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Modeling Data with Measurement Errors but
without Predefined Metrics: Fact versus Fallacy

Ke-Hai Yuan and Zhiyong Zhang

University of Notre Dame
kyuan@nd.edu

Abstract. Data in social and behavioral sciences typically contain mea-
surement errors and also do not have predefined metrics. Structural equa-
tion modeling (SEM) is commonly used to analyze such data. This article
discuss issues in latent variable modeling as compared to regression anal-
ysis with composite-scores. Via logical reasoning and analytical results as
well as the analyses of two real datasets, several misconceptions related
to bias and accuracy of parameter estimates, standardization of vari-
ables, and result interpretation are clarified. The results are expected to
facilitate better understanding of the strength and limitations of SEM
and regression analysis with weighted composites, and to advance social
and behavioral data science.

Keywords: Measurement error · Attenuation · Standardization · Scales
of latent variables

1 Introduction

Two key features of data in social and behavioral sciences are measurement er-
rors and no predefined metrics. Associated with the features are latent variables
whose scales need to be subjectively chosen. These features pose challenges to
data analysis and result interpretation. A conventional method to address the
issue of measurement errors is structural equation modeling (SEM), while stan-
dardized solution is used to address the issue of lack of metrics. In particular,
textbooks contain formulas showing that the least-squares (LS) method yields
attenuated or biased regression coefficients when predictors contain measure-
ment errors, and SEM effectively addresses the issue. Textbooks on regression
analysis and SEM also contain formulas for computing the regression coefficients
with standardized variables (e.g., Bollen, 1989; Cohen, Cohen, West, & Aiken,
2003; Loehlin & Beaujean, 2017), which are available in the output of com-
monly used software and routinely reported in papers. Because the notions that
measurement errors cause biased estimates and standardized solutions facilitate
result interpretation have been imprinted and routinely taught in the discipline,
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a rigorous examination on their validity not only facilitates better understanding
of these concepts but also advances behavioral data science.

The purpose of this article is to bring attention of both quantitative and ap-
plied researchers to these potential issues, and for proper and better applications
of multivariate methods. In particular, we aim to answer the following questions.

Q1. In social and behavioral sciences, measurements and latent variables typ-
ically do not have predefined scales. We need to fix the scales of latent
variables subjectively for the parameters of a model to be identified. Under
SEM, what is the effect of different scaling options on the accuracy of param-
eter estimates and the related z-statistics? How can we use the information
to serve our purpose?

Q2. Do measurement errors cause attenuated or biased estimates for the LS
method of regression analysis with weighted composites? A weighted com-
posite in this article is a linear combination of values of indicators for a latent
variable.

Q3. Does SEM yield more accurate parameter estimates than LS regression with
weighted composites?

Q4. Between SEM and regression analysis with weighted composites, to what
level the estimated regression coefficients can be compared with their SEM
counterparts?

Q5. Does standardization advance result interpretation or only facilitate model
identification?

We will answer the above questions by combining recent findings from the litera-
ture, logical reasoning and analytical results, and fresh numerical results via the
analyses of two real datasets. As we are going to show, results do not necessarily
support the widely held notions regarding attenuation, bias, accuracy and effi-
ciency of parameter estimates for SEM and regression analysis with composites
that contain measurement errors.

Most existing studies comparing SEM and regression analysis with compos-
ites are conducted by comparing the values of parameter estimates and their
standard errors (SEs). For logical and proper analyses of data that do not have
predefined metrics, we propose a new approach under which methods are com-
pared by the sizes of the signal-to-noise ratio (SNR) of their estimates. For a
parameter estimate γ̂ based on a sample of size N , the SNR is defined as

τ =
γ

SD
,

where γ and SD are respectively the expected values of γ̂ and [Var(
√
Nγ̂)]1/2 or

their probability limits as N increases. The new approach is a natural product
of our effort in answering the above 5 questions.

The rest of the article is arranged as the following. First, we review the lit-
erature for related work and to clarify our contributions. Second, we describe
our view on SEM and regression analysis with weighted composites, including
key elements to answer the posed questions. Third, we provide a logical analysis
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on the utility of standardization. Fourth, two empirical examples are provided
and patterns over the results are summarized. Fifth, our answers to the above
five questions are subsequently presented by combing the results from our anal-
ysis and the results of the examples. Sixth, summary, discussion and take-home
messages are provided to conclude the article.

2 Review of the Literature and Clarification of
Contributions

There are studies in the psychometric literature that might be regarded as related
to the development of the current article. We will review them below to clarify
the differences between the existing studies and the topics we are going to cover.
Some of our results as well as the framework under which our study is conducted
will also be previewed in this section.

2.1 Parameters and z-statistics are scale dependent

It is well known that, in SEM, the scale of a latent variable can be set by 1)
fixing one of the loadings of its indicators at a given value, typically 1.0; or
2) for an independent latent variable, fixing its variance at a given value. The
choices among the indicators as well as between 1) and 2) are equivalent in the
sense that the resulting model implied covariance matrix remains the same. But
they can yield quite different parameter estimates. Gonzalez and Griffin (2001)
noted that different ways to scaling latent variables can also result in different
z-statistics. This implies that the results of null hypothesis testing by the Wald
test (or z-test for a single parameter) depend on how the scales of the latent
variables are fixed. Subsequently, Gonzalez and Griffin recommended using the
likelihood ratio statistic (Tml) or its difference for parameter inference, because
Tml remains the same across different scalings of latent variables. However, one
has to run a separate model to conduct the likelihood ratio test for each single
parameter; whereas the z-statistics for all the parameters are in the default
output of standard software following a single run of the base model. This might
be why the z-test is widely used in practice. In addition, the validity of Tml as a
χ2 statistic depends on the normal distribution assumption1 even asymptotically.
In contrast, SEs and the corresponding z-statistics based on the sandwich-type
covariance matrix are asymptotically valid without the need for the normality
assumption.

The sensitivity of z-statistics to the scales of latent variables reflects the
dependency of statistical power of the Wald test on model parameterization.
Instead of treating this sensitivity as an undesired feature, we should make use
of it to serve the purpose of data analysis. In particular, if a test with a greater

1 While there exist conditions for Tml to follow a chi-square distribution when data
are not normally distributed, there is not an effective way to verify the so-called
asymptotic robustness conditions in practice.
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power is desired, we can choose scales that correspond to the greatest z-statistics.
Let’s call an indicator whose loading is fixed at 1.0 an anchor. An analytical re-
sult in Yuan and Fang (2023b) implies that the SNR for the path coefficient
between two latent variables increases as the anchor of the dependent latent
variable becomes more reliable, where they assumed that all the indicators for
the independent latent variable are parallel. A better understanding of the re-
lationship between the z-statistics and the properties of the anchors is needed
for the general case. For such a purpose, we will further study the following two
characteristics of the z-statistics: 1) What properties of the anchors affect the
value of z-statistics? and 2) Are the z-statistics for all path coefficients of the
structural model equally affected by the changes of scales of the latent variables?
These characteristics are not examined in Gonzalez and Griffin (2001).

2.2 Model identification versus theoretical assumption

Steiger (2002) discussed scenarios for fixing the scale of a latent variable using
equality constraints, and fixing a factor loading at 1.0 is regarded as a particular
constraint. He emphasized that additional constraints beyond the minimal need
to fix the scales of latent variables will affect the value of Tml. That is, the model
implied covariance matrix will vary when different extra constraints are imple-
mented. The same message has also been given by others (e.g., Bentler, 2006).
In this article, we are not interested in the effect of extra constraints beyond the
minimal need for scaling latent variables. Instead, for the scaling issue, we exam-
ine how the values of the SNRs and z-statistics are affected by the psychometric
properties of the indicators used to fix the scales of latent variables. The value
of Tml remains the same among these choices. Steiger (2002) also discussed sta-
tistical issues due to interactions of extra constraints in standardized solutions.
We will also discuss standardization but our interest is on issues related to sub-
stantive and statistical interpretations instead of issues caused by interactions
of extra constraints.

2.3 Accuracy and precision of parameter estimates

For a mediation model with three latent variables, Ledgerwood and Shrout
(2011) compared bias and SEs of parameter estimates between SEM and re-
gression analysis via average scores. They used “accuracy” and “precision” to
substitute for the statistical terminology bias and SEs, and showed that SEM
yields estimates with greater accuracy but less precision. While Ledgerwood
and Shrout (2011) contain several interesting observations, they missed two key
points. The first is that values of parameters under SEM depend on the scales
of the latent variables and those under regression analysis depend on the scales
of the composites (Yuan & Deng, 2021). Thus, accuracy or bias is not a sub-
stantively grounded concept for statistical modeling of variables whose metrics
are artificially assigned. The second is that SEs are typically proportional to the
values of the parameter estimates, precision is also not a meaningful quantity
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to compare between SEM and regression analysis with composite scores. Con-
sequently, the conclusions of Ledgerwood and Shrout (2011) for the comparison
between SEM and regression analysis with composites are problematic. In addi-
tion, the use of parallel indicators in their Monte Carlo studies also made their
results of regression analysis with the average scores too optimistic, since the
average score enjoys the maximum reliability (Bentler, 1968; Yuan & Bentler,
2002). Existing results indicate that, following regression analysis with compos-
ites, the estimates of the regression coefficients, their SEs, and the resulting
R-square are all related to the reliabilities of the composites (Cochran, 1970;
Fuller, 2009).

Instead of comparing different methods by the accuracy or precision of their
parameter estimates, we compare methods via their SNRs. We will argue that the
SNR is a natural quantity to compare for modeling variables without predefined
metrics.

2.4 Factor score vs average score

McNeish and Wolf (2020) discussed rationales in forming composites and sug-
gested treating sum scores as factor scores based on a factor model with parallel
measurements. They also recommended factor-scoring items according to the fac-
tor model under which the scales are validated instead of using the sum scores by
default. A followup discussion by Widaman and Revelle (2022) gave a different
perspective on the merit of sum scores. They compared parameter estimates by
different scoring methods and noticed little difference. In the current article, we
are interested in comparing SEM and regression analysis with weighted compos-
ites, and regard both sum scores and factor scores as special cases of weighted
composites. In particular, results on SNRs for the estimated path coefficients
indicate that larger differences exist between SEM and regression analyses with
weighted composites than among regression analyses with differently formulated
composites (Yuan & Fang, 2023b).

2.5 Standardized score versus raw score

Variable standardization and treating the standardized coefficients as effect-size
measures are common practices in social and behavioral sciences. Their pros and
cons have been discussed under different contexts. Aiming to set out guidelines
for what to report and how best to report effect sizes, Baguley (2009) listed
advantages of simple (unstandardized) effect sizes but the measures need to
have metrics that are well understood or substantiated if not predefined. Pek
and Flora (2018) provided an informed discussion on why unstandardized effect
sizes tend to be more informative than standardized ones in primary research
studies. While their focus is on effect sizes with manifest variables, they stated
(p. 214) “We agree that standardization of effects associated with latent variables
(e.g., factors in a factor analysis) is useful, but assert that observed variables,
and consequently effect sizes based on them, should not always be standardized.”
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Kim and Ferree (1981) distinguished the operation of standardization of
scales from the use of standardized coefficients. If the groups under consideration
do not have comparable distributions, their discussion discourages standardizing
variables on the basis of group-specific means and variances. Olejnik and Algina
(2000) showed that measures of effect size are affected by the research design
used, and warned that effect sizes may not be comparable across different de-
signs when different random components (e.g., individual difference factors) are
included in computing the pooled variances for standardizing the effect sizes.
They also reviewed various factors that may contribute to the misinterpreta-
tion/understanding of effect size.

McGrath and Meyer (2006) discussed the differences of Cohen’s d and the
point-biserial correlation coefficient (rpb). Both of which can be used when one
variable is dichotomous and the other is quantitative. Termed the proportions of
0 and 1 for the dichotomous variable as the base rates, they showed that rpb is a
base-rate-sensitive effect-size measure, whereas d is base-rate-insensitive. Stan-
dardization is also widely used in epidemiology when estimating and comparing
group means, where it is a different operation than z-scoring the variables. Still
the group distributions matter in standardizing the means, as was showed by
(Schoenbach & Rosamond, 2000, Chapter 6).

While the pros and cons of standardization have been extensively addressed,
none of the articles discuss the issue of standardization in SEM. Part of our
interest in this article is to examine the aspects of the usefulness of standard-
izing latent variables. In particular, our focus is on variables that do not have
predefined metrics.

2.6 Properties and results of factor scores

Since factor scores will be repeatedly mentioned in our discussion, we briefly
review their properties here. First, because latent variables are not observable,
there exists an issue of indeterminacy with their scales and orientation. How-
ever, parameters of a factor or SEM model can be uniquely estimated once the
scales of all latent variables are fixed and the model is identified. Then both the
Bartlett-factor scores (BFSs) and the regression-factor scores (RFSs) based on
the parameter estimates can be uniquely computed (Lawley & Maxwell, 1971).
Unless explicitly mentioned, factor scores in this article always refer to either
the BFSs or the RFSs.

It is well-known that the BFS possesses the maximal reliability among all
weighted composites (see e.g., Yuan & Bentler, 2002). Yuan and Deng (2021)
showed that the RFSs are proportional to the BFSs. That is, one can get the
values of the BFSs from those of the RFSs via a linear transformation, condi-
tional on the estimated factor loadings, factor covariances, and error variances.
Thus, the RFSs also possess the maximum reliability. In addition, Yuan and
Deng (2021) noted that the two types of factor scores are also equivalent in con-
ducting regression analysis in the sense that they yield the same R-square value.
Note that the RFSs can be computed jointly for all the factors or separately
for each single factor. Yuan and Deng (2021) also noted that when the RFSs
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are computed separately, the regression coefficients following RFS-regression are
proportional to those following BFS-regression. When the RFSs are computed
jointly, the two sets of regression coefficients can still be computed from each
others but using a linear transformation.

Skrondal and Laake (2001) noted an important property of factor-score (FS)
regression. That is, regression analysis with BFSs as the outcome variables and
the jointly computed RFSs as the predictors yields path coefficients that are
mathematically identical to those under SEM. This property was also discussed
in Croon (2014) and Devlieger, Mayer, and Rosseel (2016), and will be noted in
our following discussion.

2.7 Monte Carlo studies comparing parameter estimates

There are Monte Carlo studies comparing the empirical bias, SEs or mean-
squared errors (MSE) of parameter estimates across methods (e.g., Forero &
Maydeu-Olivares, 2009). For a model whose population values of parameters are
held constant, the method that yields the smallest bias or SE or MSE is preferred
under the conditions being considered. The finding is still statistically meaningful
even when the variables do not have predefined metrics, as in typical simulation
studies (e.g., Shi & Tong, 2017; Zhang & Yang, 2020). However, because bias, SE
and MSE are scale dependent, additional thoughts are needed to compare the
estimates under regression analysis against those under SEM, especially when
variables do not have predefined metrics.

Note that bias is defined as the expected value of an estimator minus its pop-
ulation value. The regression coefficients under regression analysis with compos-
ites naturally don’t have the same population values as their SEM counterparts.
But for data that do not have predefined metrics, we can make the two sets of
population values identical by properly choosing the scales for the composites or
the latent variables. We will formally discuss how to compare estimates across
the two classes of methods in the following sections.

3 Structural Equation Modeling versus Regression
Analysis with Composites

In this section we present the elements for logically comparing SEM against
regression analysis with weighted composites.

3.1 Theoretical constructs by latent variables versus by composites

While latent variables and composites are conceptually different, we regard both
of them as representatives of the theoretical constructs. But their degrees of
alignment are subject to judgment. It is commonly believed that theoretical
constructs are virtually modeled under SEM while weighted composites always
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contain measurement errors. However, the goodness of fit2 of an SEM model
is unlikely to be perfect, implying that the Greek letters in a path diagram
only approximately represent the theoretical constructs. Such a discrepancy sys-
tematically changes the values of the parameters from those of an ideal model-
population match (Yuan, Marshall, & Bentler, 2003), causing biased parameter
estimates and biased interpretation. Similarly, the reliabilities of the compos-
ites also vary3 as the number of indicators vary, implying that the degree of
alignment between the theoretical constructs and the weighted composites also
varies. However, the bias due to model misspecification under SEM has been
often ignored whereas “bias” caused by measurement errors has been repeatedly
warned in textbooks (e.g., Allen & Yen, 1979).

In the development of this article, we do not explicitly consider the approx-
imating nature of latent variable models. But we admit that there always exist
differences between theoretical constructs and the latent variables in practice.
Although the setup implicitly favors latent variable models, as was typically
done in the field, we will discuss the rationale and provide the evidence that
regression analysis with weighted composites yields different but more efficient
parameter estimates than SEM instead of biased estimates.

3.2 Consistency

Measurements in social and behavioral sciences typically do not have pre-defined
metrics in the first place. For such data, Yuan and Deng (2021) and Yuan and
Fang (2023b) pointed out that the sizes of parameters under SEM do not enjoy a
substantive interpretation since they are determined by the scales of latent vari-
ables that are subjectively assigned. Two researchers modeling the same dataset
via the same model estimated by the same method (e.g., normal-distributed-
based ML) can have very different parameter estimates for the same path coeffi-
cient. For this path coefficient, it is impossible for a third researcher who conducts
regression analysis with composites to obtain an estimate that is consistent with
those under SEM before the two SEM modelers have their difference dissolved.
Thus, it does not make sense to claim that LS regression analysis with weighted
composites yields biased estimates without a unique set of target population
values even under SEM.

Let us consider a simple case to understand the details. With a measurement
model

y = λyη + ey, x = λxξ + ex,

2 Even if a test statistic for the overall model structure is statistically not significant,
we are still unable to confirm that the model is correctly specified, since a non-
significant statistic only implies that there is not enough power to reject the current
model.

3 The content of the true score of a composite might also vary as more indicators are
added even when a single factor model fits the corresponding variables adequately
(Bentler, 2017).
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one can estimate the regression relationship between the two latent variables via
the structural model

η = γ0 + γ1ξ + ζ,

where ξ and η are the latent variables, and ex, ey and ζ are the error terms. Al-
ternatively, one can also directly work with the regression model for the observed
variables

y = a+ bx+ e.

Under the commonly used assumptions about the independence of the error
terms for SEM and using σ to denote the population covariance of the variables
in its subscript, standard covariance algebra yields

b =
σxy
σxx

=
λxλyσξη

λ2xσξξ + σexex
=
ρxλxλyσξη
λ2xσξξ

=
ρxλyγ1
λx

, (1)

where ρx is the reliability of x. Equation (1) implies that, regardless of the value
of ρx, b = γ1 whenever λx = ρxλy holds. We can also adjust the values of λx
and λy by rescaling ξ and η to make the value of b greater than that of γ1.
Alternatively, given the population values of ρx, σxy and σxx, the value of γ1
can be made equal to any pre-specified value (except 0) by adjusting the value of
λx and λy. We will further illustrate this via a real data example in a following
section.

3.3 Parameter comparison

A common theme in Ledgerwood and Shrout (2011), McNeish and Wolf (2020),
Widaman and Revelle (2022), and others is the comparison of the raw values of
parameter estimates by different methods. In this article we emphasize that the
population values of parameters as well as their estimates are not of substantive
interest for models involving latent variables measured by indicators that do not
have predefined metrics. In particular, population values of the model parameters
depend on scales that are artificially assigned.

Although there is no point to directly compare the values of parameters
under regression analysis with weighted composites against those under SEM,
they have the following relationship:

1) γ = 0 if and only if γw = 0, where γ = (γ1, γ2, . . . , γp)
′ and γw =

(γw1, γw2, . . . , γwp)
′ are the vectors of regression coefficients of a given de-

pendent latent variable under SEM and regression analysis with weighted
composites, respectively (Buonaccorsi, 2010, Eq. 5.7 on page 109).

2) When the (joint) regression-factor scores are used as the predictors and the
Bartlett-factor score is used as the dependent variable in regression analysis
with weighted composites, there also exist γw = γ and γ̂w = γ̂ (Skrondal &
Laake, 2001). Then the two types of estimates can be substituted for each
other, although they are obtained by different methods.
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3) Regression analysis with equally weighted composites can also yield parame-
ter estimates that are mathematically identical to those under SEM accord-
ing to

y = a+ b1x1 + . . .+ bpxp + e
= a+ (h1b1)(x1/h1) + . . .+ (hpbp)(xp/hp) + e,

(2)

where the y and xjs are equally weighted composites and the hjs are subject
to choice (e.g., hj = γj/bj).

However, for arbitrarily chosen scales, bj and γj may not be equal. They even
can have different signs.

Instead of judging the goodness of an estimate by its accuracy or precision,
we propose to compare the efficiency of parameter estimates by the size of their
SNR4, which plays a key role in statistical inference. Let’s term this proposal
the new framework in contrast to the old framework that compares methods
by precision and accuracy of parameter estimates, the following remarks are in
order.

4) The new framework allows us to face and address the issue of dependency for
the values of parameters or their estimates on the scales of latent variables,
especially for data and variables that have no predefined metrics.

5) The new framework naturally facilitates the comparison of efficiencies of
estimates for parameters that do not have the same population value. For
example, the population value of a path coefficient under SEM depends on
how the scales of the involved latent variables are fixed. However, the SNRs
for the estimates of this path coefficient can be compared across different
scaling options, and the one with the largest SNR is the most efficient esti-
mate.

6) When the population value of a parameter is uniquely defined across meth-
ods, as in a Monte Carlo study where the scales of latent variables are iden-
tically scaled across methods, an estimate with a smaller SE is more efficient
and corresponds to a greater SNR than that with a greater SE. We will
further discuss the issue of empirical bias in Monte Carlo studies in the
concluding section.

