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Abstract. Growth curve analysis is a popular method for modeling in-
dividual development across time. Specifying growth curve models in a
Bayesian framework affords researchers the flexibility of including previ-
ous information as prior distributions of parameters. However, common
choices of prior distribution for modeling slope variance in a Bayesian
growth curve framework make determining the existence of meaning-
ful interindividual differences in intraindividual change across time diffi-
cult due to boundary values of these priors. Additionally, many current
methods are either technically difficult to implement or are sensitive to
model specification. We present a simple data permutation method that
reliably distinguishes between longitudinal data with individual slope
variation and those without slope variation. We show situations in that
the proposed data permutation testing outperforms DIC based model
comparison through Monte Carlo simulations and apply this data per-
mutation method to data derived from the National Longitudinal Study
of Adolescent to Adult Health.

Keywords: Bayesian Growth Curve Modeling · Random Slope Testing ·
Longitudinal Data Analysis · Permutation Testing.

1 Introduction

Longitudinal research design is a powerful framework for testing psychological
hypotheses regarding change. In such a framework, researchers measure the same
construct from multiple participants across multiple time points so as to study
how a given psychological process changes over time (Baltes & Nesselroade,
1979). Due to the versatility and statistical power afforded by longitudinal re-
search designs, researchers have been able to study time-varying phenomena
such as patterns and outcomes of drug use among adolescents, trajectories of
public reaction to large-scale disasters, and stability of personality traits across
time (Roberts, Walton, & Viechtbauer, 2006; Shedler & Block, 1990; Silver, Hol-
man, McIntosh, Poulin, & Gil-Rivas, 2002). By collecting data in a longitudinal
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manner, researchers are able to simultaneously study how a given psychological
construct changes within an individual and what factors influence the varying
trajectories of said construct among different individuals.

Although collecting data in a longitudinal manner may be more difficult than
collecting data in a single wave, advances in data collection technologies have
made longitudinal research designs accessible to many researchers. As such, in
recent years longitudinal research designs have become commonplace in psy-
chological research. A Google Scholar search for the terms “longitudinal”, “re-
search”, and “psychology” shows an increase in number of related works from
about 140,000 results in the 1990s to more than 1,200,000 related works be-
tween 2010 and 2020. With this increase in popularity of longitudinal research
designs there has also come an increase in the number and quality of statistical
methods for analysing longitudinal data. Although varied, each method provides
researchers some insight into how psychological processes change over time.

1.1 Statistical Methods for Longitudinal Research

Statistical methods for longitudinal data analysis help researchers to under-
stand both intraindividual change and interindividual differences in intraindi-
vidual change across time. That is, researchers may use statistical methods for
longitudinal data analysis in order to gain a deeper understanding of how indi-
viduals change over time with respect to a variable of interest and how differ-
ent individuals may show different patterns of change. Growth curves modeling
is one popular way of assessing these qualities given a longitudinal sample of
participants (Grimm, Ram, & Estabrook, 2016; Hertzog & Nesselroade, 2003;
Oravecz & Muth, 2018). Growth curve models have been used by researchers
to study a wide variety of phenomena such as academic trajectories of children,
the development of individuals’ self-esteem, and changes in depressive symptoms
of adolescents over time (Baldwin & Hoffmann, 2002; Gomez-Baya, Mendoza,
Paino, Sanchez, & Romero, 2016; Gutman, Sameroff, & Cole, 2003). Due to the
simplicity and flexibility of growth curve models, different researchers may use
different statistical frameworks for estimating growth curve models. Such sta-
tistical frameworks for conducting growth curve analyses include mixed-effects
modeling/multilevel modeling and structural equation modeling.

Across statistical frameworks, growth curve models generally take the form:

Yij = β0 + β1Tj + u0i + u1iTj + ϵij , (1)

where Yij is the realizatio of an outcome variable from person i at time j,
i = 1, . . . , N , j = 1, . . . ,K, where N is the sample size and K is the total
number of measurement occasions, β0 is a fixed effect representing the average
intercept value at time Tj = 0 for all participants, β1 is a fixed effect represent-
ing the average slope over time, u0i is a random component of intercept for each
individual i with variance σ2

u0
, at time Tj = 0, u1i is a random component of

slope for each individual i with variance σ2
u1
, and ϵ is an error term with variance

σ2
ϵ . Specific and meaningful interpretation of these parameters have allowed for
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growth curve modeling to become a common tool for studying change (McAr-
dle & Nesselroade, 2003). Fixed-effect parameters relate to general trends across
all participants, while random-effect parameters relate to individual participant
variation from this overall group level behavior. Multiple statistical software
packages are capable of estimating parameters of growth curve models using
various techniques.

1.2 Bayesian Growth Curve Modeling

Bayesian analysis is one way of estimating growth curve models for a given longi-
tudinal data set (Fearn, 1975; Oravecz & Muth, 2018; Zhang, Hamagami, Wang,
Nesselroade, & Grimm, 2007). Compared to other analysis frameworks, Bayesian
analysis allows researchers a high degree of flexibility in modeling complex lon-
gitudinal patterns of change. While many modern analysis methods have strict
assumptions of normality and other asymptotic assumptions, researchers using
Bayesian analyses are generally not limited by these concerns asprior distribu-
tions of all variables can be explicitly and flexibly modeled (Bayarri & Berger,
2004). Thus common longitudinal data analysis problems such as sample size
restrictions, non-normal data distributions, and missing data patterns due to
attrition are more easily handled in a Bayesian framework than in a frequentist
framework. Additionally, advancement in computational efficiency and Bayesian
analysis software has helped ease the burden of conducting Bayesian analysis
put on researchers new to Bayesian modeling (e.g., JAGS, STAN, BUGS).

In a Bayesian framework, parameters of a growth curve model are treated as
random variables whose realizations are modeled using some form of a Markov
chain Monte Carlo (MCMC) process such as Gibbs sampling to sample from
constantly updated distributions (Carlin & Chib, 1995; Gilks, Wang, Yvonnet,
& Coursaget, 1993). Equation (1) can also be expressed as:

Yij ∼ N(Ȳij , σ
2
ϵ )

Ȳij = b0i + b1iTj

b0i ∼ N(β0, σ
2
u0
)

b1i ∼ N(β1, σ
2
u1
),

(2)

where Ȳij is the expected value of Yij . This Bayesian parameterization of a
growth curve model allows researchers to use previous knowledge to hypothesize
the prior distributions of the parameters β0, β1, σ

2
u0
, σ2

u1
, and σ2

ϵ . Parameters b0i
and b1i may also be correlated. In such a case an additional parameter, σu0u1

, is
also modeled. Typically researchers set priors for β0 and β1 as either normal or
uniform distributions, while setting priors of the variance components σ2

u0
, σ2

u1
,

and σ2
ϵ as inverse gamma distributions, although other distributions have been

assessed (Gelman, 2006; Zhang, 2016; Zhang et al., 2007). These priors are then
iteratively updated into posterior distributions using data. After a large number
of iterations, a Bayesian model will converge, parameter estimates will remain
stable, and researchers may draw statistical inference.
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Substantive researchers routinely need to determine the statistical signifi-
cance of each parameter. Credible intervals are a commonly used in Bayesian
growth curve modeling (Zhang et al., 2007). A 100× (1− α)% credible interval
for a parameter is as an interval for which there is at least a 100 × (1 − α)%
chance said interval contains the true value of a given parameter, conditional on
a given data set. Similar to a frequentist confidence interval, a parameter is con-
sidered significant at the α-level when a 100× (1−α)% credible interval for said
parameter does not include 0. While versatile, credible intervals are not useful
for testing variance components of Bayesian growth curves. This is because the
gamma/inverse gamma distributions used to model such variance components
are bounded (0,∞). Also, parameters with gamma/inverse gamma distributed
priors tend to also have gamma/inverse gamma distributed posteriors. In such
a case, a Bayesian credible interval at any α-level will never include a 0 value
(Gelman, 2006). This boundary problem makes Bayesian hypothesis testing us-
ing credible intervals completely ineffective for testing variance parameters, thus
making statistical inference on the existence of significant individual differences
in interindividual change impossible. Fortunately, there are ways to overcome
this problem. In this article, we review alternative methods to credibility inter-
vals for testing for the existence of interindividual differences in intraindividual
change in growth curve models and propose a new test based upon data permu-
tations.

1.3 Testing for the Existence of Interindividual Differences in
Intraindividual Change

This problem of determining the existence of interindividual differences in in-
traindividual change can be viewed as a problem of model comparison and se-
lection. That is, determining if a model which includes a parameter indicative
of interindividual differences in intraindividual change fits data better than a
model without such a parameter. In determining how to specify such a model,
Barr, Levy, Scheepers, and Tily (2013) argued for using the most complex struc-
ture admissible for a given data set; see also Barr (2013). Other researchers such
as Bates, Kliegl, Vasishth, and Baayen (2015) and Matuschek, Kliegl, Vasishth,
Baayen, and Bates (2017), urged caution when using such an approach as more
complex models may lead to convergence issues, as well as a a loss of statistical
power. Model selection is key for accurately assessing all important effects, while
minimizing estimation issues. Many methods currently exist for testing for sig-
nificant random slope parameters within a frequentist framework by determining
an optimal model structure. These include likelihood based comparison meth-
ods, penalty functions, and information criterion (Fan & Li, 2012; Peng & Lu,
2012; Stram & Lee, 1994; Vaida & Blanchard, 2005). There are currently fewer
methods for testing for significant random slope paramters within a Bayesian
growth curve context. Perhaps the most common methods for Bayesian model
comparison are using deviance information criterion (DIC) values and Bayes
factors.
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Deviance information criterion Deviance information criterion is an infor-
mation metric derived from the posterior distribution of the log-likelihood of a
given data set and a penalization value based on the complexity of a given model
(Spiegelhalter, Best, & Carlin, 1998; Spiegelhalter, Best, Carlin, & van der Linde,
2002). DIC is calculated as:

DIC = Eθ|y[D(θ)] + pD

D(θ) = −2log(L(θ|y))
pD = Eθ|y[D(θ)]−D(Eθ|y[θ]),

(3)

where θ is the parameterization of a given model, L(θ|y) is the likelihood of θ
given some data, y, Eθ|y[D(θ)] is a the expectation of D(θ) conditional on y,
and Eθ|y[θ] is the expectation of θ conditional on y.

As a model’s likelihood increases, D(θ) tends to 0. Conversely, as the number
of parameters in a model increase, so does pD. In this way DIC simultaneously
incorporates model fit and penalizes overly complex models. For model com-
parison purposes on a given data set, model selection by DIC is conducted by
selecting the model with a lower DIC value by at least 10 points, otherwise se-
lecting the model with fewer parameters (Spiegelhalter et al., 1998). Thus, a
researcher interested in testing for the existence of interindividual differences in
intraindividual change across time within his/her own data would compare the
DIC values of two competing growth cruve models. One model would allow the
slope parameter to vary by participant, and another model would fix this value
to be the same for all participants. Assuming a DIC difference of more than 10
points, the model with a lower DIC value would then be considered more appro-
priate for these data than the model with a higher DIC value (Lunn, Jackson,
Best, Spiegelhalter, & Thomas, 2012).

Although DIC is a relatively reliable metric for model selection it is not
without its criticisms. According to a review by Spiegelhalter et al. (2014), some
of the most common criticisms of DIC is its lack of consistency and its weak
theoretical justification. As an alternative to model comparison using DIC, some
researchers argue for the use of Bayes factors (Ward, 2008).

Bayes factor The Bayes factor is another common measure for model com-
parison within a Bayesian framework (Kass & Raftery, 1995; Lodewyckx et al.,
2011; Saville & Herring, 2009). Bayes factors can be thought of as a ratio of
evidence for one model over another, which is evident in its calculation:

B =
p(y|M1)

p(y|M2)
=

p(M1|y)
p(M2|y)

p(M2)

p(M1)
, (4)

where M1 and M2 are different models used on the same data, y. The Bayes
factor, B, can then be used for model selection. For B > 3, one would say that
there is substantial evidence for M2 over M1 and thus a researcher would select
M2 as the more probable model. If however B < 1

3 , a researcher would select M1
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as the more probable model for the generation of y (Stefan, Gronau, Schönbrodt,
& Wagenmakers, 2019).

Although intuitive, Bayes factors can be difficult to obtain analytically and
calculations for their numeric approximations can be computationally intensive
for some models or require hyper-parameters to be set by a researcher. Addition-
ally there are methods for numerically approximating Bayes factors including so
called default Bayes factors, approximate Bayes factors, and Bayes factors es-
timated through the product space method (Lodewyckx et al., 2011; Rouder
& Morey, 2012; Saville & Herring, 2009). Each of these methods for estimat-
ing Bayes factors require time and energy for a researcher to understand each
method’s intricacies well enough to properly implement each method. Bayes
factor calculations may also be sensitive to a researcher’s specification of priors
(Ward, 2008). Additionally, implementations of Bayes factors have been shown to
be inappropriate for many data sources and Bayes factors themselves have been
argued as having frequentist properties, making many numerically approximated
Bayes factors uninformative (Hoijtink, van Kooten, & Hulsker, 2016; Morey, Wa-
genmakers, & Rouder, 2016). Such difficulties make estimation of Bayes factors
using for more complex models, such as growth curves, intractable. Indeed the
authors of this article could find no reliable method for estimating Bayes factors
for growth curve models as most numerical methods are either not able to take
into account random effect structures or require overly sensitive hyper-parameter
settings to initiate jumping behaviors between models needed to obtain proper
Bayes factor approximations (Lodewyckx et al., 2011; Rouder & Morey, 2012;
Saville & Herring, 2009). Many current methods that do offer Bayes factors for
random effects models do not give Bayes factor values for the random effects
parameters of interest in this aritcle. Thus, a researcher would find difficulty in
using Bayes factors for testing for the existence of interindividual differences in
intraindividual change across time. Although the DIC and Bayes factor meth-
ods are not the only methods used to assesses the random effects structure of
growth models, these are perhaps the most common (Cai & Dunson, 2006; Chen
& Dunson, 2003; Piironen & Vehtari, 2017; Ward, 2008).

1.4 The Proposed Method: A Data Permutation Algorithm for
Testing Random Slopes

The DIC and Bayes factor methods share a common quality, each are model
driven approaches. With either method, a researcher must specify two separate
models that are then compared to one another. Thus, in order to test for the
existence of a quality of interest within a data set, the models themselves are
modified and the associated data are left alone. In contrast, data driven methods
such as bootstrap analyses, randomization tests, and surrogate data analyses
have been shown to also be effective at establishing existence of a specific quality
of interest within a given data set (Efron, 1979; Moulder, Boker, Ramseyer, &
Tschacher, 2018; Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992). These
methods rely on modifying data sets through some randomized approach such
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as sampling with replacement or data shuffling, to destroy qualities of order and
structure within a given data set.

With this in mind, we propose a simple and relatively uncomplicated data
driven method for determining the existence of interindividual differences in in-
traindividual change in a Bayesian growth curve framework. Namely, we propose
a data permutation algorithm which effectively tests if a random slope param-
eter is reliably distinguishable from random noise. In terms of model selection,
this would be similar to determining if the model in Equation (2) fits the data
better than a simpler model with a fixed slope:

Yij ∼ N(Ȳij , σ
2
ϵ ),

Ȳij = b0i + β1Tj ,

b0i ∼ N(β0, σ
2
u0
).

(5)

Our proposed data permutation algorithm is as follows:

i) Create a fully specified Bayesian growth curve model (Equation 2) including
a random slope term, using unaltered/original data, denoted as y0, and store
the posterior samples of σ2

u1
|y0 obtained from a MCMC procedure after a

burn-in period.
ii) Consistently sort data either descending or ascending at each time point to

create a second data set, ysort.
iii) Rerun step i) using ysort, and store the samples of σ2

u1
|ysort.

iv) Randomly shuffle y0 within each time point to create a third data set, yshuff .
v) Rerun step i) using yshuff , and store the samples of σ2

u1
|yshuff .

vi) Compare the mean of the samples from σ2
u1i

|y0, µ0, with the mean of the
samples of σ2

u1
|ysort, µsort, and the mean of samples of σ2

u1
|yshuff , µshuff .

If |µ0 − µsort| < |µ0 − µshuff | then slope term of the model can be said to
reliably vary between individuals. Else the slope term can not reliably be
said to vary between participants.

To understand how this algorithm works, consider Figure 1. Across all three
plots, the parameters β0 (fixed intercept) and β1 (fixed slope) from equation (2)
are all the same. Figure 1(b) represents the kind of data one might expect to
find from a given research study, with σ2

u0
, σ2

u1
, and σ2

ϵ all greater than 0. We
will consider this data as y0 for this example. Figure 1(a) is the sorted version
of y0, which we call ysort. Notice a few interesting qualities of ysort. Firstly, no
line of ysort crosses another. Also, the error variance about each individually
modeled line is minimized. Thus the ratio of σ2

u1i
to σ2

ϵij for ysort is larger than
the same ratio for y0, assuming y0 is not already in a sorted state. The opposite
is true for yshuff . Assuming that y0 had some intrinsic structure to itself due
to some true and natural underlying growth phenomenon, the ratio of σ2

u1
to

σ2
ϵ for yshuff should be smaller smaller than the same ratio for y0, Figure 1(c).

The difference between the means of the posterior sampling distributions of
p(σ2

u1
|ysort), p(σ2

u1
|y0), and p(σ2

u1
|yshuff ) then give a measure of how similar

the three distributions of p(σ2
u1
|y) are. Thus if |µ0 −µsort| < |µ0 −µshuff |, then
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the sampling distribution of the posterior distribution of σ2
u1

for the unedited
data is more like the posterior distribution of σ2

u1
for data which has noticeable

slope variation. If |µ0 −µsort| > |µ0 −µshuff |, then the sampling distribution of
the posterior distribution of σ2

u1
for the unedited data is more like the posterior

distribution of σ2
u1

for data which has been randomly shuffled and has slope
variation that is difficult to distinguish from random noise.

Figure 1. Example growth curve plots for (a) sorted data, (b) non-sorted data, and
(c) randomly shuffled data. Each plot shares the same data values, only the order of
the data at each time point has changed. As such, each plot has the same average
intercept and average slope.

This method may be considered a form of a permutation test. Permutation
tests are a class of tests for comparing a given test statistic to a distribution of
these test statistics obtained from a random ordering of the data (Collingridge,
2013; Golland & Fischl, 2003; Pesarin & Salmaso, 2010; Theiler et al., 1992). This
random ordering builds a test statistic under the distribution of a null-hypothesis
that there is no natural order to the data. Any test statistic outside of a set α-
level, based on the permutation distribution, is then considered to be highly
unlikely given random chance and thus must contain some meaningful and non-
random structure. Our method differs from traditional permutation methods in
that we propose the use of only a single random shuffle. This is because of the
bounds set by 0 and σ2

u1
for ysort. Over multiple different parameterizations, we

found that on a scale of 0 to σ2
u1

for ysort, the distribution of multiple random
yshuff is small in comparison (< 5% of the overall space). As such, one random
shuffle should give a good approximation of the distribution of multiple random
yshuff . However, should a researcher need more precision, taking an average of
multiple random yshuff values will give a more accurate result.

In order to gain an intuitive understanding of this algorithm, consider this
analogy of an individual with messy hair who wants a new hair style from a
barber. A customer (data) with messy hair walks into a barber shop and asks
the barber (researcher) for a haircut fitting for said customer’s natural hair
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style. The barber accepts this request and beings work, but is unable to visually
determine if the customer has naturally curly hair (variable slopes) or naturally
straight hair (constant slopes) due to the current messy state of the customer’s
hair. The barber knows however, that a natural property of hair is that curly
hair is naturally difficult to straighten and straight hair is naturally difficult
to curl. So the barber first attempts to straighten (sort) the customer’s hair
and finds that the hair changed very little. The barber then attempts to curl
(shuffle) the customer’s hair and finds the customer’s hair curled with ease and
had changed much from its original messy state. Thus, the barber concludes
that the customer had naturally curly hair as the messy state of the customer’s
hair was most easily and most dramatically changed by curling (i.e., a reliable
variation in slopes was found because |µ0 − µsort| < |µ0 − µshuff |).

The remainder of this article is structured as follows: First, a simulation is
presented of the proposed permutation method compared to using DIC values
for determining the existence of slope variation. Then an application of this
method to data from the National Longitudinal Study of Adolescent to Adult
Health is presented. Finally this article concludes with a discussion regarding
the proposed method’s usefulness, an introduction to an analysis tool which
facilitates the application of this method, limitations, and future directions.

2 A Simulation Study

2.1 Data Generation

In order to determine the effectiveness of the proposed data permutation method
and to compare our method with a common model comparison procedure (i.e.,
DIC), a simulation study was conducted using the R programming language and
OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009; R Core Team, 2013).
Each simulation generated data from one of two models: model A or model B.
Data simulated from models A and B were also used to study the effectiveness
of DIC values relative to the proposed data permutation method.

Model A is a model including a random slope term and is parameterized as:

Yij = 5 + 2Tj + u0i + u1iTj + ϵij ,

u0i ∼ Gaussian(0, 1),

u1i ∼ Gaussian(0, σ2
u1
),

Cov(u0i, u1i, ϵij) =

1 0 0
0 σ2

u1
0

0 0 1

 .

Parameter values of 5 and 2 for β0 and β1, respectively, and Tj = j − 1, j =
1, . . . , 5 were chosen as simple examples of positive linear growth. The variance
of parameter u0i was set to 1 for all simulated data sets. As the proposed permu-
tation method is a test of random slopes and not random intercepts, the variance
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of parameter u0i is arbitrary. The covariance between parameters u0i and u1i

was set to 0 as any covariance between u0i and u1i would necessitate variance of
u1i, thus increasing the effectiveness of the proposed permutation method3. The
variance of the error term was held constant at 1 across all time points (Grimm
& Widaman, 2010). Finally σ2

u1
was varied across simulations, σ2

u1
= .1, .2, . . . , 2.

Model B is simply model A without a random slope term where u1i = 0:

Yij = 5 + 2Tj + u0i + ϵij ,

u0i ∼ Gaussian(0, 1),

u1i ∼ Gaussian(0, σ2
u1
),

Cov(u0i, ϵij) =

[
1 0
0 1

]
.

For data generated from model A and B, σ2
u1

∈ [0, .1, .2, . . . , 2]. This creates σ2
u1

(signal) to σ2
ϵ (noise) ratios ranging between 0% and 200% across both models

A and B. Thus, in total 21 data generating models were used.

The choice of specific values for this simulation are mostly arbitrary as u1 is
independent from β0 and β1, u0, and ϵij . Thus any value choices for these terms
should have no effect on the validity of this method as the proposed method is a
comparison of only the similarity of σ2

u1
estimated from the observed data to only

σ2
u1

of the same data organized in such a way that minimizes σ2
ϵ versus the same

data organized in a way to increase σ2
ϵ . Theoretically no other parameter values

should influence our proposed method in the case that there is no covariance
between random intercept and random slope terms.

