories
within this predictor: Subgroup A and Subgroup B. If Subgroup A is chosen as
the reference group, then all primary studies in Subgroup A would be coded as
0, while those in Subgroup B would be coded as 1. Mathematically, this can be
represented as C = 0 for Subgroup A and C = 1 for Subgroup B. The regression
coefficient of C, β1, quantifies the effect size difference between the two sub-
groups. When C = 0, β0 becomes the true overall effect of Subgroup A. When
C = 1, the overall effect of Subgroup B is captured by the sum β0 and β1. In
summary, the observed effect size for the study i, ESi, is an estimator of the
study’s true effect size, β0 + β1C + δi, burdened by the sampling error, ei.

Eq. (17) is a mixed-effects meta-regression model, a standard choice for meta-
regression. In subgroup analyses, this model combines the study effects within
each subgroup using a random-effects model, while a fixed-effect model is used
to combine subgroups and yield the overall effect (Borenstein et al., 2009). A
Wald-type test is used in meta-regression to determine if the slope of the model
is statistically significant, using the Z -score. In subgroup analyses, a statistically
significant slope suggests that Subgroups A and B exhibit statistically signifi-
cant differences between their overall effect sizes. In other words, the subgroup
membership can explain some or all of the between-study heterogeneity. Another
method to assess a moderator’s impact in meta-regression is through Cochran’s
Q. In subgroup analyses, if the Q-statistic for the predictor is statistically sig-
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nificant, it means that the subgroup membership explains some or the entirety
of the variability observed in the effect sizes. The R2 index can be employed
in meta-regression to quantify the proportion of the true heterogeneity across
all studies (i.e., the between-study heterogeneity) that can be accounted for by
moderators.

7.2 Meta-regression with a continuous moderator

In a meta-regression model with a single continuous moderator, as shown in Eq.
(18) (Harrer et al., 2021),

ESi = β0 + β1xi + δi + ei (18)

xi represent a continuous moderator, β1 is the regression slope. δi and ei are the
between- and within-study error terms for the study i, respectively. β0 is still
the model intercept, but it now represents the overall true effect size when x =
0. In summary, ESi represents the observed effect size for the study i, which is
an estimator of the study’s true effect size, β0 + β1xi + δi, burdened by the
sampling error, ei.

As summarized by Harrer et al. (2021), meta-regression analyzes the rela-
tionship between predictors and observed effects to identify a consistent pattern
between them, in the form of a regression line. By accounting for both sam-
pling error and between-study differences, meta-regression seeks to fit a model
that can generalize across all possible studies relevant to the topic. A well-fitting
meta-regression model can predict effect sizes close to the observed data.

An important caveat
Moderator analysis is subject to several limitations that should be taken

into consideration. A primary issue is that both the subgroup analysis and
meta-regression require a large ratio of studies to moderators. It is generally
recommended that moderator analysis should only be conducted when there
are at least 10 studies available for each moderator included in the analysis.
This is particularly crucial in multivariate models where the number of
studies might be small, leading to reduced statistical power (Higgins &
Green, 2006; Littell et al., 2008).

Another significant limitation is that the significant differences observed
between subgroups of studies cannot be seen as causal evidence. We may
fail to identify moderators that are truly responsible for the heterogene-
ity in effect sizes. Consequently, causal conclusions cannot be drawn solely
from moderator analyses (Cuijpers, 2016; Littell et al., 2008). We strongly
recommend that researchers select moderators based on solid theoretical
reasoning and only test those moderators with a strong theoretical basis.
This approach helps prevent erroneously attributing heterogeneity to spu-
rious moderators (Schmidt & Hunter, 2014).
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7.3 Conducting subgroup analyses and recalculating the overall
summary proportion in R

In a mixed-effects model meta-regression, the summary effect size for each sub-
group is computed using a random-effects model. Instead of estimating τ2 across
all studies, it’s estimated within these subgroups. In other words, each subgroup
has its own estimated τ2. These τ2 estimates may vary across subgroups. We
can choose to pool them or keep them separate when we compute the over-
all and within-subgroup summary proportions, depending on our assumptions
(Borenstein et al., 2009).

If we attribute the differences in these observed within-group τ2 estimates
solely to sampling error, then we anticipate a common τ2 across subgroups. In
such a scenario, pooling a common τ2 estimate and applying it universally to all
studies is appropriate. Conversely, if systematic factors, beyond just sampling
errors, are believed to influence the varying values of the observed within-group
τ2 estimates, then employing distinct τ2 estimates for each subgroup is justi-
fied. Essentially, using a separate estimate for between-study variance is equal
to conducting an independent meta-analysis for each subgroup. It’s important
to emphasize that the pooled proportion across all subgroups is likely to differ
from the summary proportion derived from pooling across all studies without
subgrouping. Nevertheless, any differences in these estimates are generally neg-
ligible.

When we assume that τ2 is the same for all subgroups, we can use the R2

index to represent the proportion of the between-study variance across all studies
that can be explained by the subgroup membership (Borenstein et al., 2009).

We have developed the following generic code to help readers perform sub-
group analyses and compute the overall and within-subgroup summary propor-
tions. It is essential for readers to gain a thorough understanding of their data’s
characteristics to choose the appropriate computational option.