7) Parallel to Cohen’s d, the SNR also serves as a summary statistic.

In addition, strengths of SEM and regression analysis with composites can be
fairly compared and utilized under the new framework. We will have more results
on this point via examples in a following section.

For a model with one dependent latent variable and one independent latent
variable, Yuan and Fang (2023b) rigorously compared the SNRs of the estimated
path coefficients under regression analyses with weighted composites against
those under SEM. They found that, conditional on the population weights, the
SNR under factor score (FS) regression is mathematically greater than that
under SEM. They also defined a multivariate version of SNR and conjectured

4 For a parameter estimate, the SNR is estimated by z/N1/2, where z is the z-statistic
and N is the sample size.
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that its values for the path coefficients under FS regression would be greater than
that under SEM. Note that the SNR plays the role of Cohen’s d in null hypothesis
testing for parameters. Meta analytical results in Deng and Yuan (2023) showed
that, across nine different real datasets and eleven models, SEM yields the least
powerful test, even weaker than path analysis with equally weighted composites.

3.4 Different utilities

SEM and regression analysis with weighted composites are different not only
in their approaches to modeling the theoretical constructs but also in aims and
utilities. For SEM, the relationship among the latent variables is modeled. The
corresponding parameters and their estimates are to govern the relationship
among the latent variables at the population level. In practice, an individual
with greater pretest scores is expected to perform better on the post-tests. This
expected relationship is of interest in many disciplines. We may want to plug the
path coefficients estimated under SEM in the regression equation to predict the
values of individuals corresponding to the latent variable. For such a purpose,
we will have to substitute the independent latent variables by composites of
the individuals. However, except in rare situations, values of composites are not
error-free, including the factor scores that are psychometrically most reliable.

Alternatively, we can start with regression analysis via weighted composites,
and use the estimates of the path coefficients to construct an equation for pre-
diction. The new outcome variable is then predicted according to this equation
using the newly observed scores of the independent variables via weighted com-
posites. Fuller (2009) noted that, even when the independent variables contain
measurement errors, LS estimates of the regression model still yield the best
linear unbiased predictor in the sense that the corresponding MSE is the small-
est. Yuan and Fang (2023a) contain the details showing that the predicted value
based on the SEM estimates becomes less accurate as the reliabilities of the
weighted composites decrease.

Thus, one should start by regression analysis with weighted composites if the
purpose is for prediction. However, SEM is preferred if the aim is to describe the
relationship among the latent variables at the population level. These different
characterizations might be more fundamental than which method generates more
accurate parameter estimates.

The analyses and discussions in this section contain our answers to questions
Q2, Q3 and Q4.

4 Standardization and Bias-correction

The notion that standardized solutions facilitate result interpretation has been
rooted in psychometrics, especially with latent variable modeling and regression
analysis. In this section, we conduct a logical analysis on the utility of standard-
ization. We will also discuss the utility of bias correction. For such a purpose,
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we distinguish measurements that have predefined metrics from those that have
no predefined metrics.

To facilitate understanding of the issue, let’s consider the relationship be-
tween height ξ (inches) and weight η (pounds), and they are assumed to follow
the relationship

η = γ0 + γ1ξ + ζ, (3)

where ζ is the error term in predicting weight by height. In practice, we only
observe x (inches) and y (pounds) due to the deficiencies in technology. A rea-
sonable and also logical measurement model5 in this case is

x = ξ + δ and y = η + ε, (4)

where δ and ε are measurement errors, and they are statistically independent
with the latent variables ξ and η. With a sample (xi, yi) of size N , if we estimate
the model

yi = γ∗0 + γ∗1xi + ei (5)

by the LS method, then the LS estimate γ̂∗1 is expected to be smaller than
the γ1 of Equation (3). In the measurement error literature (e.g., Fuller, 2009),
emphasis was placed on getting a consistent estimate of γ1 by correcting γ̂∗1.
Let the corrected estimate be denoted by γ̃1. Then the value of γ̃1 provides us
the information that, with one inch increase in height, a person is expected to
increase by γ̃1 pounds.

Let’s standardize the variables in Equations (3) and (4), resulting in

ηs = γs1ξs + ζs, xs = λxξs + δs, ys = λyηs + εs. (6)

By the first equation in Equation (6), we would conclude that an individual
with an increase of one SD (inches) in height is expected to increase by γs1
SD (pounds) in weight. Such standardized scales might not prevent us from
understanding the relationship between height and weight if we are familiar
with the two SD units. However, if the SDs are as inexplicable as the values of ξ
or η, then standardization does not facilitate interpretation but only facilitates
identifying a set of unique values of the γ and λ.

In the case of height and weight, the use of standardized scales certainly
hinders our understanding of their relationship. When there are no established
metrics for x and y, the values of their SDs are at least as inexplicable as the
values of x and y themselves. Standardization may even block possible attempts
to think about the issue because it is hard to get a sense out of the SDs even in
the case of height and weight, and each SD depends on the distribution shape
as well as the range of the variable.

For height and weight, the bias-corrected estimate γ̃1 does provide a more
accurate quantification for the relationship between the two variables. When the

5 When repeated measurements on height and weight for each individual are available,
a typical practice is to substitute the x and y in Equation (4) by their respective
averages.
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scales of x or y are arbitrary, as for typical variables in social and behavioral
sciences where data are obtained via Likert items or the averages/sums of such
items, parameters under standardized scales do not advance the understanding
of the relationship of the involved variables. Bias-corrected estimates may not
help with better substantive interpretation either.

Standardized regression coefficients across groups might be comparable if the
ranges and distribution shapes of the groups are similar. Otherwise, equal stan-
dardized coefficients may still imply different relationships between the outcome
variable and the predictors in separate groups.

5 Real-data Examples

In this section we use two real data examples to illustrate some of the points
noted in the previous sections. Because the value of a z-statistic is simply the
value of the SNR multiplied by the square root of the sample size6, comparison
of the z-statistics between different methods will be directly followed from our
comparison of the SNRs.

5.1 Example 1

Data Mardia, Kent, and Bibby (1979; Table 1.2.1) contain test scores on 5
topics from N = 88 students. The five topics are: C1=Mechanics, C2=Vectors,
O1=Algebra, O2=Analysis, and O3=Statistics. The scores for the first two topics
were obtained with closed-book exams and for the last three were with open-
book exams. Tanaka, Watadani, and Ho Moon (1991) fitted the dataset by a two-
factor model, one factor represents the trait for taking closed-book tests, and the
other for taking open-book tests. This dataset has been used to illustrate new
developments in SEM and other multivariate methods (e.g., Cadigan, 1995). We
will use it to show how different methods perform in estimating the regression
parameter between the two constructs. Because this dataset is open to public,
we expect readers to easily replicate our results.

The path diagram for the two-factor model is given in Figure 1, where ξo
and ξc represent the latent traits for taking the open- and closed-book tests,
respectively. Let ϕo = Var(ξo) and ϕc = Var(ξc). Fitting the model implied co-
variance matrix with ϕo = 1.0 and ϕc = 1.0 to the sample covariance matrix by
normal-distribution-based maximum likelihood (NML) yields Tml = 2.073, indi-
cating that the model fits the data very well when referred to χ2

4. The parameter
estimates, their SEs, and the corresponding z-statistics for the confirmatory fac-
tor model are reported in Table 1. The reliabilities of the individual indicators
estimated via the factor model are also included in Table 1 and so are those of
the two Bartlett-factor scores (BFSc, BFSo).

6 The values of the SNR in Tables 2, 3 and 5 are obtained by dividing the z-statistics
by (N − 1)1/2, where N is the original sample size.
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Figure 1. A two-factor model for the open- and closed-book test dataset.

Model For illustration purpose, let’s consider the following two structural mod-
els under SEM

ξc = γcoξo + ζc, and ξo = γocξc + ζo. (7)

That is, we predict the latent trait for the closed-book test by that for the open-
book test, and the latent trait for the open-book test by that for the closed-book
test, respectively. Note that our purpose here is to illustrate the properties of
different methods rather than to testify the causal directions of the two traits.
Actually, the two models in Equation (7) are mathematically equivalent to the
confirmatory factor model in Figure 1 with respect to the overall model structure.

Parallel to the two structural models in Equation (7), we also estimate the
following regression models

ξ̂c = γ∗coξ̂o + ec, and ξ̂o = γ∗ocξ̂c + eo (8)

by the LS method, where ξ̂c and ξ̂o are composite-scores. There are many ways to
formulate composite-scores, we will only consider equally-weighted composites
(EWC), the BFSs and the RFSs in the study. Note that the EWCs are least
selective among all composites since they don’t use any of the psychometric
properties of the individual indicators, whereas the two types of factor scores
are most selective since they optimally use these properties. Also note that both
the sum scores and the simple averages are special cases of EWCs.

For the structural models in Equation (7), we need to fix the scales of ξo
and ξc in order for the models to be identified. There are 6 different options to
identify each model by fixing two factor loadings at 1.0; 2 options to identify the
model ξo → ξc via fixing ϕo = 1.0; and 3 options to identify the model ξc → ξo
via fixing ϕc = 1.0. Thus, there are 8 different sets of scalings to identify the
model ξo → ξc; and 9 different sets of scalings to identify the model ξc → ξo.
The overall model remains equivalent among these different scalings, with Tml

being the same as that for the confirmatory factor model in Figure 1.
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Table 1. Estimates (Est) of factor loadings (λ), error variances (ψ), factor correlation
(ρ), and reliability (Rel) of the indicators (Ind) and Bartlett-factor scores (BFS) under
the common factor model.

Param. Est SE z Param. Est SE z Ind/BF Rel Est

λc1 12.253 1.843 6.649 ψc1 155.632 31.679 4.913 C1 .491
λc2 10.383 1.379 7.530 ψc2 65.036 18.099 3.593 C2 .624
λo1 9.834 0.929 10.588 ψo1 16.186 7.261 2.229 O1 .857
λo2 11.490 1.403 8.192 ψo2 88.352 16.773 5.268 O2 .599
λo3 12.517 1.667 7.508 ψo3 141.074 24.881 5.670 O3 .526
ρco 0.818 0.073 11.258 BFSc .724

BFSo .896

Table 2. Estimates of the path coefficient, its standard deviation (SD) and the corre-
sponding signal-to-noise ratio (SNR) by SEM, factor-score (FS) regression and equally-
weighted-composite (EWC) regression for the relationship ξo → ξc.

Method Identification Est. SD SNR

SEM λc1 = 1.0, λo1 = 1.0 1.019 1.676 0.608
λc1 = 1.0, λo2 = 1.0 0.872 1.528 0.571
λc1 = 1.0, λo3 = 1.0 0.800 1.459 0.548
λc2 = 1.0, λo1 = 1.0 0.863 1.216 0.710
λc2 = 1.0, λo2 = 1.0 0.739 1.132 0.653
λc2 = 1.0, λo3 = 1.0 0.678 1.094 0.620
ϕo = 1.0, λc1 = 1.0 10.019 16.818 0.596
ϕo = 1.0, λc2 = 1.0 8.490 12.286 0.691

FS-reg λo1 = 1.0, λc1 = 1.0
BFS(ξo) & BFS(ξc) 0.912 1.055 0.865
RFS(ξo) & RFS(ξc) 0.738 0.853 0.865
BFS(ξo) & RFS(ξc) 0.661 0.764 0.865
RFS(ξo) & BFS(ξc) 1.019 1.178 0.865
ϕo = 1.0, λc1 = 1.0
BFS(ξo) & BFS(ξc) 8.973 10.377 0.865
RFS(ξo) & RFS(ξc) 7.253 8.388 0.865
BFS(ξo) & RFS(ξc) 6.496 7.512 0.865
RFS(ξo) & BFS(ξc) 10.019 11.586 0.865

EWC-reg sum(ξo) & sum(ξc) 0.428 0.587 0.730
ave(ξo) & ave(ξc) 0.643 0.880 0.730
sum(ξo) & ave(ξc) 0.214 0.293 0.730
ave(ξo) & sum(ξc) 1.285 1.760 0.730

Note. BFS=Bartlett-factor score, RFS=regression-factor score; sum=sum score,
ave=average score; the estimate with the largest SNR under SEM is in bold while
the one with the smallest SNR is underlined.
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Results The NML estimates of γ for the two models in Equation (7) are given
in the upper panel of Tables 2 and 3, respectively. The standard deviation (SD)
of each γ̂ and the corresponding SNR are also included in the tables. Clearly, the
value of γ̂ under SEM changes as the scalings vary. But we do not regard their
differences as problematic because their population counterparts are different,
and each γ̂ is consistent and efficient for a different γ (assuming data are normally
distributed). As a matter of fact, we can choose the scale of ξo or that of ξc to
make γco or γoc to equal any pre-specified (nonzero) value while the test statistic
for the overall model structure remains at Tml = 2.073.

Table 3. Estimates (Est) of the path coefficient, its standard deviation (SD) and the
corresponding signal-to-noise ratio (SNR) by SEM, factor-score (FS) regression and
equally-weighted-composite (EWC) regression for the relationship ξc → ξo.

Method Identification Est SD SNR

SEM λc1 = 1.0, λo1 = 1.0 0.656 1.101 0.596
λc1 = 1.0, λo2 = 1.0 0.767 1.433 0.535
λc1 = 1.0, λo3 = 1.0 0.835 1.614 0.517
λc2 = 1.0, λo1 = 1.0 0.774 1.266 0.612
λc2 = 1.0, λo2 = 1.0 0.905 1.656 0.546
λc2 = 1.0, λo3 = 1.0 0.986 1.868 0.528
ϕc = 1.0, λo1 = 1.0 8.040 10.424 0.771
ϕc = 1.0, λo2 = 1.0 9.395 14.421 0.651
ϕc = 1.0, λo3 = 1.0 10.235 16.500 0.620

FS-reg λc1 = 1.0, λo1 = 1.0
BFS(ξc) & BFS(ξo) 0.475 0.549 0.865
RFS(ξc) & RFS(ξo) 0.588 0.680 0.865
BFS(ξc) & RFS(ξo) 0.425 0.492 0.865
RFS(ξc) & BFS(ξo) 0.656 0.759 0.865
ϕc = 1.0, λo1 = 1.0
BFS(ξc) & BFS(ξo) 5.821 6.732 0.865
RFS(ξc) & RFS(ξo) 7.201 8.328 0.865
BFS(ξc) & RFS(ξo) 5.213 6.029 0.865
RFS(ξc) & BFS(ξo) 8.040 9.299 0.865

EWC-reg sum(ξc) & sum(ξo) 0.824 1.128 0.730
ave(ξc) & ave(ξo) 0.549 0.752 0.730
sum(ξc) & ave(ξo) 0.275 0.376 0.730
ave(ξc) & sum(ξo) 1.648 2.257 0.730

Note. BFS=Bartlett-factor score, RFS=regression-factor score; sum=sum score,
ave=average score; the estimate with the largest SNR under SEM is in bold while
the one with the smallest SNR is underlined.

In Tables 2 and 3, the largest SNR under SEM was put in bold and the
smallest was underlined. The largest SNR in Table 2 corresponds to the condition
when both ξo and ξc are anchored by the most reliable indicators, whereas the
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largest SNR in Table 3 corresponds to the condition when ξc is scaled by ϕc =
1.0. In both Tables 2 and 3, the smallest SNR under SEM corresponds to the
conditions when both ξo and ξc are anchored by the least reliable indicators.

The middle panel of Table 2 contains the estimates of γ∗co for the first re-
gression model in Equation (8), where ξ̂o and ξ̂c are factor scores computed
following the NML estimates of the parameters under the identification rules
λo1 = λc1 = 1.0 and ϕo = λc1 = 1.0, respectively. Parallel results for the second
regression model in Equation (8) are displayed in the middle panel of Table 3. In
particular, the SNRs by the LS method for the two regression models in Equa-
tion (8) have the same value. To save space, we did not include the results of FS
regression corresponding to all sets of scalings of the two latent variables, while
their values of the SNR remain to be 0.865. For each identification condition,
there is also a γ̂∗ that has the same value as its SEM counterpart (i.e., 1.019 and
10.019 in Table 2, and 0.656 and 8.040 in Table 3), verifying the noted result by
Skrondal and Laake (2001).

The lower panels of Tables 2 and 3 contain the LS estimates for the regression
models in Equation (8) when ξ̂o and ξ̂c are the sum and/or average scores. They
are denoted by EWC regression (EWC-reg) in the tables. Clearly, the values of
the estimates of γ∗co and γ∗oc for the regression models in Equation (8) depend on
the scales of the composites and so do their corresponding SDs. However, unlike
SEM, the values of the SNR (as well as the corresponding z-statistic) under
FS regression or EWC regression remain the same across different scalings. Note
that the SNRs under EWC regression are smaller than those under FS regression,
because the sum scores are not as reliable as the factor scores.

In Table 2, all the eight SNRs for γ̂ by SEM are smaller than those for γ̂∗

by EWC regression and by FS regression. In Table 3, all the nine SNRs for γ̂
by SEM are smaller than that for γ̂∗ by FS regression; and only one SNR for
γ̂ by SEM is larger than that for γ̂∗ by EWC regression. Thus, using SNR as
a measure for the efficiency of parameter estimates, among the 17 options for
identifying the two SEM models, only in one option SEM outperforms EWC
regression. None of the 17 SEM identification options yields a greater SNR than
FS regression.

Results in Tables 2 and 3 also illustrate the fact that an LS estimate under
regression analysis with weighted composites does not have to be smaller than
its counterpart under SEM. Another interesting fact is that, unlike in regression
analysis under which the SNRs for the coefficients of x → y and y → x are the
same, the SNR under SEM differentiates the path coefficients between ξo → ξc
and ξc → ξo even if the two latent variables are scaled by the same set of anchors
(e.g., λc1 = λo1 = 1.0).

The results for FS regression in Tables 2 and 3 were obtained by treating
the factor scores as the observed variables, which is widely used in practice
(DiStefano, Zhu, & Mindrila, 2009; Widaman & Revelle, 2022). But parameter
estimates used to compute the factor scores contain sampling errors, which affect
the SEs of the resulting γ̂∗. Results in Yuan and Fang (2023b) indicate that
the SEs of the FS regression coefficients by considering the sampling errors in
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the estimated weights tend to be smaller than those by treating weights as
being given, and FS regression may become even more powerful in detecting the
existence of a relationship if the sampling errors in weights are accounted.

5.2 Example 2

Data Table 2 of Weston and Gore (2006) contains a sample covariance matrix
for a dataset with N = 403 cases and p = 12 variables. The dataset was part of a
survey of college students who participated in a vocational psychology research
project. With three indicators for each construct, the 12 variables are respectively
measures of 1) self-efficacy beliefs, 2) outcome expectations, 3) career-related
interests, and 4) occupational considerations. Weston and Gore Jr considered
two structural models. Deng and Yuan (2023) compared the values of z-statistics
of parameter estimates for each model by different methods, where each latent
variable was scaled by only one option. We consider only one of their models,
and our purpose here is to see how the SNRs react to different options for scaling
the latent variables.

Model The path diagram in Figure 2 corresponds to the first model of Weston
and Gore (2006), which posits that the effect of self-efficacy beliefs on career-
related interests is partially mediated by outcome expectations, while the effect
of self-efficacy beliefs on occupational considerations is completely through the
two mediator variables (outcome expectations & career-related interests). The
structural model has four path coefficients: γ11, γ21, β21, β32.

For each latent variable in Figure 2, we can select one of the three factor
loadings and fix it at 1.0 to anchor its scale. So by factor loadings alone there
are 34 = 81 different sets of scalings to identify the model. For the independent
latent variable self-efficacy beliefs (ξ1), we can also fix its variance at 1.0, which
provides additional 33 = 27 different sets of scalings to identify the model. With
a total of 81+27 = 108 ways of model identification, we will only study a subset
of them to illustrate our point, and the selected subsets allow us to see how and
what parameters are affected by the properties of the anchors.

Results Letting ϕ11 = Var(ξ1) = 1.0 and λy11 = λy42 = λy73 = 1.0, fitting
the model in Figure 2 to the vocational-psychology dataset by NML results in
Tml = 416.061, which corresponds to a p-value that is essentially 0 when referred
to χ2

50. With CFI=.913, and RMSEA=.135, the model might not be regarded
as fitting the data adequately although it is substantively derived (see Weston
and Gore, 2006 and references therein). Such a discrepancy between theory and
goodness of model-fit is not unusual in empirical modeling, reflecting our earlier
observation that the theoretical constructs may not be perfectly7 represented by

7 When letting all the four latent variables be freely correlated in Figure 2, we have
Tml = 361.848, which corresponds to a p-value that is essentially 0 when referred to
χ2
48, indicating that discrepancy between the theoretical constructs and the latent

variables also exists in the measurement model.
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Figure 2. A mediated model for self-efficacy belief on occupational considerations (We-
ston and Gore, 2006, N = 403).

Table 4. Parameter estimates (Est), their SEs (SE) and z-statistics for the model in
Figure 2 (p = 12, N = 403, Tml = 416.061, df = 50, p-value=.000; RMSEA=.135, and
CFI=.913). The right column is the reliability (ρ) of the 12 indicators.