2.2 Simulation Methods

For each round of simulation, N ∈ [50, 200, 500] individuals data were simulated
from each of the 21 data generating models, σ2

u1
∈ [0, .1, . . . , 2]. Each round of

simulation generated 1,000 instances giving a total of 63,000 (3 x 21 x 1000)
data sets. Using Equation (2), Bayesian growth curves were fit to data gener-
ated by models A and B. Model A represents data which has individual slope
variation and thus can be used to compute statistical power and type-II error
rates. Similarly, model B represents data with no individual slope variation and

3 A smaller simulation was conducted with data simulated from a model with a mean-
ingful covariance between u0i and u1i. This smaller simulation showed an increase
in both statistical power and specificity, and a decrease in type-I and type-II error
rates. This increase made detection of random slope variation nearly perfect for all
DIC and permutation methods as any covariance between u0i and u1i would imply
meaningful variation of u1i as covariance is conditional on variance. As such, this
simulation is not reported.
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thus can be used to compute specificity and type-I error rates4. Using DIC and
the proposed data permutation method, guesses were made at each simulation
step to determine if data were simulated from a process with fixed slope growth
trajectory across individuals or with a growth trajectory whose slope varied
per individual. These guesses were compared to known random effect structures
to determine statistical power and specificity rates. Each model was run with
20,000 MCMC iterations and a burn-in period of 15,000 iterations using Open-
BUGS and the R2OpenBUGS package in R (Lunn et al., 2009; Sturtz, Ligges,
& Gelman, 2005). All models were checked for convergence with a Kolmogorov-
Smirnov test (Brooks, Giudici, & Philippe, 2003). To ensure this method was not
statistical package specific, we ran a similar simulation study using the MCM-
Cglmm R package and found identical results (Hadfield, 2010).

For DIC comparison, two models were conducted at each simulation, one
with a fixed slope growth trajectory across individuals and one with a growth
trajectory whose slope varied per individual. If the model with a growth trajec-
tory whose slope varied per individual had a DIC value 10 points lower than the
model with a constant rate of change, data from this simulation were considered
to have a growth trajectory whose slope varied per individual. Otherwise the
simulated data for said simulation were considered to have a trajectory with
constant rate of change across individuals. We compared two criterion for DIC
selection: DIC > 10 and minimum DIC value(Spiegelhalter et al., 1998).

For data permutation comparison, at each simulation step a model with a
growth trajectory whose slope varied per individual was run on the data for that
simulation step and the average value of σ2

u1
was recorded. Data was then sorted

by column in descending order and a second model was run on the sorted data,
storing σ2

u1
for this model. Finally data were randomly shuffled per column and

a third model was run on this shuffled data, again storing σ2
u1

for this model.
The three σ2

u1
values were then compared using the proposed data permutation

algorithm. We compared two criterion for our permutation method: only one
shuffle and the average of 10 shuffles.

4 For this simulation study, statistical power is defined as the proportion of simula-
tions in which the proposed data permutation method determined the existence of
meaningful slope variation when data was generated from a model that included a
variable slope. Similarly, specificity is defined as the proportion of simulations in
which the proposed data permutation method was unable to determine the exis-
tence of meaningful slope variation when data was generated from a model that
did not include a variable slope. Type-I and type-II error rates are defined as the
proportion of simulations in which the proposed data permutation method detected
the existence of meaningful slope variation when data was generated from a model
that did not include a variable slope, and the proportion of simulations in which
the proposed data permutation method was unable to determine the existence of
meaningful slope variation when data was generated from a model that included a
variable slope, respectively.
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2.3 Simulation Results

Table 1 shows the statistical power and specificity for both the DIC methods
and the proposed data permutation algorithm for all sample sizes studied. For
signal:noise ratios less that 1:1, DIC outperforms our proposed permutation
method in terms of statistical power. However as sample size increases and/or
signal:noise ratio increases these two methods quickly become equal in their
statistical power. When comparing specificity, our proposed permutation method
shows an improvement of approximately 10 percentage points over the DIC
method across all sample sizes. Thus, in situations where signal:noise ratios
are at least equal, our permutation method performs just as well as DIC based
model comparison in terms of statistical power, but has a substantially reduced
type-I error rate.

Table 1. Permutation Test vs. DIC Simulation Comparing Statistical Power and Speci-
ficity

Statistical Power

DIC 10 DIC Min Permutation Test Permutation Test 10

Effect:Error Ratio N = 50 N = 200 N = 500 N = 50 N = 200 N = 500 N = 50 N = 200 N = 500 N = 50 N = 200 N = 500

1:10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2:10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
3:10 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0%
4:10 0% 4% 5% 1% 7% 10% 0% 0% 3% 1% 4% 4%
5:10 45% 82% 88% 61% 88% 92% 14% 15% 20% 16% 19% 22%
6:10 86% 100% 100% 92% 97% 100% 22% 38% 41% 25% 44% 46%
7:10 100% 100% 100% 99% 100% 100% 34% 51% 63% 34% 58% 66%
8:10 100% 100% 100% 100% 100% 100% 81% 90% 84% 88% 93% 89%
9:10 100% 100% 100% 100% 100% 100% 85% 91% 92% 94% 99% 99%

10:10 100% 100% 100% 100% 100% 100% 92% 95% 97% 99% 100% 100%
11:10 100% 100% 100% 100% 100% 100% 97% 98% 100% 100% 100% 100%
12:10 100% 100% 100% 100% 100% 100% 98% 100% 100% 100% 100% 100%
13:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
14:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
15:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
17:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
18:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
19:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20:10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Specificity 89% 87% 93% 82% 83% 83% 99% 100% 100% 100% 100% 100%

Note. Results of a simulation study comparing statistical power and specificity
for DIC and the proposed permutation testing algorithm across three sample sizes.
Effect:error ratio is a measure of true population variance in slope to error variance
added at each time point. Each percentage is based on 1000 simulations.

3 Application to Real Data

As an example of our proposed method on a real data set, a Bayesian growth curve
modeling was conducted on a sample of 185 individuals (90 Male, 95 Female) from the
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National Longitudinal Study of Adolescent to Adult Health (Add Health) who were age
17 and had reported drinking in the past 12 months5. At each wave of measurement,
participants were asked ”Think of all the times you have had a drink during the past 12
months. How many drinks did you usually have each time? (A “drink” is a glass of wine,
a can of beer, a wine cooler, a shot glass of liquor, or a mixed drink.).” This value was
recorded in 1994-95, 1996, 2001-02, and 2008. If a participant reported drinking more
than 20 drinks, his/her data was dropped from this analysis to remove individuals
who might have been excessive drinkers or may not have properly understood the
question. The proposed data permutation method was then applied to this data in
order to test for the presence of meaningful interindividual differences in intraindividual
change across time in drinking behavior, table 2. All models used uninformative Poisson
priors for all mean components and uninformative inverse gamma priors for all variance
components.

Table 2. Bayesian Growth Curve Analysis of Add Health Drinking Behaviors

Parameter Effect Estimate 95% CI - Lower 95% CI - Upper

Intercept Mean 5.06 4.61 5.50
Variance 6.06 4.30 8.24

Slope Mean -0.10 -0.15 -0.04
Variance 0.07 0.05 0.10

Permutation Test Results: No Significant Variance for Slope

Note. Results of a Bayesian growth curve analysis of the average number of alcoholic
drinks individuals reported drinking each time he/she drank alcohol. A permutation
test showed no significant slope variation between individuals indicating a common

downward trend across all individuals.

Significant fixed-effects for both the intercept and slope term were found for this
model. At age 17, on average individuals reported drinking 5.06 alcoholic drinks with
a standard deviation of 2.46. Each year after, individuals reported drinking 0.10 fewer
drinks with a standard deviation of 0.26. When individuals reached age 31, on aver-
age they reported drinking 3.66 drinks. These results align with previous findings on
alcohol consumption trajectories for the general population (Fillmore et al., 1991; Har-
tika et al., 1991). A permutation test found no meaningful interindividual differences in

5 From the National Longitudinal Study of Adolescent to Adult Health website: This
research uses data from Add Health, a program project directed by Kathleen Mul-
lan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen
Mullan Harris at the University of North Carolina at Chapel Hill, and funded
by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development, with cooperative funding from 23 other
federal agencies and foundations. Special acknowledgment is due Ronald R. Rind-
fuss and Barbara Entwisle for assistance in the original design. Information on
how to obtain the Add Health data files is available on the Add Health website
(http://www.cpc.unc.edu/addhealth). No direct support was received from grant
P01-HD31921 for this analysis.
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intraindividual change across time in drinking behavior for these individuals. This indi-
cates that the slopes of individuals’ growth trajectories in alcohol use behavior did not
reliably vary at the individual level, figure 2. That is, a single general downward trend
is sufficient to describe how individuals drinking behaviors change across time, given
that we can not reject the null-hypothesis that there is no variation between individuals
in slope values. Although table 2 shows a 95% credible interval with positive values
for the variance of the random slope term, this may be due to the boundary problem
induced by utilizing gamma distributed priors used for the variance term. Additionally,
the Effect:Error ratio for this data as assessed by our model was approximately 4:10.
This indicates that our proposed method would have low statistical power in this case
to pick up meaningful slope variation if it existed (as with using the DIC). As such
these findings should be taken as only an example of our proposed method used on a
real data set.

Figure 2. Permutation test for random slopes parameter of a Bayesian growth curve
model modeling the average number of alcoholic drinks individuals reported drinking at
each drinking occasion. The red/bold line is the result of each model. Plot (a) displays
data in a sorted form. In this form the downward trajectory in drinking across time is
evident. Plot (b) displays data in its original form. Plot (c) displays data in its shuffled
form. Notice that (b) appears more similar to (c) than to (a), indicative of a random
effect that may be indistinguishable from noise.

3.1 A Web Tool Implementation

In order to facilitate the use of our proposed data permutation method, we have de-
veloped a web application for Bayesian analyses of unconditional growth curve mod-
els. See Figure 3 for the interface of the web application. This web application in-
corporates our proposed data permutation method and is made available for free at
https://robertgm111.shinyapps.io/bayesiangrowthcurveapp/.

This web tool was made to give researchers a simple to use interface for conduct-
ing Bayesian analyses of unconditional growth curve models. A researcher interested
in using this tool would need to have data in a 3-column long format with column 1
being participant ID, column 2 being measurement occasion, and column 3 being the

https://robertgm111.shinyapps.io/bayesiangrowthcurveapp/
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Figure 3. Screenshot of a web tool implementing the proposed data permutation
test. This tool generates parameter estimates for unconditional bayesian growth curve
models for data in the ”long” format. Different tabs are available for model results,
data viewing, MCMC chain veiwing, permutation test results, and citing information.

quantity of interest. Researchers can then select if the outcome is continuous (modeled
by an uninformative normal prior) or count (modeled by an uninformative Poisson).
Additionally researchers may select to run the proposed permutation test for the ex-
istence of variable slopes at the cost of increased computation time. After specifying
the number of MCMC samples, burn-in period, and thinning, a researcher can obtain
parameter estimates under the “Model Summary” heading and a plot of the data with
a fitted line based on the model under the “Model Results Plot” heading. Additional
tabs in this web tool allow for data viewing, MCMC chain viewing and download,
results of the proposed permutation test (if selected), and citing information in an
“About” section. Missing data points are sampled from posterior distributions during
the MCMC updating process.

4 Discussion

The data permutation method shown in this article is a simple to use and widely
applicable method for testing for the existence of interindividual differences in intrain-
dividual change across time when these differences are modeled as gamma distributed
variance components. Although itself not a Bayesian derived test, our method was able
to perform on par with the DIC metric for most cases. Unlike more complicated meth-
ods such as DIC calculation and Bayes factors our permutation method requires little
technical ability to implement, save for initial model specification. If a researcher is
analysing data with a signal:noise ratio that is at least 1:1 then our method preforms
just as well as common DIC comparison methods in terms of statistical power and out-
performs DIC in terms of specificity. We do not believe this is an unreasonable ratio for
many areas of psychological/behavioral sciences (Cooper & Findley, 1982; Wilson &
Sherrell, 1993). Although other methods have been proposed for testing the existence



16 Moulder and Tong

of meaningful random slope variation, our proposed method is simple to use and we
offer a direct software implementation (Saville & Herring, 2009).

Beyond ease of use, the permutation method displayed in this article represents an
alternative method for model comparison in a Bayesian framework that is data driven.
Many methods such as DIC and Bayes factors are manipulations of a model such that
plausible models are pitted against one another so as to determine a model best fitting
to a given data set. In such a model comparison framework, a given model is typically
compared to a constrained version of itself (Kruschke, 2011; Spiegelhalter et al., 2002).
These constrains represent a researcher’s qualities of interest, or unique hypotheses,
regarding a specific data set. As opposed to constraining a specific parameter to test
for the existence of a specific effect, our data driven method targets a quality if interest
within the data itself. Instead of comparing a model with a given effect to a model
without a given effect, our permutation method compares an estimated parameter
(slope variation) from a given data set with the same parameter from both a modified
data set in which this parameter has been destroyed and a second modified data set
in which this parameter was amplified. That is, while model comparison asks ”Which
model was more likely to generate this data?”, our proposed permutation method
asks ”Is the parameter I am interested in modeling in this data different from data
in which this parameter is just noise?”. Framing hypothesis testing in this manner is
then a stepping stone to further data driven analyses in which a targeted permutation
method is used to study a specific quality of interest.

4.1 Limitations

Firstly, the support for our proposed method comes from our simulation study. Al-
though we have attempted to model realistic circumstances given our specific random
effects structure, our results can not be generalized outside of simulated parameteri-
zations. Future work should focus on understanding the analytical properties of our
test given that our test works on a bounded classification framework. This includes
extending the results of this simulation to more time points, however we see no reason
this method would not work on more than four time points.

Although simulation showed our method to have exceptional statistical power and
specificity under conditions of relatively equal signal:noise ratios, there are still lim-
itations to this method. One such limitation is that our proposed method showed
inadequate statistical power of signal:noise ratios of 7:10 or less. Thus, our proposed
method should not be used in situations in which variation in individual slopes is sub-
stantially less than error variance. In such a case DIC based model comparison is more
appropriate. However, we believe that most longitudinal studies will easily be able to
exceed this threshold, reducing the impact of this limitation. In situations in which
significant covariance exists between intercept and slope values, our proposed method
performs as well as DIC based model comparison. This is due to the necessity of the
existence of slope variation prior to the existence of covariance between intercepts and
slopes. In many realistic data sets, if significant slope exists then a significant covari-
ance between intercept and slope is also likely to exist. This is due to ceiling effects,
floor effects, regression to the mean, and other phenomenon common in behavioural
data.

Our proposed method may also be limited in its usefulness beyond testing for sig-
nificant slope variation. That is, our proposed method capitalizes on the fact that
sorting data and shuffling data preserves intercept values and only changes error vari-
ance about slope estimates. Due to this capitalization, this permutation method is
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not applicable for testing for the existence of meaningful intercept variation and more
research is needed to discover such a test. In practice however, researchers interested
in longitudinal processes are generally more concerned with slope parameters as slope
parameters represent change over time.

Additionally, this method only works for cases in which all participants have been
sampled at the same discrete bins. That is, this method is not applicable for continuous
sampling designs (Bolger & Laurenceau, 2013) In this case, alternative sorting and
shuffling strategies must be employed so as to maintain the same structural changes
int he data as would have occurred if the data was in discretely sampled bins at from
the same time points. This also extends to cases of missing data. Missing data is
common in longitudinal research and must be expected to occur more in studies over
longer periods of time. In this case, multiple imputation may be used as a method
for creating multiple possible tests using our algorithm. The most selected state (i.e.,
random effect or no random effect) across these imputations would then be chose as
the best state to describe the data given the model.

4.2 Future Directions

One possible extension of the proposed data permutation method would be to test
for nonlinear effects. Growth curve models are not limited to modeling solely linear
growth, but may be extended to model curves of higher order polynomials (McArdle &
Nesselroade, 2003). We do not see any reason for permutation testing to be ineffective
for polynomial growth curve models, however this testing should still be conducted for
purposes of understanding statistical power and specificity.

We also note the usefulness of plots of sorted data for understanding trajectories
over time. Figures 1(a) and 2(a) show sorted data compared to original data in figures
1(b) and 2(b). Any linear trend is easier to visualize in the sorted data as opposed
its associated original data. We attempted this same plotting method with non-linear
effects as well and ac hived a similar ease of trend visualization, as sorting preserves
intercept and slope values. Future research may specifically look at data sorting as a
viable means of plotting data for model selection in growth curve analysis.

Other measures of distributional qualities besides the mean may also increase the
power of our proposed method to detect significant slope variation across individuals.
We conducted a relatively small simulation study testing the efficacy of using median
estimates above mean estimates and obtained similar results to using means. Other
metrics may prove to be more useful however, and should be tested in order to further
refine our proposed data permutation method.

Another possible future direction would be to continue to create permutation tests
targeting specific parameters of interest. According to Wolpert and Macready (1997),
no single method for optimization of a problem is the best possible method for solving
all problems. According to this No Free Lunch Theorem, the better a single optimizer
gets at solving a specific problem, the worse it gets at solving all other problems. This
suggests two things. Firstly, for every global method for optimizing a problem (e.g.,
DIC based model comparison), there exists a more targeted method that will yield a
more optimal solution to a problem. Secondly, every problem may have its own ”best”
solution. That is, every problem that is attempted to be optimized, may have its own
best, and targeted, way to be optimized. While this second point implies that perhaps
researchers should find targeted methodology for every possible effect in which they
are interested, this would quickly spiral into many tests and would most likely create
more confusion for individuals wishing to test specific effects.
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Although targeted, our proposed method is easy to implement and solves the
boundary problem for testing gamma/inverse gamma distributed random effects. This
ease of implementation will allow more researchers to test for significant individual
differences in intraindividual change. Additionally, our method offers one of the first
steps for a paradigm shift of model comparison in a Bayesian framework. One where
data is modified to destroy qualities of interest, as opposed to models being formed
with/without qualities of interest. Indeed there may in fact be a hybrid form of these
two methods that may prove more viable than either method in isolation. We hope our
proposed permutation method spurs other researchers to consider data modifications
for testing individual effects, leading to relatively uncomplicated methods that other
researchers may use for testing whatever effects in which he/she is interested.
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Abstract. Longitudinal processes often exhibit nonlinear change pat-
terns. Latent basis growth models (LBGMs) provide a versatile solution
without requiring specific functional forms. Building on the LBGM spec-
ification for unequally-spaced waves and individual measurement occa-
sions proposed by Liu and Perera (2024), we extend LBGMs to multi-
variate longitudinal outcomes. The extended models enable the analysis
of nonlinear parallel longitudinal processes with unequally-spaced study
waves in the framework of individual measurement occasions. We present
the proposed models by simulation studies and real-world data analyses.
Simulation studies demonstrate that the proposed model can provide un-
biased and accurate estimates with target coverage probabilities for the
parameters of interest. Real-world analyses of reading and mathematics
scores demonstrate its effectiveness in analyzing joint developmental pro-
cesses that vary in temporal patterns. Computational code is included.

Keywords: Latent Basis Growth Model · Parallel Nonlinear Longitudinal
Processes · Individual Measurement Occasions · Simulation Studies

1 Introduction

In longitudinal studies, researchers often gather measurements on multiple out-
comes to decipher how each evolves over time. While the focus has traditionally
been on univariate outcomes, the inter-correlated nature of processes in domains
such as development (Liu & Perera, 2022; Peralta, Kohli, Lock, & Davison, 2022;
Shin, Davison, Long, Chan, & Heistad, 2013), behavioral sciences (Duncan &
Duncan, 1994, 1996), and biomedicine (Dumenci et al., 2019) demands a mul-
tifaceted analysis. Recent research reflects a growing interest in exploring how
these interconnected outcomes influence one another over time. Developmental
studies, for example, often track achievement scores across multiple subjects
(Liu & Perera, 2022, 2023; Peralta et al., 2022; Shin et al., 2013), facilitating
an in-depth analysis of correlated growth in multiple domains. Similarly, clini-
cal trials might collect multiple endpoints (Dumenci et al., 2019) to provide a
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holistic evaluation of treatment effects. This complexity underscores the need for
advanced modeling techniques that accurately capture the correlation between
multiple longitudinal processes.

Another scenario highlighting the complexity of longitudinal studies involves
the reconciliation of data from diverse sources. For instance, observational stud-
ies may utilize both child and parent reports to assess a child’s health-related
quality of life (Rajmil, López, López-Aguilà, & Alonso, 2013). In clinical trials,
a single endpoint is often measured using different equipments, adding com-
plexity to data interpretation. Additionally, analyzing repeated outcomes from
individuals nested within pairs or small groups (Lyons et al., 2017; McNulty,
Wenner, & Fisher, 2016) presents unique statistical challenges. These situations
underscore the need for a model capable of describing the joint longitudinal pro-
cesses, with the aim of elucidating the associations between varied data sources
and outcomes. The objective of our study is to develop such models within the
Structural Equation Modeling (SEM) framework, as SEM provides a flexible and
comprehensive approach for capturing complex relationships and dependencies
between variables.

Research in developmental psychology has provided insights into the joint
development of cognitive abilities, such as the studies by Robitaille, Muniz, Pic-
cinin, Johansson, and Hofer (2012), revealed complex nonlinear intercept and
slope associations in the progression of visuospatial ability and processing speed,
using multivariate growth models (MGMs) with linear growth curves. However,
a model with linear function often falls short in capturing the full complexity
of real-world longitudinal processes, which frequently exhibit nonlinearity and
thus necessitate more sophisticated analytical approaches. To better model such
complexity, Blozis (2004) developed MGMs with nonlinear parametric functions,
such as polynomial and exponential forms, to capture nonlinear parallel growth,
which were implemented using LISREL in Blozis, Harring, and Mels (2008). De-
spite these advancements, parametric models with predetermined nonlinear func-
tional forms may not adequately represent actual change patterns that do not
conform to the prespecified functional forms. Furthermore, while these MGMs
can estimate correlations between growth factors, such as intercept-intercept and
linear/quadratic slope-slope relationships for quadratic functions, they often fail
to provide insights into the relationship between two nonlinear longitudinal pro-
cesses directly.

As the field has evolved, there has been a notable shift toward semi-parametric
methods to allow for more flexible analysis in multivariate nonlinear longitudinal
processes. Liu and Perera (2022) exemplified this shift with their linear-linear
piecewise function within the SEM framework. A longitudinal model with a
linear-linear piecewise function divides the growth trajectory into two linear
segments, each with its own slope, joined at a specific point (i.e., the knot).
By breaking down the growth curve into two distinct phases, the model allows
for the assessment of slope-slope correlation at each stage. More importantly,
by estimating the knots and their variances, the model also examines knot-knot
correlations. This approach provides a unique perspective on the developmental



PLBGM 25

process by helping to understand how the correlation changes in each stage and
when the transition from one stage to the next occurs.