In the first situation, we do not assume a common between-study variance
component across subgroups and thus do not pool within-group τ2 estimates. In
R, we first fit a random-effects model for each subgroup, and then we combine the
estimated statistics into a data frame. In the next step, we fit a fixed-effect model
to compare the two estimated logit transformed proportions and recalculate the
summary proportion. The generic code is provided below:

# Assumption 1:

# Do not assume a common between -study variance

# component (not pooling within -group estimates of

# between -study variance)

# Option 1: no transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

pes.subgroup1 <- rma(yi , vi , data = ies , subset =

moderator == "subgroup1 ")

pes.subgroup2 <- rma(yi , vi , data = ies , subset =

moderator == "subgroup2 ")
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# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups. It will be used in the next step.

dat.diffvar <- data.frame(estimate =

c(pes.subgroup1$b , pes.subgroup2$b), stderror =

c(pes.subgroup1$se , pes.subgroup2$se), moderator =

c(" subgroup1", "subgroup2 "), tau2 =

round(c(pes.subgroup1$tau2 , pes.subgroup2$tau2),
3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

pes.moderator <- rma(estimate , sei = stderror , method

= "FE", data = dat.diffvar)

pes.moderator <- predict(pes.moderator)

# Display subgroup 1 summary effect size

print(pes.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 2: the logit transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

pes.logit.subgroup1 <- rma(yi , vi , data = ies.logit ,

subset = moderator == "subgroup1 ")

pes.logit.subgroup2 <- rma(yi , vi , data = ies.logit ,

subset = moderator == "subgroup2 ")

pes.subgroup1 <- predict(pes.logit.subgroup1 , transf

= transf.ilogit)

pes.subgroup2 <- predict(pes.logit.subgroup2 , transf

= transf.ilogit)

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups.
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dat.diffvar <- data.frame(estimate =

c(pes.logit.subgroup1$b , pes.logit.subgroup2$b),
stderror = c(pes.logit.subgroup1$se ,
pes.logit.subgroup2$se), moderator =

c(" subgroup1", "subgroup2 "), tau2 =

round(c(pes.logit.subgroup1$tau2 ,
pes.logit.subgroup2$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

pes.logit.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.moderator <- predict(pes.logit.moderator , transf =

transf.ilogit)

# Display subgroup 1 summary effect size

print(pes.subgroup1); print(pes.logit.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2); print(pes.logit.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 3: the double arcsine transformation

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator variable

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.subgroup1 <- rma(yi ,vi ,data = ies.da , subset =

moderator == "subgroup1 ")

pes.da.subgroup2 <- rma(yi ,vi ,data = ies.da , subset =

moderator == "subgroup2 ")

pes.subgroup1 <- predict(pes.da.subgroup1 , transf =

transf.ipft.hm,targ = list(ni = dat$total))
pes.subgroup2 <- predict(pes.da.subgroup2 , transf =

transf.ipft.hm,targ = list(ni = dat$total))
# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named moderator to distinguish two

# subgroups.

dat.diffvar <- data.frame(estimate =

c(pes.da.subgroup1$b , pes.da.subgroup2$b),
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stderror = c(pes.da.subgroup1$se ,
pes.da.subgroup2$se), moderator = c(" subgroup1",

"subgroup2 "), tau2 =

round(c(pes.da.subgroup1$tau2 ,
pes.da.subgroup2$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.moderator <- rma(estimate , sei = stderror ,

mods = ~ moderator , method = "FE", data =

dat.diffvar)

# Recalculate summary effect size assuming different

# heterogeneity components

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.moderator <- predict(pes.da.moderator , transf =

transf.ipft.hm, targ = list(ni = dat$total))
# Display subgroup 1 summary effect size

print(pes.subgroup1); print(pes.da.subgroup1)

# Display subgroup 2 summary effect size

print(pes.subgroup2); print(pes.da.subgroup2)

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

In the second situation, we assume a common between-study variance compo-
nent across subgroups and pool within-group τ2 estimates. Generally speaking,
unless there is a substantial number of studies available within each subgroup
(i.e., more than five studies) or compelling evidence suggesting within-group
variances vary from one subgroup to the next, it is sufficient to calculate sum-
mary proportions and create forest plots with a pooled τ2 (Borenstein et al.
(2009)). In this case, we can directly use the rma() function and fit a mixed-
effects model to evaluate the potential moderator. In R, we still need to combine
the estimated statistics into a new data frame for us to calculate a new overall
summary proportion using a pooled τ2 across all studies.

# Assumption 2: Assume a common between -study variance

# component (pool within -group estimates of

# between -study variance)

# Option 1: no transformation

# Conduct moderator analysis

subganal.moderator <- rma(yi, vi, data = ies , mods = ~

moderator)

pes.subg.moderator <- predict(subganal.moderator)

# Obtain estimates for each subgroup
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pes.subgroup1 <- rma(yi , vi , data = ies , mods = ~

moderator == "subgroup2 ")

pes.subgroup2 <- rma(yi , vi , data = ies , mods = ~

moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.subgroup1$b)[1], (pes.subgroup1$b)[1]),
stderror = c((pes.subgroup2$se)[1],
(pes.subgroup2$se)[1]), tau2 =

subganal.moderator$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

pes.moderator <- rma(estimate , sei = stderror , method

= "FE", data = dat.samevar)

pes.moderator <- predict(pes.moderator)

# Display subgroup 1 summary effect size

print(pes.subg.moderator[study label 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study label 2])