Param. Est SE z Param. Est SE z Rel Est

λx1,1 2.381 0.111 21.467 ψx1 1.840 0.179 10.264 ρx1 0.755
λx2,1 2.365 0.108 21.903 ψx2 1.628 0.167 9.768 ρx2 0.775
λx3,1 2.402 0.104 23.145 ψx3 1.186 0.148 8.013 ρx3 0.830
λy1,1 1.000 ψy1 0.882 0.078 11.318 ρy1 0.808
λy2,1 0.976 0.030 32.930 ψy2 0.325 0.048 6.827 ρy2 0.916
λy3,1 0.993 0.032 30.628 ψy3 0.580 0.060 9.621 ρy3 0.863
λy4,2 1.000 ψy4 0.044 0.003 12.853 ρy4 0.394
λy5,2 1.144 0.094 12.229 ψy5 0.027 0.002 11.300 ρy5 0.580
λy6,2 1.011 0.098 10.326 ψy6 0.049 0.004 12.974 ρy6 0.372
λy7,3 1.000 ψy7 0.795 0.100 7.918 ρy7 0.835
λy8,3 0.963 0.040 24.212 ψy8 1.350 0.126 10.705 ρy8 0.734
λy9,3 0.795 0.033 23.934 ψy9 0.962 0.089 10.867 ρy9 0.725
γ11 1.186 0.096 12.364
γ21 0.046 0.009 5.161 σ2

ζ1
2.302 0.211 10.913

β21 0.057 0.006 10.003 σ2
ζ2

0.008 0.001 5.542
β32 10.368 0.822 12.615 σ2

ζ3
0.964 0.151 6.396
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Table 5. Values of the signal-to-noise ratio (SNR) of γ̂11, γ̂21, β̂21 and β̂32 for the
model in Figure 2 when ξ1, η1, η2, and η3 are anchored by fixing one of their loadings
(λ) at 1.0, or by letting ϕ11 = Var(ξ1) = 1.0.

anchors of SNR anchors of SNR

ξ1, η1, η2, η3 γ̂11 γ̂21 β̂21 β̂32 η1, η2, η3 γ̂11 γ̂21 β̂21 β̂32
x1, y1, y4, y7 0.631 0.258 0.499 0.629 (ϕ11 = 1.0)

x2, y1, y4, y7 0.636 0.259 0.499 0.629
x3, y1, y4, y7 0.646 0.259 0.499 0.629 y1, y4, y7 0.617 0.257 0.499 0.629

x1, y2, y4, y7 0.652 0.258 0.507 0.629 y2, y4, y7 0.636 0.257 0.507 0.629
x1, y3, y4, y7 0.642 0.258 0.504 0.629 y3, y4, y7 0.626 0.257 0.504 0.629
x1, y1, y5, y7 0.631 0.267 0.569 0.785 y1, y5, y7 0.617 0.266 0.569 0.785
x1, y1, y6, y7 0.631 0.257 0.489 0.609 y1, y6, y7 0.617 0.256 0.489 0.609
x1, y1, y4, y8 0.631 0.258 0.499 0.607 y1, y4, y8 0.617 0.257 0.499 0.607
x1, y1, y4, y9 0.631 0.258 0.499 0.605 y1, y4, y9 0.617 0.257 0.499 0.605

x2, y2, y5, y8 0.656 0.267 0.582 0.743

x1, y2, y5, y8 0.652 0.267 0.582 0.743
x3, y2, y5, y8 0.668 0.268 0.582 0.743 y2, y5, y8 0.636 0.266 0.582 0.743

x2, y1, y5, y8 0.636 0.267 0.569 0.743 y1, y5, y8 0.617 0.266 0.569 0.743
x2, y3, y5, y8 0.646 0.267 0.577 0.743 y3, y5, y8 0.626 0.266 0.577 0.743
x2, y2, y4, y8 0.656 0.259 0.507 0.607 y2, y4, y8 0.636 0.257 0.507 0.607
x2, y2, y6, y8 0.656 0.257 0.496 0.589 y2, y6, y8 0.636 0.256 0.496 0.589
x2, y2, y5, y7 0.656 0.267 0.582 0.785 y2, y5, y7 0.636 0.266 0.582 0.785
x2, y2, y5, y9 0.656 0.267 0.582 0.739 y2, y5, y9 0.636 0.266 0.582 0.739

x3, y3, y6, y9 0.657 0.258 0.493 0.587

x1, y3, y6, y9 0.642 0.257 0.493 0.587
x2, y3, y6, y9 0.646 0.257 0.493 0.587 y3, y6, y9 0.626 0.256 0.493 0.587

x3, y1, y6, y9 0.646 0.258 0.489 0.587 y1, y6, y9 0.617 0.256 0.489 0.587
x3, y2, y6, y9 0.668 0.258 0.496 0.587 y2, y6, y9 0.636 0.256 0.496 0.587
x3, y3, y4, y9 0.657 0.259 0.504 0.605 y3, y4, y9 0.626 0.257 0.504 0.605
x3, y3, y5, y9 0.657 0.268 0.577 0.739 y3, y5, y9 0.626 0.266 0.577 0.739
x3, y3, y6, y7 0.657 0.258 0.493 0.609 y3, y6, y7 0.626 0.256 0.493 0.609
x3, y3, y6, y8 0.657 0.258 0.493 0.589 y3, y6, y8 0.626 0.256 0.493 0.589

Note. The underlined row in each block is for reference against which the other lines
of the block are compared.
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the Greek letters in Figure 2. But the discrepancy between the model and data
has little to do with our illustration, since the results are essentially the same
even if the model fits the data perfectly (i.e., letting the sample covariance matrix
equal the model implied covariance matrix). For reference, Table 4 contains the
estimates of the factor loadings (λ), error variances (ψ), the path coefficients of
the structural model, and the variances of the three prediction errors (σ2

ζ ). The
last column of Table 4 indicate that x3 is the most reliable indicator for ξ1 while
y2, y5 and y7 are the most reliable indicators for η1, η2 and η3, respectively. All
the parameter estimates in Table 4 are statistically significant at the level of .05.

Table 5 contains the values of the SNR for the four path coefficients under 48
different identification conditions (out of 108 options). Results on the left side
of the table are obtained when one of the loadings of ξ1 is fixed at 1.0, while
those on the right side are obtained by letting ϕ11 = Var(ξ1) = 1.0. Note that
the values of the four parameter estimates vary across the 48 sets of scalings,
while Tml = 416.061. Our main interest with this example is the pattern of the
SNRs while they vary with the parameter estimates when the latent variables
are scaled differently.

There are 6 blocks of results in Table 5, and each block has one set of scalings
underlined, which serves the condition for reference. In particular, for each set
of scalings within a given block, only one of the four latent variables is rescaled
compared to the reference condition. The results in Table 5 exhibit the following
patterns.

1) When ξ1 is anchored by x1, x2, x3 or by ϕ11 = 1.0, the SNRs for β̂21 and β̂32
are not affected by the scale change of ξ1. In addition, results not included
in the table also indicate that the values of β̂21 and β̂32 as well as their SDs
are not affected by the scale change of ξ1 either. This is because the paths
represented by β21 and β32 are not directly connected with ξ1 in Figure
2. However, the SNRs or equivalently the z-statistics for both γ̂11 and γ̂21
become greater when ξ1 is anchored by a more reliable indicator.

2) In Figure 2, the paths represented by γ21 and β32 are not directly connected
with η1. When η1 is anchored by different indicators, the SNRs for γ̂21 and
β̂32 are not affected. However, the SNRs for γ̂11 and β̂21 become greater as
the anchor of η1 is more reliable.

3) In Figure 2, the path represented by γ11 is not directly connected with η2.
When η2 is anchored by different indicators, the SNR for γ̂11 is not affected
by the scale change of η2. However, the SNRs for γ̂21, β̂21 and β̂32 become
greater as η2 is anchored by a more reliable indicator.

4) For the same reason, the SNRs for γ̂11, γ̂21 and β̂21 are not affected by the

scale change of η3. The SNR for β̂32 becomes greater as η3 is anchored by a
more reliable indicator.

The results in Table 5 suggested that, the SNR or z-statistic for a parameter esti-
mate is invariant to the scale changes of the latent variables that are not directly
connected with the path that the parameter represents. In contrast, the SNR
for a parameter estimate becomes greater when the directly connected latent
variables are anchored by more reliable indicators. In particular, the greatest
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SNRs for γ̂11, γ̂21, β̂21 and γ̂32 are respectively SNRγ11
= .668, SNRγ21

= .268,
SNRβ21

= .582, and SNRβ32
= .785. They are simultaneously obtained when all

the latent variables are anchored by indicators with the greatest reliability (i.e.,
x3 for ξ1, y2 for η1, y5 for η2, and y7 for η3).

Note that, while the values of γ̂, β̂ and SNR change when different indicators
are used as anchors, the value of the SNR under SEM will remain the same once
the anchors are chosen regardless of the particular values of the factor loadings.
That is, λo1 = 1.0 or λo1 = 2.3 leads to the same SNR in Tables 2 and 3.
Similarly, the value of the SNR (or z-statistic) remains the same once the scale
of ξc is determined by fixing the value of ϕc regardless of its particular value,
e.g., ϕc = 1.0 or ϕc = 3.5 corresponds to the same SNR. More systematic results
in this direction are presented in Yuan, Ling, and Zhang (2024).

The results of the two examples provide the fact for answering questions Q1,
Q2 and Q3.

6 Answers to Questions Q1 to Q5

Our analysis and results might have already answered the questions posed in the
introduction of the article. As a summary, we will answer them directly in this
section. For clarity, we will also include the original questions.
Q1. Under SEM, what is the effect of different scaling options on the accuracy of
parameter estimates and the related z-statistics? How can we use the information
to serve our purpose?

When a latent variable is anchored by an indicator with greater reliability,
the SNRs and consequently the z-statistics for path coefficients that are directly
related to the latent variables are expected to be greater. However, estimates
of the path coefficients that are not directly related to the latent variables are
not affected nor their SEs. Also, scaling an independent latent variable by fixing
its variance at 1.0 may result in even greater SNRs. Thus, under SEM, we can
obtain more efficient parameter estimates of path coefficients by selecting more
reliable anchors for latent variables.
Q2. Do measurement errors cause attenuated or biased estimates for the LS
method of regression analysis with weighted composites?

Measurement errors alone do not cause biased or attenuated regression coef-
ficients. It is the artificially chosen scales that make the path coefficients under
regression analysis different from those under SEM.
Q3. Does SEM yield more accurate parameter estimates than LS regression with
weighted composites?

SEM does not yield more accurate parameter estimates than LS regression
with weighted composites. When measured by SNR, it is more likely the other
way around. That is, even regression analysis with EWCs may yield more efficient
estimates of path coefficients than SEM, especially when the indicators for each
latent variable are approximately parallel.
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Q4. Between SEM and regression analysis with weighted composites, to what
level the estimated regression coefficients can be compared with their SEM coun-
terparts?

There are three levels that the path coefficients under regression analysis
can be compared with their counterparts under SEM: (1) γw = 0 if and only if
γ = 0, where γ = (γ1, γ2, . . . , γp)

′ and γw = (γw1, γw2, . . . , γwp)
′ are respectively

the path coefficients of a given dependent variable under SEM and regression
analysis with weighted composites. Inference for one set of parameters can be
done by a statistical test on the other set of parameters, simultaneously. (2)
γ = γw when a BFS is used as the dependent variable and the joint RFSs
are used as the independent variables in FS regression. Then, the two sets of
parameters as well as their respective estimates can be substituted for each
other. (3) Regardless of the scales chosen for the variables under each modeling
technique, the size of the multivariate SNR determines the statistical power
in testing γ = 0, and FS regression is expected to correspond to a greater
multivariate SNR and consequently to be more powerful than SEM.
Q5. Does standardization advance result interpretation or only facilitate model
identification?

Whether the measurements have predefined metrics or not, standardization
only facilitates model identification. Unless standard deviation is a widely used
and well-understood unit in a given context, standardization does not advance
our understanding nor facilitates interpretation of the parameter estimates in a
SEM or regression model.

7 Discussion and Conclusion

We studied several widely circulated notions in modeling data with measure-
ment errors but without predefined metrics. While modeling such data poses
many challenges, SEM still offers important information that regression analysis
with composite scores is unable to provide. In particular, SEM gives a platform
to assess the goodness of the overall model structure, unidimensionality of dif-
ferent subscales, individual indicator reliability, and measurement invariance for
group comparison, etc. However, while inference on parameter estimates under
SEM can be statistically sound, substantive interpretation on the size of a path
coefficient becomes a challenge if the measurements do not have predefined or
well-understood scales to start with.

Because path coefficients under both SEM and regression analysis with com-
posites depend on subjectively assigned scales of the involved variables, there is
no point to demand regression analysis to yield estimates that are consistent with
those under SEM. For parameters whose population values depend on subjec-
tively assigned scales, a natural criterion for comparing their estimates is SNR,
which is parallel to Cohen’s d and serves as an index for the efficiency of the
estimate. When all the path coefficients of a dependent variable are considered
simultaneously, FS regression is expected to correspond to a greater (multivari-
ate) SNR than SEM. If the indicators for each latent variable do not greatly
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deviate from parallel, EWC regression is also expected to outperform SEM with
respect to efficiency of the estimated regression coefficients.

In addition to numerical differences between estimates by different methods,
parameters under SEM are to govern the relationship of variables representing
the population, where individuals are treated equally (i.e., a random representa-
tion). In practice, individuals with greater pretest scores are expected to perform
better on the outcome variable, and parameters under regression analysis with
weighted composites are to govern such a relationship. In particular, conditional
on the metrics of the observed and latent variables, the predicted values ac-
cording to the uncorrected LS estimates of the regression model still have the
smallest MSE even if the target is the latent-outcome variable and the pretest
scores are not error-free. But the SNR and R2 of the regression model as well
as the MSE of the predicted value are related to the size of measurement er-
rors. More reliable composites correspond to more accurate estimates of path
coefficients, greater R2 values, and smaller prediction errors.

We have shown that standardization of latent or manifest variables is use-
ful for model identification, not necessarily advancing our understanding of the
relationship among the involved variables nor better interpretation of the pa-
rameters of the model either. That said, we do not exclude a context under
which the distribution of a variable can be well understood in a standardized
scale with mean 0 and variance 1.0. For example, we might transform the distri-
bution of IQ (ξ) by zξ = (ξ − 100)/15 and the value of zξ allows us to judge the
standing of the corresponding ξ in percentile according to the standard normal
distribution N(0, 1). However, this might belong to the case where the scale of
the measurement was known in advance.

Bias can be easily defined and explained for parameter estimates in mod-
eling variables that have predefined metrics. Empirical bias can also be easily
evaluated in Monte Carlo studies even when data do not have predefined met-
rics. However, it is not clear how to interpret bias substantively if the scales
of the variables need to be subjectively assigned. In particular, two researchers
who conduct SEM analyses can have very different parameter estimates for the
same path coefficient while they both are consistent/unbiased. Similarly, one re-
searcher can choose the sum scores while another can choose the average scores
in regression analyses, and they have identical t-statistics and R2. But their pa-
rameter estimates are different. More generally, suppose Researcher A gets an
estimate γ̂a while Researcher B get an estimator γ̂b = cγ̂a, where c > 0 is a con-
stant. We are unable to compare the two estimators with respect to bias since
(if needed) Researcher B can always rescale his estimator to γ̃b = γ̂b/c if the
involved variables do not have predefined metrics. Regardless, we recommend
the one with a greater SNR, and γ̃b and γ̂b are equivalent in the sense that they
have the same SNR.

The first take-home message from this article is that sizes of parameter esti-
mates and their SEs are not meaningful quantities for models involving (latent or
manifest) variables that do not have predefined metrics, and SNR is a logical and
also a natural measure of efficiency of parameter estimates. For the same rea-
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son, the MSE of parameter estimates is not a logical criterion to compare across
methods unless the population values of the parameters are held constant among
the methods or when all the involved variables are on the same metrics. When
the estimands become equal, the most efficient and accurate estimates have the
greatest SNR. The 2nd take-home message is that standardization does not ad-
vance interpretation but offers a way to avoid dealing with the issues of lack of
metrics. Effort needs to be made to develop substantively rationalized metrics
under which parameter estimates are interpreted.
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Abstract. Kristof’s theorem gives the global maximum and minimum
of the trace of some matrix products without using calculus or Lagrange
multipliers with various applications in psychometrics and multivariate
analysis. However, the underutilization has been seen irrespective of its
great use in practice. This may partially be due to the lengthy and in-
volved proof of the theorem. In this tutorial, some known or new lem-
mas are rephrased or provided to understand the essential points in the
proof. Ten Berge’s generalized Kristof theorem is also addressed. Then,
the modified Kristof and Ten Berge theorems using parent orthonormal
matrices are shown, which may be of use to see the properties of the
Kristof and Ten Berge theorems.

Keywords: von Neumann’s trace inequality · Generalized Kristof theo-
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1 Introduction

Kristof’s (1969; 1970) theorem for the global maximum of the trace of matrix
products gives simple derivations of the least square solutions for various prob-
lems in psychometrics and multivariate analysis. A special but basic case of the
theorem for two sets of matrix products yielding a bilinear form was given by
von Neumann (1937, Theorem 1) known as his trace inequality, which was in-
troduced in psychometrics by Green Jr (1969, p. 317) based on the comment of
Ingram Olkin.

In spite of its great use, von Neumann’s derivation using sophisticated math-
ematics was not easy for applied researchers to follow. Simplifications or ele-
mentary derivations of the theorem has been given by e.g., Kristof (1970) and
Mirsky (1975). It is to be noted that these two authors also gave extensions
of von Neumann’s trace inequality to those with more than two sets of matrix
products in different forms.

While the proof by Kristof of his theorem is based on elementary linear
algebra using mostly self-contained materials, the proof is long and involved.
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This may be one of the reasons for the relatively small frequency of citations
as commented by Levin (1979, p. 109) “Kristof’s theorem has not received its
due attention in the psychometric literature”, which was also cited by Waller
(2018, Introduction), who also stated that “Underutilization of this method
likely stems, in part, to the mathematical complexity of Kristof’s (1964; 1970)
writings” (Abstract).

One of the purposes of this tutorial is to break down Kristof’s long and in-
volved derivation using independent lemmas to provide a transparent structure
of the proof. Note that the lemmas may also be of interest as general results in
elementary linear algebra. The second purpose is to introduce a short deriva-
tion of von Neumann’s trace inequality obtained by Mirsky (1975) as mentioned
earlier, where Fan (1951)’s lemma with a self-contained didactic proof is intro-
duced. Note that von Neumann’s trace inequality and its extensions have wide
applications in various fields e.g., applied linear algebra, mathematical physics
and the hyperelasticity of isotropic materials as well as psychology as reviewed
by Miranda and Thompson (1993), who cited Kristof (1970) among associated
references.

The remainder of this article is organized as follows. In Section 2, some lem-
mas are introduced for Kristof’s theorem followed by a didactic derivation of von
Neumann’s trace inequality. Section 3 gives didactic proofs of Kristof’s theorem
for the 3-fold or tri-linear case and the general case. In Section 4, Ten Berge’s
generalized theorem and modifications of the Kristof and Ten Berge theorems are
presented. Some applications of these theorems are shown in Section 5. Section
6 gives discussions. In the appendix, technical details are provided.

2 Lemmas for Kristof’s theorem and a didactic derivation
of von Neumann’s trace inequality

In this section, six lemmas and a theorem with a didactic derivation of von
Neumann’s trace inequality in line with the later derivation of Kristof’s theorem
will be shown. Lemma 1 gives the maximum of the sum of products of two
quantities required for von Neumann’s trace inequality, followed by Lemma 1A
corresponding to Kristof (1970, Lemma 1), for the similar maximum of the sum
of products of more than two quantities for the derivation of Kristof’s theorem.
Lemma 2 shows the same ranges of the traces irrespective of their absolute values
of associated diagonal elements with permutation, which corresponds to Kristof
(1970, Lemma 2).

Lemma 3 is a new independent lemma corresponding to the symmetric con-
dition for a maximized trace in Kristof (1970, (iv) of the proof of Theorem (first
version)). Lemma 4 is the second independent lemma for the property that sym-
metric AD and DA with D being diagonal make A diagonal (Kristof, 1970, (iv)
of the proof of Theorem (first version)).

Lemma 5 is the third independent lemma when we have two products of
orthonormal and diagonal matrices (a special case of Kristof (1970, (iv) of the
proof of Theorem (first version))) for von Neumann’s trace inequality, which
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was provided to understand the inequality as a special case of Kristof’s theorem.
Theorem 1 is for von Neumann’s trace inequality with the derivation similar to
the later one for Kristof’s general theorem.

Lemma 1 : The maximum of the sum of products of two quantities
(Hardy, Littlewood, and Pólya (1934, 1952, Subsection 10.2); von Neu-
mann (1937, Theorem 1); Simon (2005, Lemma 1.8)). For two sets of
m numbers with a1 ≥ · · · ≥ am ≥ 0 and b1 ≥ · · · ≥ bm ≥ 0, let a∗1, ..., a

∗
m and

b∗1, ...b
∗
m be arbitrary cases in each set of m! permutations including possibly the

same ones. Then, the maximum of
∑m

i=1 a
∗
i b

∗
i over the permutations is given by∑m

i=1 aibi.