However, while semi-parametric functional forms like those introduced by
Liu and Perera (2022) significantly enhance modeling flexibility, they inher-
ently impose constraints by limiting the change patterns to only two distinct
phases. Such two-piece functional forms may not adequately capture more com-
plex developmental patterns that exhibit multiple phases over time, particularly
in exploratory research stages where the underlying change patterns are not well-
defined. Herein lies the advantage of latent basis growth models (LBGMs), which
provide greater flexibility by allowing for the determination of the optimal curve
shape without the constraints of prior assumptions (McArdle & Epstein, 1987;
Meredith & Tisak, 1990). Our work builds on this flexibility to facilitate ex-
plorations of multiple longitudinal processes, addressing the need for adaptable
analytical tools capable of handling the complexities of real-world challenges.

1.1 Traditional Specification of Latent Basis Growth Model

Grimm, Ram, and Estabrook (2016, Chapter 11) demonstrated that LBGMs can
be constructed using both the Latent Growth Curve Modeling (LGCM) frame-
work, a subset of the SEM framework, and the mixed-effects modeling frame-
work. While LBGMs were not explicitly discussed, existing literature suggests
that, for a majority of longitudinal models, these two frameworks are mathemati-
cally equivalent in evaluating between-individual differences in within-individual
changes (Bauer, 2003; Curran, 2003). This study focuses on the SEM framework
due to its greater modeling flexibility and widespread recognition within the
social science research community.

Similar to other latent growth curve models, a LBGM can be expressed as
yi = Ληi + ϵi, where yi represents the vector of repeated measurements for
individual i, ηi is the vector of latent growth factors for individual i, Λ is the
matrix of factor loadings, and ϵi is the residual vector of individual i. Simply
put, this equation captures how an individual’s change patterns are represented
by latent growth factors and measurement occasions. LBGMs typically consist
of two growth factors: an intercept and a shape factor.

The factor loading matrix Λ is partially constrained for model identification.
Specifically, in a setting with J measurements, factor loadings for the intercept
are fixed at 1, while two factor loadings for the shape factor are also fixed,
and the remaining J−2 are estimated. Figures 1a and 1b illustrate two common
specifications of LBGM with six repeated measurements. In Figure 1a, the shape
factor is scaled as the change during the initial time interval. In Figure 1b, the
shape factor is scaled as the total change over the study duration. These methods
allow for the flexible estimation of Λ, thus freeing LBGM from being restricted
to a specific functional form. This flexibility in specification allows LBGMs to
adapt to different research questions and datasets, making them a powerful tool
for longitudinal data analysis.
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(a) Specification 1

(b) Specification 2

Figure 1: Path Diagram of Traditional Latent Basis Growth Models
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1.2 Novel Specification of Latent Basis Growth Model

Although the LBGM described in Section 1.1 is a flexible statistical tool to
explore trajectories, it does not specify whether nonlinearity exists in the growth
patterns (Grimm, Steele, Ram, & Nesselroade, 2013) nor does it detail the nature
of such nonlinearity (Wood, Steinley, & Jackson, 2015); it still has limitations.
According to Grimm et al. (2016, Chapter 11), discrete time points are required
when specifying an LBGM, and therefore, it cannot be fit in the framework of
individual measurement occasions. One approximate method for such continuous
measurement time is the time-bins approach, also known as the time-windows
method. The time-bins approach involves dividing the assessment period into
several intervals (time-bins), where each individual can have up to one response
per bin. If a subject does not contribute data to a specific time window, it is
treated as a missing record (Sterba, 2014).

However, several studies highlight the limitations of this approach. For exam-
ple, Blozis and Cho (2008) demonstrated that using the time-bins approach may
lead to inadmissible estimation, such as overestimating within-individual changes
and underestimating between-individual differences, though these effects can
be negligible if individual differences are not substantial. Moreover, Coulombe,
Selig, and Delaney (2015) concluded that neglecting time differences often leads
to undesirable outcomes, such as biased parameter estimates. Their evaluation of
bias, efficiency, and Type I error rate under various conditions—different com-
binations of sample size, degree of heterogeneity, distribution of time, rate of
change, and number of repeated measurements—showed that ignoring time dif-
ferences can significantly affect the results.

Two parallel but distinct methods for accounting for individual measurement
occasions have been developed by Sterba (2014) and Liu and Perera (2024).
Sterba (2014) introduces an innovative approach by incorporating two growth
factors—the intercept and shape factor. This model defines the loadings of the
shape factor as a function of the specific timing of each individual’s measure-
ments, accounting for deviations from a linear progression.

In contrast, the framework by Liu and Perera (2024) specifies the latent
basis growth model by incorporating linear piecewise functional forms, which
effectively capture the dynamics across J measurements segmented into J − 1
intervals. This model is designed to estimate interval-specific slopes and allows
for an extension to derive both interval-specific changes and changes from the
baseline. In particular, as illustrated in Figure 2a, the interval-specific change
is quantified using the area under the curve (AUC) for the corresponding time
interval, effectively representing the integral of the growth rate over that pe-
riod. For example, consider the change from t = 1 to t = 2 calculated as:
0.8× (2− 1) = 0.8. This calculation is depicted in Figure 2b, where the change
in growth is shown to increase by 0.8, from 21 to 21.8. Using AUC to represent
interval-specific change relaxes the traditional constraints of LBGMs and allows
for unequally-spaced study waves. For example, in Figure 2a, even if no mea-
surement is taken at t = 5, the change from t = 4 to t = 6 can still be calculated
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as 0.4×(6−4) = 0.8. Similarly, the change from the baseline at any specific time
is quantified using the AUC from the baseline to that particular time point.

The path diagram of the LBGM with six measurement occasions, as pro-
posed by Liu and Perera (2024), is illustrated in Figure 3a. This model features
two growth factors: the initial status, denoted as η0, and the slope during the
first interval, denoted as η1. As depicted in Figure 3a, η1 along with the relative
rate γj−1, defines the interval-specific slopes (dyij). These slopes are then uti-
lized, along with the length of each interval, to derive interval-specific changes.
Each interval is enclosed in a diamond shape in the diagram, indicating that
these intervals are allowed to vary among individuals. Such flexibility addresses
the challenge of individual measurement occasions (which further lead to indi-
vidual intervals), thus providing a more accurate representation of their growth
trajectories. These time intervals are, therefore, considered ‘definition variables’,
allowing the model to account for individual differences (Mehta & Neale, 2005;
Mehta & West, 2000; Sterba, 2014).

In addition to allowing for unequally-spaced study waves and individual mea-
surement occasions in LBGM, this framework provides flexibility in scaling the
growth rate factor, η1. Instead of constraining η1 to the first time interval, it can
be adapted to represent growth rate during any selected time frame, such as the
last time interval, as demonstrated in Figure 3b. Here, γj−1 still serve as the rel-
ative growth rate in relation to η1 for each (j− 1)th time interval. Note that the
models with different scalings of η1 are mathematically equivalent. With such
novel specifications, the shape factor’s loading at each measurement occasion tj
is calculated by dividing the change-from-baseline (the difference between the
current value and the initial value at t1) at tj by η1. The setup of such factor
loadings will be further explained in Section 2.1.

1.3 Parallel Latent Basis Growth Model

In the study of joint longitudinal processes, researchers frequently utilize MGMs,
also known as parallel process and correlated growth models, which are thor-
oughly discussed in Grimm et al. (2016, Chapter 8) and McArdle (1988). MGMs
are generally utilized to estimate three main types of associations based on the
interactions they analyze: (1) within-process growth factors, (2) between-process
growth factors, and (3) between-process residuals. Existing research, including
studies by Robitaille et al. (2012), who investigated the co-evolution of process-
ing speed and visuospatial ability using linear growth curves, and Blozis (2004);
Blozis et al. (2008), who incorporated parametric nonlinear functional forms like
polynomial and exponential curves, has significantly contributed to the under-
standing of these relationships. More recently, Peralta et al. (2022) and Liu and
Perera (2022) have advanced this area by developing MGMs with linear-linear
functional forms with unknown random knots, in the Bayesian mixed-effects and
frequentist structural equation frameworks, respectively. Although effective for
theory-driven research, these models sometimes lack the flexibility needed dur-
ing the exploratory phases of research, especially in the absence of a guiding
domain-specific theory for functional form selection.
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Figure 2: Piecewise Linear Growth Curve and Growth Rate (Values of the In-
tercept and Slope of Each Time Interval: η0 = 20; γ1 = 1.0; γ2 = 0.8; γ3 = 0.6;
γ4 = 0.4; γ5 = 0.2)
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(a) Specification 1

(b) Specification 2

Figure 3: Path Diagram of Novel Latent Basis Growth Models



PLBGM 31

This article aims to advance the field of joint longitudinal process modeling
by extending the LBGM with the novel specification detailed in Section 1.2 to
the MGM framework. The proposed model addresses existing gaps by demon-
strating how to implement a parallel LBGM tailored to unequally-spaced study
waves and individual measurement occasions. The structure of this article is
organized as follows: We begin with a description of a LBGM for a univariate
longitudinal process, incorporating our novel specification in the methods sec-
tion. This model is then extended to a parallel growth curve framework, where
we detail the model specification and estimation procedures. Subsequently, we
evaluate the model’s performance using a Monte Carlo simulation study, fo-
cusing on metrics such as relative bias, empirical standard error (SE), relative
root-mean-square error (RMSE), and the coverage probability (CP) of a 95%
confidence interval. We also illustrate the practical application of our model by
analyzing a real-world dataset of longitudinal reading and mathematics scores
from the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11
(ECLS-K: 2011). In the application section, we explore how to derive and inter-
pret insights from the model output. Finally, we conclude with discussions on
practical and methodological considerations and directions for future research.

2 Method

2.1 Latent Basis Growth Model in the Framework of Individual
Measurement Occasions

This section introduces the novel LBGM specification developed by Liu and
Perera (2024) for univariate nonlinear developmental trajectories, applicable to
analyzing univariate longitudinal outcomes such as reading or mathematics de-
velopment. For individual i, the model can be specified as

yij = y∗ij + ϵ
[y]
ij , (1)

y∗ij =

{
η
[y]
0i , if j = 1

y∗i(j−1) + dyij × (tij − ti(j−1)), if j = 2, . . . , J
, (2)

dyij = η
[y]
1i × γ

[y]
j−1 (j = 2, . . . , J). (3)

Equations 1 and 2 together specify a LBGM, where yij , y
∗
ij , and ϵ

[y]
ij are the

observed measurement, latent true score, and residual for the ith individual at
time j, respectively. At the baseline measurement (i.e., j = 1), the true score

corresponds to the initial status growth factor (η
[y]
0i ). For subsequent measure-

ments (i.e., j ≥ 2), the true score at time j is calculated as a linear combination
of the score at the preceding time point j − 1 and the true change from time
j−1 to j. This true change is further defined as the product of the time interval
(tij− ti(j−1)) and the interval-specific slope (dyij). Equation 3 further represents

the interval-specific slope, dyij , with a shape factor η
[y]
1i and γ

[y]
j−1, where γj−1
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(j = 2, . . . , J) can be interpreted as the relative growth rate in relation to η
[y]
1i

during the (j − 1)th time interval. In Liu and Perera (2024), the term η
[y]
1i is

scaled to represent the growth rate during the first time interval (i.e., γ2−1 = 1),
as illustrated in Figure 3a. As discussed in Section 1.2, this term can also be
scaled to correspond with the growth rate during any other time interval, such
as the last one (i.e., γJ−1 = 1), as depicted in Figure 3b.

The model specified in Equations 1-3 can also be written in a matrix form:

yi = Λ
[y]
i × η

[y]
i + ϵ

[y]
i , , (4)

η
[y]
i = µ[y]

η + ζ
[y]
i , (5)

where yi is a J×1 vector representing the ith individual’s repeated measurements

(with J denoting the number of such measurements). The vector η
[y]
i is a 2× 1

vector of growth factors, where the first element (η0i) signifies the initial status
and the second element (η1i) indicates the growth rate within a specified time

interval. The J × 2 matrix Λ
[y]
i consists of associated factor loadings. Finally,

ϵ
[y]
i is a J × 1 vector of the ith individual’s residuals. Equation (5) expresses η

[y]
i

as deviations (ζ
[y]
i ) from the mean values of the growth factors (µ

[y]
η ).

While the scaling of η1i affects its interpretation, the general form of the

factor loading matrix, Λ
[y]
i , remains consistent. The general form is given as:

Λ
[y]
i =


1 0

1 γ
[y]
2−1 × (ti2 − ti1)

1
∑3

j=2 γ
[y]
j−1 × (tij − ti(j−1))

. . . . . .

1
∑J

j=2 γ
[y]
j−1 × (tij − ti(j−1))

 , (6)

where the jth element in the second column represents the cumulative value of
the relative rate (i.e., γ[y]. ) over time up to time j, so the product of this element

and η
[y]
1i represents the change from the initial status of the ith individual (Liu

& Perera, 2024). In addition, the subscript i in Λ
[y]
i emphasizes that the model

accommodates individual measurement occasions.

2.2 Model Specification of Parallel Latent Basis Growth Model

In this section, we extend the univariate Latent Basis Growth Model (LBGM)
to its parallel version. This parallel version enables the joint analysis of multiple
repeated outcomes, such as the joint development of reading and mathematics
ability. The necessity for this extension arises from the various compelling reasons
that have been discussed in Section 1. We describe the parallel LBGM in the
context of individual measurement occasions, extending the univariate model
given in Equation (4). Assume that we have bivariate growth trajectories for
repeated outcomes, the parallel LBGM can then be formally defined as follows:(

yi

zi

)
=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
η
[y]
i

η
[z]
i

)
+

(
ϵ
[y]
i

ϵ
[z]
i

)
, (7)
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where zi is also a J × 1 vector of the repeated measurements for individual

i, η
[z]
i , Λ

[z]
i and ϵ

[z]
i are its growth factors (a 2 × 1 vector), the corresponding

factor loadings (a J × 2 matrix), and the residuals of person i (a J × 1 vector),

respectively. Similar to Λ
[y]
i , Λ

[z]
i has a general expression but with one fixed

relative growth rate γj−1, corresponding to the growth rate of (j − 1)th time

interval that η
[z]
1i represents. We then write the outcome-specific growth factors

η
[u]
i (u = y, z) as deviations from the corresponding outcome-specific growth

factor means. (
η
[y]
i

η
[z]
i

)
=

(
µ

[y]
η

µ
[z]
η

)
+

(
ζ
[y]
i

ζ
[z]
i

)
, (8)

where µ
[u]
η is a 2 × 1 vector of outcome-specific growth factor means, and ζ

[u]
i

is a 2× 1 vector of deviations of the ith individual from the means. To simplify

model, we assume that
(
ζ
[y]
i ζ

[z]
i

)T
follows a multivariate normal distribution

(
ζ
[y]
i

ζ
[z]
i

)
∼ MVN

(
0,

(
Ψ [y]

η Ψ [yz]
η

Ψ [z]
η

))
,

where both Ψ [u]
η and Ψ [yz]

η are 2 × 2 matrices: Ψ [u]
η is the variance-covariance

matrix of the outcome-specific growth factors while Ψ [yz]
η is the covariances be-

tween the growth factors of yi and zi. To simplify the model, we also assume that
the individual outcome-specific residual variances are identical and independent
normal distributions over time, while the residual covariances are homogeneous
over time, that is, (

ϵ
[y]
i

ϵ
[z]
i

)
∼ MVN

(
0,

(
θ
[y]
ϵ I θ

[yz]
ϵ I

θ
[z]
ϵ I

))
,

where I is a J × J identity matrix.

2.3 Model Estimation

We then write the expected mean vector and variance-covariance matrix of the
bivariate repeated outcome yi and zi in the parallel LBGM specified in Equa-
tions (7) and (8) as

µi =

(
µ

[y]
i

µ
[z]
i

)
=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
µ

[y]
η

µ
[z]
η

)
(9)
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and

Σi =

(
Σ

[y]
i Σ

[yz]
i

Σ
[z]
i

)

=

(
Λ

[y]
i 0

0 Λ
[z]
i

)
×

(
Ψ [y]

η Ψ [yz]
η

Ψ [z]
η

)
×

(
Λ

[y]
i 0

0 Λ
[z]
i

)T

+

(
θ
[y]
ϵ I θ

[yz]
ϵ I

θ
[z]
ϵ I

)
.

(10)

The parameters in the parallel LBGM specified in Equations (7) and (8)
include the mean vector and variance-covariance matrix of the growth factors,
the outcome-specific relative growth rate, the variance-covariance matrix of the
residuals. Accordingly, we define

Θ ={µ[u]
η ,Ψ [u]

η ,Ψ [yz]
η ,γ[u], θ[u]ϵ , θ[yz]ϵ }

={µ[u]
η0
, µ[u]

η1
, ψ

[u]
00 , ψ

[u]
01 , ψ

[u]
11 , ψ

[yz]
00 , ψ

[yz]
01 , ψ

[yz]
10 , ψ

[yz]
11 , γ

[u]
j−1,

θ[u]ϵ , θ[yz]ϵ }, u = y, z

j =

{
3, . . . , J Model specification in Figure 3a

2, . . . , J − 1 Model specification in Figure 3b

(11)

to list the parameters that we need to estimated in the proposed model.
We estimateΘ using full information maximum likelihood (FIML) to account

for the individual measurement occasions and potential heterogeneity of individ-
ual contributions to the likelihood function. In this present study, the proposed
model is built using the R package OpenMx with CSOLNP optimizer (Boker
et al., 2020; Hunter, 2018; Neale et al., 2016; Pritikin, Hunter, & Boker, 2015).
We provide OpenMx code of the proposed parallel LBGM and a demonstration
in the online appendix (https://github.com/Veronica0206/LCSM projects).
We also provide Mplus 8 code of the proposed model for researchers who are
interested in using Mplus.

3 Model Evaluation

We aim to assess the effectiveness of the proposed parallel LBGM by employ-
ing Monte Carlo simulation studies. Specifically, we examine the model’s per-
formance using several metrics: the relative bias, the empirical standard error
(SE), the relative root-mean-square error (RMSE), and the empirical coverage
probability for a nominal 95% confidence interval for each parameter. These
metrics are commonly used in simulation studies to evaluate the performance
of statistical methodologies or models. The definitions and estimates for these
metrics are presented in Table 1.

Following practices in simulation studies as suggested by Morris, White,
and Crowther (2019), we empirically determined the number of replications

https://github.com/Veronica0206/LCSM_projects
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Table 1: Performance Metrics: Definitions and Estimates
Criteria Definition Estimate

Relative Bias Eθ̂(θ̂ − θ)/θ
∑S

s=1(θ̂s − θ)/Sθ

Empirical SE

√
V ar(θ̂)

√∑S
s=1(θ̂s − θ̄)2/(S − 1)

Relative RMSE
√
Eθ̂(θ̂ − θ)2/θ

√∑S
s=1(θ̂s − θ)2/S/θ

Coverage Prob. Pr(θ̂lower ≤ θ ≤ θ̂upper)
∑S

s=1 I(θ̂lower,s ≤ θ ≤
θ̂upper,s)/S

a θ: the population value of the parameter of interest
b θ̂: the estimate of θ
c S: the number of replications and set as 1, 000 in our simulation study
d s = 1, . . . , S: indexes the replications of the simulation
e θ̂s: the estimate of θ from the sth replication
f θ̄: the mean of θ̂s’s across replications
g I(): an indicator function
h Coverage Prob.: coverage probability

to be S = 1, 000. The pilot simulation study was conducted to ensure that
the chosen number of replications would provide reliable performance metrics.
Among the four performance metrics, the (relative) bias is of utmost impor-
tance. The pilot simulation revealed that the standard errors of bias, calculated

as Monte Carlo SE(Bias) =

√
Var(θ̂)

S , were less than 0.15 across all parameters,

except for ψ
[u]
00 and ψ

[yz]
00 . To maintain the Monte Carlo standard error of bias

below 0.05, at least 900 replications are needed. Thus, we decided to proceed
with S = 1, 000 replications to account for variability and ensure a more robust
evaluation.

3.1 Design of Simulation Study

To thoroughly evaluate the proposed parallel LBGM, we designed a comprehen-
sive set of simulation studies, the conditions of which are outlined in Table 2.
A key factor in the effectiveness of a model designed for longitudinal data is
the number of repeated measures. We hypothesize that the proposed model’s
performance will improve with an increasing number of repeated measurements.
To test this hypothesis, we considered two levels for the number of repeated
measures: six and ten. For conditions with ten repeated measures, we inves-
tigated whether equally-placed study waves or unequally-placed waves affect
model performance, assuming that the study duration remains constant across
conditions. This consideration reflects real-world longitudinal study practices,
where measurement waves are typically not equally spaced, often occurring more
frequently at the beginning. We aimed to determine if such setups impact model
performance. In scenarios with six repeated measures, we examined the model’s
performance under the more challenging condition of a shorter study duration
with the hypothesis that a shorter duration poses greater challenges for the
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model due to less available data to accurately capture the underlying growth
trajectory. Measurement occasions are individuated by a ‘medium’-width time
window, (−0.25,+0.25) around each wave (Coulombe et al., 2015).

Another key variable of interest is the correlation between the two trajecto-
ries, as the proposed model is designed for analyzing joint longitudinal processes.
Three correlation levels for the between-construct growth factors are considered:
±0.3 and 0. We are interested in how model over-specification affects perfor-
mance in zero-correlation conditions, and whether the sign of the correlation
(±0.3) has any impact on model performance. Additionally, we explore the in-
fluence of varying trajectory shapes, quantified by the relative growth rate in
each time interval. As specified in Table 2, the change patterns considered in-
clude both increasing and decreasing growth rates. Moreover, we evaluate the
model’s performance across different sample sizes (n = 200 and n = 500) and

levels of outcome-specific residual variances (θ
[u]
ϵ = 1 or θ

[u]
ϵ = 2) to gauge the

effects of sample size and measurement precision. In the simulation design, fac-
tors considered less critical to the proposed model’s performance, such as the
distribution of growth factors and the correlation of between-construct residuals,
were held constant.

3.2 Data Generation and Simulation Step

To evaluate the performance of the proposed parallel LBGMs, we conducted a
simulation study according to the design presented in Table 2. Each condition
was replicated 1, 000 times to ensure a robust assessment. The steps for the
simulation are outlined as follows:

1. Growth Factor Generation: Utilizing the MASS R package (Venables
& Ripley, 2002), generate the growth factors for both longitudinal processes
based on the pre-defined mean vector and variance-covariance matrix as spec-
ified in Table 2. The MASS package is used for its reliability in generating
multivariate Gaussian samples.

2. Time Structure: Generate the time structure with J waves tj as defined
in Table 2. Add a uniform disturbance following U(tj − ∆, tj + ∆) around
each wave to obtain individual measurement occasions tij .

3. Factor Loadings Calculation: Compute the factor loadings for each indi-
vidual of each longitudinal process as Equation 6, using the relative growth
rates and individual measurement intervals.

4. Measurement Value Computation: Calculate the values of bivariate re-
peated measurements, incorporating growth factors, factor loadings, and the
pre-defined residual variance-covariance structure.

5. LBGM Implementation: Execute the proposed LBGM models on the
generated dataset, estimating the model parameters and constructing 95%
Wald confidence intervals.