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 2: the logit transformation

# Conduct moderator analysis

subganal.moderator <- rma(yi, vi, data = ies.logit ,

mods = ~ moderator)

pes.subg.moderator <- predict(subganal.moderator ,

transf=transf.ilogit)

# Obtain estimates for each subgroup

pes.logit.subgroup1 <- rma(yi , vi , data = ies.logit ,

mods = ~ moderator == "subgroup2 ")

pes.logit.subgroup2 <- rma(yi , vi , data = ies.logit ,

mods =~ moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.logit.subgroup1$b)[1],(pes.logit.subgroup2$b)[1]),
stderror =

c((pes.logit.subgroup1$se)[1],(pes.logit.subgroup2$se)[1]),
tau2 = subganal.moderator$tau2)

# Recalculate summary effect size assuming a common

# heterogeneity component
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pes.logit.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.moderator <- predict(pes.logit.moderator , transf =

transf.ilogit)

# Display subgroup 1 summary effect size

print(pes.subg.moderator[study lable 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study lable 2])

# Display subgroup analysis results

print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

# Option 3: the double arcsine transformation

# Conduct moderator analysis

# targ can also be set to list(ni = 1/(pes.da$se)^2)
subganal.moderator <- rma(yi, vi, data = ies.da, mods

= ~ moderator)

pes.subg.moderator <- predict(subganal.moderator ,

transf = transf.ipft.hm , targ = list(ni=dat$total))
# Obtain estimates for each subgroup

pes.da.subgroup1 <- rma(yi , vi , data = ies.da , mods =

~ moderator == "subgroup2 ")

pes.da.subgroup2 <- rma(yi , vi , data = ies.da , mods =

~ moderator == "subgroup1 ")

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.da.subgroup1$b)[1],
(pes.da.subgroup2$b)[1]), stderror =

c((pes.da.subgroup1$se)[1],
(pes.da.subgroup2$se)[1]), tau2 =

subganal.moderator$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

# targ can also be set to list(ni = 1/(pes.da$se)^2)
pes.da.moderator <- rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.moderator <- predict(pes.da.moderator , transf =

transf.ipft.hm, targ = list(ni = dat$total))
# Display subgroup 1 summary effect size

print(pes.subg.moderator[study lable 1])

# Display subgroup 2 summary effect size

print(pes.subg.moderator[study lable 2])

# Display subgroup analysis results
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print(subganal.moderator)

# Display recomputed summary effect size

print(pes.moderator)

To help readers better understand how to use the code templates, we will now
illustrate their implementation with the running example. For demonstrative
purposes, we will use the variable “study design” (Birth cohort vs. Others) as
the moderator and conduct the analysis with the logit transformation under
both assumptions.

In the first situation, we do not assume a common between-study variance
component across subgroups:

# Conduct a random -effects model meta -analsis for each

# subgroup defined by the moderator studydesign

pes.logit.birthcohort <- rma(yi , vi , data=ies.logit ,

subset=studydesign == "Birth cohort", method ="DL")

pes.logit.others <- rma(yi , vi , data=ies.logit ,

subset=studydesign == "Others", method = "DL")

pes.birthcohort <- predict(pes.logit.birthcohort ,

transf = transf.ilogit , digits = 5)

pes.others <- predict(pes.logit.others , transf =

transf.ilogit , digits = 5)

# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

# Add an object named studydesign to distinguish two

# subgroups.

dat.diffvar <- data.frame(estimate =

c(pes.logit.birthcohort$b , pes.logit.others$b),
stderror = c(pes.logit.birthcohort$se ,
pes.logit.others$se), studydesign = c(" Birth

cohort", "Others "), tau2 =

round(c(pes.logit.birthcohort$tau2 ,
pes.logit.others$tau2), 3))

# Fit a fixed -effect meta -regression to compare the

# subgroups

subganal.studydesign <- rma(estimate , sei = stderror ,

data = dat.diffvar , mods = ~ studydesign , method =

"FE")

# Recalculate summary effect size assuming different

# heterogeneity components

pes.logit.studydesign <- rma(estimate , sei = stderror ,

method = "FE", data = dat.diffvar)

pes.studydesign <- predict(pes.logit.studydesign ,

transf = transf.ilogit)

# Display summary effect sizes of the two subgroups



104 N. Wang

print(pes.birthcohort , digits = 6);

print(pes.logit.birthcohort , digits = 3)

print(pes.others , digits = 6); print(pes.logit.others ,

digits = 3)

# Display subgroup analysis results

print(subganal.studydesign , digits = 3)

# Display recomputed summary effect size

print(pes.studydesign , digits = 6)

The outcomes of the subgroup analysis appear in Figure 13.

pred ci.lb ci.ub pi.lb pi.ub
0.000352 0.000158 0.000782 0.000045 0.002737

Random -Effects Model (k = 6; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.932 (SE = 0.866)
tau (square root of estimated tau^2 value): 0.966
I^2 (total heterogeneity / total variability): 98.55%
H^2 (total variability / sampling variability): 68.92

Test for Heterogeneity:
Q(df = 5) = 344.594 , p-val < .001

Model Results:

estimate se zval pval ci.lb ci.ub
-7.952 0.408 -19.501 <.001 -8.752 -7.153 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub pi.lb pi.ub
0.000472 0.000341 0.000653 0.000169 0.001317