Proof. Without loss of generality, consider the maximum of
∑m

i=1 aib
∗
i . Sup-

pose that b∗1 ̸= b1. Then, exchanging b∗1 and b∗k = b1(k ̸= 1) in the permutation,∑m
i=1 aib

∗
i increases if b

∗
1 ̸= b∗k and is unchanged if b∗1 = b∗k since (ai−aj)(bi−bj) ≥

0 and consequently aibi + ajbj − (aibj + ajbi) ≥ 0 (1 ≤ i ≤ j ≤ m). Using
this possibly exchanged permutation, redefine b∗1, ..., b

∗
m. Then, when b∗2 ̸= b2,

exchange b∗2 and b∗k = b2(k > 2). Repeat this process until the possible ex-
change of b∗m−1 and b∗m = bm−1 when b∗m−1 ̸= bm−1. The final permutation gives∑m

i=1 aib
∗
i =

∑m
i=1 aibi, which is the maximum since no permutation b∗1, ..., b

∗
m

using pairwise exchanges after the final one increases
∑m

i=1 aib
∗
i . ⊓⊔

The above proof is a “heuristic” one finding the maximum successively. Waller
(2018, Topic III) also used a similar “constructive proof” for the above lemma
based on the proof of Simon (2005, Lemma 1.8., p. 4), which is elementary
though of interest. However, the above heuristic proof seems to be simpler than
Waller’s didactic one. Note that “heuristic” is synonymous with “constructive”
in this case.

Lemma 1A: The maximum of the sum of products with arbitrary
number of factors Kristof (1970, Lemma 1). For n sets of m numbers

with a
(j)
1 ≥ · · · ≥ a

(j)
m ≥ 0 (j = 1, ..., n; n ≥ 2), let a

(j)∗
1 , ..., a

(j)∗
m be an arbi-

trary case in the j-th set of m! permutations including possibly the same ones.

Then, the maximum of
∑m

i=1 a
(1)∗
i · · · a(n)∗i over the permutations is given by∑m

i=1 a
(1)
i · · · a(n)i .

Proof. Consider the case of n = 3. For two sets a
(j)∗
1 , ..., a

(j)∗
m (j = 1, 2) in

the three sets, Lemma 1 gives the maximum of the sum of the products as∑m
i=1 a

(1)
i a

(2)
i . Then, for the two sets of m products a

(1)
1 a

(2)
1 , ..., a

(1)
m a

(2)
m and m

numbers a
(3)∗
1 , ..., a

(3)∗
m , the maximum of

∑m
i=1 a

(1)
i a

(2)
i a

(3)∗
i over the m! per-

mutation in the third set is similarly obtained by
∑m

i=1 a
(1)
i a

(2)
i a

(3)
i . Since any

permutation for the maximized one including the first two sets decreases the

product sum or remains unchanged as seen in Lemma 1,
∑m

i=1 a
(1)
i a

(2)
i a

(3)
i is the

global maximum. The cases with n ≥ 4 is similarly obtained. ⊓⊔
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Lemma 2 : The same ranges of the traces irrespective of their abso-
lute values of the diagonal elements with permutation (Kristof, 1970,
Lemma 2). Let Γ∗

1 and Γ∗
2 be m × m diagonal matrices; and Γ1 and Γ2 be

those with the corresponding diagonal elements replaced by their absolute values
located in the weakly descending (non-increasing) orders, respectively. Suppose
that X1 and X2 independently vary over all the m × m orthonormal matrices.
Then, tr(X1Γ

∗
1X2Γ

∗
2) has the same range as that of tr(X1Γ1X2Γ2).

Proof. Kristof’s derivation is didactically repeated. Note that Γi is obtained by
Γi = PiSiΓ

∗
iP

T
i , where Si is the signed identity matrix replacing the diagonal

elements of Γ∗
i by their corresponding absolute values, and Pi is the permutation

matrix to have the weakly descending order mentioned earlier (i = 1, 2). Noting
that Γ∗

i = SiP
T
i ΓiPi, we have

tr(X1Γ
∗
1X2Γ

∗
2) = tr{X1(S1P

T
1 Γ1P1)X2(S2P

T
2 Γ2P2)}

= tr{(P2X1S1P
T
1 )Γ1(P1X2S2P

T
2 )Γ2)}.

In the last result, P2X1S1P
T
1 and P1X2S2P

T
2 are products of orthonormal ma-

trices and consequently orthonormal with the same variations of X1 and X2,
which shows the required same ranges of tr(X1Γ

∗
1X2Γ

∗
2) and tr(X1Γ1X2Γ2).

⊓⊔

The following lemma gives a derivation of Kristof’s theorem shown later when
n = 1, which will also be used in the cases when n = 2, 3, ... in the derivation of
the theorem by induction.

Lemma 3 A symmetric condition for a maximized trace (Kristof, 1970,
(iv) of the proof of Theorem (first version)). Let G be a square matrix
of full rank whose singular value decomposition (SVD) is G = UΛVT, where
U and V are orthonormal, and Λ is a diagonal matrix with positive diagonal
elements in a prescribed order. When tr(G) is maximized with a given Λ, G
becomes symmetric.

Proof. Since tr(G) = tr(UΛVT) = tr(VTUΛ) with VTU being orthonormal,
tr(G) is maximized when VTU is an identity matrix, which indicates that U =
V and consequently G = UΛUT is symmetric. ⊓⊔

In the above proof, the identity matrix maximizing the trace is didactically
obtained in two ways as follows. (i) Note that tr(VTUΛ) =

∑m
i=1 v

T
i uiλi, where

vi and ui are the i-th columns of V and U, respectively with vT
i vi = uT

i ui =
1 (i = 1, ...,m) due to the orthonormality of V and U; and λi > 0 (i = 1, ...,m)
by assumption. Using vT

i ui = vT
i ui/{(vT

i vi)
1/2(uT

i ui)
1/2} ≤ 1 (i = 1, ...,m)

by the Cauchy-Schwarz (C-S) inequality, we have tr(VTUΛ) =
∑m

i=1 v
T
i uiλi

≤
∑m

i=1 λi. Since the maximum in the C-S inequality is obtained when vi =
ui (i = 1, ...,m), we have VTU = VTV = UTU = Im (the m × m identity
matrix) for maximizing tr(VTUΛ).



Proof of Kristof’s Theorem: A Tutorial 33

(ii) The second derivation is given without using the C-S inequality. Since
W = {wij} ≡ VTU is orthonormal as seen from (VTU)T(VTU) = UTVVTU =
UTU = Im, we have wij ≤ 1 (i, j = 1, ...,m). Consequently, tr(VTUΛ) =∑m

i=1 wiiλi ≤
∑m

i=1 λi = tr(Λ), where the maximum is attained when wii =
1 (i = 1, ...,m), which is the case of W = VTU = Im.

(iii) It is of interest to find that (ii) gives the C-S inequality in (i) via Kristof’s
theorem, which will be addressed later as an application of Kristof’s theorem.

Lemma 4 Symmetric AD and DA with diagonal D make A diagonal
(Kristof, 1970, (iv) of the proof of Theorem (first version)). Let A =
{aij} and D be m×m matrices with D being diagonal. Suppose that the diagonal
elements di(i = 1, ...,m) of D are nonzero and |di|’s are mutually different.
Suppose further that AD and DA are both symmetric. Then, A is diagonal.

Proof. By assumption, AD = (AD)T = DAT and DA = (DA)T = ATD.
From the last equation, we have DAD−1 = AT. Using AT = DAD−1 on the
right hand-side of the first equation AD = DAT and post-multiplying D−1 on
both sides of the equation, we obtain A = D2AD−2, which indicates that

aij = aijd
2
i /d

2
j (i, j = 1, ...,m).

Since d2i /d
2
j ̸= 1 when i ̸= j by assumption, aij = 0 (i ̸= j) follow. ⊓⊔

When A is diagonal, we have AD = DA, where A and D are said to com-
mute. Using this formulation, a lemma equivalent to Lemma 4 was stated by
Kiers and Ten Berge (1989, Lemma 1).

Lemma 5 : Two products of orthonormal and diagonal matrices (a
special case of Kristof (1970, (iv) of the proof of Theorem (first ver-
sion))). Let Xi, Di and ∆i be m×m matrices, where Xi is orthonormal while
Di and ∆i are diagonal and of full rank (i = 1, 2). Suppose that

X1D1X2 = ∆1 and X2D2X1 = ∆2.

Then, X1 and X2 are the m×m signed and/or permuted identity matrices with
m nonzero elements being ±1, where permutation indicates row- or column-wise
one. When without permutation, X1 and X2 are diagonal matrices with their
diagonal elements being ±1, and ∆1D2 = ∆2D1.

Proof. Left-multiplyingX1D1 on both sides ofX2D2X1 = ∆2 usingX1D1X2 =
∆1, we have ∆1D2X1 = X1D1∆2 giving ∆1D2 = X1D1∆2X

T
1 . The last result

shows the spectral decomposition of the diagonal matrix ∆1D2, which indicates
that the orthonormal matrix X1 becomes a signed and/or permuted identity
matrix and when without permutation ∆1D2 = ∆2D1. For X2, exchanging
the subscripts “1” and “2” due to symmetry, we obtain ∆2D1 = X2D2∆1X

T
2

indicating the same results as for X1. ⊓⊔
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Theorem 1 : Two-fold or bilinear case (n = 2) (von Neumann (1937,
Theorem 1); Kristof (1970, Theorem (first version))). Let Γ∗

1 and Γ∗
2

be fixed diagonal matrices of full rank with the absolute values of the diagonal
elements being mutually different in each matrix. Consider the maximum and
minimum of tr(X1Γ

∗
1X2Γ

∗
2) which are attained, where X1 and X2 independently

vary over all m×m orthonormal matrices. Then,

−tr(Γ1Γ2) ≤ tr(X1Γ
∗
1X2Γ

∗
2) ≤ tr(Γ1Γ2),

where Γi = diag(γi1, ..., γim) is given by Γ∗
i with their diagonal elements re-

placed by the corresponding absolute values with possible permutation to have
the descending order i.e., γi1 > · · · > γim > 0 (i = 1, 2).

Proof. By Lemma 2, since the range of tr(X1Γ1X2Γ2)(= tr(Γ2X1Γ1X2)) is the
same as that of tr(X1Γ

∗
1X2Γ

∗
2), we consider the former range. Due to Lemma

3, when the former trace is maximized, X1Γ1X2Γ2 and similarly Γ2X1Γ1X2

become symmetric. Then, using Lemma 4 we find that X1Γ1X2 is diagonal.
Due to symmetry with tr(X1Γ1X2Γ2) = tr(Γ2X2Γ1X1), X2Γ2X1 is also found
to be diagonal. By Lemma 5, these two diagonal conditions give the maximum
tr(Γ1Γ2) of tr(X1Γ1X2Γ2) when X1 and X2 are the same signed identity ma-
trices. The global maximum tr(Γ1Γ2) among the permuted diagonal elements of
Γ1 and Γ2 is shown by Lemma 1. The minimum is given by replacing e.g., X1

by −X1. ⊓⊔

Remark 1 The second simple proof of Theorem 1. (Mirsky, 1975) using an as-
sociated property of the doubly stochastic matrix obtained by Fan (1951, Lemma
1A) will be shown with Fan’s lemma in the appendix. Note that a doubly stochas-
tic matrix is a square one, where the sum of each row and that of each column
are unities. An example is the matrix consisting of the squared elements of an
orthonormal matrix. Mirsky’s proof has been known in the mathematical com-
munity as a short and simple derivation of von Neumann’s trace inequality.

Remark 1A In his tutorial, Waller (2018, Equation (21)) explained the result
of Theorem 1 using the symmetric condition as given in Lemma 3 with the SVD
tr(X1Γ1X2Γ2) = tr(P∆QT) = tr(PQT∆), whose optima are attained when
P = Q or P = −Q as −tr(∆) ≤ tr(X1Γ1X2Γ2) ≤ tr(∆). This result is correct.
Then, Waller (2018, Equation (22)) gave inequalities −tr(Γ1Γ2) ≤ tr(∆) ≤
tr(Γ1Γ2) using our notation followed by the statement “the bounds by Kristof’s
theorem can be achieved”. These are also correct. However, the most important
result in Theorem 1 is tr(∆) = tr(Γ1Γ2), whose proof has been shown by using
Lemma 5 as well as the second one in the appendix.

3 Didactic proofs of Kristof’s theorem

In this section, an independent lemma in linear algebra is provided, which is
an extension corresponding to the result in the proof of Kristof (1970). The tri-
linear case is given as Theorem 3 for didactic purposes, followed by a short proof
of Kristof’s general theorem using several lemmas.
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Lemma 6 : Two products of square, diagonal and orthonormal matri-
ces (an extension of Kristof (1970, (iv) of the proof of Theorem (first
version))). Let A,X, Di and ∆i be m ×m matrices of full rank, where X is
orthonormal while Di and ∆i are diagonal (i = 1, 2). Suppose that

AD1X = ∆1 and XD2A = ∆2.

Then, X is the m×m signed and/or permuted identity matrices with m nonzero
elements being ±1, where permutation indicates row- or column-wise one. When
without permutation, X is diagonal with its diagonal elements being ±1, and
∆1D2 = ∆2D1.

Proof. Right-multiplying D1X on both sides of XD2A = ∆2 using AD1X =
∆1, we have XD2∆1 = ∆2D1X giving ∆2D1 = X∆1D2X

T. The last result
shows the spectral decomposition of the diagonal matrix ∆2D1, which indicates
that the orthonormal matrix X becomes a signed and/or permuted identity
matrix and when without permutation ∆1D2 = ∆2D1. ⊓⊔

Remark 2 Lemma 5 is seen as a special case of Lemma 6 when A = X1 an
orthonormal matrix and X is denoted by X2. However, in Lemma 5, both X1

and X2 were found to be signed and/or permutated identity matrices. Note also
that Kristof (1970) dealt with the case when A = G1Γ1G2Γ2 · · ·Gn−1Γn−1Gn,
D1 = Γn, D2 = Γn+1 and X = Gn+1, where Γi and Gi are diagonal and or-
thonormal matrices, respectively. This specification was necessary for his deriva-
tion by induction though the involved expression G1Γ1G2Γ2 · · ·Gn−1Γn−1Gn

may hide the basic structure in Lemma 6.

Theorem 2 : Three-fold or trilinear case (n = 3) (Kristof, 1970, Theo-
rem (first version)). Let Γ∗

i (i = 1, 2, 3) be fixed diagonal matrices of full rank
with the absolute values of the diagonal elements being mutually different in each
matrix. Consider the maximum and minimum of tr(X1Γ

∗
1X2Γ

∗
2X3Γ

∗
3) which are

attained, where Xi(i = 1, 2, 3) independently vary over all m ×m orthonormal
matrices. Then,

−tr(Γ1Γ2Γ3) ≤ tr(X1Γ
∗
1X2Γ

∗
2X3Γ

∗
3) ≤ tr(Γ1Γ2Γ3),

where Γi = diag(γi1, ..., γim) is given by Γ∗
i with their diagonal elements re-

placed by the corresponding absolute values with possible permutation to have
the descending order i.e., γi1 > · · · > γim > 0 (i = 1, 2, 3).

Proof. As in the proof for Theorem 1, using Lemma 2 in a similar manner with
Γi = PiSiΓ

∗
iP

T
i and unconstrained orthonormal Xi(i = 1, 2, 3), the range

of tr(X1Γ1X2Γ2X3Γ3) (= tr(Γ3X1Γ1X2Γ2X3)) is found to be the same as
that of tr(X1Γ

∗
1X2Γ

∗
2X3Γ

∗
3). Due to Lemma 3, when the former trace is max-

imized, X1Γ1X2Γ2X3Γ3 ≡ BΓ3 and similarly Γ3X1Γ1X2Γ2X3 = Γ3B be-
come symmetric. Then, using Lemma 4 we find that B = X1Γ1X2Γ2X3 ≡
AΓ2X3 is diagonal. Similarly, since tr(X1Γ1X2Γ2X3Γ3) = tr(AΓ2X3Γ3) =
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tr(X3Γ3AΓ2), X3Γ3A is also diagonal. From Lemma 6, these two diagonal con-
ditions can make X3 an identity matrix. Then, using Theorem 1, the maximum
tr(X1Γ1X2Γ2X3Γ3) = tr(X1Γ1X2Γ2Γ3) is obtained when X1 and X2 are iden-
tity matrices as tr(Γ1Γ2Γ3). The minimum −tr(Γ1Γ2Γ3) is obtained as in The-
orem 1. ⊓⊔

Remark 2A In the proof of Theorem 2, the key result is tr(X1Γ1X2Γ2X3Γ3) =
tr(X1Γ1X2Γ2Γ3). Since Γ2Γ3 ≡ Γ2∗3 is diagonal, the maximum of tr(X1Γ1X2Γ2Γ3)
= tr(X1Γ1X2Γ2∗3) is obtained by Theorem 1 for the bilinear case. This suggests
a heuristic proof for the general case, which is employed in the following result.

Theorem 3 : The n-fold case (n = 2, 3,...) (Kristof, 1970, Theorem
(first version)). Let Γ∗

i (i = 1, ..., n) be fixed diagonal matrices. Consider
the maximum and minimum of tr(X1Γ

∗
1 · · ·XnΓ

∗
n) which are attained, where

Xi(i = 1, ..., n) independently vary over all orthonormal matrices. Then,

−tr(Γ1 · · ·Γn) ≤ tr(X1Γ
∗
1 · · ·XnΓ

∗
n) ≤ tr(Γ1 · · ·Γn),

where Γi = diag(γi1, ..., γim) is given by Γ∗
i with their diagonal elements replaced

by the corresponding absolute values with possible permutation to have the weakly
descending order i.e., γi1 ≥ · · · ≥ γim ≥ 0 (i = 1, ..., n).

Proof. As in Kristof (1970), first suppose that γi1 > · · · > γim > 0 (i = 1, ..., n).
Using the result of Theorem 2, increase n one by one as n = 4, 5,... When
n = 4, redefine B ≡ X1Γ1 · · ·X3Γ3X4 ≡ AΓ3X4. Then, from Lemma 4,
B = AΓ3X4 becomes diagonal. Similarly, X4Γ4A is also diagonal. Then, as
before X4 can become an identity matrix. Using Theorem 2, the maximum of
tr(X1Γ1 · · ·X3Γ3X4Γ4) = tr(X1Γ1 · · ·X3Γ3Γ4) is given by tr(Γ1 · · ·Γ4). The
minimum is similarly obtained as −tr(Γ1 · · ·Γ4). Increasing n successively one
by one, we obtain the required results.

Further, consider the weakly ordered case γi1 ≥ · · · ≥ γim ≥ 0 (i = 1, ..., n).
As in Kristof (1970, (v) of the proof of Theorem (first version) based on the
suggestion by Bary G. Wingersky), let W = diag(w1, ..., wm) with w1 > · · · >
wm > 0. Redefine Γi as Γi + εW(i = 1, ..., n) with ε > 0. Then, we have the
same above result since γi1 > · · · > γim > 0. When ε approaches zero with
fixed Xi(i = 1, ...n), the same required result is given by substituting ε = 0 for
Γi + εW under the limiting condition of γi1 ≥ · · · ≥ γim ≥ 0 (i = 1, ..., n). ⊓⊔

Remark 3 The heuristic derivation of Theorem 3 is essentially equal to that
by induction, where the latter was employed by Kristof (1970). The method of
successively finding maxima was shown for didactic purposes as well as a direct
derivation in Theorem 2 when n = 2. Since Theorems 1 and 2 are special cases
of Theorem 3, the former results also hold under γi1 ≥ · · · ≥ γim ≥ 0 . Though
when γi1 ≥ · · · ≥ γim = 0, which is given in the limiting case of ε = 0, Γi

becomes singular while Γi + εW with ε > 0 is non-singular, this rank difference
does not affect the maximum attained.
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4 Generalizations of Kristof’s theorem

Ten Berge (1983) gave a generalized version of Kristof’s theorem when Xi’s
with rank(Xi) ≡ r∗i ≤ ri are m i−1 × m i possibly non-square suborthonormal
matrices i.e., submatrices of orthonormal ones (i = 1, ...n; m0 ≡ mn). Let a
semiorthonormal matrix be a non-square submatrix of its parent orthonormal
one with the same number of the rows or columns (not both) as that of the
parent. Note that if Xi is suborthonormal rather than semi- or fully orthonor-
mal, r∗i can be 0. For this result, we consider the restricted parent orthonormal

matrix taking a block-diagonal form X∗
i =

Xi11 Xi12

Xi21 Xi22

 =

Xi11 O

O Xi22

,

where X∗T
i X∗

i = X∗
iX

∗T
i = Imi−1+mi , XT

i11Xi11 = Xi11X
T
i11 = Imi−1 and

XT
i22Xi22 = Xi22X

T
i22 = Imi

. Then, when Xi is one of the two off-block-diagonal
zero submatrices Xi12 = XT

21 = O, the rank of Xi is zero i.e., r∗i = 0. It is as-
sumed that X∗

i varies unrestrictedly under the block-diagonal form. Though Ten
Berge did not fully explain the cases with r∗i < ri, ri is seen as an upper bound
of r∗i , which is given by ri = min{m i−1,m i}. Note that ri = min{m i−1,m i} is
the smallest upper bound when Xi varies unrestrictedly. In other words, when
ri < min{m i−1,m i}, Xi does not vary unrestrictedly. If Xi is semi- or fully
orthonormal, we have r∗i = ri = min{m i−1,m i}.

Let Γ∗
i and Γi be m i × m i fixed diagonal matrices defined as in Theorem

3 with possible different m i’s (i = 1, ...n). Let r = min(r1, ..., rn) and m =
max(m1, ...,mn). Define ∆i and E r as the m×m diagonal matrices containing
Γi and Ir in their upper left corners with zeros elsewhere, respectively. Then,
Ten Berge gave the following result.

Theorem 4 : The generalized Kristof theorem (Ten Berge (1983, The-
orem 1); see also Kiers and Ten Berge (1989); and Ten Berge (1993,
Sections 3.2 and 3.3)). Under the definitions and assumptions given above,
when Xi varies with the condition rank(Xi) ≤ ri (i = 1, ..., n), we have

−tr(∆1 · · ·∆nE r) ≤ tr(X1Γ
∗
1 · · ·XnΓ

∗
n) ≤ tr(∆1 · · ·∆nE r).