6. Replication: Repeat steps 1-5 until 1, 000 convergent solutions are ob-
tained, as this number of replications provides a stable estimate of perfor-
mance metrics such as bias and coverage probability.
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4 Result

4.1 Model Convergence

Before assessing the four performance measures of the proposed parallel LBGM,
we first examined its convergence rate1. The model exhibited excellent conver-
gence, as evidenced by a 100% rate across all simulation conditions listed in
Table 2.

4.2 Performance Measures

This section summarizes the simulation results for four key performance metrics:
relative bias, empirical SE, relative RMSE, and empirical coverage probability for
a nominal 95% confidence interval. We calculated these metrics for each param-
eter across 1, 000 repetitions under each condition, and summarized the median
and range values for all conditions given the scale of parameters and simulation
setups. The proposed model generally yielded unbiased and accurate point es-
timates with target coverage probabilities. Further details for each performance
metric are provided in the Online Supplementary Document.

The proposed model produced unbiased and accurate point estimates. Specif-
ically, the magnitudes of the relative biases for outcome-specific growth factor
means, variances, and relative growth rates were below 0.004, 0.013, and 0.012,
respectively2. The magnitudes of the relative RMSEs for outcome-specific growth
factor means, variances, and relative growth rates were below 0.05, 0.15, and 0.23,
respectively3. Moreover, the model demonstrated excellent empirical coverage
probabilities, with median values approximating 0.95. Given these consistently
strong performance metrics, further investigations into the effect of different
simulation conditions were deemed unnecessary.

5 Application

In this section, we demonstrate how to employ the proposed parallel LBGM to
analyze real-world data. This application section includes two examples. In the
first example, we illustrate the recommended steps to construct the proposed
model in practice. In the second example, we demonstrate how to apply the
proposed model to analyze joint longitudinal processes with a more complicated

1 In this study, we define convergence rate as the achievement of an OpenMx status
code of 0, indicating successful optimization, in up to 10 runs with varied initial
values (Neale et al., 2016).

2 Previous simulations have often regarded relative bias in regression coefficients as
acceptable if it was below 10%, which is commonly considered a guideline when
assessing relative bias (Leite, 2017; Poon & Wang, 2010).

3 Regarding relative RMSE, while there is no universally accepted benchmark for
simulation studies, model accuracy is generally considered excellent when the score
is below 10%, good when it ranges from 10% to 20%, fair when it falls between 20%
and 30%, and poor when it exceeds 30% (Jadon, Patil, & Jadon, 2022).
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data structure, where two repeated outcomes have different time frames. We
randomly selected 400 students from the Early Childhood Longitudinal Study
Kindergarten Cohort of 2010-2011 (ECLS-K: 2011), all of whom had complete
records of repeated reading and mathematics scores based on Item Response
Theory (IRT), as well as their age in months at each wave4.

ECLS-K: 2011 is a national longitudinal study of US children enrolled in
around 900 kindergarten programs beginning in the 2010-2011 school year. In
ECLS-K: 2011, children’s reading and mathematics abilities were assessed in
nine waves: fall and spring of kindergarten (2010-2011), first (2011-2012) and
second (2012-2013) grade, respectively, as well as spring of the 3rd (2014), 4th

(2015), and 5th (2016) grade. Only about 30% of students were assessed in the fall
semesters of 2011 and 2012 (Lê, Norman, Tourangeau, Brick, & Mulligan, 2011).
In the first example, we used all nine waves of reading and mathematics IRT
scores to demonstrate how to apply the proposed model. In the second example,
we utilized all nine waves of reading IRT scores but only the mathematics scores
obtained in the spring semesters to mimic one possible complex time structure in
practice. Note that the initial status and the number of measurement occasions of
the two abilities are different in the second example. Additionally, we employed
children’s age in months rather than their grade-in-school to have individual
measurement occasions. The subsample included 41.50% White, 7.25% Black,
37.00% Latinx, 8.25% Asian, and 6.00% of other ethnicity.

5.1 Analyze Joint Longitudinal Records with The Same Time
Structure

Following Blozis et al. (2008) and Liu and Perera (2022), we first constructed
a latent growth curve model to examine each longitudinal process in isolation
before analyzing joint development. Specifically, we employed a LBGM to explore
the univariate development of either reading or mathematics from Grade K to
5. Figure 4 illustrates the model-implied curves superimposed on the smooth
lines for each ability. For each ability, the estimates from the LBGM produced
model-implied trajectories that closely align with the smooth lines representing
the observed individual data.

We then applied the proposed parallel LBGM to analyze the joint develop-
ment of reading and mathematics abilities. Figure 5 illustrates the model-implied
curves superimposed on the smooth lines for each ability obtained from the par-
allel model. From the figure, it is evident that the model-implied curves of the
parallel models did not differ from those of the univariate growth models shown
in Figure 4. Table 3 presents the parameter estimates of interest for joint devel-
opment.

Note that we defined η
[u]
1 as the growth rate in the final time interval for

each ability’s longitudinal process (i.e., the model specification in Figure 3b).

4 The total sample size of ECLS-K: 2011 is n = 18174. The number of rows after
removing records with missing values (i.e., entries with any of NaN/-9/-8/-7/-1) is
n = 2290.
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Consequently, in Table 3, the parameters related to ’initial status’ and ’rate
of Interval 8’ were directly estimated from the proposed model, while others
were obtained using the function mxAlgebra()5 in the R package OpenMx. It is
important to note that the estimated initial status and interval-specific slopes

remain unaffected if η
[u]
1 is defined as the growth rate in the first time interval

for each ability’s longitudinal process (i.e., the model specification in Figure 3a).

This difference in specification only affects the interpretation of η
[u]
1 . Specifically,

when η
[u]
1 is scaled to be the slope in the first time interval, the correlation of

the two η
[u]
1 for the two outcomes indicates how the growth rates are related in

the first interval. In contrast, when η
[u]
1 is scaled to be the slope in the last time

interval, the correlation reflects how the growth rates are related during the final
interval.

From Figure 5 and Table 3, we observed that the development of both read-
ing and mathematics abilities generally slowed down after Grade 3, which aligns
with earlier studies (Liu & Perera, 2022; Peralta et al., 2022). Additionally, there
was a positive association between the development of reading and mathemat-
ics abilities, indicated by statistically significant intercept-intercept and slope-
slope covariances in each time interval. After standardizing the covariances, the
intercept-intercept correlation and each interval-specific slope-slope correlation
were found to be 0.83 and 0.58, respectively. This suggests that, on average, a
child who performed better in reading tests at Grade K also tended to perform
better in mathematics examinations, and vice versa. Moreover, on average, chil-
dren who showed more rapid gains in reading ability also tended to exhibit faster
improvement in mathematics, and vice versa.

5.2 Analyze Joint Longitudinal Records with Different Time
Structures

In this section, we use the proposed parallel LBGM to investigate the joint
development trajectories of reading and mathematics abilities. We retained all
nine measurement occasions for reading ability but included only the spring
semester measurements for mathematics ability (i.e., Waves 2, 4, 6, 7, 8, and 9).
In this configuration, both the initial statuses and the number of measurement
occasions differ between the two abilities. Figure 6 illustrates the model-implied
curves superimposed on the smooth lines representing each ability in this model.
The figure reveals that the model-implied trajectories vary only minimally from
those presented in Figure 5 due to fewer measurement occasions for mathemat-
ics ability, but they still sufficiently capture the smooth lines of the observed
individual data.

Table 4 presents the estimated parameters of interest for the joint model
with differing time structures. Note that there are 8 time intervals for the devel-
opment of reading ability (corresponding to 9 measurement occasions) but only

5 By using mxAlgebra(), we specify algebraic expressions for new parameters, enabling
OpenMx to estimate their point values along with standard errors.
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Figure 6: Model Implied Trajectory and Smooth Line of Bivariate Development
with Different Time Structures

5 time intervals for the development of mathematics ability because three mea-
surements from the fall semesters were excluded. During the first time interval
for mathematics, which corresponds to Intervals 2 and 3 for reading ability (as
detailed in Table 3), the estimated growth rate was 1.811. This value represents
an average of the growth rates 1.437 and 2.169 from Interval 2 and Interval 3,
respectively, in Table 3. These findings suggest that our proposed model effec-
tively captures the underlying patterns of growth trajectories, even with fewer
measurements.
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6 Discussion

This article extends the latent basis growth model with the novel specification
proposed by Liu and Perera (2024) to explore joint nonlinear longitudinal pro-
cesses in the framework of individual measurement occasions. This framework
is particularly advantageous when investigating parallel development because
it helps avoid inadmissible estimation and allows for different time structures
across outcomes. Additionally, the proposed model allows scaling the second
growth factor as the growth rate during any time interval. In the present study,
we specify the second growth factor as the growth rate during either the first or
last time interval and estimate the relative rates for each of the other intervals
for each repeated outcome. We demonstrate that the proposed parallel LBGM
can provide unbiased and accurate point estimates with target coverage proba-
bilities through simulation studies. Additionally, we apply the proposed model
to analyze the joint development of reading and mathematics abilities, using the
same or different time structures. Our analysis relies on a subsample of n = 400
from ECLS-K: 2011.

6.1 Practical Considerations

In this section, we provide recommendations for empirical researchers based on
both the simulation study and real-world data analyses. First, although we scale
the shape factor η1 as the growth rate in the first or last time interval of the
study duration, it can be specified as the growth rate in any time interval.
Note that the interpretation of γj−1 remains as the relative growth rate to η1
during the (j− 1)th time interval. From the proposed parallel LBGM, we obtain
the estimates of the mean and variance of shape factor and the fixed effects of
relative growth rates for each construct. Using the mxAlgebra() function from
the OpenMx R package, we derive both fixed and random effects for the absolute
growth rate of each time interval, as detailed in the Application section.

In addition, the proposed model is capable of estimating the covariance of
between-construct intercepts and that of between-construct shape factors di-
rectly. We can derive the covariance of between-construct growth rates for each
interval by using the function mxAlgebra(). Note that the correlation of the
between-construct growth rates is constant because we only estimate fixed ef-
fects of relative growth rates.

Third, as the latent basis growth model serves primarily as an exploratory
tool, allowing trajectory characteristics to emerge from the data rather than
being specified a priori, researchers may also be interested in exploring other
aspects, such as the change-from-baseline values at each measurement wave for
each repeated outcome. We can also derive these features with the function mx-
Algebra(). In the online appendix (https://github.com/Veronica0206/LCSM
projects), we also provide code to demonstrate how to derive the values of
change-from-baseline.

https://github.com/Veronica0206/LCSM_projects
https://github.com/Veronica0206/LCSM_projects
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6.2 Methodological Considerations and Future Directions

There are several directions to consider for future studies. First, similar to the
standard implementation of latent basis growth models, the proposed model
requires a strict proportionality assumption (McNeish, 2020; Wu & Lang, 2016).
Wu and Lang (2016) showed that this assumption might potentially result in
biased estimates by simulation studies. McNeish (2020) demonstrated that this
assumption could be relaxed by specifying random factor loadings of the shape
factor. In the same way, we can also relax the proportionality assumption for the
proposed parallel LBGM. Note that the extended model, where both the shape
factor and relative growth rates are random coefficients, cannot be specified in a
frequentist SEM software because these random coefficients enter the model in a
multiplicative fashion (i.e., a nonlinear fashion). Similar to McNeish (2020), the
extended model can be constructed in Bayesian software such as jags or stan.

Second, it is not our intention to show that the proposed parallel LBGM is
better than any other parallel growth models with parametric or semi-parametric
functional forms. The proposed model is a versatile tool for exploratory analyses;
it should perform well to detect the trends of trajectories or whether a spike
exists over the study duration. However, the insights directly related to research
questions might be limited. Accordingly, subsequent analyses may need to be
based on the estimates generated by the proposed model. For instance, if we
obtain evidence suggesting that developmental processes can generally be divided
into two stages, we may employ the parallel bilinear spline growth model (Liu
& Perera, 2022) to further estimate the individual transition time to the stage
with a slower growth rate. Alternatively, we can constrain the relative growth
rates of multiple time intervals to be the same to have a more parsimonious
model. Therefore, statistical methods for comparing the full model to a more
parsimonious one need to be proposed and tested.

Third, as in any latent growth curve model, baseline covariates can be added
to predict the intercept or the growth rate. Additionally, a time-varying covariate
can also be added to estimate its effect on the measurements while simultane-
ously modeling parallel change patterns in these measurements.

6.3 Concluding Remarks

In this article, we propose a novel expression of latent basis growth models to
allow for individual measurement occasions and further extend the model to
analyze joint longitudinal processes. The results of both the simulation studies
and real-world data analyses underscore the model’s valuable capabilities for
exploring parallel nonlinear change patterns. As discussed above, the proposed
method offers avenues for both practical extensions and further methodological
examination.
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Abstract. We introduce a way to test Treatment X Pretest interactions
within difference-in-differences (DID). Mathematically adding a Treat-
ment X Pretest interaction to DID transforms the treatment estimate
to an ANCOVA-type estimate, which differs from DID’s estimate and
is often biased against at-risk cases. Dual-centered ANCOVA duplicates
DID’s treatment estimate and can test whether that estimate varies by
pretest scores. To illustrate, we test a Treatment X Pretest interaction for
the effects of therapy for depression using the Fragile Families and Child
Wellbeing longitudinal dataset. After centering posttest and pretest out-
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1 Introduction

Longitudinal analyses that control for pre-existing differences with ANCOVA-
type controls are biased against corrective actions (Larzelere, Lin, Payton, &
Washburn, 2018) unless the covariates predict treatment condition perfectly (as
in regression discontinuity designs). By definition, corrective actions are selected
to reduce the poor prognosis of a presenting problem. Subsequent outcomes
therefore constitute an unknown combination of the original poor prognosis of
the problem and the extent to which the corrective action modified that progno-
sis. Controlling statistically for pre-existing differences via regression or match-
ing reduces that selection bias, but rarely eliminates it. For example, a recent
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meta-analysis of efforts to improve low-performing schools found that analyses
that used matching or regression methods predicted significantly worse effects
than randomized studies on high-stakes math exams and marginally worse on
language arts exams (Schueler, Asher, Larned, Mehrotra, & Pollard, 2021). That
may be why 47% of the studies qualifying for that meta-analysis used difference-
in-differences instead of regression-type controls to adjust for pre-existing differ-
ences.

There are two basic ways to analyze change in two-occasion longitudinal
analyses: ANCOVA predicting residualized change scores, Y1|Y0 (Y1 controlling
for baseline Y0), and difference-in-differences predicting simple difference scores,
Y1−Y0. ANCOVA has more statistical power (van Breukelen, 2013) but produces
biased treatment estimates in non-randomized studies from invariant between-
person differences (Berry & Willoughby, 2016; Hamaker, Kuiper, & Grasman,
2015) and measurement error (Huitema, 2011). Difference-in-differences over-
comes these two biases, but is biased by any variations from its parallel-trends
assumption. Some have recommended running both types of change-score anal-
yses, either to bracket the true causal effect given some assumptions (Angrist &
Pischke, 2009; Ding & Li, 2019) or to test robustness across alternative analy-
ses (Duncan, Engel, Claessens, & Dowsett, 2014). A limitation of difference-in-
differences has been its inability to test Treatment X Pretest interactions. For
example, the meta-analysis of efforts to improve low-performing schools tested
many moderators, but not whether the success of these efforts varied by the
schools’ previous performance on the outcomes (e.g., high-stakes testing). This
article introduces a method to test whether treatment effects vary by pretest lev-
els using difference-in-differences without inadvertently changing the treatment
estimate to ANCOVA’s estimate.

This article focuses on two-occasion data for two reasons. Many longitudinal
studies have only two occasions (Usami, Todo, & Murayama, 2019), and these
two change-score analyses are basic building blocks for more complex longitudi-
nal analyses (Lin & Larzelere, 2024).

Treatment estimates become identical for the two change-score analyses af-
ter pretest means are equalized across treatment groups, but these robust es-
timates are not necessarily less biased. Different methods of equating pretest
group means yield different treatment estimates (Lin & Larzelere, 2020). Pretest
matching produces robust results that are equivalent to the original ANCOVA
(Reichardt, 2019), which is unbiased only if the assumptions of the original AN-
COVA are met (e.g., no measurement error in the covariates, equality of true
pretest group means with each other: van Breukelen, 2013). Centering both
posttest and pretest scores on pretest group means preserves everyone’s differ-
ence score, rendering the treatment estimates robust and equivalent to the orig-
inal difference-in-differences, which is unbiased under the assumption of parallel
slopes under the null hypothesis. The two pairs of robust results therefore differ
from each other as much as the original discrepancy between the two change-
score analyses. But the dual-centered data can be analyzed with ANCOVA to
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test a Treatment X Pretest interaction in a model duplicating the treatment
effect from difference-in-differences (Lin & Larzelere, 2020).

1.1 Basics

Assume Xij = 1 for treatment (j = 2), and Xij = 0 for control (j = 1).
Occasions are t = 0 (pretest) and t = 1 (posttest), with outcome variable Yijt

for individual i within group j at occasion t. The equation for ANCOVA is:

Yij1 = b0 + b1Xij + b2Yij0 + eij . (1)

The equation for difference-in-differences is:

Yij1 − Yij0 = γ0 + γ1Xij + εij . (2)

By adding Yij0 to both sides of Equation (2), it can be shown that its treatment
effect γ1 is identical to the treatment effect b1 in Equation (1) when b2=1 in
Equation (1). This is possible only when all eij = 0 or the variance of Yij

is increasing over time. For the purposes of this article, we assume that some
eij > 0 and that the variance of Yij is stable over time. Then the two treatment
effect sizes equal each other (b1 = γ1) only if the pretest group means are equal
to each other.

Dual-centered ANCOVA centers pretest and posttest scores on the pretest
group means:

Yij1 − µ̂j0 = ω0 + ω1Xij + ω2(Yij0 − µ̂j0) + νij , (3)

where the group-mean-centered pretest scores are the residuals τij in the follow-
ing equation:

Yij0 = µ̂j0 + τij . (4)

Lin and Larzelere (2020) showed that, under the assumption of no pretest
group mean differences, the treatment estimate in Equation (3) is identical to
the treatment effect in difference-in-differences Equation (2), i.e., ω1 = γ1. The
(Yij0 − µ̂j0) term is a generated regressor, however, which biases the standard
error for the treatment effect ω1 downward (Brorsen, Lin, & Larzelere, 2025;
Pagan, 1984). The correct standard error can be obtained from Equation (2) or
by analyzing Equations (3) and (4) together via two-stage least squares (Brorsen
et al., 2025). Next we consider adding Treatment X Pretest interactions to the
above analyses.

1.2 Treatment X Pretest Interactions

Standard ANCOVA. When there is a significant Treatment X Pretest inter-
action, treatment effects vary in magnitude and significance at different pretest
scores (Huitema, 2011). Because significant interactions apply to both compo-
nent predictors, the auto-regressive slope b2 will then also vary significantly
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across groups. A significant Treatment X Pretest interaction violates the AN-
COVA assumption of homogeneity of the regression slope across groups. We
follow Huitema (2011) and Lin (2020) in interpreting a significant Treatment X
Pretest interaction.

Consider standard ANCOVA with a significant Treatment X Pretest inter-
action:

Yij1 = b0 + b1Xij + b2Yij0 + b3XijYij0 + eij . (5)

Equation (5) can be re-arranged to indicate how the effect of Treatment Xij

varies by the pretest score (Lin, 2020):

Yij1 = (b0 + b2Yij0) + (b1 + b3Yij0)Xij + eij . (6)

Reciprocally, the effect of the pretest Yij0 on the posttest Yij1 also varies by
treatment condition (heterogeneity of regression slopes):

Yij1 = (b0 + b1Xij) + (b2 + b3Xij)Yij0 + eij . (7)

One way to interpret significant Treatment X Pretest interactions is the
Johnson and Neyman (1936) technique, which calculates regions of significant
treatment effects at all pretest values. Alternatively, the picked-points analy-
sis (Huitema, 2011; Lin, 2020) shows the estimated treatment effects at picked
pretest values.

Equation (6) indicates that the estimated conditional effect of treatment Xij

on the posttest at any pretest score is:

b̂∗Tx = b1 + b3Yij0. (8)

Reciprocally the conditional effect of the pretest on the posttest for either
treatment condition according to Equation (7) is:

b̂∗lag1 = b2 + b3Xij . (9)

Difference-in-Differences. To our knowledge, there is no generally accepted
method of testing a Treatment X Pretest interaction within difference-in-differences
without changing the main effect of treatment to ANCOVA’s estimate. The rea-
son is that tests of Treatment X Pretest interactions require both main effects
to be included in the regression equation:

Yij1 − Yij0 = γ0 + γ1Xij + γ2Yij0 + γ3XijYij0 + εij . (10)

But adding the pretest to both sides of Equation (10) yields the following:

Yij1 = γ0 + γ1Xij + (1 + γ2)Yij0 + γ3XijYij0 + εij . (11)

Equation (11) is the same as Equation (5) for standard ANCOVA with a
Treatment X Pretest interaction, with b2 = 1 + γ2. Therefore the treatment
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effect γ1 in Equations (10) and (11) is equivalent to ANCOVA’s treatment effect
b1 in Equation (5). Omitting the auto-regressive term γ2Yij0 from Equation (10)
is equivalent to fixing γ2 to 0, which is usually nonsensical, since the pretest
Yij0 is one of the two components of the difference score being predicted. Fixing
the slope coefficient γ2 to 0 in Equation (10) is also equivalent to fixing the
coefficient (1+γ2) to 1 in Equation (11), which makes the equations for ANCOVA
and difference-in-difference identical. This is possible, however, only when the
variance of the outcome scores is increasing over time or unless pretest scores
predict posttest scores perfectly.

To add a Treatment X Pretest interaction to dual-centered ANCOVA in
Equation (3), we apply the same steps as in Equations (5) through (9) for stan-
dard ANCOVA. In both cases, a significant interaction changes the unconditional
marginal effects in Equations (1) and (2) to conditional effects that vary with
pretest scores.

Adding a Treatment X Pretest interaction to Equation (3) for dual-centered
ANCOVA yields:

Yij1 − µ̂j0 = ω0 + ω1Xij + ω2(Yij0 − µ̂j0) + ω3Xij(Yij0 − µ̂j0) + νij . (12)

Because dual-centered ANCOVA predicts the same treatment effect as difference-
in-differences, the Treatment X Centered Pretest interaction can be interpreted
in the same way as a Treatment X Pretest interaction in standard ANCOVA.
Analyzing Equation (12) by itself yields the correct standard error for ω3, accord-
ing to our simulation (Lin, 2023). Equation (12) can be re-arranged to indicate
how the treatment effect varies by the group-mean-centered pretest score (Lin,
2020).