Random -Effects Model (k = 11; tau^2 estimator: DL)

tau^2 (estimated amount of total heterogeneity): 0.247 (SE = 0.175)
tau (square root of estimated tau^2 value): 0.497
I^2 (total heterogeneity / total variability): 95.76%
H^2 (total variability / sampling variability): 23.59

Test for Heterogeneity:
Q(df = 10) = 235.944 , p-val < .001

Model Results:

estimate se zval pval ci.lb ci.ub
-7.658 0.166 -46.161 <.001 -7.984 -7.333 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Fixed -Effects with Moderators Model (k = 2)

I^2 (residual heterogeneity / unaccounted variability): 0.00%
H^2 (unaccounted variability / sampling variability): 1.00
R^2 (amount of heterogeneity accounted for): NA%

Test for Residual Heterogeneity:
QE(df = 0) = 0.000 , p-val = 1.000
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Test of Moderators (coefficient 2):
QM(df = 1) = 0.445 , p-val = 0.505

Model Results:
estimate se zval pval ci.lb ci.ub

intrcpt -7.952 0.408 -19.501 <.001 -8.752 -7.153 ***
studydesignOthers 0.294 0.440 0.667 0.505 -0.569 1.157

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub
0.000453 0.000335 0.000611

Figure 13. A subgroup analysis assuming different between-study variance compo-
nents

From the output above, we can derive that the summary effect estimates
are 0.00035 (95% CI = 0.00016, 0.00078), 0.00047 (95% CI = 0.00034, 0.00065),
and 0.00045 (95% CI = 0.00034, 0.00061) for the two subgroups and the overall
group of studies, respectively. Note that the subgroup summary effect estimates
are derived by taking the exponential of the model results (e.g., exp(-7.952) =
0.00035). When we fit separate random-effects models in the two subgroups, we
decide to allow the amount of variance within each set of studies to be different,
which results in two different within-group estimates of τ2 (0.93 and 0.25 for
studies using the birth cohort design and other study designs, respectively). In
other words, studies within each subgroup share the same estimate of τ2 .

The results reveal that the difference between the two subgroup summary
estimates is not statistically significant (QM (1) = 0.45, p = 0.51). Note that
the sum of the within-group heterogeneity across the subgroups in the fixed-
effect model is equal to QE (0) = 0, p = 1. This is because the within-group
heterogeneity has been accounted for in each subgroup (Q(df = 5) = 344.594,
p < 0.001; Q(df = 10) = 235.944, p < 0.01, respectively) in the random-effects
model, thus there is no heterogeneity left to be accounted for.

In the second situation where we assume a common between-study variance
component across subgroups, execute the following code:

# Conduct a subgroup analysis based on studydesign

subganal.studydesign <- rma(yi, vi, data = ies.logit ,

mods = ~ studydesign , method = "DL")

pes.subg.studydesign <- predict(subganal.studydesign ,

transf = transf.ilogit)

# Obtain estimates for each subgroup

pes.logit.birthcohort <- rma(yi , vi , data = ies.logit ,

mods = ~ studydesign == "Others", method = "DL")

pes.logit.others = rma(yi , vi , data = ies.logit , mods

= ~ studydesign == "Birth cohort", method = "DL")
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# Create a dataframe to store effect size estimates ,

# standard errors , heterogeneity for both subgroups

dat.samevar <- data.frame(estimate =

c((pes.logit.birthcohort$b)[1],
(pes.logit.others$b)[1]), stderror =

c((pes.logit.birthcohort$se)[1],
(pes.logit.others$se)[1]), tau2 =

subganal.studydesign$tau2)
# Recalculate summary effect size assuming a common

# heterogeneity component

pes.logit.studydesign = rma(estimate , sei = stderror ,

method = "FE", data = dat.samevar)

pes.studydesign = predict(pes.logit.studydesign ,

transf = transf.ilogit)

# Display subgroup summary effect sizes

print(pes.subg.studydesign [1], digits = 6)

print(pes.subg.studydesign [17], digits = 6)

# Display subgroup analysis results

print(subganal.studydesign , digits = 4)

# Display recomputed summary effect size

print(pes.studydesign , digits = 6)

The outcome of the subgroup analysis appears in Figure 14. This output is
fairly self-explanatory. Based on this output, we can derive that we have fitted a
mixed-effects model, meaning a random-effects model is used to combine studies
within each subgroup and a fixed-effect model is used to combine the subgroups
and estimate the summary effect size. The amount of within-group heterogeneity
across the two subgroups is assumed to be the same (τ2 = 0.44 in this case). This
combined estimate is derived by pooling the two within-group variance estimates
as displayed earlier (τ2 = 0.93 and τ2 = 0.25). Once we have the pooled estimate,
we then apply it to each study across the two subgroups, meaning every study
now shares the same estimate of τ2 (i.e., 0.44).
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Mixed -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.4427 (SE = 0.2518)
tau (square root of estimated tau^2 value): 0.6654
I^2 (residual heterogeneity / unaccounted variability): 97.42%
H^2 (unaccounted variability / sampling variability): 38.70
R^2 (amount of heterogeneity accounted for): 0.00%

Test for Residual Heterogeneity:
QE(df = 15) = 580.5386 , p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 0.9202 , p-val = 0.3374

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -7.9742 0.2892 -27.5726 <.0001 -8.5411 -7.4074 ***
studydesignOthers 0.3452 0.3599 0.9593 0.3374 -0.3601 1.0506