For the proof of Theorem 4, Ten Berge (1983) defined Yi as the m×m matrix
containing Xi in its upper left corner with zeroes elsewhere. Then, he defined its
SVD as Yi = PiDiQ

T
i , where “Pi and Qi are orthonormal and Di is diagonal”

(loc.cit., p. 521). Note that he employed the SVD using the non-negative singular
values rather than the positive ones, where Pi, Qi and Di are m × m square
matrices. This is seen in his inequalities (loc.cit., Equation (10))

−tr(D1∆1 · · ·Dn∆n) ≤ tr(X1Γ
∗
1 · · ·XnΓ

∗
n) ≤ tr(D1∆1 · · ·Dn∆n).

For this derivation, he used Yi = PiDiQ
T
i and ∆∗

i defined similarly to ∆i

using Γ∗
i (i = 1, ..., n), which gives

tr(X1Γ
∗
1 · · ·XnΓ

∗
n) = tr(Y1∆

∗
1 · · ·Yn∆

∗
n) = tr(P1D1Q

T
1 ∆

∗
1 · · ·PnDnQ

T
n∆

∗
n)
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(loc.cit., Equation (9)). He applied Kristof’s theorem to this result supposing
that all the 2n m × m matrices Pi and Qi (i = 1, ..., n) vary over all the or-
thonormal matrices, which is required in Kristof’s theorem. Then, he showed his
Equation (1) shown earlier.

However, it is found that when Di = diag(d1, ..., dm) with d1 ≥ · · · ≥ dr∗i > 0

and dr∗i +1 = · · · = dm = 0, orthonormal matrices Pi and Qi in Yi = PiDiQ
T
i

should be of the form

Pi =

Pi1 O

O Pi2

 and Qi =

Qi1 O

O Qi2


where Pi1 and Qi1 are r∗i × r∗i orthonormal submatrices while Pi2 and Qi2 are
(m−r∗i )×(m−r∗i ) similar ones unless vanishing when r∗i = m. This formulation
is due to Ten Berge’s special definition of Yi whose elements are zero except the
upper left submatrix.

Although Pi and Qi are orthonormal rather than semi- or suborthonormal,
their block diagonal forms have substantial restrictions in the variations of or-
thonormal matrices required by Kristof’s theorem. One of the severe restrictions
is the lack of giving permutations across two sets of variables. Consequently, the
upper and lower bounds using Kristof’s theorem may not be attained when the
diagonal elements of Di∆i are not located in the weakly descending order. This
restriction was not mentioned by Ten Berge though he did not state that the
bounds are attained in his theorem.

The necessity of Er in the statement of Theorem 4 is due to the unrestricted
rank condition of the diagonal matrix Γi in the upper left corner of ∆i employed
by Ten Berge. Since the rank of ∆i may be greater than that of Di, the upper
bound in his Equation (10) becomes

tr(X1Γ
∗
1 · · ·XnΓ

∗
n) ≤ tr(D1∆1 · · ·Dn∆n)

= tr(D1 · · ·Dn∆1 · · ·∆n) ≤ tr(∆1 · · ·∆nEr),

where the last inequality is due to the range [0, 1] of the singular values of sub-
orthonormal matrices (loc.cit., Lemma 2) yielding D1 · · ·Dn ≤ Er in Löwner’s
(1934, p. 177) sense. Ten Berge explicitly wrote that ‘the statement that “the
limits can be attained” has to be omitted’ (loc.cit., p. 521). It is to be noted
that he added that “the limits ... can be attained if the Xi are varying indepen-
dently and (except for the rank) unrestrictedly over the set of suborthonormal
matrices” (loc.cit., p. 521).

The meaning of the parenthetical phrase “(except for the rank)” is not
clear since when the upper bound ri of the rank of Xi (recall the condition
rank(Xi) = r∗i ≤ ri) is less than min{m i−1,m i}, Xi does not vary unre-
strictedly, but varies over a subset of the suborthonormal matrices satisfying
r∗i ≤ ri < min{m i−1,m i}. That is, in the subset, Xi cannot be semi- or fully
orthonormal. In other words, in this subset the sum of the squared elements in
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each row or column of Xi is smaller than 1. Under this restriction, the optima
may not be obtained. Note also that Ten Berge mentioned the typical cases with
i.e., r∗i = ri as “this modification does not affect the validity” (loc.cit., p. 521)
of his generalized theorem though the optima may not be attained due to the
difficulty of applying Kristof’s theorem using constrained parent orthonormal
matrices.

In the following modification with attained optima, fully unconstrained sub-
orthonormal matrices are considered. LetXi be them i−1×m i (i = 1, ..., n; m 0 ≡
mn) possibly non-square matrix with rank(Xi) = r∗i ≤ ri = min{m i−1,m i},
which is supposed to vary unrestrictedly and independently over the set of
m i−1 × m i suborthonormal matrices in the corresponding m × m parent or-
thonormal matrix with m = max(m1, ...,mn) as given earlier. The parent or-
thonormal matrix is denoted by X∗

i , which includes Xi as a submatrix.
Let Γ∗

i and Γi be m i ×m i fixed diagonal matrices defined as in Theorems 3
and 4. In the modification, however, Γ∗

i and Γi are assumed to be non-singular
without loss of generality. This is seen from the form tr(X1Γ

∗
1X2Γ

∗
2 · · ·XnΓ

∗
n)

to be optimized later, since when Γ∗
i is singular, Γ∗

i can be redefined by deleting
the row(s) and column(s) corresponding to the zero diagonal elements of Γ∗

i .
Then, in the similar manner, the corresponding column(s) of Xi and row(s) of
Xi+1(Xn+1 ≡ X1) can be deleted without changing the value of tr(X1Γ

∗
1X2Γ

∗
2 · · ·XnΓ

∗
n),

where r∗i (r
∗
i+1) and ri(ri+1) may be adjusted for the reduced Xi(Xi+1) when

necessary.

Theorem 5 : A modified generalized Kristof theorem (a modification
of Ten Berge (1983, Theorem 1)). Let Xi, X

∗
i , Γ

∗
i and Γi (i = 1, ..., n)

be as defined above. Define ∆i as the diagonal matrix, whose upper left subma-
trix is Γi elsewhere zero, as defined earlier. Then, when the parent orthonormal
matrices X∗

i (i = 1, ..., n) vary independently and unrestrictedly over the set of
orthonormal matrices, we have

−tr(∆1 · · ·∆n) ≤ tr(X1Γ
∗
1 · · ·XnΓ

∗
n) ≤ tr(∆1 · · ·∆n),

where the optima are attained.

Proof. Define ∆∗
i using Γ∗

i similarly to ∆i. Then, we obtain

tr(X1Γ
∗
1 · · ·XnΓ

∗
n) = tr(X∗

1∆
∗
1 · · ·X∗

n∆
∗
n).

Noting that the assumption of the independent and unrestricted variations of
X∗

i (i = 1, ..., n) satisfies that of Kristof’s theorem, the required results with the
attained optima follow. ⊓⊔

Remark 4 In Theorem 5, the assumption for the variations ofX∗
i automatically

gives rank(Xi) = r∗i ≤ ri = min{m i−1,m i}. The optima are obtained when
r∗i = ri, which indicates that Xi is semi- or fully orthonormal with non-zero
singular value(s) being unity when the optima are attained. This makes the
matrix Er used in Ten Berge’s theorem unnecessary. Recall that the optima
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may not be obtained in his theorem since the non-zero singular value(s) of Xi

may be less than unity and since the SVD form of Yi restricts the permutation
of the diagonal elements of Γ∗

i to have Γi. In other words, when Γ∗
i = Γi,

the latter restriction vanishes. Note that the former restriction corresponds to
r∗i < ri. That is, under this assumption Xi is suborthonormal (not semi- or
fully orthonormal). On the other hand, the case r∗i = ri, addressed earlier with
Ten Berge’s statement, indicates that Xi is semi- or fully orthonormal. Although
generally this case does not satisfy the assumption of the unconstrained variation
of the parent orthonormal matrix, which is the assumption in Kristof’s theorem,
the restricted variation also gives the same optima as for the unrestricted case
since the non-zero singular value(s) are unities as long as r∗i = ri. For Ten
Berge’s generalized theorem, Kiers and Ten Berge (1989, p. 132) stated that “r
is the minimum of the ranks of Γ1, ...,Γk and X1, ...,Xk”, where k = n. This
is misleading and should be corrected as “r is the minimum of the ranks of
Γ1, ...,Γk and r1, ..., rk” since when rank(Xi) = r∗i ≤ ri, r

∗
i can be smaller than

ri = min{m i−1,m i} in the subset of the variation of Xi unless the restricted
case of r∗i = ri is used.

Remark 4 indicates the following modification of Kristof’s theorem.

Theorem 6 : A modification of Kristof’s theorem. In Theorem 3 of Kristof ’s
theorem (first version), redefine the orthonormal matrices Xi(i = 1, ..., n) as

Xi = Bdiag(Xi1, ...,XiiB),

where Xij is the ij×ij diagonal block (j = 1, ..., iB) with i1+...+iiB = m. Suppose
that Xi(i = 1, ..., n) independently and unrestrictedly vary with rank(Xij) = ij
(j = 1, ..., iB). Use Γi(i = 1, ..., n) as defined in Kristof ’s theorem. Then, we
have

−tr(Γ1 · · ·Γn) ≤ tr(X1Γ1 · · ·XnΓn) ≤ tr(Γ1 · · ·Γn),

where the optima are attained.

Proof. The case when Γ∗
i = Γi(i = 1, ..., n) can be used in Kristof’s theorem.

Although Xi(i = 1, ..., n) take the block-diagonal forms, the optima with Xi =
Im (i = 1, ..., n) are attained in the subset of varying Xi(i = 1, ..., n) under the
block diagonal restriction. ⊓⊔

The usage of Γi in place of Γ∗
i (i = 1, ..., n) is due to the lack of permutation

across the different diagonal blocks when using the block diagonal Xi. Note that
Kiers and Ten Berge (1989) used the assumptions that Γi’s are available when
n = 2 stating that “in most applications the assumptions are satisfied, if they
are not satisfied only minor modifications will typically be involved” (pp. 126-
127). Note also that when iB = 1, Xi becomes a usual orthonormal matrix as
in Kistof’s theorem, and when iB = m, Xi is the signed identity matrix whose
diagonal elements are ±1, where Xi and its diagonal elements i.e., ±1 are m×m
and 1 × 1 orthonormal matrices with unit singular value(s), respectively.
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An extension in Theorems 4 and 5, is to relax Γi to be an unconstrained
square matrix of the same rank as that of Γi (i = 1, ..., n), which is mathemat-
ically immaterial. Since under the relaxed condition the SVD of Γi ≡ UiΛiV

T
i

with UT
i Ui and VT

i Vi being an identity matrix of the same order as rank(Γi)
(i = 1, ..., n), redefine X1 and Xi as VnX1U

T
1 and Vi−1XiU

T
i (i = 2, ..., n).

Then, the problem becomes the same as that using the diagonal matrix Λi

(i = 1, ...n). Note that this unconstrained condition was used in von Neumann’s
(1937) trace inequality and Kristof’s (1970) Theorem (second version). Kristof
(1970, p. 523) stated that “A distinction of the two versions will not be empha-
sized”, where the second version uses the unconstrained square matrix Γi.

5 Applications of Kristof’s theorem and its
generalizations

While as mentioned in the introductory section, “underutilization” of Kristof’s
theorem and its generalization seem to be still true considering its simplicity,
generality and tractability yielding solutions in various applications. In this sec-
tion, basic or important cases in multivariate analysis showing advantages of
Kristof’s theorem and its generalizations are provided. Examples or applications
are shown below mostly in the chronological order. Although in Ten Berge’s
generalized Kristof’s theorem, the optima may not be attained, all his three
examples in multivariate analysis and an illustration of the Cauchy-Schwarz in-
equality using his theorem are the cases with attained optima.

Maximization of tr(MΛL) or tr(ATΛ): Green Jr (1969, Appendix B) (n
= 1). In this problem, M,L and A are fixed m×r, s×m and r×s (r ≥ s) matri-
ces, respectively while Λ is the r×s matrix varying over all the semiorthonormal
matrices when r > s or orthonormal when r = s. This is seen as an extended
application of von Neumann’s trace inequality when n = 1 with unconstrained
and possibly rectangular A = (LM)T. An application of this problem to have an
optimal linear combination with a specified correlation matrix was investigated.
This problem will also be addressed later.

Orthogonal procrustes transformation: Kristof’s (1970, Example 1) (n
= 1). This problem is to minimize tr{(A −BT)(A−BT)T}, where A and B
are fixed r× s (r ≥ s) matrices while T is an orthonormal matrix to be derived,
which reduces to maximizing tr(ATBT), a case with n = 1. Note that T gives
permutations with sign changes (reflections) of the columns of B as well as the
rotation of B. Although the term “procrustes rotation” is usually used as stated
by Kristof (1970, p. 523) especially in factor analysis using factor rotation, it is
important that T can give permutations and reflections of the columns of B.

On the other hand, we have a problem of “procrustes transformation” with-
out rotation. This happens in e.g., simulations when B is one of sample loading
matrices rotated by a fixed method e.g., the geomin, which is to be matched
to the population geomin-rotated A to see the sampling variation of B, where
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only permutations and reflections of the columns of B are possible while un-
constrained rotation is not allowed since otherwise BT no longer becomes a
geomin-rotated loading matrix. This problem is seen as a subproblem of Kristof’s
theorem when n = 1 using a constrained orthonormal matrix T considering only
permutations and reflections of the columns of B. Problems using constrained
orthonormal matrices are included in Ten Berge’s (1983) generalized Kristof
theorem, as addressed earlier.

At the end of Example 1, Kristof (1970, p. 524) stated that “The gener-
alization of the present problem to allow ATB to be singular is immediate
and does not require special discussion.” It is found that the singular case
with rank(ATB) ≡ s∗ < s ≤ r gives the s∗ positive singular values, say,
γ1 ≥ · · · ≥ γs∗ > 0. Then, using the SVD ATB = U diag(γ1, ..., γs∗)V

T, we
obtain

max{tr(ATBT)} = max[tr{Udiag(γ1, ..., γs∗)V
TT}]

= max[tr{diag(γ1, ..., γs∗)VTTU}] = tr{diag(γ1, ..., γs∗)}

=
∑s∗

i=1 γi,

where VTTU is a suborthonormal matrix since the product of suborthonormal
matrices is suborthonormal (Ten Berge, 1983, Lemma 4). Actually, U and V of
full column rank by definition are semiorthonormal (Ten Berge, 1983, Definition
2) while T is orthonormal as well as suborthonormal.

Kristof (1970, p. 524) added three examples with n = 1 (“the trivial case of
the theorem” in his terminology) for determinations of e.g., orthogonal matrices
with specific properties developed in the 1960s in psychometrics.

The two-sided orthogonal procrustes problem: Kristof’s (1970, Ex-
ample 2) (n = 2). This problem based on Schönemann (1968) minimizes
tr{(B−TTAS)(B−TTAS)T}, where A and B are fixed square matrices while
T and S are orthonormal matrices such that A is to be matched to B. This
problem reduces to maximizing tr(TTASBT), a case with unconstrained T and
S when n = 2. The maximum of tr(TTASBT) is obtained as the product of the
positive singular values of A and B.

Multivariate multiple regression: Kristof’s (1970, Example 4) and Ten
Berge’s (1983, Application 1) (n = 2). Kristof’s example included an un-
natural restriction of the same numbers of the dependent and independent vari-
ables, which was removed by Ten Berge’s application. The problem is to minimize
tr{(Y − XB)(Y −XB)T}, where Y is an s × u matrix for u dependent vari-
ables and X of full column rank is an matrix for t independent variables. The
well-known solution B̂ = (XTX)−1XTY was obtained without calculus when n
= 2 though the method is somewhat tedious.

Principal components analysis: Ten Berge’s (1983, Application 2) (n =
1). This application deals with the jointly determining p principal components
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when R is a k× k correlation matrix of rank r ≤ k. The problem is to maximize
the sum of squared loadings tr(BTR2B), where B is a k×p loading matrix with
p ≤ r subject to the uncorrelated components with unit variances BTRB = Ip.
Note that an atypical assumption of the possibly singular R is used.

Let R = KΛKT with KTK = Ir be the SVD using the positive diagonal
elements of the r×r diagonal matrix Λ. The solution can be given by maximizing

tr(BTR2B) = tr(BTKΛ2KTB) = tr{(BTKΛ1/2)Λ(Λ1/2KTB)}

= tr{(Λ1/2KTB)(BTKΛ1/2)Λ}

with n = 1, where (Λ1/2KTB)(BTKΛ1/2) is suborthonormal since

Ip = BTRB = BTKΛKTB = (BTKΛ1/2)(Λ1/2KTB).

Noting that BTKΛ1/2 is a semiorthonormal matrix, Ten Berge’s generalized
Kristof theorem gives max{tr(BTR2B)} =

∑p
i=1 λi, where λ1 ≥ · · · ≥ λr > 0

and the unrotated loading matrix B is a submatrix of KΛ−1/2 taking its first p
columns to give BTKΛ1/2 a submatrix of Ir consisting its first p rows.

The formulation using suborthonormal matrices tr(BTR2B) is of interest
since the restriction BTRB = Ip is cleverly used in the maximizing function
without calculus or Lagrange multipliers. While the above example was employed
by Ten Berge to show an application of his generalized Kristof theorem, when all
the k components including minor ones are obtained in the usual non-singular
case of R, the maximum of tr(BTR2B) is obtained by Kristof’s theorem as
tr(Λ), where Λ is the k × k diagonal matrix with positive diagonals. In this
case, Λ1/2KTB becomes Ik yielding the well-known unrotated loading matrix
B = KΛ−1/2.

Canonical correlations: Kristof (1970, General comment (a)) (n = 1),
Ten Berge (1983, Application 3) (n = 1), Ogasawara (2000, with er-
rata, Theorem 1) (n = 2), and Waller (2018, pp. 195-196) (n = 1).
Kristof (1970) suggested a formulation of canonical correlations applying his
theorem when n = 1, which was fully described by Ten Berge (1983) using an
associated SVD as in principal components. Ogasawara (2000) used Kristof’s
theorem with n = 2 to have a lower bound of the mean squared canonical
correlations between factors in factor analysis and the corresponding principal
components. Waller also showed an application of Kristof’s theorem for canoni-
cal correlations using two sets of principal components in the two sets of original
variables. However, his results are those when the numbers of original variables
in each set are the same. Note that use of the principal components needs justi-
fication when the numbers of the original variables are not equal or the number
of the canonical correlations is less than the minimum of the numbers of the
original variables.

The Cauchy-Schwarz inequality: Ten Berge (1983, p. 522) (n = 2);
Paragraph (iii) after Lemma 3 (n = 1) and Theorem 5 of the current
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article (n = 2). This example is simple but impressive in that the example
well shows the simplicity and generality of Kristof’s theorem and its extensions
without calculus. Let x and y be non-zero vectors of order k. Suppose that x
and y vary independently and unrestrictedly. Then,

xT(xTx)−1/2y(yTy)−1/2 = xT(xTx)−1/2Iky(y
Ty)−1/21

= xT(xTx)−1/2Γ∗
1y(y

Ty)−1/2Γ∗
2,

where Γ∗
1 = Γ1 = Ik and Γ∗

2 = Γ2 = 1. Define k × k diagonal matrices ∆1 =
Γ1 = Ik and ∆2 = E11, where the first diagonal element of E11 is unity else-
where zero. Since the vectors xT(xTx)−1/2 and yT(yTy)−1/2 are semiorthonor-
mal, their non-zero singular values are unity. Consequently, when applying Ten
Berge’s theorem, the maximum is attained as tr(∆1∆2) = tr(IkE11) = 1
with minimum obtained similarly. Then, we have the Cauchy-Schwarz inequality

−1 ≤ xT(xTx)−1/2y(yTy)−1/2 = xTy

(xTx)1/2(yTy)1/2
≤ 1.

As addressed in Paragraph (iii) after Lemma 3, the inequality is given via
Kristof’s theorem (n= 1). The same result is obtained by using Theorem 5 of this
article. Define the k×k parent orthonormal matrices X and Y, whose first rows
are xT(xTx)−1/2 and yT(yTy)−1/2, respectively, where X and Y independently
and unrestrictedly vary over the sets of orthonormal matrices. Then, using Theo-
rem 5, the maximum of xT(xTx)−1/2y(yTy)−1/2 is attained as tr(XIkYE11) ≤
tr(IkE11) = 1 with the minimum tr(XIkYE11) ≥ −tr(IkE11) = −1 obtained
similarly.

Generalized linear form: Ten Berge (1993, Equation (48)), Yanai and
Takane (2007, Property 11) and Adachi (2020, Theorem A.4.2) (n =
1). This is a problem maximizing tr(XTA), whereX and fixedA are p×q (p ≥ q)
matrices with the constraint XTX = Iq and rank(A) ≤ q. To the author’s
knowledge, this problem was first solved by Green Jr (1969) as mentioned in the
first example. After Kristof (1970), Ten Berge (1993) reformulated the problem
as the generalized linear form. He defined the SVD A = UΛVT with UTU =
VTV = VVT = Iq and Λ being the diagonal matrix with the non-negative
diagonals using an application of his generalized Kristof theorem with n = 1.
Then, the maximum is given by

max{tr(XTA)} = max{tr(XTUΛVT)} = max{tr(VTXTUΛ)} = tr(Λ)

sinceVTXTU is suborthonormal. The maximum is attained whenVTXTU = Iq
or X = UVT.