Yij1 − µ̂j0 = (ω0 + ω2[Yij0 − µ̂j0]) + (ω1 + ω3[Yij0 − µ̂j0])Xij + νij . (13)

Reciprocally, the effect of the group-mean-centered pretest score also varies
by treatment condition:

Yij1 − µ̂j0 = (ω0 + ω1Xij) + (ω2 + ω3Xij)(Yij0 − µ̂j0) + νij . (14)

Equation (13) indicates that the effect of treatment on the pretest-group-
mean-centered posttest at any group-mean-centered pretest score is:

ω̂∗
Tx = ω1 + ω3(Yij0 − µ̂j0). (15)

Reciprocally the effect of the group-mean-centered pretest on the centered
posttest at either level of treatment according to Equation (14) is

ω̂∗
lag1 = ω2 + ω3Xij . (16)
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1.3 Illustrative Example

The following example estimates the effect of psychotherapy to treat depression
in mothers from the Fragile Family & Child Wellbeing (FFCW) dataset. We
selected this corrective action because its effectiveness has been documented in
meta-analyses of hundreds of randomized trials (Cuijpers et al., 2023). Although
these effect sizes shrink over time (Miguel et al., 2021) and in typical field im-
plementations (Ormel, Hollon, Kessler, Cuijpers, & Monroe, 2022), there is no
reason to think that such therapies are harmful on average.

We expect therapy to look more effective with difference-in-differences than
with ANCOVA, as is typical for longitudinal analyses of corrective actions (Larzelere
et al., 2018). We then illustrate how to use dual-centered ANCOVA to test the
Treatment X Pretest interaction corresponding to the treatment estimate from
the difference-in-differences model.

2 Methods

2.1 Participants.

The FFCW dataset started with baseline data on at-risk couples whose children
were born from 1998 to 2000 in 20 large cities of the United States (Reichman,
Teitler, Garfinkel, & McLanahan, 2001). It includes a wide range of data on
household characteristics, physical and mental health, and parenting, first when
the children were born (Time 1), and later when the children were approximately
1, 3, 5, and 9 years old (Times 2 to 5). The current example investigated the ap-
parent effects of psychotherapy for maternal depression when their children were
five years old, using data on maternal depression symptoms when their children
were 5 and 9 years old (Time 4 and Time 5). At baseline (when the focal child
was born), the 4566 mothers were 25.2 years old and had some college on average,
and consisted of 21.0% White, 47.6% Black, 27.4% Hispanic, and 4.0% others.
The sample size for this study consisted of the 3285 mothers with complete data
on therapy for depression at Time 4 and on depression symptoms at Times 4
and 5. The data are available on the Open Science Framework Home website
(https://osf.io/532xt/?view only=5857097b48034e7786a8933b4af22e3a).

2.2 Measures

Depression treatment was based on maternal responses to questions about whether
they had received any counseling or therapy in the past twelve months. “Yes”
answers led to the question “Was this counseling or therapy for depression?”
Mothers who reported receiving therapy for depression were contrasted with
mothers who responded “No” to either of these questions.

Depression symptoms were assessed by maternal self-reports of relevant symp-
toms from the Composite International Diagnostic Interview--Short Form (CIDI-
SF), Section A (Kessler, Andrews, Mroczek, Ustun, & Wittchen, 1998), a stan-
dardized survey instrument for assessing mental disorders. It uses two stem ques-

https://osf.io/532xt/?view_only=5857097b48034e7786a8933b4af22e3a
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tions and four follow-up questions to identify possible eligibility for a Major De-
pressive Episode. Eligibility then led to eight symptom questions to determine
depression severity. Sub-eligibility symptoms resulted in possible scores from 1
to 4. Four points were added to the number of the eight symptoms associated
with a possible Major Depressive Episode. This produced a 13-point scale (0 to
12) for depression severity, with the majority of the scores being 0 (73.8% at
Time 4; 73.9% at Time 5).

3 Results

Table 1 provides the means, standard deviations, and other descriptive statistics
for therapy at Time 4 of the FFCW dataset and for depression symptoms at
Times 4 and 5.

Table 1: Descriptive Statistics
Treatment T4 N Mean SD Minimum Maximum

Depress T4 0 3078 1.54 3.36 0 12
1 207 7.33 4.48 0 12

Total 3285 1.9 3.72 0 12
Depress T5 0 3078 1.61 3.45 0 12

1 207 5.1 4.94 0 12
Total 3285 1.83 3.66 0 12

Note. T4 = Time 4 of the FFCW dataset. T5 = Time 5. Depress = Depression
symptoms.

Prior to adding an interaction term, standard ANCOVA and difference-in-
differences produced contradictory estimates of treatment effects, as is typical
of longitudinal analyses of corrective actions (Larzelere et al., 2018). According
to ANCOVA, therapy for depression led to more depression symptoms at Time
5 than predicted by initial symptoms at Time 4, b1= 1.74, t (3284) = 6.59, p <
.001. In contrast, difference-in-differences indicated that depression symptoms
decreased more following therapy than otherwise, γ1= -2.31, t (3284) = -7.70,
p < .001. Because psychotherapy for depression has been shown to be effective
in many randomized trials (Cuijpers et al., 2023), difference-in-differences may
be less biased against corrective actions than ANCOVA. Most researchers, how-
ever, would also want to know whether these treatment effects vary by the level
of presenting depression symptoms. We will illustrate the use of dual-centered
ANCOVA to test a Treatment X Pretest interaction in difference-in-differences
after summarizing a Treatment X Pretest interaction in standard ANCOVA for
comparative purposes.
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3.1 Standard ANCOVA

Analyzing the data with standard ANCOVA led to the following result from
Equation (5):

Yij1 = 1.13 + 2.54Xij + .314Yij0 − .119XijYij0 + eij . (17)

indicating that therapy predicted worsening depression symptoms than controls,
b1= 2.54, p < .001, a harmful-looking effect that was reduced for those with
worse initial symptoms, b3= -.119, p < .05. Plugging coefficients into Equation
(8) gives the magnitude of the estimated treatment effect for each pretest score:

b̂∗Tx = 2.54 + (−.119)Yij0. (18)

This signifies that the harmful-looking effect of therapy varied from 2.54 for
those with pretest depression scores of 0 to a reduced harmful-looking treatment
effect of only 1.11 for those with maximum pretest scores of 12. These effect
sizes varied around the average treatment effect of 1.74 from standard ANCOVA
before adding the interaction term.

Figure 1 uses picked-points analysis to show the conditional treatment effects
predicted at the mean pretest scores for the treatment and control groups and
at the maximum depression score (Lin, 2020). Figure 4 in Appendix A shows
the 95% confidence intervals of these coefficients and the significance of these
treatment effects at each pretest score. Next we illustrate similarities and differ-
ences in testing the same Treatment X Pretest interaction within difference-in-
differences.

3.2 Difference-in-Differences via Dual-Centered ANCOVA

Using Equation (12), the results from dual-centered ANCOVA from the same
data after centering all depression scores around their pretest group means,
Yijt − µ̂j0, are

Yij1−µ̂j0 = .10+(−2.30)Xij+.314(Yij0−µ̂j0)+(−.119)Xij(Yij0−µ̂j0)+νij , (19)

indicating that, for those with initial depression symptoms at their group mean
(Yij0 − µ̂j0 = 0), depression symptoms decreased more for women in therapy
than controls, ω1= -2.30, p < .001, a beneficial-looking effect that was enhanced
further for those with worse initial symptoms, ω3= -.119, p < .05.

Using Equation (15), the estimated effect of therapy on the pretest-group-
mean-centered posttest for any group-mean-centered pretest score was

ω̂∗
Tx = −2.30 + (−.119)(Yij0 − µ̂j0). (20)

This signifies that therapy led to steeper decreases in depression symptoms than
in controls, with that beneficial-looking effect varying from -2.12 for the mini-
mum possible centered pretest score for the comparison group (0 – 1.5 = -1.5,
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Figure 1: Predicted changes from Time 4 to Time 5 at different pretest scores
according to standard ANCOVA (Low = mean pretest for controls, High =
mean pretest for treatment, Max = maximum depression score) to illustrate the
Treatment X Pretest interaction.

subtracting their mean pretest score) to a stronger beneficial-looking treatment
effect of -2.86 for the maximum possible centered pretest score for the treatment
group (12 – 7.3 = 4.7, subtracting their mean pretest score). These effect sizes
varied around the average treatment effect of -2.31 from difference-in-differences
before adding the interaction term.

This result and its confidence intervals are displayed in Figure 5 of Appendix
A (Lin, 2020). Figure 2 uses picked-points analysis to illustrate how estimated
treatment effects varied across the range of centered pretest scores that are pos-
sible in both treatment and comparison groups. Figure 3 illustrates the same
treatment effects at the same picked pretest points after decentering all depres-
sion scores. This illustrates a potential problem with difference-in-differences
in that its parallel-slopes assumption is less tenable at minimum and maximum
scores. When centered pretest scores were at the minimum for the control group,
they could not decrease further for that group, but could decrease further in the
treatment group (a floor effect for the control group). In this case, however,
this floor-effect bias is in the opposite direction of the Treatment X Pretest in-
teraction and therefore does not invalidate it. (Therapy at a centered pretest
of -1.5 [originally 5.8] decreased to a posttest mean of -2.49 [4.81 on original
scale]. Controls at a centered pretest of -1.5 [originally 0.0] could not decrease,
artificially increasing the extent to which therapy looked relatively effective at
low depression levels. If controls could have decreased their centered depression
pretest scores, the differential effectiveness would have been even smaller at low
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depression levels, increasing the Treatment X Pretest interaction even more.)
The ceiling effect bias was in the same direction as the Treatment X Pretest
interaction, but was relatively minor as only 15 women in the therapy group
had maximum posttest depression scores of 12 (7.2% of the therapy group, vs.
76.2% of controls with minimum posttest scores of 0).
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Figure 2: Predicted simple change scores from Time 4 to Time 5 for treatment
vs. comparison groups at three levels of group-mean centered pretest scores,
based on dual-centered ANCOVA (Low = minimum possible centered score for
controls; High = one SD above the group mean pretest scores; Max = maximum
possible centered pretest score for treatment).
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Figure 3: Predicted simple change scores from Time 4 to Time 5 for treatment
vs. comparison groups at three levels of group-mean centered pretest scores ac-
cording to dual-centered ANCOVA after decentering all scores (Low, High, &
Max defined as in Figure 2).

4 Discussion

ANCOVA-type controls have been shown to be biased in longitudinal analyses
(Berry & Willoughby, 2016; Hamaker et al., 2015; Hoffman, 2015), usually bi-
ased against corrective actions such as medical treatments and psychotherapy
(Larzelere et al., 2018). This study demonstrates a novel way to overcome one
disadvantage of the main alternative, difference-in-differences, which otherwise
cannot test Treatment X Pretest interactions without changing the treatment
effect to the estimate from ANCOVA. This innovation takes advantage of the
fact that centering all longitudinal data around pretest group means makes the
treatment effects of ANCOVA equal to estimates from difference-in-differences
(Lin & Larzelere, 2020). This is called dual-centered ANCOVA in two-occasion
analyses, which is used herein to test a Treatment X Pretest interaction corre-
sponding to a difference-in-differences model.

We do not know of a better way to test Treatment X Pretest interactions in
difference-in-differences. Without Treatment X Pretest interactions, difference-
in-differences are limited to assuming that the estimated treatment effects are
identical at every pretest score, an untenable assumption without sufficient ev-
idence. When regression slopes are heterogeneous across treatment conditions,
the effect of treatment also varies with the pretest score. For this situation,
(Huitema, 2011, Chapter 11) showed how to calculate the conditional treatment
effect at each level of pretest scores in standard ANCOVA. The lack of a parallel
way to test Treatment X Pretest interactions in difference-in-differences appears
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to be a limitation in such analyses, one that can be overcome after centering all
data on the pretest group means.

Unless ANCOVA clearly produces a less-biased treatment estimate in longi-
tudinal analyses, difference-in-differences should be used to test the robustness
of the estimated treatment effect (Duncan et al., 2014), if not a less-biased esti-
mate. The least-biased estimate is generally the one whose assumptions are best
satisfied. From our experience, it is helpful to compare the plausibility of the
no-treatment effect implied by their respective null hypotheses. A no-treatment
effect in difference-in-differences assumes that the groups’ average trends from
pretest to posttest will be parallel to each other, with no shrinkage of the differ-
ence between group means. In contrast, the null hypothesis in ANCOVA assumes
that any group difference on the pretest will spontaneously shrink from pretest to
posttest according to regression toward the grand mean. This shrinkage is plau-
sible in randomized trials when initial differences on the pretest group means
are due only to random fluctuations (i.e., no true difference between the pretest
group means). ANCOVA is also unbiased if the covariates fully determine treat-
ment group assignment (van Breukelen, 2013). In many other applications, how-
ever, pretest group means reflect true differences as well as random fluctuations,
and the covariates do not fully explain treatment assignment. The remaining
bias is recognized as residual confounding by epidemiologists (Rothman, Green-
land, & Lash, 2008), which often makes corrective actions such as therapy for
depression look more harmful than they are (Larzelere et al., 2018). In contrast,
difference-in-differences’ treatment estimates are not biased by true differences
that do not change from pretest to posttest nor by measurement error in the
pretest, but it has its own biases in non-randomized studies (e.g., any variations
from the parallel-slopes assumption not due to the treatment effect). Unless the
original ANCOVA is less biased, difference-in-differences provides either a less
biased treatment estimate or a test of that estimate’s robustness (Duncan et al.,
2014). Dual-centered ANCOVA can then be used to test a Treatment X Pretest
interaction within difference-in-differences.
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later at Time 5, controlling for depression symptoms at Time 4 (Supporting Fig-
ure 4). In contrast, dual-centered ANCOVA duplicates difference-in-differences
by indicating that therapy for maternal depression reduces depression scores
more than for the comparison group (Supporting Figure 5). In both cases, ther-
apy appears to be significantly more effective at high levels of initial depression
than at low levels of initial depression (reducing the harmful-looking effect in
standard ANCOVA, but increasing the beneficial-looking effect in dual-centered
ANCOVA).

 

 
 
 
Figure S-1. Predicted posttest depression scores for each pretest depression score for 

Treatment (dash, upper line) or Control (solid, lower line) according to standard ANCOVA 
 

  

 

Time-4 Depression  

Control 
Therapy 

Figure 4: Predicted posttest depression scores for each pretest depression score
for Therapy (dashed upper line) or Control (solid lower line) according to stan-
dard ANCOVA.
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2 

 
 
Figure S-2. Predicted posttest depression score (centered on pretest group means) for 

each pretest depression score (centered on pretest group means) according to dual-centered 
ANCOVA Treatment (dash, lower line) and Control (solid, upper line) 
 

 

Time-4 Depression (centered on pretest group means) 

Control 
Therapy 

Figure 5: Predicted posttest depression score at Time-5 (centered on pretest
group means at Time-4) for each pretest depression score (centered on pretest
group means) according to dual-centered ANCOVA for Therapy (dashed lower
line) and Control (solid upper line).
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Abstract. The global increase in mental illness requires innovative de-
tection methods for early intervention. Social media provides a valuable
platform to identify mental illness through user-generated content. This
systematic review examines machine learning (ML) models for detect-
ing mental illness, with a particular focus on depression, using social
media data. It highlights biases and methodological challenges encoun-
tered throughout the ML lifecycle. A search of PubMed, IEEE Xplore,
and Google Scholar identified 47 relevant studies published after 2010.
The Prediction model Risk Of Bias ASsessment Tool (PROBAST) was
utilized to assess methodological quality and risk of bias. The review
reveals significant biases affecting model reliability and generalizabil-
ity. A predominant reliance on Twitter (63.8%) and English-language
content (over 90%) limits diversity, with most studies focused on users
from the United States and Europe. Non-probability sampling methods
(approximately 80%) limit representativeness. Only 23% of studies ex-
plicitly addressed linguistic nuances like negations, crucial for accurate
sentiment analysis. Inconsistent hyperparameter tuning was observed,
with only 27.7% properly tuning models. About 17% did not adequately
partition data into training, validation, and test sets, risking overfit-
ting. While 74.5% used appropriate evaluation metrics for imbalanced
data, others relied on accuracy without addressing class imbalance, po-
tentially skewing results. Reporting transparency varied, often lacking
critical methodological details. These findings highlight the need to di-
versify data sources, standardize preprocessing protocols, ensure consis-
tent model development practices, address class imbalance, and enhance
reporting transparency. By overcoming these challenges, future research
can develop more robust and generalizable ML models for depression
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detection on social media, contributing to improved mental health out-
comes globally.

Keywords: Mental illness · Social media · Bias evaluation with PROBAST
· Systematic review · Machine learning and deep learning

1 Introduction

Mental health disorders, including depression, represent a critical global health
challenge, impacting approximately 1 in 8 people worldwide—approximately 970
million individuals in 2019 (WHO, 2023). Depression, one of the most prevalent
mental health conditions, affects over 280 million individuals globally, includ-
ing around 23 million children and adolescents. The COVID-19 pandemic has
further exacerbated mental health issues, with notable increases in depression
and anxiety observed during this period (WHO, 2023). The prevalence of mental
health conditions, especially depression, highlights an urgent need for innovative
detection methods and interventions. Early identification can lead to more ef-
fective treatment outcomes, alleviating the burdens placed on individuals, their
families, and healthcare systems (Kessler et al., 2017).

In today’s digital age, social media platforms such as Twitter, Facebook, and
Reddit play a central role in daily life for millions of people. Studies have shown
that individuals often openly express their thoughts, emotions, and mental states
on Twitter, making it a valuable platform for examining mental health trends
and developing tools for detection and intervention (De Choudhury, Counts, &
Horvitz, 2013). The extensive user-generated content on these platforms provides
a unique opportunity for mental health research, enabling the real-time analysis
of linguistic patterns and behavioral trends, and providing insights that may
otherwise be inaccessible (Guntuku, Yaden, Kern, Ungar, & Eichstaedt, 2017).

Advancements in machine learning and deep learning have significantly en-
hanced the ability to process and analyze large-scale datasets. These technolo-
gies are particularly suited for handling the complex and nuanced data found
on social media, as they identify patterns and make predictions based on tex-
tual and behavioral cues. This capability offers practical tools for mental health
detection, allowing researchers to develop models that can potentially identify
at-risk individuals based on their social media activity (Shatte, Hutchinson, &
Teague, 2019). By leveraging algorithms capable of learning from such diverse
and rich datasets, researchers are able to develop models that contribute to early
intervention efforts in mental health care.

1.1 Overview of Historical Studies on Machine Learning
Approaches for Mental Health Detection in Social Media

A growing body of research has explored the application of machine learning
techniques to detect depression through social media platforms. Approaches
range from traditional machine learning techniques such as logistic regression
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and support vector machines to advanced deep learning models and ensemble
methods—have been employed to classify user posts and predict mental health
conditions based on linguistic features, patterns, and metadata (Calvo, Milne,
Hussain, & Christensen, 2017; De Choudhury et al., 2013; Yazdavar et al., 2020).
Platforms like Twitter, Facebook, and Reddit are frequently utilized due to their
large user bases and the accessibility of publicly available text-based data. In
contrast, TikTok, with its short-video format, provides a distinct medium that
captures audiovisual cues such as tone, facial expressions, and gestures, pro-
viding researchers with additional dimensions for understanding mental health
dynamics.

One of the most common approaches within this research involves sentiment
analysis, which aims to determine the emotional tone of user-generated con-
tent. By assessing positive, negative, or neutral sentiment (Kumar, Khan, &
Kalra, 2020), researchers attempt to correlate language patterns with indicators
of depression. For instance, several studies have examined the use of first-person
singular pronouns and negative emotion words as potential depression signals
(Rude, Gortner, & Pennebaker, 2004).

Despite promising results, multiple challenges remain. First, many studies
suffer from limited generalizability due to small or homogeneous samples that
may not represent the broader population. Data bias is a significant concern,
stemming from the overrepresentation of certain demographic groups or linguis-
tic communities while underrepresenting others (Olteanu, Castillo, Diaz, & Kici-
man, 2019). Moreover, the dispersion of research in advanced machine learning
methods for mental health detection across the literature, combined with a lack
of robust sampling methods and standardized protocols, impedes the reliabil-
ity of findings. Additionally, insufficient handling of complex linguistic nuances,
such as context-dependent meanings, further limits the effectiveness of these
detection efforts (Calvo et al., 2017).

1.2 Research Gaps and Objectives of the Current Study

While individual studies have provided valuable insights into the application of
machine learning for mental health detection, significant gaps persist in the lit-
erature. These include the broader implications of biases and limitations across
studies and the lack of comprehensive reviews consolidating the effectiveness
of machine learning models (Calvo et al., 2017). Additionally, existing research
does not consistently address methodological challenges across different stages
of machine learning applications, such as sampling, preprocessing, model de-
velopment, and evaluation (Thieme, Belgrave, & Doherty, 2020). Therefore, a
systematic review is essential to unify findings and evaluate the pervasiveness
and impact of biases across studies.

To address these gaps, this study aims to conduct a systematic review that
synthesizes and evaluates existing machine-learning models for detecting depres-
sion on social media. The specific objectives are:

1. Examine the effectiveness of machine learning and deep learning models by
focusing on bias present in sampling, data preprocessing, model construction,
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fine-tuning, evaluation, and comparison, as well as the challenges associated
with model generalizability across different social media platforms.

2. Explore methodological challenges, including those unique to mental health
detection—such as handling class imbalance where depressive posts are the
minority and preprocessing for sentiment analysis involving negations. Ad-
ditionally, more general machine learning challenges, like improving model
evaluation techniques and addressing data biases related to language and
platform-specific factors, also persist. It is important to recognize that most
of these biases are unintentional, either from practical challenges or from
a lack of standardized guidelines for applying machine learning to mental
health detection. By addressing these biases, the review aims to provide
insights and strategies to mitigate these unintended biases, advancing the
development of more reliable and generalizable models.

3. Provide recommendations for future research to enhance the reliability and
applicability of machine learning models in mental health detection. These
insights aim to inform strategies that improve early intervention efforts and
contribute to the development of more robust, generalizable, and ethically
sound machine learning applications. In doing so, the review seeks to provide
guidance that fills the gap left by current practice, where a lack of formal
guidelines has sometimes led to the persistence of unintended biases.

By addressing these objectives, this review seeks to provide a comprehen-
sive understanding of the current practices and limitations within the field. The
findings aim to guide future research and development into more robust, gener-
alizable, and ethical applications of machine-learning models for mental health
detection using social media data. In the following sections, we will first exam-
ine the methodologies and models used across studies, followed by an analysis
of common biases and limitations. We will conclude with a discussion on best
practices and recommendations for advancing the field.