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

pred ci.lb ci.ub pi.lb pi.ub
1 0.000344 0.000195 0.000606 0.000083 0.001425

pred ci.lb ci.ub pi.lb pi.ub
17 0.000486 0.000319 0.000739 0.000124 0.001910

pred ci.lb ci.ub
0.000430 0.000307 0.000602

Figure 14. A subgroup analysis assuming a common between-study variance compo-
nent

The test of moderators suggests that the study design does not have a mod-
erating effect (QM (1) = 0.92, p = 0.34). That is, when we divide the included
studies according to their study designs, we fail to find any significant differences
between the two subgroups of effect sizes. This conclusion is also supported by
the results of the test for residual heterogeneity: there is significant unexplained
heterogeneity left in the effect sizes (QE (15) = 580.54, p < 0.01), which can also
explain why R2 shows 0%. Finally, the estimates for the two subgroup summary
proportions and the overall summary proportion are displayed at the bottom of
the output. They are 0.00034 (95% CI = 0.0002, 0.00061), 0.00049 (95% CI =
0.00032, 0.00074), and 0.00043 (95% CI = 0.00031, 0.0006), respectively.

There are several other points that are worth noting. Under the framework
of the mixed-effect model, the residual heterogeneity estimate here (QE (15) =
580.54) is the sum of the two within-group heterogeneity estimates we have
obtained above in the random-effects model (Q(df = 5) = 344.59, Q(df = 10)
= 235.94, respectively). When we dummy-code a moderator with two categories,
the subset of studies coded as 0 in a dummy variable will function as the reference
group, represented by the intercept of the fitted mixed-effects regression model.
The other subset of studies coded as 1 will be compared against the reference
group. In the running example, the “Birth cohort” group is the reference group,
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while the “Others” group is compared against it. The estimate of the intercept
(i.e., -7.97) is the logit-transformed summary effect size of the reference group
(i.e, logit(0.00034)). The slope is estimated to be 0.35. The sum of the slope and
the intercept is equal to -7.629, which is the logit-transformed summary effect
size of the “Others” group (i.e., logit(0.00049)).

When calculating the summary effect estimate across the subgroups, the out-
comes may vary depending on the specific τ2 estimate applied. However, even
with this variation, the two computational models may reach the same qualita-
tive conclusions. For instance, in the given example, both models agree that the
study design doesn’t significantly influence the results. In general, Borenstein et
al. (2009) recommend pooling the separate τ2 when the number of studies in a
subgroup is small (i.e., less than five studies). In doing so, we can obtain a more
accurate estimate of τ2. In contrast, if we decide not to pool them, each sub-
group should ideally consist of at least five studies to ensure moderately stable
estimates of τ2.

7.4 Creating forest plots in the presence of subgroups in R

Many authors conducting meta-analyses of proportions did not construct for-
est plots correctly for their subgroup analyses. Specifically, numerous published
meta-analytic studies did not present the appropriate estimates for either the
overall or subgroup summary proportions in their forest plots. These authors
failed to consider the two possible assumptions about τ2 that we have discussed
in Section 7.3.

In this section, we will construct forest plots with subgroups under different
assumptions (i.e., separate between-study variance components vs. a common
between-study variance component). We have obtained the estimates for sub-
group and overall summary proportions in the previous section, which can be
used to create our forest plots. The following code is used to construct forest
plots under the first assumption:

# Assumption 1: Do not assume a common between -study

# variance component (use separate within -group

# estimates of between -study variance).

# Option 1: no transformation

ies.summary <- summary(ies , ni = dat$total)
forest(ies.summary$yi , ci.lb = ies.summary$ci.lb,

ci.ub = ies.summary$ci.ub, rows = c(d:c, b:a))

# Option 2: the logit transformation

ies.summary <- summary(ies.logit , transf =

transf.ilogit)

forest(ies.summary$yi , ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub, rows = c(d:c, b:a))
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# Option 3: the double arcsine transformation

ies.summary <- summary(ies , transf = transf.ipft , ni =

dat$total)
forest(ies.summary$yi ,

ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub,
rows = c(d:c, b:a))

The code above merely builds the “bones” of a forest plot. More components
need to be added to it (e.g., texts, headers, labels, etc.). We also have to man-
ually adjust its appearance to make it look more professional. Dividing a set
of included studies into several subgroups in a forest plot using metafor has to
be done manually with the rows argument. Readers may have noticed that the
parameters in the argument (a, b, c, and d denotes a particular position on the
Y -axis) are ordered from right to left. a specifies the vertical position for plotting
the first study in the first subgroup; b specifies the vertical position for plotting
the last study in the first subgroup; c specifies the vertical position for plotting
the first study in the second subgroup; d specifies the vertical position for plot-
ting the last study in the second subgroup. Mathematically speaking, b− a+ 1
and d − c + 1 should be equal to the number of studies in their corresponding
subgroups. c and b do not need to be consecutive numbers. If we order these
parameters from left to right, studies will be displayed in reverse order with the
first study being displayed at the bottom of the plot and the last study being
displayed at the top of all the studies.