Note that the definition of the SVD using the non-negative rather than posi-
tive singular values is important considering the case rank(A) ≡ q∗ < q. That is,
in the last case when using only positive singular values, U and V become p×q∗

and q × q∗ semiorthonormal matrices, respectively, yielding XTX ̸= Iq, which
does not satisfy the assumption. Note that Green Jr (1969, p. 317) correctly con-
sidered the two cases q∗ < q and q∗ = q as well as the cases of multiple or equal
positive singular values in terms of the uniqueness of U, V and UVT. For this
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example, Neudecker’s (2004, Section 2) derivation as “a Kristof-type theorem”
with a correction and added explanation will be shown in the appendix.

6 Discussion

(a) The trivial case (n = 1) and the bilinear case i.e., von Neumann’s
trace inequality (n = 2). In the previous section, only the examples of n =
1 or 2 are shown. Though Kristof (1970) used the term “trivial case” when n
= 1, its applications are meaningful ones as shown earlier. Note that only the
derivation of Kristof’s theorem is trivial or self-evident when n = 1. A case of n
= 4 was provided by Kristof (1970, Example 6) as a generalization of Meredith’s
(1964) problem for a multivariate selection of subpopulations from a common
parent. However, most of the applications of Kristof’s theorem and Ten Berge’s
generalized one seem to be those of n = 1 or 2. Kiers and Ten Berge (1989, p.
126) stated that “All practical applications we have encountered so far apply to
the cases k = 1 or k = 2”, where k is used for n. That said, it is to be noted
that Ten Berge (1983, p. 509) stated that “Theorems should be derived in the
greatest possible generality”.

(b) Alternative proofs. Proofs in seminal papers tend to be complicated.
After the discoveries, alternative simple or short proofs follow. For von Neu-
mann’s (1937) trace inequality, the elementary alternative proof by Mirsky (1975)
with Fan’s (1951) lemma may be the simplest one as shown in the appendix. In
this tutorial, rephrasing or breaking down the proof by Kristof for his theorem
has been shown. However, the logic is essentially the same as Kristof’s one using
induction. Marshall, Olkin, and Arnold (2011, Chapter 20, Theorem B.2) also
showed a similar proof by induction though they stated that “We give an induc-
tive proof that is elementary, though still somewhat lengthy” (p. 791). Finding
alternative simple, self-contained and hopefully short proofs of Kristof’s theo-
rem when n ≥ 3 is an open problem. Mirsky used the doubly stochastic matrix.
Applications or generalizations of Mirsky’s proof to the inequalities when n ≥ 3
seem to be difficult as far as the author conjectures.

(c) Equivalent and inequivalent cases of the Kristof and Ten Berge
theorems.As mentioned earlier, Ten Berge (1983, Theorem 2) extended Kristof’s
theorem. For the differences of the theorems, he stated that “The most striking
difference is that the Xi are no longer required to be orthonormal. Second, the
Xi need no longer to be square” (p. 521), which are advantages of Ten Berge’s
theorem over Kristof’s one claimed by Ten Berge. The third difference is the lack
of the attained optima, which is not an advantage. The two claimed advantages
may be handled by Kristof’s theorem by considering the parent orthonormal
matrices as used by Ten Berge and Theorem 5 in this article. So, the two theo-
rems may be seen as equivalent when the optima are attained. Note that all the
four examples in Ten Berge (1983) are the cases of attained optima. Probably,
the cases of unattained optima due to rank(Xi) = r∗i < ri = min{m i−1,m i}
may be theoretical or special, if any, in practice.
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It is conjectured that even in this special case, some adjustment giving r∗i ≤ ri
may be obtained. For instance, consider canonical correlation analysis for two
sets of standardized data matrices i.e., X1 (n× r1) of rank r∗1 and X2 (n× r2)
of rank r∗2 . Then, when r∗ < min{r∗1 , r∗2} canonical correlations are optimally
derived in a least squares sense among min{r∗1 , r∗2} possible ones, this seems to
yield a similar problem. Actually, as Ten Berge (1983, p. 523) formulated the
situation using the coefficient matrices B1 (r1 × r∗) and B2 (r2 × r∗) with other
ones, the maximum of tr(BT

1 X
T
1 X2B2) was attained.
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Appendix A Technical results

Lemma A: Fan’s (1951, Lemma 1A) inequality for the doubly sub-
stochastic matrix. Let a = (a1, ..., an)

T and b = (b1, ..., bn)
T be fixed vec-

tors with a1 ≥ · · · ≥ an ≥ 0 and b1 ≥ · · · ≥ bn ≥ 0. Define an n × n
doubly substochastic matrix P = {pij} with non-negative elements satisfying∑n

j=1 pij ≤ 1 (i = 1, ..., n) and
∑n

i=1 pij ≤ 1 (j = 1, ..., n) (see e.g., Marshall et

al. (2011, Section 2.C)). Then, aTPb ≤ aTb.

Proof (a slight extension of Uchida (2023)). Let c1, ..., cn and d1, ..., dn be non-
negative numbers. Then, we can write ai =

∑n
k=i ck and bi =

∑n
k=i dk. Using

these expressions,

aTb− aTPb =
∑n

i,j=1 (δij − pij)aibj =
∑n

i,j=1 (δij − pij)
∑n

k=i ck
∑n

l=j dl

=
∑n

k,l=1 ckdl
∑k

i=1

∑l
j=1 (δij − pij)
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follows, where δij is the Kronecker delta. In the above expression, define the
doubly stochastic (rather than substochastic) matrix P∗ = {p∗ij} satisfying p∗ij ≥
pij (i, j = 1, ...n). Then, consider the case k ≥ l in the above expression. We
obtain ∑k

i=1

∑l
j=1 (δij − pij) =

∑k
i=1

∑l
j=1 δij −

∑k
i=1

∑l
j=1 pij

=
∑l

i=1 δii −
∑k

i=1

∑l
j=1 pij = l −

∑k
i=1

∑l
j=1 pij

≥ l −
∑n

i=1

∑l
j=1 p

∗
ij ≥ l − l = 0.

When k ≤ l, in a similar manner we obtain
∑k

i=1

∑l
j=1 (δij − pij) ≥ 0. These

two inequalities give the required result aTb− aTPb ≥ 0. ⊓⊔

Remark A. The original proof by Fan (1951) is a short one though it is not
self-contained in that “Abel’s lemma” is used. The author could not identify
the Abel lemma with an associated reference among Abel’s formulas. The above
proof is a slight extension of the result by Uchida (2023) who dealt with only the
doubly stochastic matrix P∗, which is a special case of the doubly substochastic
matrix P.

The second proof of Theorem 1 (von Neumann’s trace inequality;
Mirsky (1975, Section 3, p. 305)). | tr(X1Γ1X2Γ2)| ≤ tr(Γ1Γ2) is derived.
LetXi = {x(i)jk} (j, k = 1, ...,m) and Γi = diag(γ(i)1, ..., γ(i)m) (i = 1, 2). Then,
using Fan’s (1951) inequality for doubly (sub)stochastic matrices, we have

| tr(X1Γ1X2Γ2)| = |
∑m

j,k=1 x(1)jkγ(1)kx(2)kjγ(2)j |

≤
∑m

j,k=1 |x(1)jkx(2)kj |γ(1)kγ(2)j

≤ 1
2

∑m
j,k=1 x

2
(1)jkγ(1)kγ(2)j +

1
2

∑m
j,k=1 x

2
(2)kjγ(1)kγ(2)j

≤ 1
2

∑m
j=1 γ(1)jγ(2)j +

1
2

∑m
j=1 γ(1)jγ(2)j=tr(Γ1Γ2).

⊓⊔

The Kristof-type theorem for correlation preserving predictors of fac-
tor scores: Neudecker (2004, Section 2) (n = 1). Neudecker obtained the
same solution of the first example by Green and the last reformulated one by
Ten Berge in Section 5 as “A Kristof-type theorem” in the context of the deriva-
tions of correlation preserving predictors of factor scores (for these predictors
see the references in Neudecker (2004); and Mori and Kurata (2013)). He did
not mention or use Ten Berge’s theorem, but employed calculus and Lagrange
multipliers. Neudecker also used the SVD A = U0Λ0V

T
0 , where he employed

only positive singular values i.e., Λ0 > O in Löwner’s sense.
An advantage of Neudecker’s derivation is to give the set of explicit expres-

sions of X maximizing tr(XTA) as X = U0V
T
0 = UVT when rank(A) = q∗ = q

and X = U0V
T
0 +Q(Iq −V0V

T
0 ) with a p × q matrix Q when q∗ < q as “the
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general solution” (Neudecker, 2004, Equation (2.5)). In these expressions,

U0V
T
0 = X{(XTX)1/2}+ = X{(XTX)+}1/2 ≡ X(XTX)(+)1/2

and
V0V

T
0 = (XTX)(+)1/2(XTX)1/2 = (XTX)1/2(XTX)(+)1/2,

where (·)1/2 is the matrix square root of a matrix; and (·)+ is the Moore-Penrose
generalized (MP g-) inverse of a possibly rectangular matrix, which is obtained by
using the SVD. That is, when the SVD of a matrix isY = PΓQT employing only
the positive singular values, we have Y+ = QΓ−1PT, which satisfies the con-
ditions of the MP g-inverse: YY+Y = Y, Y+YY+ = Y+, YY+ = (YY+)T

and Y+Y = (Y+Y)T.
Neudecker (2004, Equation (2.5)) stated that “Q arbitrary”. This is mislead-

ing since when Q is a zero matrix, the rank of X = U0V
T
0 becomes q∗(< q) and

does not satisfy XTX = Iq though this will give the same maximum. Instead,
Q should be defined as a p× q arbitrary suborthonormal matrix Q = U1V

T
1 of

rank q − q∗, where U1 and V1 are p × (q − q∗) and q × (q − q∗) semiorthonor-
mal matrices, respectively such that UT

1 U1 = VT
1 V1 = Iq−q∗ , U

T
0 U1 = O and

VT
0 V1 = O, which shows the arbitrary property of Q stated earlier in that

when U1 and V1 are replaced by U1U
∗
1 and V1V

∗
1 with U∗

1 and V∗
1 being

arbitrary (q − q∗) × (q − q∗) orthonormal matrices, these can be used with a
different Q∗ ≡ U1U

∗
1(V1V

∗
1)

T ̸= Q. Note that these arbitrary U1 and V1 give
VT

0 V0 +VT
1 V1 = (V0 : V1)

T(V0 : V1) = (V0 : V1V
∗
1)

T(V0 : V1V
∗
1) = Iq.

Then, it is found that

X = U0V
T
0 +Q(Iq −V0V

T
0 ) = U0V

T
0 +U1V

T
1 (Iq −V0V

T
0 )

= U0V
T
0 +U1V

T
1 = (U0 : U1)(V0 : V1)

T

satisfying

XTX = (V0 : V1)(U0 : U1)
T(U0 : U1)(V0 : V1)

T

= (V0 : V1)(V0 : V1)
T = Iq.

Using the above X, the maximum is given by

tr(ATX) = tr{(U0Λ0V
T
0 )

T(U0 : U1)(V0 : V1)
T}

= tr{V0Λ0U
T
0 (U0V

T
0 +U1V

T
1 )}

= tr(V0Λ0V
T
0 ) = tr(VT

0 V0Λ0)

= tr(Λ0),

where tr(Λ0) = tr(Λ) and the singular diagonal matrix Λ of rank q∗ was used
earlier. Define the semiorthonormal matrix U ≡ (U0 : U1) and orthonormal
V ≡ (V0 : V1). Then, X = UVT is equal to that obtained by Ten Berge as
shown earlier.
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Recall the expression X = U0V
T
0 + Q(Iq − V0V

T
0 ). The matrix Q can be

an arbitrary p × q semiorthonormal one denoted by U∗ with UT
0 U

∗ = O and
U∗TU∗ = Iq. This is seen by

XTX = {U0V
T
0 +U∗(Iq −V0V

T
0 )}T{U0V

T
0 +U∗(Iq −V0V

T
0 )}

= V0U
T
0 U0V

T
0 + (Iq −V0V

T
0 )U

∗TU∗(Iq −V0V
T
0 )

= V0V
T
0 + Iq −V0V

T
0 = Iq,

satisfying the assumption, where the idempotent property (Iq −V0V
T
0 )

2 = Iq −
V0V

T
0 is used. The matrix X gives the same maximum

tr(ATX) = tr
[
V0Λ0U

T
0 {U0V

T
0 +U∗(Iq −V0V

T
0 )}

]
= tr(V0Λ0U

T
0 U0V

T
0 ) = tr(V0Λ0V

T
0 )

= tr(Λ0).

In the expression X = U0V
T
0 + Q(Iq − V0V

T
0 ), the term V0V

T
0 is the

projection matrix onto the space spanned by the q∗ orthonormal columns of V0

given by V0(V
T
0 V0)

−1VT
0 = V0I

−1
q∗ V

T
0 = V0V

T
0 . Recall that Iq = V0V

T
0 +

V1V
T
1 . Then, Iq −V0V

T
0 = V1V

T
1 is also the projection matrix onto the space

spanned by the q−q∗ orthonormal columns of V1. In the term Q(Iq−V0V
T
0 ) =

QV1V
T
1 , each row of Q is projected onto the space spanned by V1.

An arbitrary property of U1 and V1 in X = UVT = U0V
T
0 + U1V

T
1 of

Ten Berge’s (1983) solution similar to that with Q is that U1 and V1 can
be replaced by U1WU1 and V1WV1, respectively, where WU1 and WV1 are
arbitrary (q − q∗) × (q − q∗) orthonormal matrices yielding X∗ ≡ U0V

T
0 +

U1WU1(V1WV1)
T ̸= X = U0V

T
0 +U1V

T
1 .

For completeness, arbitrary aspects in A = U0Λ0V
T
0 of rank q∗ ≤ q are

noted. Under the standard definition of Λ0 = diag(λ1, ..., λq∗) with λ1 ≥ · · · ≥
λq∗ ≥ 0, Λ0 is identified while U0 and V0 are identified up to the sign changes
(orientations or reflections) of the pairs of their corresponding columns. Further,
suppose that some positive singular values are multiple e.g., λj = λj+1 = · · · =
λj+k−1 ≡ λj(k) with multiplicity k(> 1), we have

A = U0(−k)Λ0(−k)V
T
0(−k) +U0(k)Λ0(k)V

T
0(k)

= U0(−k)Λ0(−k)V
T
0(−k) +U0(k)λj(k)IkV

T
0(k)

= U0(−k)Λ0(−k)V
T
0(−k) + λj(k)U0(k)W(k)(V0(k)W(k))

T,

where U0(k) and V0(k) are semiorthonormal submatrices of U0 and V0, re-
spectively corresponding to the multiple λj(k) with Λ0(k) defined similarly; and
U0(−k), V0(−k) and Λ0(−k) are matrices given by using the singular values ex-
cept λj = λj+1 = · · · = λj+k−1; and W(k) is an arbitrary k × k orthonormal
matrix. The last arbitrary property is similar to that in the so-called “rotational
indeterminacy” in factor analysis.
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Abstract. Lord’s (1967) paradox showed that two basic ways to analyze
change longitudinally can produce contradictory results in 2-occasion
nonrandomized studies. This study extends that paradox to difference-
score and ANCOVA-type residualized change score analyses across three
waves of data for four corrective actions thought to be effective: corrective
disciplinary actions by parents (timeout and reasoning) and corrective
actions by professionals (psychotherapy and hospitalization). All signifi-
cant findings indicated that these corrective actions were harmful accord-
ing to cross-lagged panel models but beneficial according to linear latent
growth models. One type of analysis may not generalize to the other
type of analysis. These results are consistent with recent recognition that
ANCOVA-type analyses are biased by invariant between-person differ-
ences, but difference-score analyses can have their own biases. Recog-
nition of these biases is needed to discriminate between stronger and
weaker causal evidence in longitudinal analyses.

Keywords: Causal inference · Cross-lagged panel analysis · Latent growth
modeling

1 Introduction

Most longitudinal studies have found that corrective actions by parents and by
professionals appear to be harmful in analyses that control for initial differences
with ANCOVA-type analyses of residualized change scores Y2|Y1 (i.e., Y2 con-
ditional on Y1; Larzelere, Lin, Payton, & Washburn, 2018). Examples include
parent-youth discussions about the risks of unprotected sex (Lin & Larzelere,
2020), psychotherapy for children, and methylphenidate (i.e., Ritalin: Larzelere,
Ferrer, Kuhn, & Danelia, 2010). Although all of these corrective actions have
looked harmful according to analyses of residualized change score analyses (i.e.,
predicting Wave-2 outcomes Y2 while controlling for Wave-1 outcome scores Y1),
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difference-score analyses have often made them look beneficial from the same
data (predicting Y2 − Y1; Larzelere et al., 2018).

This inconsistency is an example of Lord’s (1967) paradox. In Lord’s original
hypothetical study, females’ and males’ weight gains were compared with each
other using the two types of change-score analyses. Initial average weights dif-
fered significantly for females and males, and their average weights stayed the
same from pretest to posttest for both genders. Difference-score analyses indi-
cated no gender difference in weight gained, as expected. However, ANCOVA
indicated that males gained more weight than females who started at the same
weight. Although both results are correct for their corresponding predictive re-
search questions, both cannot provide correct causal inferences about the effect
of manipulating a causal variable (e.g., for a corrective action of interest). Consis-
tent with Lord’s original paradox, causally relevant coefficients from residualized
change score analyses are generally biased in the direction of the pretest group
means, relative to the difference-score coefficients, regardless of which analysis
is least biased (Angrist & Pischke, 2009; Larzelere et al., 2018; Lin & Larzelere,
2020). This corresponds to recent documentations that longitudinal analyses
of residualized change scores are biased by between-person differences that do
not change during the study (Berry & Willoughby, 2017; Hamaker, Kuiper, &
Grasman, 2015; Hoffman, 2015).

Despite being discussed for over 50 years, the implications of Lord’s para-
dox have been insufficiently recognized in developmental psychology. Longitu-
dinal analyses have preferred analyzing residualized change scores since Cron-
bach and Furby’s 1970 recommendation. Two-wave residualized change score
and difference-score analyses are building blocks for more complex models such
as cross-lagged panel analyses and linear growth models. Therefore, this prob-
lem of contradictory, potentially biased estimates likely generalizes to advanced
statistical models. However, little is known about how Lord’s paradox applies
to more complex statistical models (e.g., cross-lagged panel models and latent
growth models) or how to minimize these biases to approximate valid causal
estimates more closely. Like ANCOVA, cross-lagged panel models predict resid-
ualized change scores (e.g., predicting yt controlling for yt−1) between adjacent
occasions across three or more occasions. Therefore, cross-lagged panel models
could be considered a series of T − 1 ANCOVAs. In contrast, the most basic
latent growth model typically predicts a simple difference score from Wave 1 to
Wave T based on the best-fitting linear slope of the outcome scores across the
T waves. In this article, we modify the latent growth model to predict simple
difference scores between adjacent waves. This modified latent growth model is
more similar to cross-lagged panel models by modeling change in the outcome
scores from Wave t− 1 to Wave t across T waves.

1.1 Cross-Lagged Panel Model

Cross-lagged panel models estimate the bidirectional effects between the treat-
ment condition and the outcome score over time (Selig & Little, 2012). The
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cross-lagged panel model provides information about how variations in one vari-
able (typically treatment vs. control) predict changes in another variable (the
outcome) over time. The multi-wave cross-lagged panel model can be described
as follows:

Xi,t = α0 + α1Xi,t−1 + α2Yi,t−1 + εi,xt

Yi,t = θ0 + θ1Xi,t−1 + θ2Yi,t−1 + εi,yt

where X and Y represent the treatment and outcome variables at a given time t,
predicted from these variables at the immediately preceding time t−1. These are
adjacent-wave ANCOVA functions for both variables - as predictor and outcome
at adjacent time points. The primary interest is the treatment effect θ1 of Xt−1

on the outcome at the next time point, controlling for the preceding outcome
score Yt|Yt−1.

1.2 Latent Growth Model

Whereas cross-lagged panel models predict residualized change scores Yt|Yt−1,
the linear growth model uses difference scores as its basic building block for
analyzing change. Linear latent growth models analyze how individuals’ scores
change over time and how treatment conditions influence such changes using the
difference-score approach:

Level 1 : Yti = β0i + β1iTti + rti

Level 2 : β0i = γ00 + γ01Xj + ϵ0i

β1i = γ10 + γ11Xj + ϵ1i

where Level 1 represents how individual scores change linearly over time, and
Level 2 predicts initial scores and within-individual changes from between-person
differences in the causal variable of interest Xj . At Level 1, Yti represents indi-
vidual i’s outcome at time t; β0i represents the starting point (when Tti = 0)
on individual i’s best-fitting straight line across time; β1i represents the indi-
vidual’s linear slope across time Tti, and rti represents the unexplained error
in the individual’s outcome Yti. At level 2, γ00 represents the mean of the in-
dividual starting points on the outcome when Xj = 0; γ01 is the effect of the
predictor Xj on the starting point (or intercept) β0i; ϵ0i represents the devia-
tion of the individual’s starting point from what is predicted by the rest of that
equation (the fixed-effects part); Xj is the treatment condition, e.g., with j = 2
for the treatment group and j = 1 for the comparison group; γ10 is the mean
linear slope across the waves when Xj = 0; γ11 is the effect of the predictor Xj

on the average individual slope β1i; and ϵ1i is the deviation of the individual’s
slope from the slope predicted from the fixed-effects part of that equation. With
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person-mean centering, the latent growth model estimates pure within-person
changes at Level 1. Level 2 then estimates between-person differences in those
changes. In two-wave analyses, the slope is the difference score from Wave 1 to
Wave 2 (Y2i − Y1i). In three-wave analyses, each individual’s slope is the esti-
mated linear change per unit of time in that person’s best-fitting straight line
across their scores at all three waves. The primary interest of the latent growth
model is the effect of the treatment on change in the slope γ11.