2 Methodology

2.1 Search Strategy

The search focused on publications on machine learning and deep learning mod-
els for detecting depression and other mental health conditions using social media
data, primarily from platforms like Twitter, Facebook, and Reddit. To identify
relevant studies, a systematic search was conducted across multiple academic
databases including PubMed, ACM, and IEEE Xplore, with Google Scholar
used for additional sources. The search included combinations of ‘machine learn-
ing,’ ‘deep learning,’ ‘artificial intelligence,’ ‘social media,’ ‘Twitter,’ ‘Facebook,’
‘Reddit,’ ‘depression,’ ‘sentiment analysis,’ and ‘mental health.’ To broaden the
scope of the search, additional terms such as ‘anxiety,’ ‘mental disorders,’ ‘neu-
ral networks,’ and ‘supervised learning’ were included. The search process was
carried out from June to July 2024.
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The search strategy was structured around three main categories: social me-
dia platforms (e.g., ‘social media,’ ‘Twitter,’ ‘Facebook,’ ‘Reddit’), mental health
topics (e.g., ‘depression,’ ‘sentiment analysis’), and machine learning and data
analysis techniques (e.g., ‘machine learning,’ ‘deep learning,’ ‘artificial intelli-
gence’). The comprehensive search query1 formulated for this review is:

(( social media OR 'Twitter ' OR 'Facebook ' OR 'Reddit ')
AND ('depression ' OR 'sentiment analysis ' OR '
mental health ' OR 'anxiety ' OR 'mental disorders ')
AND ('machine learning ' OR 'deep learning ' OR '
artificial intelligence ' OR 'neural networks ' OR '
supervised learning '))

2.2 Inclusion and Exclusion Criteria

To be included in this review, studies needed to meet the following criteria:

– Publication Date: Studies published after 2010 were included to ensure
contemporary research and methods were considered.

– Language: Only studies published in English were included.

– Research Focus: The study must use machine learning or deep learning
models for detecting depression or other mental health conditions, with a
particular focus on analyzing data from social media platforms like Twitter,
Facebook, or Reddit.

– Study Type: The review included primary research articles, specifically
those that involved data-driven analyses.

Studies were excluded based on the following criteria:

– Publication Type: Review articles, systematic reviews, conference ab-
stracts, editorials, opinion pieces, and non-peer-reviewed literature were ex-
cluded.

– Scope: Studies not directly focused on mental health detection through
social media or not employing machine learning models were excluded.

– Methodology: Studies that did not directly employ machine learning or
deep learning and applied solely on quantitative analysis were excluded.

1 The search query used the term ‘Twitter’ to align with the naming convention at
the time of the review, which covered literature up to June/July 2024. Twitter was
rebranded as ‘X’ after this period. The search algorithm was adjusted to include
both ‘Twitter’ and ‘X’ where applicable to ensure coverage of relevant results under
the new name. However, no additional papers published up to June/July 2024 were
identified using the term ‘X.’ Notably, one manuscript, Jamali, Berger, and Spiteri
(2023), included both terms.
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2.3 Study Selection Process

The selection process was conducted in three stages to ensure a rigorous and un-
biased review of relevant studies. The process, which followed the search process
that concluded in July 2024, lasted until August 2024.

1. Initial Identification: Duplicates were removed, and an initial screening
was conducted based on titles and abstracts to filter out irrelevant studies.
All authors contributed to this step.

2. Title and Abstract Screening: An independent review was conducted by
two authors, Y.T. and J.D., to assess the relevance of studies based on their
titles and abstracts. Both authors have expertise in machine learning and
mental health research, ensuring a thorough evaluation. Any discrepancies in
their assessments were discussed and resolved to ensure a consistent screening
process.

3. Full-Text Screening: A comprehensive review of the full texts of selected
studies was conducted. Any disagreements were resolved through discus-
sion to maintain an unbiased selection process. Additionally, relevant studies
identified through references in full-text articles were included for consider-
ation. All authors contributed to this step.

2.4 Data Extraction and Analysis

The data extraction process involved using a standardized form to systematically
capture detailed information from each selected study. The form included fields
to record author names, study titles, publication journals, and publication years.
It also documented the study designs, settings, and sample sizes, alongside spe-
cific inclusion and exclusion criteria. In addition, the form provided details on the
machine learning models employed, the social media platforms analyzed (such as
Twitter, Facebook, and Weibo), and the primary and secondary outcomes mea-
sured. Additionally, performance metrics, including accuracy, precision, recall,
F1 score, and Area Under the Receiver Operating Characteristic (AUROC)2,
which were collected when applicable.

Special attention was given to identifying potential sources of bias, study
limitations, and funding sources, ensuring a comprehensive overview of each
study’s context and reliability. Table 1 below outlines the key categories and
details included in the data extraction form.

2 Accuracy measures the proportion of correctly classified instances among all in-
stances. Precision focuses on the correctness of positive predictions, while recall
measures the ability to identify actual positive cases. Both F1-score and Area Under
the Receiver Operating Characteristic Curve (AUROC) are composite metrics that
combine aspects of precision and recall to evaluate the performance of models. A
detailed explanation of these metrics is provided in Section 3.7
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Table 1: Key Data Extraction Categories for Systematic Review.
Category Details
Study Details Title, Authors, Year of Publication, Journal or

Source, DOI or URL
Research Objectives Purpose of the Study, Research Questions or Hy-

potheses
Methodological Aspects Study Design, Settings, Sample Sizes, Inclusion

and Exclusion Criteria, Data Collection Methods,
ML/DL Models Employed

Criteria Applied Data included, e.g., publicly available tweets, specific
language posts. Data excluded, e.g., private or insuf-
ficiently detailed posts

Performance Metrics Metrics Used (e.g., Accuracy, Precision, Recall, F1-
score, AUROC, etc.)

Bias Evaluation Data Collection and Preprocessing, Model Develop-
ment and Tuning, Model Evaluation and Reporting

Additional Information Confounding Factors, Study Limitations, Ethical
Considerations, Funding Sources

2.5 Analytical Methods Used to Synthesize Findings

The extracted data were synthesized using a narrative approach, systemati-
cally examining each aspect of the machine learning lifecycle—sampling, data
preprocessing, model construction, tuning, evaluation, comparison, and report-
ing—across the selected studies. This synthesis involved reviewing how studies
approached sampling and data preprocessing, examining their approaches to
model construction and tuning, and assessing model evaluation and comparison
based on quantitative metrics such as accuracy, precision, recall, F1 scores, and
AUROCs. For each stage, we summarized the methodologies employed by the
studies and identified potential biases with established tools. This comprehen-
sive approach provided insights into the current state of research, highlighting
areas for future investigation to enhance the accuracy, generalizability, and ap-
plicability of machine learning models in this field.

2.6 Systematic Review Registration

This systematic review has been registered in the International Prospective Reg-
ister of Systematic Reviews (PROSPERO) database under the title Systematic
Review of Machine Learning and Deep Learning Algorithms for Detecting De-
pression and Mental Health Conditions on Social Media (ID: 617763). The reg-
istration has been approved.
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3 Results

3.1 Study Selection

The search process began by identifying a total of 328 studies from three databases:
192 from Google Scholar, 101 from PubMed, and 35 from IEEE Xplore. After
removing 57 duplicate studies, 271 unique titles and abstracts were retained
for screening. During the title and abstract review, 174 studies were excluded.
These exclusions were due to issues related to methodology (53 studies), scope
(77 studies), and publication type (44 studies). This left 97 full-text studies to
be reviewed in detail.

Upon reviewing the full texts, another 50 publications were excluded. The
reasons for exclusion included being outside the scope or irrelevant (32 studies),
methodological concerns (6 studies), publication type (9 studies), and unavail-
ability (3 studies). Ultimately, 47 studies were included in the final narrative
synthesis.

Figure 1 outlines how the initial pool of studies was refined down to the most
relevant research for inclusion.

3.2 Characteristics of Included Studies

In this systematic review, key details of all 47 included studies, as summarized
in Table 1, are provided in an online supplementary document. The majority
of studies focused on Twitter (32 studies), Reddit (8 studies), and Facebook (7
studies). Additionally, one study examined Blued, a platform for MSM commu-
nities, and another focused on Indian social networking sites (SNS). Notably, 8
studies (17.02%) analyzed data from multiple platforms. Upon further examina-
tion, the datasets used in these 47 studies were found to be independent. The
most commonly used models included traditional machine learning approaches
such as Support Vector Machines (SVM) (19 studies), tree-based models (e.g.,
Decision Trees in 6 studies, Random Forests in 13 studies, and eXtreme Gra-
dient Boosting (XGBoost) in 3 studies), and Logistic Regression (6 studies).
Some studies also utilized deep learning models, including Convolutional Neural
Networks (CNNs) (9 studies), Long Short-Term Memory (LSTM) networks (5
studies), and Bidirectional Encoder Representations from Transformers (BERT)
(9 studies) for depression detection.

3.3 Methodological Quality and Risk of Bias

The risk of bias in the studies included in this systematic review was assessed
using the Prediction model Risk Of Bias Assessment Tool (PROBAST, Wolff et
al., 2019). PROBAST is a structured tool designed to assess the risk of bias and
applicability of prediction models. It evaluates four key domains: participants,
predictors, outcomes, and analysis, ensuring methodological rigor in studies.
This tool provides a systematic framework for identifying biases and limitations
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47 studies included in the narrative synthesis

97 unique full-test studies

50 publications excluded
After scanning full texts:
- Scope/Irrelevant: n = 32
- Methodology: n = 6
- Type of publication: n = 9
- Unavailable n =  3

271 unique titles and abstracts

174 excluded after
scanning tiles and abstracts:
- Methodology: n = 53 
- Scope: n = 77
- Type of publication: n = 44

Google Scholar = 192 PubMed = 101 
IEEE = 35 Total = 328

57 duplicates removed

Figure 1: PRISMA Flow Diagram of Study Selection Process for Systematic Re-
view on Machine Learning Models for Depression Detection Using Social Media
Data

in prediction models, offering critical insights into their validity and applicabil-
ity. PROBAST is particularly relevant in this systematic review as it allows for
a comprehensive assessment of potential methodological biases throughout the
machine learning lifecycle, including data collection, preprocessing, model devel-
opment, and evaluation. By identifying biases in these areas, the tool supports
a rigorous evaluation of the reliability and generalizability of machine learning
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models used for mental health detection on social media. In addition to its role in
assessing the risk of bias, PROBAST was used to evaluate transparency and com-
pleteness in the reporting of study methodologies and findings. The assessment
covered 20 structured questions across the four domains, as detailed in Table 2.
By incorporating PROBAST, this review identifies methodological weaknesses
in the included studies, assesses their implications for the validity of findings,
and evaluates the overall applicability of machine learning models used for men-
tal health detection on social media. This ensures a thorough understanding of
bias and enhances the reliability of the review’s conclusions.

Table 2: Bias Evaluation Questions for Each Domain.
Domain Evaluation Questions
Sample Selection and
Representativeness

Q1. What is the sample used in this study, including the
platform, sampling criteria, and sampling method?
Q2. Does the sample represent the target population of
social media users or posts?

Data Preprocessing Q3. Did the study specify its approach to handling neg-
ative words when using traditional or machine learning
methods for sentiment analysis?

Model Development Q4. Did this study report hyperparameters?
Q5. If reported, did this study tune (optimize) hyperpa-
rameters or use default settings?
Q6. If tuned hyperparameters in this study, was this done
on all models mentioned in the study?

Model Evaluation Q7. Did the study divide the dataset into training, val-
idation, and test sets, and were the reported metrics
based only on training data?
Q8. What evaluation metric was used in this study?
Q9. Is the evaluation metric appropriate for this context
(i.e., class-imbalanced settings)?
Q10. If the study used accuracy as an evaluation metric,
did it mention preprocessing steps to address class im-
balance?

3.4 Sample Selection and Representativeness (Q1 & Q2)

The reviewed studies employed diverse sampling methods across various social
media platforms, primarily focusing on Twitter (63.8%) with additional data
from Reddit (23.5%), Facebook (8.5%), and other social media (2.1%). Most
studies (around 80%) used non-probability sampling techniques, such as con-
venience sampling or keyword filtering, often utilizing APIs (e.g., Twitter API,
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Reddit API) to filter posts by specific mental health-related keywords like ‘de-
pression’ or ‘#MentalHealth,’ or leveraging pre-existing datasets from reposito-
ries like Kaggle.

The diversity in sampling criteria, sample sizes, demographic details, lan-
guage focus, and geographic regions across the studies introduces potential bi-
ases. Sample sizes and levels of representation varied significantly among the
studies, from small-scale studies (e.g., Study #46, which analyzed 4,124 Face-
book posts from 43 undergraduate students with pre-specified criteria from the
U.S.) to large-scale analyses (e.g., Study #5, which analyzed 56,411,200 tweets
from 70,000 users across seven major U.S. cities). Many studies lacked detailed
demographic information. The majority of studies focused predominantly on
English-language posts, which are commonly associated with specific regions
such as the U.S., U.K., Japan, Spain, and Portugal (although geographic infor-
mation was explicitly reported in only about one-third of the studies) limiting
the generalizability of the findings. Only a few studies examined posts in other
languages, like Study #15, which analyzed Arabic tweets. Even within these
regions and language-specific studies, demographic distribution was not always
fully balanced. For example, Study #1 reported a mean participant age of 30.5
years (ranging from 18 to 68) and had a slight overrepresentation of female
participants at 66.4%.

The non-representative sampling approaches observed across studies suggest
limited generalizability to broader social media user populations. The primary
biases identified include:

– Platform Bias: The predominance of Twitter (63.8%) over other platforms
means that findings may not represent behaviors on platforms like Face-
book, Instagram, or Reddit. As suggested by Olteanu et al. (2019), utilizing
multi-platform data can reduce platform-specific biases and provide a more
comprehensive view of user behaviors. However, while multi-platform data
broaden the scope and reduce single-platform bias, platform-specific user de-
mographics and engagement patterns may affect generalizability, with some
platforms carrying more weight due to larger user bases or data volume.

– Selection Bias: Some studies relied on keyword-based sampling, which may
overlook users not explicitly mentioning mental health. Study #7, for in-
stance, searched for tweets containing ‘I was diagnosed with depression.’
As suggested by Morstatter, Pfeffer, Liu, and Carley (2013), combining
keyword-based and random sampling can capture a broader range of user
behaviors and discussions. Additionally, the limitations of Twitter’s API ex-
acerbate platform-specific challenges. As highlighted by Morstatter et al.
(2013), Twitter’s API does not provide access to all user-generated content,
raising concerns about whether sampled data is representative of the plat-
form’s overall activity. This issue may lead to incomplete or skewed represen-
tations of user behavior, particularly in studies relying solely on API data.
Researchers must critically evaluate the validity of conclusions drawn from
API-retrieved data and consider combining multiple sampling strategies to
mitigate such biases.
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– Language Bias: The overwhelming focus on English-language content (over
90%) excludes insights from non-English-speaking communities, limiting the
generalizability of findings across diverse linguistic groups. For instance,
Study #15 was one of the few that analyzed non-English tweets, indicat-
ing the rarity of multilingual studies in this field. To address this, Danet and
Herring (2007) recommended leveraging multilingual analysis methods, such
as machine translation, or employing multilingual research teams to capture
a more diverse linguistic landscape.

– Geographic Bias: While explicit geographic information was reported in
only about one-third of the studies, the predominance of English-language
posts suggests an implicit bias toward regions where English is the pri-
mary language, such as the U.S., U.K., and other English-speaking countries.
Among the studies that reported geographic information, this predominance
was evident. For example, Study #5 analyzed tweets from seven major U.S.
cities, and Study #19 focused on Twitter users in Spain and Portugal. Har-
gittai (2015) suggested broadening the geographic scope to better represent
global populations and avoid region-specific findings.

– Self-selection Bias: Platforms like Mechanical Turk (MTurk) or Click-
worker, used in some studies (e.g., Studies #45 and #1, respectively), may
attract specific demographic or employment profiles (e.g., higher digital liter-
acy, particular age ranges, or specific socioeconomic statuses), affecting gen-
eralizability. While Chandler and Shapiro (2016) assessed the use of MTurk
as a crowdsourcing tool, highlighting limitations in participant diversity and
representativeness, which may skew results and underscore the need for mul-
tiple recruitment sources and stratified sampling for better generalizability.

In summary, no study in the review provided a fully representative sam-
ple of all social media users or posts. Key limitations include platform-specific
focus (mostly Twitter), heavy reliance on non-probability sampling techniques
(e.g., approximately 80% of the studies utilized convenience sampling or key-
word filtering), and geographic and linguistic constraints. Notably, over 90% of
the studies themselves acknowledged these limitations, recognizing the challenges
of achieving representativeness in social media research. These limitations are,
to a large extent, unavoidable due to the nature of social media platforms and
the constraints of current data collection methodologies. This underscores the
need for ongoing efforts to develop more sophisticated sampling techniques and
analytical methods to mitigate these biases.

Similarly, some studies explicitly stated that their findings were intended
to represent only specific populations. For instance, Study #8 and Study #21
focused on users discussing mental health or particular demographic groups on
specific platforms. These limitations significantly impact the generalizability of
findings to the broader population of social media users. Future research should
strive for more diverse and representative sampling across platforms, languages,
and geographic regions to enhance the applicability of results in the field of
mental health and social media research.
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3.5 Data Preprocessing with Focus on Negative Words Handling
(Q3)

Across all studies, several common preprocessing tasks were consistently per-
formed. Tokenization was conducted in all studies to break text into individual
words or tokens, and text normalization steps included converting text to low-
ercase, as well as removing punctuation, URLs, and special characters. Many
studies also performed stop-word removal to eliminate common words that are
generally not informative for modeling. Additionally, some studies applied stem-
ming and lemmatization to reduce words to their base or root forms, thereby uni-
fying different morphological variants. Feature extraction techniques such as Bag
of Words (BoW, Harris, 1954)3, Term Frequency-Inverse Document Frequency
(TF-IDF, Salton & Buckley, 1988)4, and various word embedding methods were
widely used to represent textual data numerically for modeling purposes.

While these standard preprocessing steps were broadly applied, certain as-
pects of sentiment analysis in mental health detection require additional atten-
tion. One such aspect is the effective handling of negative words, which is crucial
for accurately interpreting sentiment and emotional tone, especially within this
context. Among the 47 reviewed studies, approaches to negative words varied
significantly:

First, only a minority of studies (11 out of 47 studies, approximately 23%)
explicitly addressed negative words or negations in their preprocessing steps.
Methods included standardizing all negative words to a basic form, like ‘not,”
during preprocessing, which simplifies the representation of negations and im-
proves sentiment recognition (e.g., Studies #3 and #34). Some studies quantified
negative words as features by calculating metrics such as the user-specific average
number of negative words per post. This metric captures the frequency of nega-
tive expressions per user and is then used as input for machine learning models
to identify depressive emotions (e.g., Study #21). Others (e.g., Study #25) as-
signed a weight of −1 to negative adverbs to account for their inversion effect on
sentence sentiment, ensuring more accurate sentiment quantification. Moreover,
several studies employed specific methods for managing negations within their
sentiment analysis frameworks. For example, some studies used sentiment analy-
sis tools like TextBlob to determine the polarity of words in context, identifying
negative words as indicators of depressive symptoms (e.g., Study #31). Oth-
ers incorporated linguistic inquiry and word count (LIWC) categories related to

3 BoW represents text as a vector by creating a vocabulary of all unique words in a
corpus and counting the frequency of each word in a document. While simple and
effective, BoW disregards word order and context, treating documents as collections
of independent words.

4 TF-IDF evaluates the importance of a word in a document relative to a collection of
documents. It combines term frequency (how often a word appears in a document)
with inverse document frequency (reducing the weight of common words that appear
across many documents). This technique highlights terms that are more informative
for classification or clustering tasks.
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negations and negative emotions, indirectly addressing negations through pre-
defined lexicon categories (Studies #1, #40, #42, #46, and #47).

The importance of negation handling has also been recognized in studies
currently under review. For instance, Study #6 specifically explored the role of
negation preprocessing in sentiment analysis for depression detection. By com-
paring datasets with and without negation handling, the authors demonstrated
that addressing negations can significantly improve the accuracy of both senti-
ment analysis and depression detection, underscoring the need to address them
in preprocessing. This study highlights the critical need for comprehensive nega-
tion handling in preprocessing to enhance the reliability of machine learning
models in mental health contexts.

Second, a subset of studies (9 out of 47 studies, approximately 19%) did not
explicitly handle negative words but employed advanced language models ca-
pable of inherently managing negations due to their contextual understanding,
such as transformer-based models like Bidirectional Encoder Representations
from Transformers (BERT, Devlin, Chang, Lee, & Toutanova, 2018) and Mental
Health BERT (MentalBERT, Ji et al., 2022) (e.g., Studies #8, #9, #15, #16,
and #39). These transformer-based models can capture the context of negations
by processing text bi-directionally without explicit preprocessing steps. Other
studies used attention mechanisms5 (Vaswani et al., 2017) with word embed-
dings, such as attention layers combined with Global Vectors for Word Repre-
sentation (GloVe) embeddings (Pennington, Socher, & Manning, 2014), allowing
models to inherently understand and assign appropriate weights to negations
through contextual embeddings (e.g., Studies #7, #10, and #13). Additionally,
Embeddings from Language Models (ELMo, Peters et al., 2018), which capture
the entire context of a word within a sentence, was also noted as a method
that could capture the effect of negative words without explicit handling (Study
#45).

However, the majority (27 out of 47 studies, approximately 57%) neither
explicitly addressed negative words in their preprocessing nor used models in-
herently capable of handling negations (i.e., Studies #2, #4, #5, #11, #12,
#14, #17, #18, #19, #20, #22, #23, #24, #26, #27, #28, #29, #30, #32,
#33, #35, #36, #37, #38, #41, #43, and #44). These studies primarily focused
on standard preprocessing tasks (e.g., tokenization, lowercasing, stop-word re-
moval, stemming, and lemmatization), feature extraction methods (e.g., TF-IDF,
BoW), and basic word embeddings (e.g., Word to Vector [Word2Vec]), without
any special consideration for negations.

The impact on model performance and potential bias varied depending on
how negative words were handled. Studies that explicitly addressed negative
word handling reported improvements in model accuracy and a more nuanced
understanding of sentiment (Helmy, Nassar, & Ramadan, 2024). Proper han-
dling of negations allowed these models to correctly interpret phrases where

5 Attention mechanisms allow models to focus on specific parts of the input data by
assigning different weights to different elements. This enables the model to capture
and utilize relevant contextual information more effectively during processing.



Systematic Review on Mental Illness Detection 81

negations invert the sentiment (e.g., ‘not happy” versus ‘happy”), leading to
more reliable results. In contrast, studies that did not explicitly account for
negative words risked misinterpreting negated expressions, introducing bias into
their findings. This oversight can cause models to incorrectly assign positive sen-
timent to negated negative expressions or vice versa, thus skewing the analysis.
Such biases can significantly affect the overall performance and generalizability
of the models, particularly in sensitive applications like depression detection.
While some studies used advanced models capable of inherently handling nega-
tions (e.g., Studies #7, #8, #9, #10, #13, #15, #16, #39, and #45), reliance
solely on the model’s ability without explicit preprocessing might not capture
all nuances of negations. Explicitly addressing negations can further enhance
model performance, even when using sophisticated language models (Khandel-
wal & Sawant, 2020). Therefore, integrating both advanced modeling techniques
and careful preprocessing of negative words may provide the most effective ap-
proach.

In summary, the review highlights a significant gap in the explicit handling
of negative words in data preprocessing among studies focused on sentiment
analysis and related fields. Proper management of negations is crucial, as it can
substantially impact both model accuracy and reliability. Without adequately
handling negative words, models may introduce bias and reduce their effective-
ness, particularly in applications such as mental analysis and depression detec-
tion, where understanding sentiment nuances is critical. Future studies should
prioritize the inclusion of explicit negation handling techniques within their pre-
processing pipelines to enhance model performance and ensure more accurate
interpretations of textual data.