To illustrate, we can execute the following code to create a forest plot using
the study design as the moderator:

# Run the subgroup analysis code with the assumption

# of separate within -group estimates of between -study

# variance components first , then run the following

# code

ies.summary <- summary(ies.logit , transf =

transf.ilogit)

# par() function specifies font parameters

par(cex = 1, font = 6)

# Set up forest plot

# order= argument ensures that studies are divided by

# the subgroup variable

forest(ies.summary$yi ,
order = ies.summary$studesg ,
ci.lb = ies.summary$ci.lb,
ci.ub = ies.summary$ci.ub,
ylim = c(-5, 23),

xlim = c(-0.005, 0.005) ,

slab = paste(dat$author , dat$year , sep = ","),

ilab = cbind(data = dat$cases , dat$total),
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ilab.xpos = c(-0.0019, -0.0005),

ilab.pos = 2,

rows = c(19:14 , 8.5: -1.5),

at = c(seq(from = 0, to = 0.004, by = 0.001)),

refline = pes.studydesign$pred ,
main = "",

xlab = "Proportion",

digits = 4)

# Add summary polygons for the subgroup and overall

# proportions

par(cex = 1.2, font = 7)

addpoly(pes.birthcohort$pred , ci.lb =

pes.birthcohort$ci.lb , ci.ub =

pes.birthcohort$ci.ub , row = 12.8, digits = 5)

addpoly(pes.others$pred , ci.lb = pes.others$ci.lb ,
ci.ub = pes.others$ci.ub , row = -2.7, digits = 5)

addpoly(pes.studydesign$pred , ci.lb =

pes.studydesign$ci.lb , ci.ub =

pes.studydesign$ci.ub , row = -4.6, digits = 5)

# Add column headings to the plot

par(cex = 1.1, font = 7)

text (-0.005, 21.8, pos = 4, "Study")

text(c(-0.0026, -0.0014), 21.8, pos = 4, c(" Cases",

"Total "))

text (0.0025 , 21.8, pos = 4, "Proportion [95% CI]")

# Add text for the subgroups

text (-0.005, c(9.7, 20.2), pos = 4, c(" Others", "Birth

cohort "))

# Add text for the subgroup and overall proportions

par(cex = 1, font = 7)

text (-0.005, -4.6, pos = 4, c(" Overall proportion "))

text (-0.005, 12.8, pos = 4, c(" Subgroup proportion "))

text (-0.005, -2.7, pos = 4, c(" Subgroup proportion "))

abline(h = -3.7)

The generated forest plot is shown in Figure 15. Notice that the overall
summary proportion is 0.00045 (95% CI = 0.00033, 0.00061) under the given
assumption, which is different than the one derived in the absence of subgroups
(0.00042).
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Figure 15. A forest plot with subgroups assuming different τ2 generated by metafor

Under the assumption of a common τ2, we employ the rma() function in
metafor in conjunction with the metaprop() and forest() functions in meta to
produce a forest plot with subgroups. The inclusion of predictors is set by the
mods argument in metafor and the byvar argument in meta. In the metaprop()
function, two arguments are particularly noteworthy: tau.common determines
whether a common τ2 estimate is applied across subgroups, while tau.preset
sets the value of τ . Given our assumption, we set tau.common to TRUE and
tau.preset to the pooled τ estimate obtained from the previous section.

# Assumption 2: Assume a common between -study variance

# component (pooling within -group estimates of

# between -study variance)

# data= could also be set to ies.logit or ies.da

subganal.moderator <- rma(yi, vi, data = ies , mods = ~

moderator , method = "DL")

# sm= could also be set to "PLO" or "PFT"

# tau.common= must be TRUE and tau.preset must be

# sqrt(subganal.moderator$tau2)
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pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PRAW", byvar = moderator ,

tau.common=TRUE , tau.preset =

sqrt(subganal.moderator$tau2))
# resid.hetstat= must be FALSE

forest(pes.summary , resid.hetstat = FALSE)

Assuming that we apply a common τ2 across subgroups, the following code
creates a customized forest plot using the study design as the moderator:

subganal.studydesign <- rma(yi, vi, data = ies.logit ,

mods = ~ studydesign , method = "DL")

pes.summary <- metaprop(cases , total , authoryear , data

= dat , sm = "PLO", method.tau = "DL", method.ci =

"NAsm", byvar = studydesign , tau.common=TRUE ,

tau.preset = sqrt(subganal.studydesign$tau2))
forest(pes.summary ,

common = FALSE ,

overall = TRUE ,

overall.hetstat = TRUE ,

resid.hetstat = FALSE ,

subgroup.hetstat = TRUE ,

test.subgroup = FALSE ,

fs.hetstat = 10,

print.tau2 = TRUE ,

print.Q = TRUE ,

print.pval.Q = TRUE ,

print.I2 = TRUE ,

rightcols = FALSE ,

xlim = c(0 ,4),

leftcols = c(" studlab", "effect", "ci"),

leftlabs = c("Study", "Proportion", "95% C.I."),

text.random.w = "Subgroup proportion",

text.random = "Overall proportion",

xlab = "Prevalence of CC (%)",

pscale = 1000,

smlab = " ",

weight.study = "random",

squaresize = 0.5,

col.square = "navy",

col.diamond = "maroon",

col.diamond.lines = "maroon",

digits = 2)

The generate forest plot is presented in Figure 16:
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Figure 16. A forest plot with subgroups assuming a common τ2

Notice that the estimates of τ2 are identical (0.4427) across two subgroups.
The overall summary proportion and its 95% CI (0.43; 95% CI = 0.31, 0.6) are
calculated across two subgroups based on the same τ2 estimate, as well.