1.3 The Current Study

The current study used four examples of corrective actions thought to be effec-
tive to illustrate Lord’s paradox in three-wave longitudinal analyses. The four
examples involve the apparent effect of (1) disciplinary time-out on subsequent
child aggression, (2) disciplinary reasoning on subsequent child aggression, 3)
psychotherapy on subsequent maternal depression, and 4) hospitalization on sub-
sequent physical health. Each example was analyzed with a cross-lagged panel
model and a latent growth model across three waves of data: Although standard
latent growth models typically predict one linear slope from the first to the last
wave, the two-slope latent growth model in this study was designed to be more
similar to a cross-lagged panel by predicting simple difference scores between
adjacent waves. The intercept was modeled as usual (all loadings set to 1), but
Slope 1 specified the simple change from Wave 1 to Wave 2 (with loadings set at
-1 and 0), whereas Slope 2 specified the simple change from Wave 2 to Wave 3
(loadings set at 0 and 1). The model then estimated the effect of each correction
action at one wave (Wave 1 or 2) on simple change in the outcome from that
wave to the next wave.

It was hypothesized that cross-lagged panel models would make corrective
actions appear to be harmful, whether implemented by parents (time-out, rea-
soning) or by professionals (psychotherapy, hospitalizations). In contrast, latent
growth models would indicate that all these corrective actions would lead to
improvements in the same outcomes.

2 Method

2.1 Participants

This study used the Fragile Families and Child Wellbeing (FFCW) dataset which
started with baseline data for mostly unmarried couples with children born from
1998 to 2000 in 20 large cities of the United States (Reichman, Teitler, Garfinkel,
& McLanahan, 2001). It includes a wide range of data on household character-
istics, physical and mental health, and parenting, first when the children were
born, and later when the children were approximately 1, 3, 5, 9, 15, and 22 years
old. The current study uses corrective action data when the children were 3 and
5 years old and outcome data when they were 3, 5, and 9 years old. At baseline
(when the child was born), the 4588 mothers in these 3-wave analyses averaged
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25.2 years old and had some college on average, and consisted of 21.2% White,
48.0% Black, 27.0% Hispanic, and 3.8% others. Missingness ranged from 8% to
28%. Full information maximum likelihood was used to adjust for missing data in
the 3-wave analyses, which assumes that those data were missing at random. The
FFCW data set (https://ffcws.princeton.edu/documentation) is available
from Princeton University’s Office of Population Research (OPR) data archive.

2.2 Measures

Time-out Disciplinary time-out was assessed by mothers’ self-report on one
item from the Parent-Child Conflict Tactics Scale (Straus, Hamby, Finkelhor,
Moore, & Runyan, 1998), which asks how often in the past year mothers put
their child in time-out or sent them to their room. The frequency was reported on
a 8-point scale, ranging from never (0) to 11-20 times (6) to more than 20 times
(7). We created a dummy variable indicating whether the time-out frequency
was above the median frequency or not: 11 or more times (1), or less than 11
times (0).

Reasoning Disciplinary reasoning was also assessed by mothers’ self-report
from one item of the Parent-Child Conflict Tactics Scale (Straus et al., 1998),
using the same response options. The item asks how often in the past year
mothers explained why something was wrong. We created a dummy variable
indicating whether reasoning occurred more frequently than the median or not:
11 or more times (1), or less than 11 times (0).

Child Aggression The FFCW measure of child aggression was a modified ver-
sion of the aggression subscale of the Child Behavior Checklist (CBCL; Achen-
bach, 1991; Achenbach & Rescorla, 2000) with 19 items at age 3, 13 items at
age 5, and 17 items at age 9. Mothers reported whether various behaviors were
not true, somewhat/sometimes true, or often/very true of the child. Sample
questions include destroying things, being disobedient, hitting others, getting in
many fights, screaming a lot, and threatening people. The scale demonstrated
excellent reliability with coefficient alphas of 0.88 (age 3), 0.82 (age 5), and 0.88
(age 9).

Psychotherapy for Depression Psychotherapy for depression was measured
by two questions. Mothers reported whether they had received counseling/ther-
apy for personal problems in the past year. If “yes,” they were asked whether
the counseling/therapy was for depression or for a range of other problems. Re-
ported counseling/therapy for depression was coded 1, and other answers were
coded 0. Two dummy codes indicated whether mothers received psychotherapy
for depression when the child was 3 and 5 years old.

https://ffcws.princeton.edu/documentation
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Depression Severity Depression severity was based on maternal self-reports
about symptoms of a Major Depressive Episode, derived from the Composite
International Diagnostic Interview—Short Version (Kessler, Andrews, Mroczek,
Ustun, & Wittchen, 1998). The CIDI is a standardized survey for assessing
mental disorders such as depression. The depression items included two stem
questions and seven additional questions for those exceeding the threshold on
the stem questions. We constructed a 13-point scale from none (0) through sub-
threshold symptoms (1 to 4) to the number of symptoms above the threshold,
including the stem questions (5 to 12).

Hospitalization Hospitalization was measured by a single dummy-coded item
indicating whether mothers visited an emergency room or had an overnight
hospital stay during the past year.

Physical Health Mothers’ physical health was based on mothers’ self-reports
on their health condition on a five-point scale (0 = poor to 4 = great).

3 Results

The results showed contradictory results from cross-lagged panel models com-
pared to linear latent growth models. The four examples estimate the apparent
effects of corrective actions by parents (time-out and reasoning) and by profes-
sionals (psychotherapy and inpatient hospitalized treatments).

3.1 Time-out and Subsequent Child Aggression

Cross-lagged panel models made time-out at Wave 2 look significantly harmful
by increasing child aggression at Wave 3, after controlling for the preceding
aggression scores: b = 0.03, p = 0.002, Figure 1, Plot A. (Time-out at Wave 1
also predicted higher aggression at Wave 2 controlling for Time-1 aggression,
but only marginally, b = 0.02, p < 0.01.) In contrast, two-slope latent growth
models made time-out look helpful in reducing child aggression from each wave
to the next wave: b = −0.06 (Wave 1 time-out predicting change in aggression
from Wave 1 to Wave 2), and b = −0.03 (Wave 2 time-out predicting change in
aggression from Wave 2 to Wave 3), ps < 0.01, Figure 1, Plot B.

3.2 Reasoning and Subsequent Child Aggression

Cross-lagged panel models also made disciplinary reasoning at Wave 2 look harm-
ful by predicting more child aggression at Wave 3, after controlling for Wave 1
and Wave 2 aggression scores: b = 0.04, p = 0.001, Figure 2, Plot A. In contrast,
the 2-slope latent growth model made reasoning at Wave 1 look helpful in re-
ducing child aggression from Wave 1 to Wave 2: b = −0.07, p < .001, Figure 2,
Plot B.
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Figure 1. Cross-Lagged Panel Model (CLPM) and Latent Growth Model (LGM) of Time-out 

and Child Aggression across three waves of data. ap < .10; * p < .05; ** p < .01; *** p < .001. N 

= 4153 
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Figure 1. Cross-Lagged Panel Model (CLPM) and Latent Growth Model (LGM) of
Time-out and Child Aggression across three waves of data. ap < .10;∗ p < .05;∗∗ p <
.01;∗∗∗ p < .001.N = 4153

3.3 Psychotherapy and Subsequent Depression

The results followed a similar pattern for professional treatments. A cross-lagged
panel model made therapy for depression look significantly harmful by predict-
ing higher depression severity at the next wave, even after controlling for the
preceding depression severity score: b = 0.70 (Wave 1 psychotherapy predicting
Wave 2 depression severity) and b = 1.60 (Wave 2 psychotherapy predicting
Wave 3 depression severity), all ps < 0.05, Figure 3, Plot A. In contrast, 2-slope
latent growth models made therapy look helpful in reducing depression severity
from each wave to the next wave: b = −3.05 (Wave 1 psychotherapy predict-
ing a decrease in depression from Wave 1 to Wave 2) and b = −0.73 (Wave 2
psychotherapy predicting a decrease in depression from Wave 2 to Wave 3), ps
< 0.05, Figure 3, Plot B.

3.4 Hospitalization and Subsequent Physical Health

A cross-lagged panel model made hospitalization look harmful by predicting
worse physical health in mothers at the next wave, after controlling for mothers’
preceding physical health score: b = −0.15 (Wave 1 hospitalization predicting
worse health at Wave 2) and b = −0.09 (Wave 2 hospitalization predicting worse
health at Wave 3), all ps < 0.05, Figure 4, Plot A. In contrast, a 2-slope latent
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Figure 2. Cross-Lagged Panel Model (CLPM) and Latent Growth Model (LGM) of Reasoning 

and Child Aggression across three waves of data. * p < .05; ** p < .01; *** p < .001. N = 4153 
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Figure 2. Cross-Lagged Panel Model (CLPM) and Latent Growth Model (LGM) of
Reasoning and Child Aggression across three waves of data. ∗p < .05;∗∗ p < .01;∗∗∗ p <
.001.N = 4153

growth model made hospitalization look helpful in improving mothers’ health
from each wave to the next wave: b = 0.20 (Wave 1 hospitalization predicting
improving health from Wave 1 to Wave 2) and b = 0.12 (Wave 2 hospitalization
predicting improving health from Wave 2 to Wave 3), ps < 0.01, Figure 4, Plot
B.

4 Discussion

Despite being well-known for over 50 years, the implications of Lord’s (1967)
paradox for multi-wave longitudinal analyses have not been well understood. The
current study used four examples of corrective actions to illustrate Lord’s para-
dox in three-wave longitudinal analyses. As expected, results from the difference-
score approach (e.g., latent growth models) contradicted results from the resid-
ualized change score approach (cross-lagged panel models), just as in two-wave
analyses. All four corrective actions looked effective according to latent growth
models but harmful according to cross-lagged panel models. This may help ex-
plain why longitudinal analyses of residualized change scores have been unable
to find effective parental responses to perceived child problems, such as per-
sistent defiance, smoking, and precocious sex (Larzelere et al., 2018). The bias
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Figure 3. Cross-Lagged Panel Model (CLPM) and Latent Growth Model (LGM) of Mothers’ 

Depression across three waves of data, predicted by Psychotherapy (PSY_TRT). * p < .05; ** p 

< .01;  *** p < .001. N = 4588. 
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in residualized change score analyses helps parenting researchers confirm what
they oppose (e.g., spanking), but hinders their efforts to document more effec-
tive corrective actions to replace it. The failure to find more effective corrective
disciplinary responses in basic parental discipline research may help explain why
clinical treatments for conduct problems in children (mostly implemented by
parents) have not improved in effectiveness over the past 50 years (Weisz et al.,
2019). In any case, it is worrisome that the kinds of analyses considered to be
sufficient causal evidence to oppose harsh discipline practices such as spanking
make most corrective actions by professionals look harmful also (Larzelere et al.,
2018). These results can be explained by systematic biases recently elucidated
in ANCOVA-type longitudinal analyses, because they confound within-person
changes with invariant between-person differences, which are already reflected
in the initial outcome scores (Berry & Willoughby, 2017; Hamaker et al., 2015;
Hoffman, 2015).

Note that the four corrective actions in this study are all considered to be
effective on average. Their effectiveness has been demonstrated in meta-analyses
of randomized trials for psychotherapy for depression (Cuijpers et al., 2023) and
time-out for oppositional defiance (Larzelere, Gunnoe, Roberts, Lin, & Ferguson,
2020) , whereas disciplinary reasoning and hospital-based treatments are widely
considered to be effective in most cases. These results add to a wide range of
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corrective actions shown (incorrectly) to be significantly harmful in longitudi-
nal analyses of residualized change scores whether implemented by parents or
professionals (Larzelere et al., 2018).

Does this mean that difference-score analyses are always less biased than
residualized change score analyses? Not necessarily. If the covariates account per-
fectly for selection into treatment conditions, ANCOVA is unbiased (Van Breuke-
len, 2013). The problem is that covariates fall short of this ideal in comprehen-
siveness, validity, and reliability in most longitudinal analyses. Steiner, Cook,
Shadish, and Clark (2010) showed that ANCOVA can approximate unbiased
causal effects when the covariates include baseline scores on the outcome and
variables that account for self-selection into treatment conditions. Their study
compared self-selection by college students into exercises to improve either math
or vocabulary. It is unclear how well their results generalize to other situations
in which self-selection is less well understood and poorly represented in the co-
variates. Note that the current study adjusted only for baseline scores on the
outcome, with no additional covariates to account for why people with the same
problem severity selected the corrective action of interest or not.

One factor is that the bias in ANCOVA-type analyses of residualized change
scores is larger when the treatment conditions differ greatly in baseline scores on
the outcome. When pretest group mean scores differ, the assumption of indepen-
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dence between covariates and treatment of ANCOVA is violated. Violations of
this assumption usually imply invariant between-group differences, which have
been shown recently to bias analyses of residualized change scores (Berry &
Willoughby, 2017; Hamaker et al., 2015). The bias occurs because within-person
change following the corrective action is confounded or “smushed” with between-
person differences that are unchanging (Hoffman, 2015).

In contrast, independence of treatment condition and baseline scores is not an
assumption of the difference-score approach, making it free from that particular
bias. Nor are difference-score analyses biased by measurement error in its base-
line scores, whereas residualized change score analyses are known to be biased
by that measurement error. In contrast to residualized change score approaches,
the difference-score approach ignores between-person differences except for dif-
ferences due to within-person changes in the time period studied. In randomized
studies, between-person differences that precede the treatment are removed, so
that any between-person differences at post-test are due only to within-person
changes due to the treatment conditions. In non-randomized studies, difference-
score analyses can have their own unique biases, such as regression toward the
mean, but the results of this and other studies of corrective actions suggest that
difference-score models are often less biased than are residualized change score
models, such as cross-lagged panel models.

What can be done to improve the causal validity of longitudinal analyses?
The first step is to recognize the problem. One improvement would be to follow
the example of econometricians in checking the robustness of results across mul-
tiple types of analyses (Duncan, Engel, Claessens, & Dowsett, 2014). Angrist
and Pischke (2009) showed that these two types of change-score analyses will
bracket the true causal effect under some assumptions, but it can be difficult to
tell whether those assumptions are satisfied. For example, the true effect of job
training programs was outside this bracket for both men and women in Lalonde’s
(1986) classic study. Robustness across both types of change-score analyses is
therefore consistent with an unbiased causal effect, but does not guarantee it
(Lin & Larzelere, 2020).

Statisticians continue to expand the options for improving the capability of
longitudinal analyses to approximate less biased causal inferences (e.g., Zyphur
et al., 2020). Whereas simulations of statistical innovations are generally based
on conditions that may not apply to real data (e.g., the possibility of avoiding
all specification errors), illustrations with actual data have rarely shown which
types of analyses can correctly recover the same direction of effectiveness for
corrective actions that have been documented in randomized trials. Confidence
in causal inferences from longitudinal analyses can be strengthened by showing
that statistical innovations can make longitudinal analyses agree with unbiased
causal evidence from randomized trials.
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Abstract. This study investigates the effects of sports participation
and social media use on high school students’ mental health and self-
perception, with a focus on understanding their unique contributions to
happiness and academic confidence. Structural equation modeling was
applied to analyze the relationships between sports participation, time
spent on social media, and self-reported levels of happiness and confi-
dence, while accounting for potential gender differences. The results in-
dicate that sports participation is positively associated with happiness,
but does not significantly affect academic confidence. In contrast, the
use of social media is negatively associated with academic confidence,
although it does not significantly impact happiness. Gender differences
were observed, with female students reporting a lower level of happiness
but a higher level of academic confidence. These findings suggest that
while extracurricular activities, such as sports varsity involvement, can
support students’ well-being, the excessive use of social media apps may
undermine their academic confidence.

Keywords: High school students · Social media usage · Sport participa-
tion · Mental health · Happiness · Academic confidence

1 Introduction

High school students face numerous challenges, including academic pressures
and social dynamics, that significantly impact their mental health (Pascoe et
al., 2020). In recent years, awareness of mental health issues within this demo-
graphic has increased substantially. According to the Youth Risk Behavior Sur-
vey Data Summary & Trends Report: 2013–2023 (Centers for Disease Control
and Prevention (CDC), 2023), 40% of high school students reported experienc-
ing persistent feelings of sadness or hopelessness in 2023. Contributing factors
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include pressure to achieve high grades, participation in extracurricular activ-
ities, and the complexities of maintaining social relationships. In addition, the
transition from adolescence to adulthood is a critical period that requires tar-
geted mental health support to promote resilience. To alleviate stress, the use
of social media and the participation in sports have been identified as potential
resources (e.g., Eather, Wade, Pankowiak, & Eime, 2023; Orsolini et al., 2022).

Social media has become an integral part of daily life, enabled by the widespread
accessibility of modern devices. It offers valuable opportunities for social connec-
tion and emotional support, fostering relationships and community in the digital
age. A recent survey indicates that nearly 93% of teens in America use social
media platforms (Sentiment.io, 2024), engaging in activities such as entertain-
ment, social interaction, and maintaining interpersonal relationships (Ifinedo,
2016). However, its widespread use has sparked ongoing debate about its impact
on mental well-being (Abiddine, Aljaberi, Gadelrab, Lin, & Muhammed, 2022;
Bekalu, McCloud, & Viswanath, 2019).

Social media plays a dual role in the lives of high school students, offering
both significant benefits and notable challenges. On the one hand, it facilitates
social connectivity, enabling students to maintain relationships with friends and
family, even across long distances, and to expand their networks by connecting
with like-minded individuals. It also provides emotional support, as students can
share their feelings and experiences and often receive encouragement from their
peers (Shensa et al., 2016). In addition, social media grants students access to an
abundance of information and resources, helping them stay updated on current
events, educational opportunities, and tools that foster learning and personal
growth (Westerman, Spence, & Van Der Heide, 2014). These positive aspects
highlight social media’s potential to enhance social, emotional, and intellectual
development.

On the other hand, the extensive use of social media also presents significant
challenges. Issues such as cyberbullying, pressure to maintain an idealized on-
line image, and reduced face-to-face interactions can have detrimental effects on
users. A recent meta-analysis by Marciano, Lin, Sato, Saboor, and Viswanath
(2024) explored the relationship between social media use and positive well-
being. The study found that hedonic well-being characterized by positive emo-
tions and life satisfaction is positively associated with social media communica-
tion and positive online experiences, but negatively correlated with problematic
social media use, highlighting the dual nature of social media’s impact on mental
well-being. Moreover, excessive engagement with social media for video content,
often distracts students from academic responsibilities and learning activities
(Akter, 2014).

In contrast to the challenges posed by social media, sports participation pro-
vides a unique and effective outlet for high school students, combining physical
activity and teamwork as a means of stress relief. Sports offer substantial bene-
fits for mental and physical health (e.g., Fossati et al., 2021; Pascoe et al., 2020).
Engaging in sports allows students to channel stress through physical activity,
which releases endorphins and improves mood (Alam & Rufo, 2019; Fossati et al.,
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2020). Moreover, being part of a team fosters a sense of community and belong-
ing, boosting self-esteem and confidence (Haim-Litevsky, Komemi, & Lipskaya-
Velikovsky, 2023). The discipline and structure inherent in sports also promote
the development of time management skills and resilience (Mart́ın-Rodŕıguez et
al., 2024). Regular physical activity has also been linked to better concentra-
tion, improved sleep quality, and enhanced overall physical fitness, all of which
contribute to a healthier lifestyle. By incorporating sports into their routines,
high school students can adopt a balanced approach to navigating academic and
social pressures, ultimately improving their overall well-being.

Despite a growing body of research, several gaps remain in the literature
regarding the impact of social media and sports on high school students. The
mechanisms through which these activities influence mental health-whether pos-
itively or negatively-are still not fully understood. For example, while some stud-
ies suggest that social media fosters social connectivity and emotional support,
others highlight its potential to contribute to feelings of inadequacy, anxiety,
and depression. A more nuanced understanding of the contexts, patterns, and
types of social media use (e.g., active versus passive use, positive versus negative
interactions) is needed to clarify these conflicting findings.

Furthermore, limited knowledge exists about which social media platforms
are most popular among high school students, how much time they spend on
these platforms, and how platform-specific features influence their mental well-
being. Factors such as algorithm-driven content exposure, platform design, and
peer interactions may play a significant role but remain under explored. Similarly,
the role of individual differences-such as gender, socioeconomic status, or per-
sonality traits-in moderating the effects of social media is not well-documented.

To address these gaps, the current study investigates the complex relation-
ships between social media use, sports participation, mental health, and aca-
demic confidence among high school students. Specifically, it explores how dif-
ferent patterns of social media engagement and various types of sports activities
contribute to students’ well-being, including their mental health, happiness, and
academic confidence. By examining these factors, the study seeks to clarify the
mechanisms underlying these influences and to identify potential areas where
targeted interventions and support strategies can enhance the well-being of high
school students.