3.6 Model Development

Hyperparameter Tuning (Q3, Q4 & Q5) Hyperparameters are external
configurations set before the training process of machine learning models. Unlike
model parameters, which are learned from the data during training, hyperpa-
rameters govern the learning process itself, such as the learning rate, regulariza-
tion strength, and the number of hidden layers. Proper hyperparameter tuning
ensures optimal model performance by balancing underfitting and overfitting,
thus improving the model’s ability to generalize to unseen data. Hyperparam-
eter tuning is a critical aspect of optimizing machine learning models, directly
impacting their performance and reliability. Our evaluation of the 47 reviewed
studies focused on whether the studies reported their hyperparameters, the ex-
tent to which these hyperparameters were optimized, and whether tuning was
applied consistently across all models within each study.

In particular, 27 studies (approximately 60%) reported using hyperparam-
eters, but not all of them performed proper tuning. Only a limited number of
studies ensured consistent tuning across all models, with many opting for default
settings or tuning only specific models, leaving significant performance potential
unexplored (Yang & Shami, 2020). This practice suggests that while hyperpa-
rameters are acknowledged by researchers, there is still a notable gap in their
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comprehensive and consistent optimization across studies. The breakdown of
hyperparameter reporting and tuning practices is presented in Table 3.

Table 3: Hyperparameter Reporting and Tuning Practices in Reviewed Studies.
Hyperparameter
Reporting

Number (%) of Studies Studies #

Reported & Tuned
for All Models

13 (27.7%) #11, #12, #13, #16, #18, #21,
#22, #25, #26, #28, #33, #45,
#47

Reported but Par-
tially Tuned

4 (8.5%) #1, #8, #15, #23

Reported but Not
Tuned

11 (23.4%) #3, #4, #7, #9, #10, #31, #36,
#39, #40, #41, #43

Not Reported or
Tuned

19 (40.4%) #2, #5, #6, #14, #17, #19,
#20, #24, #27, #29, #30, #32,
#34, #35, #37, #38, #42, #44,
#46

The absence of consistent hyperparameter tuning can result in suboptimal
model performance, reduced generalizability, or biased model comparisons. Key
hyperparameters such as learning rate, regularization terms, or the number of
hidden layers directly impact a model’s training process and final accuracy (Man-
tovani, Rossi, Vanschoren, Bischl, & de Carvalho, 2015; Probst, Boulesteix, &
Bischl, 2019). Without proper tuning, models may overfit, meaning they perform
well on training data but poorly on unseen data, or underfit, failing to capture
the complexity of the data altogether. For example, Study #2 did not report
any tuning, which likely affected its model’s ability to generalize to unseen data,
leading to reduced model performance.

When only some models are tuned, comparisons across models become bi-
ased, as those with optimized hyperparameters gain an undue advantage. In
Study #1, for instance, the Elastic Net model had its hyperparameters tuned,
while other models, such as random forest, were left with default settings. This
discrepancy can misleadingly suggest the superiority of the Elastic Net model
due to tuning alone, rather than any inherent advantage in its architecture,
leading to biased model comparisons.

A significant proportion of studies did not report hyperparameter tuning
(approximately 40%) or failed to consistently tune them across all models (ap-
proximately 32%), which compromises the validity of their findings. For example,
Studies #2 and #4 used default settings and missed opportunities to enhance
performance, while Study #1 tuned hyperparameters for only one model, result-
ing in biased comparisons. Proper hyperparameter tuning is essential to avoid
issues like overfitting or underfitting. Consistent tuning across all models ensures
fair comparisons and enhances result validity.
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Providing detailed descriptions of hyperparameter settings and optimization
processes enhances transparency and reproducibility. Standardized tuning pro-
tocols, such as grid search, random search, or Bayesian optimization, should be
employed to explore optimal configurations. Clearly documenting tuning strate-
gies and any challenges encountered will provide valuable context for interpret-
ing model performance results and strengthen the credibility of future machine
learning studies. Future research should prioritize consistent tuning strategies
and detailed reporting to enhance the credibility and reproducibility of their
machine learning studies.

Data Partitioning (Q6) Proper data partitioning is fundamental to develop-
ing robust machine learning models that generalize well to unseen data. Typi-
cally, datasets are divided into three subsets: the training set, used to train the
model and learn patterns; the validation set, used to fine-tune hyperparame-
ters and avoid overfitting; and the test set, reserved for evaluating the model’s
final performance on unseen data. Of the 47 reviewed studies, 32 studies (ap-
proximately 68%) adhered to recommended machine learning protocols by ap-
propriately dividing their datasets into training, validation, and test sets or by
employing cross-validation techniques. The breakdown of data partitioning prac-
tices is summarized in Table 4.

Among the studies that explicitly partitioned their datasets, such as Studies
#1, #6, and #7, performance metrics were reported based on the test sets,
adhering to the best practices outlined by Goodfellow, Bengio, and Courville
(2016). By evaluating their models on unseen data, they ensured that the models’
performance accurately reflected their generalizability.

Table 4: Summary of Data Partitioning Practices Across Reviewed Studies.
Data Partition-
ing Practices

Number (%) of Studies Studies #

Training / Valida-
tion /Test Split

32 (68.1%) #1, #6, #7, #8, #10, #11, #13,
#15, #16, #17, #18, #19, #21,
#22, #23, #25, #26, #28, #29,
#30, #32, #33, #34, #35, #36,
#40, #41, #42, #43, #45, #46,
#47

Cross-validation
without Traditional
Split

7 (14.9%) #3, #4, #14, #24, #38, #39,
#44

Inadequate or Un-
reported Partition-
ing

8 (17.0%) #2, #5, #9, #12, #20, #27,
#31, #37
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Seven studies used cross-validation methods instead of a traditional train/-
validation/test split. Techniques like k-fold cross-validation provide a robust as-
sessment of a model’s ability to generalize by iteratively training and testing on
different subsets of the dataset (Hastie, Friedman, & Tibshirani, 2009). For in-
stance, Study #39 utilized 5-fold cross-validation, where the dataset was divided
into five subsets, with each subset used as a test set once while the remaining
subsets formed the training set. The reported metrics—Positive Predictive Value
(PPV), Sensitivity, and F1 Score—were averaged across the five test folds in the
cross-validation process, ensuring that evaluation was based on separate test
data rather than solely on the training data.

Conversely, as shown in Table 4, approximately 17% of studies (8 out of 47)
did not report sufficient details on data partitioning or did not employ parti-
tioning techniques. For example, Study #2 provided limited information about
its dataset division and did not elaborate on how model performance was evalu-
ated, while Study #5 applied pre-existing models without conducting new data
partitioning or validation within their analysis, thereby limiting the validity of
their performance assessments.

Inadequate data partitioning practices introduce significant risks of bias, par-
ticularly overfitting. Models that lack proper data division tend to memorize the
training data, leading to overly optimistic performance metrics that do not ac-
curately reflect real-world applicability (Bishop, 2006).

According to A. Ng (2018), proper validation and testing sets are crucial for
assessing generalization and preventing overfitting. Without these, models may
appear overly effective due to inflated performance metrics, misleading when
applied beyond the training context. For example, studies that evaluated models
solely on training data, such as Studies #2 and #5, likely overestimate their real-
world performance.

In summary, while the majority of the reviewed studies adhered to best prac-
tices in data partitioning—thereby enhancing the credibility and generalizability
of their findings—a significant minority did not. The lack of proper data parti-
tioning in approximately 17% of studies introduces risks of bias, underscoring
the need for more rigorous practices. For the development of robust models,
future research should consistently apply proper data partitioning and report
performance based on validation or test sets to provide accurate, unbiased eval-
uations. Transparent data partitioning and evaluation reporting, as emphasized
by Bishop (2006) and Goodfellow et al. (2016), is fundamental to enhancing
reproducibility and reliability in machine learning research. By incorporating
these practices, researchers can enhance the reliability of their models, ensure
that findings are both valid and applicable in real-world scenarios, and contribute
to the advancement of the field.

3.7 Model Evaluation: Evaluation Metrics for Imbalanced Class
Scenarios (Q8, Q9 & Q10)

In the domain of depression-related emotion detection, datasets often exhibit
significant class imbalance, with non-depressed cases vastly outnumbering de-
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pressed ones. This imbalance poses challenges for model evaluation, as traditional
metrics like accuracy can be misleading. According to He and Garcia (2009), ac-
curacy may not adequately reflect a model’s performance in imbalanced scenarios
because a model could achieve high accuracy by simply predicting the majority
class. Therefore, metrics such as recall, precision, F1 score, and Area Under the
Receiver Operating Characteristic Curve (AUROC or AUC) are preferred, as
they provide a more balanced evaluation by accounting for both false positives
and false negatives. He and Ma (2013) and Japkowicz and Stephen (2002) fur-
ther emphasize the necessity of using these metrics, arguing that they are crucial
for a comprehensive assessment of model performance in the presence of class
imbalance.

In the context of depression detection, recall, measures the proportion of ac-
tual positive cases (individuals with depression) that the model correctly iden-
tifies (i.e., Recall = True Positive

True Positive+False Negative ), is particularly important. A high
recall indicates that the model is successfully identifying most individuals who
are truly depressed (true positives), although this often comes at the cost of more
false positives, where individuals without depression are incorrectly flagged as
depressed. Failing to identify someone who is depressed (a false negative) could
have serious consequences, as it may result in a missed opportunity to provide
help or intervention. Therefore, prioritizing recall ensures that the model cap-
tures as many true positive cases as possible, even if it risks increasing false
positives. In this context, minimizing false negatives is often a higher priority,
given the potential implications for those who might otherwise go undiagnosed
and unsupported (Bradford, Meyer, Khan, Giardina, & Singh, 2024).

Precision, on the other hand, measures the proportion of positive predic-
tions that are correct (i.e., Precision = True Positive

True Positive+False Positive ), highlighting
the model’s ability to avoid false positives. In depression detection, a low preci-
sion score indicates a high rate of false positives, where individuals who are not
depressed are incorrectly labeled as depressed. This could lead to unnecessary
concern or even stigmatization for those wrongly flagged. While high precision
is desirable to avoid false alarms, an overly strict focus on precision could in-
advertently lower recall, leading to more false negatives. Therefore, balancing
precision and recall is essential to ensure that the model is not only identifying
true cases of depression but also minimizing the number of false alarms. This
balance is particularly critical in applications where both false negatives (miss-
ing a depressed individual) and false positives (incorrectly flagging someone as
depressed) carry significant consequences (Bradford et al., 2024).

The F1 score, representing the harmonic mean of precision and recall, pro-
vides a balanced measure of both recall and precision. It is particularly useful in
imbalanced datasets, where a balance between recall and precision is essential.

Finally, AUROC measures the model’s ability to distinguish between posi-
tive and negative classes across different threshold settings, providing a compre-
hensive view of the model’s discriminatory power. A higher AUROC indicates a
better capability of distinguishing between depressed and non-depressed individ-
uals, making it a robust metric for evaluating models in this domain. Among the
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47 studies reviewed, approximately 35 (Studies #1, #3, #6, #7, #8, #13, #14,
#15, #16, #17, #19, #21, #22, #23, #25, #26, #27, #28, #29, #30, #31,
#32, #33, #34, #35, #36, #37, #39, #40, #41, #42, #43, #44, #45, #46)
utilized these preferred metrics. For example, Study #6, “Depression Detection
for Twitter Users Using Sentiment Analysis in English and Arabic Tweets,” em-
ployed precision, recall, F1 score, and AUC to evaluate their models, acknowl-
edging the importance of these metrics for imbalanced data. Similarly, Study
#42, “Classification of Helpful Comments on Online Suicide Watch Forums,”
emphasized recall as a key metric in evaluating their model’s effectiveness in
identifying individuals at risk.

Other than the utilization of preferred metrics, an alternative way to address
imbalanced data involves implementing data balancing techniques, including re-
sampling and reweighting. For instance, Study #6 employed dynamic sampling
methods, such as oversampling the minority class and undersampling the ma-
jority class, to balance the dataset. This approach ensured that the model had
sufficient exposure to both classes before model construction and evaluation.
Similarly, Study #41, “A Deep Learning Model for Detecting Mental Illness
from User Content on Social Media,” used Synthetic Minority Oversampling
Technique (SMOTE) to enhance the representation of the minority class, leading
to improved classification performance, particularly for underrepresented classes.

Notably, some studies (Studies #3, #6, #13, #15, #34, #40, #41, #42,
#43) applied both data balancing techniques and preferred evaluation metrics
together to comprehensively address the class imbalance. For example, ‘Explain-
able Depression Detection with Multi-Aspect Features Using a Hybrid Deep
Learning Model on Social Media’ (Study #13) first implemented preprocessing
steps to balance the dataset, enhancing the model’s ability to learn from both
classes equally. After addressing the class imbalance, the study then used the F1
score and related metrics to evaluate model performance, ensuring a more accu-
rate and fair assessment. These examples indicate that researchers are increas-
ingly aware of the class imbalance issue and are employing various approaches
to address it effectively.

Conversely, some studies primarily relied on accuracy without addressing
class imbalance issues. For example, Studies #2, #10, and #24 reported high
accuracy but did not mention techniques to mitigate the effects of class imbal-
ance.

In the context of depression detection, addressing class imbalance is essential
for achieving reliable model evaluation. When instances of the non-depressed
class significantly outnumber those of the depressed class, the resulting imbal-
ance can skew model outcomes if not properly managed. Two primary strategies
are commonly employed to mitigate this issue: the use of evaluation metrics that
accommodate class imbalance and data preprocessing techniques, such as resam-
pling and reweighting. Japkowicz and Stephen (2002) emphasize that metrics like
recall, precision, and F1 score offer a more nuanced evaluation by accounting for
both positive and negative classes, thus reducing potential bias. Additionally,
data preprocessing methods like reweighting or resampling adjust the dataset
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to provide a balanced exposure to both classes, enhancing model training on
imbalanced data.

While some studies utilized both strategies, demonstrating a thorough ap-
proach to handling imbalance, others employed just one—either through pre-
ferred evaluation metrics or data balancing. Even when only one strategy is
adopted, it can still reduce potential bias to some extent. However, solely rely-
ing on accuracy introduces a significant risk of bias, as it often leads the model
to favor the majority class, thereby failing to identify depressed individuals ac-
curately. Chawla, Japkowicz, and Kotcz (2004) highlight that this reliance on
accuracy alone can lead to misleading conclusions in imbalanced datasets, as it
does not accurately reflect the model’s ability to detect minority class instances.

Out of the 47 studies analyzed, approximately 35 employed preferred metrics
such as F1 score, precision, recall, or AUROC, recognizing their importance in
evaluating models on imbalanced datasets. Seven studies explicitly mentioned
preprocessing steps like resampling to mitigate class imbalance, even when us-
ing accuracy as an evaluation metric. However, several studies relied mainly on
accuracy without addressing class imbalance, potentially introducing bias into
their evaluations.

In conclusion, while a significant number of studies have adopted appropri-
ate evaluation metrics and techniques to address class imbalance, there remains
a need for broader implementation of these practices. Incorporating balanced
metrics and addressing class imbalance is essential for reliable and valid model
evaluations in depression detection research. As Fernandez et al. (2018) recom-
mended, employing these strategies enhances the robustness of machine learning
models in domains characterized by imbalanced datasets.

3.8 Reporting: Transparency and Completeness

Transparency and completeness in reporting are fundamental to the integrity
and reproducibility of scientific research. In our examination of the 47 studies,
we assessed the extent to which they transparently reported their methodolo-
gies, findings, and limitations. Notably, all studies (100%) included a limitation
section, indicating an overall acknowledgment of the importance of addressing
potential shortcomings. However, the depth and specificity of these disclosures
varied significantly across the studies.

While every study mentioned limitations, not all of them fully recognized
or disclosed all critical methodological issues that could impact their findings.
For instance, as highlighted in our earlier assessments, approximately 23% of
the studies (11 out of 47) did not properly partition their data or failed to
report their data partitioning methods adequately (Studies #2, #5, #9, #12,
#20, #27, #31, and #37). Despite this, only a few of these studies explicitly
acknowledged the potential biases introduced by improper data partitioning in
their sections of limitations. This suggests that while researchers are generally
aware of the necessity to report limitations, there is a gap in fully understanding
or disclosing specific methodological shortcomings, such as data partitioning,
which is crucial for model generalizability and validity.
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Similarly, in the context of hyperparameter tuning, approximately 43% of the
studies did not report or properly tune hyperparameters across all models used
(e.g., Studies #1, #2, #4, #5, #12, #14, #17, #19, #20, #24, #27, #29, #30,
#32, #34, #35, #37, #38, #42, #44, and #46). Only a few acknowledged this
limitation in their reports. This lack of comprehensive reporting on hyperparam-
eter tuning can lead to biased model comparisons and affect the reproducibility
of the studies.

Incomplete or non-transparent reporting can introduce significant bias and
limit the reproducibility and applicability of research findings. When critical
methodological details are omitted or underreported, it hinders the ability of
other researchers to replicate studies or to understand the context in which
the results are valid. For instance, failing to disclose improper data partitioning
can lead to overestimation of model performance due to overfitting (Bishop,
2006). Models evaluated on training data or without appropriate validation may
appear to perform well, but this performance may not generalize to new, unseen
data. This oversight can mislead stakeholders about the efficacy of the models
and affect subsequent research or practical applications that build upon these
findings.

Similarly, not reporting on hyperparameter tuning practices can result in
unfair comparisons between models and misinterpretations of their relative per-
formances (Claesen & Moor, 2015; Zhang et al., 2025). Models with optimized
hyperparameters may outperform others not because they are inherently better
but because they were given an optimization advantage. Without transparency
in reporting these practices, readers cannot assess the fairness of the comparisons
or replicate the optimization process.

In conclusion, while all 47 studies recognized the importance of reporting lim-
itations, there remains a notable disparity in the thoroughness and transparency
of their reporting. For the field to advance, transparent and comprehensive re-
porting of methodologies and limitations is essential. Future research should
strive for complete disclosure of data collection, preprocessing, model develop-
ment, hyperparameter tuning, and evaluation metrics. This includes acknowl-
edging specific methodological limitations, such as data partitioning practices
and sampling biases, and discussing how these limitations may impact results
and generalizability. Such transparency will allow others to interpret findings
accurately, replicate studies, and build upon prior work effectively.

3.9 Summary of Findings and Implications for Future Research

This systematic review evaluated biases throughout the entire lifecycle of ma-
chine learning and deep learning models for depression detection on social me-
dia. In sampling, biases arose from a predominant reliance on Twitter, English-
language data, and specific geographic regions, limiting the representativeness
of findings. Data preprocessing commonly showed inadequate handling of nega-
tions, which can skew sentiment analysis results. Model development was often
compromised by inconsistent hyperparameter tuning and improper data parti-
tioning, reducing model reliability and generalizability. Lastly, in model eval-
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uation, an overreliance on accuracy without addressing class imbalance risked
favoring majority class predictions, potentially misleading results. These findings
highlight the importance of enhancing methodologies to bolster the validity and
applicability of future research.

To address these biases, future research should improve practices across all
stages of the machine learning lifecycle. Expanding data sources across multi-
ple platforms, languages, and regions will help mitigate platform and language
biases and improve representativeness. Standardizing data preprocessing, espe-
cially with explicit negation handling, and employing resampling and reweight-
ing techniques will enhance sentiment analysis accuracy and balance datasets.
Consistent hyperparameter tuning protocols are essential to ensure fair model
comparisons and optimal performance. Lastly, prioritizing evaluation metrics
like precision, recall, F1 score, and AUROC in imbalanced datasets, particularly
for depression detection, will yield more accurate and insightful assessments.
By implementing these improvements, future studies can achieve greater model
robustness and generalizability, contributing to more effective mental health de-
tection tools.

4 Discussion

The escalating prevalence of mental health conditions, particularly depression,
poses a significant global health challenge. Social media platforms have emerged
as rich data sources where individuals express their thoughts and emotions, offer-
ing a unique opportunity to detect mental health issues through advanced com-
putational methods. Machine learning and deep learning models hold promise for
analyzing this vast, unstructured data to identify patterns indicative of depres-
sion. This systematic review aimed to evaluate the effectiveness of these models
in detecting depression on social media, focusing on identifying and analyzing
biases throughout the ML lifecycle.

4.1 Summary of Key Findings

Our review uncovered several key biases and methodological challenges that im-
pact the reliability and generalizability of machine learning and deep learning
models in this domain. Sampling biases emerged due to a predominant reliance
on specific social media platforms, particularly Twitter, which was used in 63.8%
of the studies. Additionally, most studies focused on English-language content
and users from specific geographic regions, primarily the United States and Eu-
rope. These biases limit the representativeness of findings, as they do not capture
the diversity of global social media users. In data preprocessing, many studies
inadequately handled linguistic nuances, such as negations and sarcasm. Only
about 23% of the studies explicitly addressed the handling of negative words
or negations, which are crucial for accurate sentiment analysis in depression
detection.
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Model development issues were also prominent. Inconsistent hyperparameter
tuning practices were observed, with only 27.7% of the studies properly tuning
hyperparameters for all models. Moreover, approximately 17% of the studies
did not adequately partition their data into training, validation, and test sets.
These practices can lead to overfitting, reducing the models’ ability to gener-
alize to new data. Regarding model evaluation, many studies relied heavily on
accuracy as the primary evaluation metric without addressing class imbalances
inherent in depression detection datasets. While about 74.5% of the studies used
metrics suitable for imbalanced data, such as precision, recall, F1 score, and AU-
ROC, others did not, potentially skewing the evaluation of model performance.
Finally, despite all studies including a limitations section, transparency varied
significantly, with critical methodological details like data partitioning methods
and hyperparameter settings often underreported. This inconsistency hinders
reproducibility and the ability to fully assess the validity of the findings.

4.2 Strengths and Limitations of the Review

This systematic review stands out for its comprehensive scope, examining biases
across the entire ML lifecycle, from sampling to reporting, in depression detection
on social media. By not limiting the analysis to specific aspects, the review offers
a holistic view of how biases can influence model validity. Another strength is the
structured methodological approach, adhering to established guidelines with a
well-defined search strategy and clear inclusion criteria. Focusing on studies pub-
lished after 2010, it reflects the latest advancements in ML and DL applications
for mental health.

The use of established bias assessment tools, particularly PROBAST, adds
rigor by systematically evaluating bias across key methodological domains. Ad-
ditionally, the review’s detailed data extraction process facilitated a structured
analysis, allowing for the identification of patterns and providing actionable rec-
ommendations, such as diversifying data sources and improving transparency.

However, the review also has limitations. Limited database coverage and the
English-only restriction may exclude valuable insights from non-English research,
potentially affecting the generalizability of the findings. The focus on recent stud-
ies (post-2010) might have overlooked earlier influential works, while heterogene-
ity in study designs hindered direct comparisons and precluded a quantitative
meta-analysis. Moreover, publication bias could skew findings toward positive re-
sults, and excluding grey literature means emerging methodologies may not be
fully captured. Lastly, while ethical considerations were acknowledged, a deeper
exploration of issues like data privacy and informed consent is warranted.