7.5 Conducting meta-regression with different types of predictors
in R

When we want to evaluate the influence of a continuous moderator, the R code
is identical to what we used for subgroup analyses:

#data= could also be set to ies.logit or ies.da

metareg.moderator <- rma(yi , vi , data = ies , mods = ~

moderator)

As mentioned above, a mix of continuous and categorical moderators can be
regressed on the effect sizes in a meta-regression model. This can be achieved by
using the plus sign in the mods argument:

#data= could also be set to ies.logit or ies.da

metareg.moderators <- rma(yi , vi , data = ies , mods =

~moderatorA + moderatorB + moderatorC + ...)
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7.6 Visualizing moderator analyses with scatter plots in R

Scatter plots serve as an invaluable visualization tool when assessing potential
moderator variables. Such plots, as depicted in Figure 17, are constructed with
a regression line, flanked by two curved dotted lines that represent the 95% con-
fidence interval bounds, with studies represented by circles drawn proportional
to their study weights (i.e., larger studies appear as larger circles). What’s im-
portant in scatter plots is the slope of the regression line. Specifically, if the
regression line is horizontal or nearly so, it suggests there’s no significant asso-
ciation between the moderator and the effect sizes. Conversely, if the regression
line has a noticeable slope, it indicates the effect sizes change in relation to the
value of the moderator. To determine the significance of this relationship, one
can look at the slope and its significance test. A notably positive or negative
slope indicates that the predictor plays a significant moderating role, potentially
explaining a significant portion of the observed heterogeneity.

Figure 17. A basic scatter plot

In this section, we will employ the regplot() function in the metafor package
to create scatter plots. regplot() offers a distinct advantage over R’s native plot()
function. It simplifies the coding process, making it more user-friendly, especially
for those less familiar with R. It helps users to customize their scatter plots with
ease.

The following generic code creates weighted scatter plots for subgroup anal-
yses. In a weighted scatter plot, a study is represented by a circle. The weight
of a study is depicted by the size of the circle, with a larger circle indicating a
greater study weight. In an unweighted scatter plot, the circles are of equal size.
Additionally, it is necessary to use dummy variables for categorical moderators
(e.g., variables labeled as “studesg” in the running example).
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# Option 1: no transformation

regplot(subganal.dummyvar , mod = "dummyvar ")

# Option 2: the logit transformation

regplot(metareg.dummyvar , mod = "dummyvar",

transf=transf.ilogit)

# Option 3: the double arcsine transformation

# targ can also be set to list(ni = 1/(pes.da$se)^2)
regplot(subganal.dummyvar , mod = "dummyvar",

transf=transf.ipft.hm , targ=list(ni=dat$total))

Using the running example, we can create a customized scatter plot with a re-
gression line and corresponding 95% CI bounds for “studesg” with the following
code:

# Conduct a subgroup analysis based on the dummy

# variable "studesg"

subganal.studesg=rma (yi, vi, data = ies.logit , mods =

~ studesg , method = "DL")

# Create a scatter plot

regplot(subganal.studesg , mod = "studesg",

xlab = "Study Design",

transf=transf.ilogit ,

legend = FALSE ,

label = TRUE ,

shade = "white",

bg = "transparent",

lcol = "navy",

digits = 4)

The generated scatter plot is shown in Figure 18.
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Figure 18. A scatter plot using the study design as the moderator

Upon visual inspection of the scatter plot, it is evident that the slope of
the estimated regression line is neither entirely horizontal nor excessively steep,
suggesting a weak association between the study design and the observed ef-
fects. Furthermore, nearly half of the studies fall outside of the 95% CI bounds,
indicating the presence of potentially unidentified moderators.7

In the second example, we use the sample size as the moderator (the variable
“size” in the provided data set) and evaluate it in a subgroup analysis:

subganal.size <- rma(yi, vi, data = ies.logit , mods =

~ size , method = "DL")

regplot(subganal.size ,

mod = "size",

transf=transf.ilogit ,

xlab = "Sample size",

legend = "topright",

label = TRUE ,

shade = "white",

bg = "transparent",

lcol = "navy",

digits = 6)

7 If one wants to change the curved slope and 95% CIs lines to straight lines, further
steps are needed in R. I’ve included relevant R code in the supplementary materials.
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The generated scatter plot is presented in Figure 19. The code is self-explanatory.
Note that the legend argument determines if a legend is added to the scatter
plot, with its location specified by the user.
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Figure 19. A scatter plot using sample size as the moderator

In this case, the estimated regression line exhibits a noticeably steeper slope.
A visual inspection of this scatter plot indicates a negative correlation between
the sample size and the observed proportions. When the sample size is less than
100,000, the proportions tend to be higher; when the sample size is larger than
100,000, the proportions tend to be lower. Again, it is important to acknowledge
that potential missing moderators may introduce a degree of omitted variable
bias here. The outcomes of the subgroup analysis are shown below in Figure 20.
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Mixed -Effects Model (k = 17; tau^2 estimator: DL)

tau^2 (estimated amount of residual heterogeneity): 0.1398 (SE = 0.0911)
tau (square root of estimated tau^2 value): 0.3739
I^2 (residual heterogeneity / unaccounted variability): 93.90%
H^2 (unaccounted variability / sampling variability): 16.40
R^2 (amount of heterogeneity accounted for): 57.07%