Building on this objective, we collected data on high school students’ hap-
piness, academic confidence, social media usage, and sports participation. The
study examines how these activities influence students’ happiness and academic
confidence. Additionally, it explores the mediating role of happiness in these re-
lationships, providing deeper insights into the mechanisms through which these
activities affect students’ overall well-being. Since happiness and academic con-
fidence are latent constructs, each measured by multiple indicators, a structural
equation modeling (SEM) approach is used to model the relationships among
these variables while accounting for measurement error (e.g., Bollen, 1989; Lee
& Song, 2012; Merkle & Rosseel, 2015; Muthén & Asparouhov, 2012).
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The remainder of the article is structured as follows. First, we introduce
the high school student mental health dataset collected for this study. Next,
we describe the data analysis procedures and present the results. Finally, we
conclude with a discussion of the findings and their implications.

2 High School Student Mental Health: An Empirical
Example

In this section, we introduce the participants, describe the measurements used
for data collection, and summarize the key characteristics of the dataset.

2.1 Participants

This study involved 51 students from a public high school in San Jose, California.
Among the participants, there were 26 female students, 24 male students, and one
non-binary student. The grade levels ranged as follows: 2 ninth graders, 11 tenth
graders, 17 eleventh graders, and 21 twelfth graders. Additionally, 25 participants
were members of high school varsity sports teams, while the remaining 26 were
non-athletes.

2.2 Procedures

To understand the impact of sports participation and social media usage on hap-
piness and confidence among high school students, data collection was conducted
using a Google Form containing items on demographics, sports participation, so-
cial media usage, and self-reported happiness and confidence levels. The survey
was distributed among students, specifically targeting members of sports teams
and their classmates, to gather diverse perspectives.

2.3 Measurement

We collected self-reported data on students’ happiness and academic confidence,
both measured as latent constructs using multiple indicators. Additionally, we
gathered data on students’ sports participation and social media usage, includ-
ing their preferred platforms and the among of time spent on these platforms.
Students also provided their perceptions of how sports activities affected their
happiness and academic confidence.

Happiness and Academic Confidence To measure happiness and academic
confidence, we developed a 10-item scale 3.

Each of the two latent constructs-happiness and academic confidence-is mea-
sured by 5 items. Example items include, “I generally feel happy in my daily

3 Refer to the Appendix
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life” for happiness and “I believe in my ability to perform well in exams and
assessments” for academic confidence. All 10 items were rated on a 5-point Lik-
ert scale (1 = strongly disagree, 2 = somewhat disagree, 3 = neither agree nor
disagree, 4 = somewhat agree, and 5 = strongly agree).

The reliability (α, Cronbach, 1951) for the happiness construct is 0.79, with
the 95% confidence interval [0.68, 0.87]. For academic confidence, α is 0.62, with
the 95% confidence interval [0.42, 0.76].

Social Media Usage To understand social media usage among high school stu-
dents, we included an open-ended question asking them to report their favorite
social media apps. Students were allowed to list more than one app if applicable.
Figure 1 illustrates the frequencies of the social media apps indicated by the
students as their favorite apps.

In this data set, students reported a total of nine social media applications as
their favorite applications. Among the nine applications, YouTube was the most
popular, with 34 students (around two-thirds) listing it as their favorite app.
Instagram was also highly favored, with 29 students listing it as their favorite
app.

Facebook YouTube Instagram Snapchat Twitter Reddit Discord TikTok Pinterest
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Figure 1. Comparison of student preferences for social media applications

Moreover, students also reported how many hours they spend on social me-
dia per day. The distributions are included in Figure 2. The plot illustrates the
distribution of time spent on social media among students, categorized into four
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Figure 2. The average time that students spend on social media per day

groups: “Less than 1 hour,” “1-2 hours,” “3-4 hours,” and “More than 4 hours.”
The majority of students fall into the “1-2 hours” category, indicating that mod-
erate daily social media usage is the most common. As the time spent on social
media increases, the number of students decreases, with fewer reporting “3-4
hours” of use and an even smaller proportion in the “More than 4 hours” cate-
gory. Additionally, a smaller yet notable group of students reported “Less than
1 hour” of daily social media use, suggesting that a subset engages minimally
with social media. These findings highlight the varying levels of social media
engagement among students.

Sports Participation Among the 51 students, 25 were members of a sports
team at the time of the survey, while the remaining 26 were not. Of the students
on sports teams, 11 had been members for 1 or 2 years, 12 had been members
for 3 or 4 years, and 3 had been members for less than a year.

Perceived Impact of Sports on Happiness and Confidence Students also
described how sports activities impacted their happiness and confidence, using
a scale ranging from “Sports significantly decrease my happiness
/confidence” to “Sports significantly increase my happiness/confidence.” The
responses are summarized in Figure 3.

The majority of students reported either an increase or a significant increase
in happiness as a result of sports participation, with a smaller proportion indi-
cating “No Impact” and only a few reporting negative effects. A similar pattern
was observed for academic confidence, where most students experienced positive
changes. However, slightly fewer students reported an increase in academic con-
fidence compared to happiness, with a notable portion indicating “No Impact.”
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Figure 3. Self-reported impact of sports participation on students’ happiness and con-
fidence

2.4 Overview of Data Analysis

This analysis aims to examine the impact of sports participation and social me-
dia on high school students’ mental health and academic confidence. Specifically,
we aim to address the following questions: (1) Does sport participation positively
influence students’ happiness and/or academic confidence? (2) Does social media
enhance students’ happiness but hinder academic confidence? (3) How are hap-
piness and academic confidence related? (4) Are there gender-based differences
in happiness and the academic confidence among students?

3 Data Analysis and Results

Since both happiness and academic confidence are latent variables measured by
five indicators each, we will use structural equation models (Garnier-Villarreal &
Jorgensen, 2020) that incorporate a measurement model for the latent variables
and a structural model to assess the hypothesized relationships between them.

3.1 Model

In LISREL notation (Byrne, 1989), an SEM model typically includes the mea-
surement and structural components. The measurement model describes the
measurement structures of the latent variables:{

x = Λxξ + δ

y = Λyη + ε
(1)
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where x represents observed indicators for the exogenous latent variables (ξ),
y represents observed indicators for the endogenous latent variables (η), Λx

and Λy are the factor loading matrices for exogenous and endogenous variables,
respectively. The symbols δ and ε are the measurement errors of indicators.

The structural model assess the relationship among latent variables and with
predictors

η = Bη + Γξ +ΠZ+ ζ (2)

where B is the matrix of regression coefficients among endogenous latent vari-
ables Γ is the matrix of regression coefficients from exogenous latent variables
(ξ) to endogenous latent variables (η), Π is the matrix of regression coefficients
from observed predictors Z to endogenous latent variables, and ζ represents the
disturbance terms.

In the current analysis, the endogenous latent variables (η) include happi-
ness and the academic confidence. The manifest predictors Z includes the sport
varsity participation (yes=1, no=0), gender (girl=1, boy=0), and app use (in
hours).

We fit the model using the lavaan package (Rosseel, 2012) within the R plat-
form (R Core Team, 2020). The initial model was specified without cross-loadings
or correlated residuals, and all models were estimated using the maximum like-
lihood approach (Jöreskog, 1967). After fitting the initial model, we conducted
modifications based on the largest Modification Index (MI) to improve model
fit by incorporating the suggested paths. The final model, refined through this
process, is illustrated in Figure 4.

3.2 Results

The model parameter estimates and fit indices are presented in Table 1. When
compared to the saturated model (i.e., a model with a perfect fit), the hypoth-
esized model shown in Figure 4 demonstrated a good fit, with a Chi-square
statistic of 45.538(df=40) and a p-value of 0.253, indicating that our model is
not significantly worse than the saturated model. The fit indices further support
this conclusion: the Root Mean Square Error of Approximation (RMSEA) is
0.052, the Comparative Fit Index (CFI) is 0.965, and the Tucker-Lewis Index
(TLI) is 0.945, all of which indicate a good model fit.

Examining the parameter estimates, we find that sports varsity participa-
tion (1=yes, 0=no) positively predicts happiness (Est = 0.371, p-value = 0.035),
suggesting that students involved in sport varsity report higher happiness. How-
ever, hours spent on social media applications (App hour) did not signifi-
cantly predict happiness (Est = 0.077, p-value = 0.430). The coefficient estimate
of gender (female=1, male=0) is −0.433 with p-value 0.019. The result indicates
that female students are less happier than male students.

For academic confidence, sports participation was not a significant predictor
(Est = −0.143, p-value = 0.499). In contrast, hours spent on social media neg-
atively predicted confidence (Est = −0.373, p-value = 0.003), suggesting that
more time on social media may be associated with lower academic confidence. In
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Figure 4. Path diagram of the CFA model of Imagination and Extraversion

addition, female students are more confident in academic performance than male
students with the coefficient estimate of gender on confidence being 0.602 and
the p-value being 0.013. Moreover, happiness, though not significant, showed a
positive trend in predicting confidence (Est = 2.981, p-value = 0.129).
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Par Est Std.Err z-value P(> |z|)
Happy∼ Sport 0.371 0.176 2.104 0.035

App hour 0.077 0.097 0.790 0.430
Gender -0.433 0.185 -2.337 0.019

Confidence∼ Sport -0.143 0.212 -0.676 0.499
App hour -0.373 0.128 -2.925 0.003
Gender 0.602 0.242 2.484 0.013
Happy 2.981 1.966 1.517 0.129

X 2(40) 45.538 p-value=0.253
CFI 0.965 TLI 0.945

RMSEA 0.052
Table 1. Parameter estimates of the regression coefficients and the model fit indices

4 Concluding Remarks

This study examined the effects of sports participation and the use of social
media on high school students’ happiness and academic confidence. By employing
a structural equation modeling approach, the research assessed the relationships
among these variables while accounting for gender difference, the time spent on
social media, and the participation in sports varsity.

4.1 Highlights of the Results

The results reveal that sports participation and social media have distinct influ-
ences on high school students’ happiness and academic confidence. Specifically,
sports participation was positively associated with happiness, indicating that
engaging in sports may enhance overall well-being. However, it did not have a
significant impact on academic confidence. Conversely, increased time spent on
social media was negatively associated with academic confidence but showed no
significant effect on happiness levels. While happier students tended to report
higher academic confidence overall, this relationship was not statistically sig-
nificant in the current dataset. Gender differences were observed, with female
students reporting a lower levels of happiness and a higher level of academic
confidence than male students.

4.2 Discussion

The findings of this study reveal notable patterns in the popularity of social
media applications among high school students. YouTube emerges as the most
widely favored platform, with a significant majority of students identifying it as
their preferred app. Instagram follows as the second most popular choice, empha-
sizing its appeal for photo sharing and social interaction. While other platforms
are less commonly selected, they still maintain a presence among students, re-
flecting the diverse preferences within this demographic.
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In addition to insights on social media preferences, the study highlights the
complex relationships between sport activities, social media use, and high school
students’ mental health and academic confidence. The positive association be-
tween sports participation and happiness aligns with existing literature, sug-
gesting that physical activity and team engagement can enhance well-being and
provide students with a sense of community and purpose. However, the lack of
a significant link between sports participation and academic confidence implies
that while sports may enhance general happiness, they do not necessarily impact
students’ perceptions of their academic abilities.

In contrast, the negative impact of social media use on academic confidence
highlights growing concerns about its influence, arising from social comparison
or distractions from academic responsibilities. Importantly, the observed gender
differences in happiness and confidence, with female students reporting a lower
level of happiness and a higher level of academic confidence, emphasize the im-
portance of implementing tailored support strategies to address these disparities.

These findings suggest that promoting balanced social media use and encour-
aging participation in sports can play a vital role in supporting students’ mental
well-being. However, effective educational interventions must also consider the
unique challenges and needs of different gender groups to foster both mental
health and academic confidence.

4.3 Future Considerations

This study offers valuable insights into the relationships between sports partici-
pation, social media use, happiness, and academic confidence among high school
students, employing a structural equation modeling approach. However, a few
of methodological limitations should be addressed in future research.

First, the cross-sectional design limits the ability to draw causal inferences.
Future studies should consider longitudinal or experimental designs to better
capture the dynamic effects of sports participation and social media over time,
helping to clarify causal pathways and temporal relationships.

Second, the reliability and validity of the scales used to measure happiness
and academic confidence require further calibration to ensure robust results.
Additionally, the reliance on self-reported data introduces potential biases, such
as social desirability bias, which may compromise the accuracy of the findings.
Future research should consider incorporating objective measures, such as digital
tracking of social media use and external assessments of academic confidence, to
strength the reliability and validity of the data.

Additionally, this study was conducted in a single school in the Bay Area,
which may restrict the ability of generalization of the findings to broader popu-
lations, such as students from the Midwest or other regions with distinct cultural
and socioeconomic contexts. Expanding the sample to include schools from di-
verse regions and demographic backgrounds would enhance the external validity
and applicability of the results.

Lastly, while this study examined gender differences, future research should
explore other moderating factors, such as socioeconomic status, academic achieve-
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ment, and family support, to gain a more subtle understanding of how these
variables interact with social media use and sports participation. Addressing
these methodological considerations would provide a more comprehensive un-
derstanding of the factors influencing high school students’ mental health and
academic confidence, offering a stronger foundation for effective interventions.
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Appendix

High School Student Happiness and Academic Confidence Survey:
Sports Participation

Thank you for taking part in our survey, which aims to explore the relationship
between high school students’ happiness, academic confidence, and their partici-
pation in high school sports teams. Your responses will provide valuable insights
into how sports involvement may impact your overall well-being and academic
self-assurance. Your responses will remain anonymous and confidential.

Section I

1. Name (OPTIONAL)
2. Email (OPTIONAL)
3. Gender: ◦Male ◦ Female ◦Non-Binary ◦Other
4. Grade: ◦ 9th ◦ 10th ◦ 10th ◦ 11th
5. Cumulative GPA (unweighted)
6. Which high school do you currently attend?
7. Are you currently a member of a high school sports team? ◦ Yes ◦ No

Section II

Happiness Assessment Please rate the following statements on a scale of 1
to 5, where 1 indicates strongly disagree and 5 indicates strongly agree.

1. I generally feel happy in my daily life. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
2. I have supportive friendships. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
3. I am satisfied with my overall well-being. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
4. I feel a sense of belonging at my school. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
5. I am optimistic about my future. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5

Section III

Academic Confidence Assessment Please rate the following statements on
a scale of 1 to 5, where 1 indicates strongly disagree and 5 indicates strongly
agree.

1. I believe I am capable of understanding challenging subjects. ◦ 1 ◦ 2 ◦ 3 ◦ 4
◦ 5

2. I feel confident participating in classroom discussions. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
3. I am comfortable seeking help from teachers when needed. ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦

5
4. I manage my time effectively to balance schoolwork and other activities. ◦ 1

◦ 2 ◦ 3 ◦ 4 ◦ 5
5. I believe in my ability to perform well in exams and assessments. ◦ 1 ◦ 2 ◦

3 ◦ 4 ◦ 5
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Section IV

Social Media Usage

1. On average, how many hours per day do you spend on social media? ◦ Less
than 1 hour ◦ 1-2 hours ◦ 3-4 hours ◦ More than 4 hours

2. Please select your favorite social media app from the following list ◦ Insta-
gram ◦ TikTok ◦ Snapchat ◦ Twitter ◦ Facebook ◦ Youtube ◦ Pinterest ◦
Reddit ◦ Other

Section V

Sports Participation and Impact

1. How long have you been a member of a high school sports team? ◦ Less than
a year ◦ 1-2 years ◦ 3-4 years ◦ Not applicable

2. How do you feel your involvement in a sports team has influenced your overall
happiness? Significantly decreased ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 Significantly increased

3. How do you perceive the impact of sports participation on your academic
confidence? Significantly decreased ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 Significantly increased
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1 Introduction

The R (R Core Team, 2024) ecosystem lacks a dedicated, streamlined package for
incorporating Greek letters and mathematical symbols into text outputs seam-
lessly. The greekLetters package (Rodrigues, 2023) addresses this need, offering
a comprehensive toolkit for displaying Greek letters and various mathematical
symbols in RStudio (Posit team, 2024) and RGui environments.

Designed for ease of use, the package facilitates the inclusion of Greek letters
and math equations in RGui and RStudio, enhancing the clarity and presenta-
tion of statistical notation. The package ensures compatibility across operating
systems by encoding characters in UTF-8. Additionally, it supports the creation
of summary functions that incorporate the functional form of fitted models with
Greek letters, bridging the gap between statistical theory and practice. The
package’s simplicity and accessibility make it an essential tool for enhancing the
presentation and understanding of statistical concepts in R.

The article is organized as follows. Section 2 provides the rationale for the
existence of the package. Section 3 explains the syntax for using Greek letter
symbols and mathematical symbols, Section 4 presents some examples of how
to use the greekLetters package. Section 5 details where the package is available
and how to install it. The final section discusses the package documentation.

2 Statement of need

Incorporating Greek letters and mathematical symbols in R outputs is essen-
tial for clear and accurate statistical notation, particularly in educational and
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professional settings. However, R lacks a package that fills this gap. Existing
solutions are limited in scope and functionality, especially in environments like
RGui where Unicode support is partial.

The greekLetters package (Rodrigues, 2023) fills this gap by providing func-
tions to display Greek letters and mathematical symbols consistently across
RStudio and RGui. This capability is crucial for creating clear and professional
statistical outputs, enhancing the communication and understanding of statisti-
cal models and results.

Thus, the greekLetters package will be useful as a support package for the
development of other packages, serving to create summaries with equations and
mathematical symbols, as well as assisting in the communication of other R
outputs. An example of a package that depends on greekLetters is diagL1 (Ro-
drigues & Elian, 2024). It is expected that in the coming years, greekLetters will
be used in more packages.

The next section deals with the syntax for using Greek letters and mathe-
matical symbols.

3 Syntax

The syntax for using the symbols is simple, just use the greeks() function as
shown in the following command.

# Basic syntax

greeks("math_symbol_or_Greek_letter_name")

To write equations, simply concatenate the symbols, which can be done using
the paste() and paste0() functions. The paste() function uses a space, “ ”, as the
default separator, but it allows other symbols to be defined as separators. On
the other hand, the paste0() function does not insert any separators between the
concatenated strings.

Figure 1 contains the output of the print greeks() function, which lists the
symbols and their respective names, allowing the greeks() function to generate
these symbols.

The next section will present examples illustrating the utility of the package.
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Figure 1. Output of print greeks() containing symbols names for greeks() function.
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4 Examples

Here are some straightforward examples showcasing greekLetters utility. To de-
note the approximation of π, you can use:

# pi constant

paste(greeks("pi"), greeks("almostEqual"), "3.14")

The linear regression equation, in matrix form, can be elegantly displayed using
Greek letters for the coefficients and error term:

# Linear regression

paste("y", " = X", greeks("beta"), " + ",

greeks("epsilon"), sep ="")

The expected value of a random variable X can be represented as:

# Expected value

paste("E[X] = ", greeks("integral"), "xf(x)dx",

sep = "")

The notation for testing a statistical hypothesis can be shown as:

# Testing statistical hypothesis

paste(greeks("H_0"), ":", greeks("mu"), "= 0")

paste("versus", greeks("H_1"), ":",

greeks("mu"), greeks("notEqual"), "0" )

Figure 2 contains the outputs of the presented commands.

Figure 2. R console outputs with mathematical equations and Greek letters.
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By using the greekLetters package, these examples demonstrate how to ef-
fectively incorporate Greek letters and mathematical symbols into R outputs,
enhancing the clarity of R statistical outputs.

The next section will explain how to install the package and describe its
license, detailing what can be done with it.

5 Package availability and license

The greekLetters package is hosted on the official CRAN (The Comprehen-
sive R Archive Network) repository, ensuring its reliability and easy access
for all R users. The package can be found and downloaded via the following
link: https://cran.r-project.org/package=greekLetters. Being available
on CRAN ensures that the package has undergone rigorous quality and com-
pliance checks, guaranteeing its compatibility with different versions of R and
various operating systems. Additionally, its presence on CRAN facilitates the
installation and updating of the package directly through R using simple com-
mands like:

install.packages("greekLetters")

Additionally, the greekLetters package is licensed under the GNU General
Public License version 3 (GPLv3), which provides several freedoms and respon-
sibilities. This license allows anyone to use the software for any purpose, whether
personal, educational, or commercial, and requires the source code to be avail-
able, enabling users to study, modify, and adapt the software to their needs.

Users have the right to modify the greekLetters code and distribute both the
original code and modified versions, as long as they do so under the same terms
of the GPLv3. This includes providing or making the source code available with
any distribution of the software, ensuring continuous transparency and openness.
When distributing greekLetters, it is necessary to keep the copyright notices and
the GPLv3 license intact, ensuring that all recipients are aware of their rights
and responsibilities.

The GPLv3 also requires license compatibility when combining greekLetters
with other software and includes provisions that address patents, protecting
users against claims that could restrict their freedoms. Adopting this license
promotes collaboration in the free software community and ensures that the
package remains free and open for future developers and users, which is crucial
for a support package like greekLetters that can be widely integrated and used
by other packages, such as diagL1 (Rodrigues & Elian, 2024), and many others
in the future.

This accessibility and ongoing support make greekLetters a valuable tool
for anyone needing to incorporate Greek letters and mathematical symbols into
their R outputs. The next and final section will provide some comments on the
software documentation.

https://cran.r-project.org/package=greekLetters
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6 Manual and documentation

Extensive documentation accompanies the package, featuring detailed descrip-
tions and examples for each function. This thorough documentation aids users in
effectively utilizing the package’s capabilities, ensuring they can integrate Greek
letters and mathematical symbols into their R outputs with ease. The package’s
comprehensive testing and documentation guarantee a reliable and user-friendly
experience.

The manual is available on the package’s page and can be accessed with-
out any registration. Additionally, the documentation for each function can be
accessed within R using the help() command.
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