Test for Residual Heterogeneity:
QE(df = 15) = 246.0073 , p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 36.4266 , p-val < .0001

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt -7.0500 0.1643 -42.9109 <.0001 -7.3720 -6.7280 ***
size -1.2867 0.2132 -6.0354 <.0001 -1.7046 -0.8689 ***

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Figure 20. A subgroup analysis for sample size

The results of the test of moderators (QM (1) = 36.43, p < 0.0001) as well
as the significant regression coefficient (−1.29; Z (15) = −6.04, p < 0.0001) are
consistent with our visual interpretation. In stark contrast with the previous
subgroup analysis, the R2 indicates that 57.07% of the true heterogeneity in the
observed effect size can be explained by the sample size.

In the running example, Wu et al. (2012) did not examine any continuous
predictors. To demonstrate how to generate a weighted scatter plot for a meta-
regression with a continuous predictor in R, we will plot the observed effect
sizes against the year of publication, represented by the “year” variable in the
provided dataset. The code is provided below:

metareg.year <- rma(yi , vi , data = ies.logit , mods = ~

year , method = "DL")

regplot(metareg.year ,

mod = "year",

transf = transf.ilogit ,

xlab = "Year of publication",

legend = "topleft",

label = TRUE ,

shade = "white",

bg = "white",

lcol = "navy",

digits = 6)

The generated scatter plot is presented in Figure 21.
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Figure 21. A scatter plot using the publication year as the moderator

8 Common procedures addressing publication bias do
not apply to meta-analyses of proportions

One of the major threats to the validity of meta-analysis is publication bias.
This is a phenomenon where journals tend to accept and publish a study de-
pending on the direction or strength of its results (MarksAnglin & Chen, 2020).
Compared with studies with statistically significant results, small studies re-
porting insignificant results or small effects are less likely to be published and
subsequently included in a meta analysis (Dickersin, 1990; Littell et al., 2008).
Omitting unpublished studies in a systematic review could lead to a biased
meta-analytic estimate of the summary effect (Song, Eastwood, Gilbody, Duley,
& Sutton, 2000). As smaller studies require larger effect sizes to achieve statis-
tical significance (Sterne, Gavaghan, & Egger, 2000), only those small studies
with large effects get published and included in a relevant meta-analysis. Thus,
a meta-analysis that only includes studies with large effects and fails to include
studies with small effects at the same time could overestimate the true effect
(Cuijpers, 2016).

Current methods of detecting publication bias and assessing its impact are
developed for meta-analyses of randomized control trials. These methods rely
on certain assumptions (Borenstein et al., 2009). Firstly, regardless of the sig-
nificance of their effects, large studies are most likely to be published. Secondly,
only small studies demonstrating significant and substantial effects tend to be
published. Lastly, most moderate-scale studies that yield significant results also
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tend to be published. Consequently, as the sample size of a study decreases, the
likelihood of it being affected by publication bias increases. Traditional meth-
ods such as trim-and-fill, the rank correlation test, Egger’s regression model,
as well as the more sophisticated weighted selection approaches (e.g., Vevea &
Hedges, 1995; Vevea & Woods, 2005) have all operated under the assumption
that the publication likelihood depends on sample size, statistical significance,
or the direction of results (Coburn & Vevea, 2015).

While empirical research has confirmed the dominant role of statistical sig-
nificance in study publication (Preston, Ashby, & Smyth, 2004), the actual pub-
lication selection process across different fields is much more intricate. Cooper,
DeNeve, and Charlton (1997) have demonstrated that decisions regarding study
publication are influenced by various criteria or “filters” set by journal editors
and reviewers, independent of methodological quality and significance. These
filters can include factors such as research funding sources, societal preferences
related to race and gender during the study’s conduction, and even findings that
challenge pre-existing beliefs. Consequently, the traditional methods may fail to
capture the full complexity of the publication selection process.

In practice, authors of meta-analyses of proportions have employed these
methods in their attempts to detect publication bias. However, studies included
in meta-analyses of proportions are observational and non-comparative. In other
words, they only report a proportion or prevalence of an event, which inherently
precludes the testing of statistical significance for their findings (Borenstein,
2019). Consequently, the interpretation of the outcomes from such studies is not
contingent on the null hypothesis significance test and thus cannot be catego-
rized as either “positive/negative” or “desirable/undesirable.” The significance
levels are, therefore, unlikely to influence publication decisions regarding these
studies (Maulik, Mascarenhas, Mathers, Dua, & Saxena, 2011). Authors who re-
port low proportions (e.g., rare event rates) are equally likely to have their work
published as those reporting very high proportions (e.g., high cure rates), given
that the study quality meets rigorous publication standards. Consequently, the
traditional publication bias assessment procedures may struggle to identify pub-
lication bias in meta-analyses of proportions, as bias in non-comparative studies
can be introduced for reasons unrelated to statistical significance.

Borenstein (2019) warns meta-analysts that it is a mistake to apply publi-
cation bias procedures to studies of prevalence. Our suggestion aligns with his.
When conducting meta-analyses of proportions, we believe that the traditional
publication bias tests and modeling tools developed for randomized controlled
trials have limited utility and, therefore, should not be used. Any conclusions
drawn regarding the presence of publication bias based on these methods should
be approached with caution.
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