These limitations suggest areas for improvement in future research, such
as broadening database and language coverage, including grey literature, and
conducting a meta-analysis where feasible. By addressing these areas, future
studies can enhance the robustness of ML models for mental health detection
and provide a more comprehensive, ethical, and globally relevant understanding
of the field.



Systematic Review on Mental Illness Detection 91

4.3 Implications for Future Research

To enhance the generalizability and applicability of machine learning and deep
learning models in depression detection on social media, addressing identified
biases is essential. First, diversifying data sources across multiple social media
platforms and incorporating non-English languages and underrepresented re-
gions will improve representativeness and generalizability. Improving sampling
methods is crucial. Combining keyword-based sampling with random sampling
techniques can help reduce selection bias and capture users who may not explic-
itly mention depression but exhibit relevant behaviors. In the data preprocess-
ing step, researchers should standardize practices to explicitly handle linguis-
tic nuances like negations and sarcasm, which are vital for accurate sentiment
analysis. Additionally, applying resampling or reweighting techniques can help
balance datasets, ensuring that both classes—particularly the minority depres-
sive class—are adequately represented. Advanced natural language processing
techniques that account for linguistic nuances, such as sarcasm and context-
dependent meanings, should be employed.

Consistent and comprehensive hyperparameter tuning across all models is
essential to ensure fair comparisons and optimize model performance. Proper
data partitioning practices, including the use of validation and test sets, should
be implemented to prevent overfitting and assess model generalizability. When
evaluating models, researchers should prioritize metrics that account for class im-
balance, such as precision, recall, F1 score, and AUROC. These metrics provide
a more balanced assessment of model performance and are more informative
in the context of detecting depression, where the minority class is of primary
interest.

4.4 Concluding Remarks

This systematic review highlights significant methodological limitations in cur-
rent research on detecting depression through social media analysis using ma-
chine learning and deep learning models. Addressing these limitations is critical
to developing more accurate, reliable, and generalizable models that can effec-
tively identify individuals at risk of depression. Future research should focus on
diversifying data sources, improving sampling methods, enhancing data prepro-
cessing and model development practices, and employing appropriate evaluation
metrics to ensure balanced and meaningful assessments.

By advancing these methodological approaches, researchers can contribute to
the advancement of mental health detection tools that are ethically sound and
effective across diverse populations and platforms. Such advancements hold the
potential to facilitate early intervention strategies, ultimately improving mental
health outcomes on a global scale.
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Abstract. With the increasing availability of large datasets in the be-
havioral and health sciences, the need for efficient and effective variable
selection techniques has grown. While traditional methods like stepwise
regression remain prevalent, numerous advanced techniques are avail-
able but underutilized in these fields. This tutorial aims to increase
awareness and understanding of five variable selection methods available
in the popular statistical software R: LASSO, Elastic Net, a penalized
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survey-based assessment dataset on misophonia diagnosis, we provide
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nesses, and performance of each technique, emphasizing the importance
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and health science researchers to adopt these advanced variable selection
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This paper is written with the assumption that individuals have at least
a basic understanding of R.
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1 Introduction

In the behavioral and health sciences, selecting the right variables for a model
is crucial for understanding human behavior’s complexity. Researchers strive to
uncover how personality traits influence treatment engagement, how symptoms
manifest in disorders, and how to accurately classify individuals into meaningful
groups for diagnosis or intervention. They not only want to understand how these
aspects (i.e., variables) are related to each other and to overarching constructs
but may also want to use the variables to classify individuals into groups (e.g.,
diagnosing clinical disorders, determining participant compliance, etc.). The ac-
curacy of these classifications or predictions is greatly influenced by which vari-
ables a researcher uses to create the classifications. For example, if a researcher is
interested in diagnosing someone with depression, the accuracy of the diagnosis
would suffer if relying solely on the presence of a depressed mood. However, if
they use a variety of variables like depressed mood, loss of interest in activities,
hours slept, and change in appetite or weight, their classification would be more
accurate.

Researchers must carefully construct their classification models to under-
stand variable interrelationships while maximizing predictive accuracy. Variable
selection techniques can help researchers to identify and select informative vari-
ables to build these models. The use of variable selection techniques can lead to
more accurate predictions, reduce the computational cost of creating the model,
and improve the parsimony of the model by eliminating redundant and irrel-
evant variables. For example, variable selection techniques have been used to
build models pertaining to identifying exposure-outcome associations (Lenters,
Vermeulen, & Portengen, 2018) as well as predicting mortality rates (Amene,
Hanson, Zahn, Wild, & Döpfer, 2016; Bourdès et al., 2010), psychological strain
in teachers (Wettstein et al., 2023), and nomophobia (Luo, Ren, Li, & Liu, 2021).

Behavioral researchers often turn to stepwise regression to perform variable
selection. An APA PsychINFO database search for the term “stepwise regres-
sion” returned 222 peer-reviewed articles published in the last 3 years using step-
wise regression for variable selection. Stepwise regression, however, has many
severe limitations and statistical experts do not recommend it (Smith, 2018;
Thompson, 1995; Whittingham, Stephens, Bradbury, & Freckleton, 2006). These
limitations include the inability to distinguish signal (i.e., true predictor vari-
ables) from noise (Derksen & Keselman, 1992; Kok, Choi, Oh, & Choi, 2021;
Whittingham et al., 2006; Wiegand, 2010), underestimation of p-values, and
failure to replicate (Smith, 2018; Thompson, 1995). As such, many alternative
variable selection algorithms have been proposed in the literature, but behav-
ioral researchers have been slow to adopt these new methods in place of more
traditional methods (Serang, Jacobucci, Brimhall, & Grimm, 2017; Shi, Shi,
& Fairchild, 2023). One potential reason for this delay may be the disconnect
between methodological and applied behavioral researchers, as much method-
ological research is often inaccessible for applied researchers at first (e.g., com-
plex techniques, lack of published code, or no tutorials). An APA PsychINFO
database search for the term “variable selection” returned 253 papers published
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in quantitative methods journals in the last 20 years, indicating that method-
ological researchers are dedicated to developing better approaches to variable
selection than stepwise regression. Of these publications, however, only one is a
tutorial (Gunn, Hayati Rezvan, Fernández, & Comulada, 2023).

Given the clear gap in the popularity of variable selection methodological
research and the lack of tutorials on how to apply them, the field would benefit
greatly from additional tutorials on variable selection techniques with demon-
strations of how to apply them to psychological datasets. The following groups
would benefit, specifically, from this tutorial. First, behavioral and health science
researchers who are working with big data or looking to further enhance their un-
derstanding of advanced variable selection techniques to build more robust and
interpretable models. Second, graduate students and early career researchers
who are new to machine learning and variable selection methods and seek prac-
tical guidance on applying these techniques in their own research. Third, those
who may be teaching courses on data analysis, machine learning, or statistics
who are looking for comprehensive examples to illustrate advanced techniques to
their students. By following this tutorial, readers will gain practical knowledge
on implementing five advanced variable selection methods in R, insights into
the strengths and weaknesses of each method, helping researchers to choose the
most appropriate technique for their specific research question, and access to the
associated code on Open Science Framework, providing an interactive learning
experience. We encourage social and health sciences researchers to adopt these
advanced methods, leading to more robust, interpretable models.

Specifically, the goal of this paper is to provide a tutorial on five variable se-
lection techniques freely available to researchers in R. We will introduce the Least
Absolute Shrinkage and Selection Operator (LASSO), Elastic Net, a version of
the genetic algorithm (GA), and implementations of Support Vector Machines
(SVMs) and Random Forest that have been adapted to perform variable selec-
tion. The manuscript is organized as follows. The first section illustrates the
importance of variable selection in machine learning and explains why each of
the five methods was selected. Then, a motivating example pertaining to the
diagnosis of misophonia is provided. The dataset was collected from a psychol-
ogy research pool and represents an excellent example of a dataset available to
many behavioral and health researchers (Norris, Kimball, Nemri, & Ethridge,
2022). Within this example, there are three major sections. The first discusses
methods using a logistic regression model (i.e., LASSO, EN, and the GA), the
second discusses SVM, and the third pertains to random forest. Each technique
is introduced, the code necessary to implement each technique is provided, and
each technique’s associated strengths and weaknesses are discussed. This paper is
written with the assumption that individuals have at least a basic understanding
of R.

1.1 Variable Selection in Machine Learning

Objectives of Variable Selection Variable selection is a fundamental step
in the process of building robust and efficient machine learning models, and its
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importance cannot be overstated (Chowdhury & Turin, 2020; Guyon & Elisseeff,
2003). It serves as a critical mechanism for optimizing model performance and
ensuring its reliability across various tasks and datasets. The goal of variable
selection (also known as feature selection in machine learning literature) is to
identify the most informative (i.e., best) subset of variables for a given task.
The criteria for defining “best” vary depending on the researcher’s objectives, as
highlighted by Huang (2015). Highlights of Huang’s discussion argue that there
are two main objectives of variable selection: (1) to improve the accuracy of the
model, and (2) to determine the relevance of the variables in the model so as to
better guide researchers’ hypothesis generation.

Types of Variable Selection In the field of machine learning, variable selec-
tion techniques are often classified into one of three categories, initially discussed
in the seminal paper by Guyon and Elisseeff (2003): filter methods, wrapper
methods, and embedded methods .

Filter methods (e.g., χ2, Euclidean distance, or the i-test) are often used as
a pre-processing step, but they can be used as a stand-alone variable selection
method. These techniques choose variables (or features) before building any
model to measure the construct of interest. For example, a filter could select
items based on a particular feature relevance score, a variable’s correlation with
the constructs of interest, or the variable’s amount of variance. Most often,
significance testing is used as a filter method to determine variable selection
(e.g., a variable would need to correlate significantly, as determined by a p-
value, with the outcome variable). However, these significance tests occur in a
univariate fashion (i.e., one variable is tested at a time), which ignores possible
interaction effects or covariance among variables. No filter methods are presented
in this tutorial, as past research indicates they provide inferior results and miss
important information as the selection is separate from model estimation (Blum
& Langley, 1997; Guyon & Elisseeff, 2003; Kohavi, 1996), but we include a brief
overview to provide the reader with a full picture of the types of variable selection
methods that exist.

Wrapper methods improve upon filter methods by accounting for a variable’s
ability to measure the construct of interest. Each wrapper method operates under
a specific algorithmic ideology from machine learning (e.g., stepwise regression
techniques operate as greedy algorithms, choosing the variable that will opti-
mize the selected criteria at each step). Wrapper methods are flexible in that
they are not constrained to any one type of model (e.g., regression, structural
equation modeling, etc.) but rather can be “wrapped” around the researcher’s
chosen model. The wrapper method explained in this tutorial is the genetic
algorithm, which we have wrapped around a logistic regression model for classi-
fication purposes. More details about the genetic algorithm will be provided in
a later section of this paper.

Embedded methods are similar to wrapper methods in how well a set of vari-
ables predicts the given construct of interest. Embedded methods differ from
wrapper methods in that they perform variable selection while simultaneously
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estimating the prediction model (Guyon & Elisseeff, 2003). Although this often
results in higher efficiency than wrapper methods, embedded methods are con-
strained to one type of model. The embedded methods discussed in this tutorial
are LASSO and Elastic Net which use a logistic regression classification model
(Engebretsen & Bohlin, 2019), Elastic SCAD SVM which uses an SVM classi-
fier (Becker, Toedt, Lichter, & Benner, 2011), and Boruta which uses a random
forest classifier (Kursa & Rudnicki, 2010).

Variable Selection Importance Variable selection is advantageous with any
model (e.g., regression, structural equation modeling, etc.) because, as mentioned
previously, it leads to more accurate predictions, reduces the computational cost
of the model, and improves the parsimony of the model by eliminating redundant
and irrelevant variables. However, there are additional advantages to variable se-
lection when paired with machine learning models. First, variable selection helps
manage dimensionality problems (i.e., when a dataset contains more predictors
than observations). Over the years, technology such as the invention of online
data collection platforms like Prolific or the creation of mobile health apps has
allowed researchers to collect more complex data from increasingly larger sam-
ples. As datasets grow in both size and complexity, the number of variables
may also increase, leading to computational inefficiencies and reduced model
interpretability (Barceló, Monet, Pérez, & Subercaseaux, 2020). By carefully se-
lecting relevant variables, we can effectively reduce the dimensionality of the
data, thereby streamlining the computational process and facilitating easier in-
terpretation of the model (Jia, Sun, Lian, & Hou, 2022)

Moreover, the variable selection process enables models to achieve higher
accuracy and better generalization capabilities. For example, van Vuuren et al.
(2021) found that LASSO created a model that was able to classify students as
at risk for suicide with a higher accuracy than simple inclusion rules (i.e., pre-
dicting based on history of suicide alone). Pratik, Nayak, Prasath, and Swarnkar
(2022) utilized Elastic Net to select variables that were able to predict smok-
ing addiction in young adults with higher accuracy than previous research. By
focusing on the most informative variables, the model can discern meaningful
patterns within the data, leading to more precise predictions and improved per-
formance on unseen or new data. This selective approach prevents the model
from being overwhelmed by noise or irrelevant information, allowing it to focus
on capturing the underlying relationships that drive the outcome of interest. For
example, researchers found that applying Elastic Net regularization to classifiers
based on clinical notes reduced the number of features selected by more than a
thousandfold, making these classifiers more easily interpretable and maintaining
performance (Marafino, John Boscardin, & Adams Dudley, 2015).

Furthermore, the inclusion of irrelevant variables in the modeling process
can introduce bias and adversely affect the estimation of model parameters.
Additionally, extraneous variables may introduce noise or confounding factors,
leading to skewed parameter estimates and potentially misleading conclusions
(Kerkhoff & Nussbeck, 2019). By excluding such variables through proper selec-
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tion techniques, we can ensure that the model’s estimates remain unbiased and
reflects the true underlying relationships in the data, increasing the ecological
validity of study results and models produced.

Lastly, a well-selected set of variables enhances the model’s predictive perfor-
mance and contributes to its stability and reliability (Arjomandi-Nezhad, Guo,
Pal, & Varagnolo, 2023; Fox et al., 2017). Models built on a carefully chosen
subset of variables are less susceptible to overfitting, where the model simply
memorizes the data rather than learning meaningful patterns. Avoiding overfit-
ting leads to more robust models that generalize better and are less prone to
erratic behavior or unexpected deviations, which may lead to harmful classifica-
tions (e.g., classifying an individual as having a particular disorder when they
do not; Cateni, Colla, & Vannucci, 2010; Heinze, Wallisch, & Dunkler, 2018).

Put simply, variable selection is indispensable in the realm of machine learn-
ing. It serves as a cornerstone for improving computational efficiency, enhancing
model accuracy and generalization, reducing bias in parameter estimation, and
fostering the stability and reliability of the resulting models. As such, behav-
ioral and health researchers must employ rigorous techniques and considerations
during the variable selection process to ensure the models’ and conclusions’ ef-
fectiveness and generalizability.

Applications of Variable Selection Methods Understanding the appro-
priate contexts for applying different variable selection methods is crucial for
researchers to make informed decisions. Below we outline scenarios where each
of the five methods discussed in this tutorial – LASSO, Elastic Net, genetic algo-
rithm (GA), support vector machines (SVM), and random forest – can be most
effectively utilized.

LASSO is particularly effective for datasets with a large number of predictors,
especially when many predictors are thought to be irrelevant or redundant (Tib-
shirani, 1996). It is often used in clinical research for identifying key biomarkers
from extensive genetic data or in psychological students for selecting signifi-
cant psychological traits that predict mental health outcomes (Chu et al., 2024;
Wettstein et al., 2023). However, LASSO is constrained by degrees of freedom
requirements, so, if researchers’ data contains more predictors than observations,
this approach would be infeasible.

Elastic Net is best suited for datasets with highly correlated predictors. It
combines the strengths of both LASSO and Ridge regression, which makes it
most suitable for complex datasets with multicollinearity. This method is applied
in epidemiology to study the impact of multiple, correlated environmental ex-
posures on health outcomes and in social sciences to analyze survey data where
multiple questions pertaining to a given latent construct are often correlated
(Han & Dawson, 2021; Pratik et al., 2022).

The genetic algorithm is ideal for complex optimization problems where tra-
ditional methods may fail to find the global optimum. It is flexible and can be
adapted to various types of models and data structures. If researchers believe
there may be strong interactions between variables, this approach may be most
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appropriate. In fact, GA has been used in the behavioral and health sciences to
explore variable selection when interactions between numerous behavioral vari-
ables are present, or hypothesized to be present, in the data (Adams, Bello, &
Dumancas, 2015; Basarkod, Sahdra, & Ciarrochi, 2018; Gan & Learmonth, 2016;
Moore et al., 2017; Yukselturk, Ozekes, & Türel, 2014).

SVMs are highly effective for classification problems with high-dimensional
(where there are more predictors than observations) data. They are robust to
overfitting, especially when an advanced kernel function (discussed in more detail
later) are used. They are often used in medical diagnosis for classifying patients
based on medical imaging data (Becker, Werft, Toedt, Lichter, & Benner, 2009;
Fernandez, Caballero, Fernandez, & Sarai, 2011) and in classification studies
such as predicting dementia (Battineni, Chintalapudi, & Amenta, 2019).

Random forest performs particularly well when data have a mix of variable
types or complex interactions. It handles large datasets well, provides measures of
variable importance, and is less prone to overfitting than some other approaches
due to the ensemble approach. Random forest has been applied to educational
psychology to assess student related outcomes (Alamri et al., 2021; El Haouij et
al., 2018; Tan, Main, & Darolia, 2021). Within the health sciences, researchers
have used random forest to predict cases of COVID-19, predict risk for adverse
health effective, and identify longitudinal predictors of health (Cafri, Li, Paxton,
& Fan, 2018; Iwendi et al., 2020; Loef et al., 2022).

Our Chosen Variable Selection Techniques Researchers have a variety of
variable selection methods available to them, and many are freely available to
researchers in R packages. Perhaps the most widely applicable and easy-to-use
R package for variable selection is the relatively new FSinR package (Aragón-
Royón, Jiménez-Vı́lchez, Arauzo-Azofra, & Beńıtez, 2020), which contains a
large number of filter and wrapper methods widely used in the literature for
both classification and regression models that are available in the R caret package
(Kuchirko, Bennet, Halim, Costanzo, & Ruble, 2021). A short, non-exhaustive
list of other easy-to-use R packages for variable selection is cited here for the
reader’s convenience (Calcagno & Mazancourt, 2010; Genuer, Poggi, & Tuleau-
Malot, 2010; Kursa & Rudnicki, 2010; Strobl, Malley, & Tutz, 2009; Trevino &
Falciani, 2006; Wehrens & Franceschi, 2012).

The five techniques utilized in this paper were chosen for a variety of rea-
sons. First and foremost, LASSO and Elastic Net are arguably the most popular
modern variable selection techniques within the behavioral sciences. The imple-
mentations used in this tutorial come from the glmnet R package (Friedman,
Hastie, & Tibshirani, 2010; Tay, Narasimhan, & Hastie, 2023). Social psychol-
ogy researchers have used such techniques to create better environments that
promote prosocial environments for children (Chu et al., 2024), and health re-
searchers have used them to model the progression of Alzheimer’s disease (Liu,
Cao, Gonçalves, Zhao, & Banerjee, 2018). Implementations of SVM and random
forest were chosen because of their strength as classification algorithms and be-
cause they can handle more complex data types (e.g., mixed variable types or
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non-linearly separable). The SVM implementation comes from the penalizedSVM
package (Becker et al., 2009) while the random forest implementation comes from
the Boruta package (Kursa & Rudnicki, 2010). Lastly, the GA was chosen (1)
to introduce the reader to the concept of metaheuristic approaches to variable
selection and (2) because it has been shown to outperform more common meth-
ods like LASSO and Elastic Net across a variety of different data conditions
(Bain, Shi, Boness, & Loeffelman, 2023). The GA implementation comes from
the GA package (Scrucca, 2013, 2017). Note that while this paper includes core
code snippets, the accompanying Open Science Framework (OSF) repository
provides the complete code and data necessary to replicate all analyses. The
repository link is provided in the data availability section.

A Motivating Example This tutorial uses the assessment of misophonia as
an example through which we illustrate each technique. Individuals with miso-
phonia experience strong, negative, emotional responses to specific sounds (i.e.,
triggers Wu, Lewin, Murphy, & Storch, 2014). The original data sample consisted
of undergraduate students (N = 343) at a large southwestern university. Partic-
ipants were predominately white (76.7%), female (69.7%), and students (96.5%)
ranging from ages 18 to 36 (M = 18.96, SD = 1.7). The dataset contains 106 inde-
pendent variables related to both direct characteristics of misophonia and related
characteristics, as well as one self-report binary diagnosis variable. It is avail-
able to the reader on the accompanying OSF repository linked in the availability
of data and materials section of this paper. Since misophonia is still not fully
understood (i.e., formal diagnostic criteria have not been set, and researchers
are still trying to determine the most important symptoms), this dataset is an
illustrative example of variable selection. Some symptoms may be unimportant
for, or not predictive of, a true misophonia diagnosis. One should note that this
dataset does not contain any missing data, as it was handled a priori using list-
wise deletion. In addition, one should note that the group sizes are unbalanced
(16.5% diagnosed, 83.5% not). This presents additional complexity and is one
reason why we have chosen to evaluate the methods using both accuracy and
F-score. For more information on the larger previously published dataset from
which this data was selected and the background on misophonia, see the work
of Norris et al. (2022).

The Importance of Cross Validation. Model overfitting is a common problem
for implementing variable selection techniques (see Figure 1). If a model is built
too closely to the specifications of a specific dataset (i.e., it is not robust to
changes in the data), it is considered overfit. Alternatively, a model can be
underfitted where it is built in such a way that it is too generalizable and does
not create accurate or meaningful predictions. Researchers need to be cautious of
overfitting and underfitting to ensure that they build models that can accurately
generalize to new data while making meaningful and accurate predictions.

Cross-validation is one common way to help researchers increase generaliz-
ability in a meaningful way (i.e., protect against overfitting). In cross-validation,
the model is built on (or, in the case of this tutorial, variables are selected from)
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Figure 1. The leftmost graph illustrates an underfit model on a small amount of data.
The middle figure illustrates a fit that balances both bias and variance leading to good
fit. The rightmost graph illustrates an overfit model. Figure obtained from Geeks for
Geeks (ML | Underfitting and Overfitting , 2017)

a different set of data than it is evaluated. Although this can occur through the
collection of two different datasets, this is typically done by dividing one dataset
into parts. One can do this division in many ways, and this paper implements
holdout cross-validation, which occurs when one splits the data into two sets
(test and training sets) before conducting any analyses. Typically, 70% of the
data is used for the training set in holdout cross-validation, and the remain-
ing 30% is used for the test dataset. The code for how we performed holdout
cross-validation can be found in the companion code on OSF. For additional
information on the importance of cross-validation and alternative approaches to
cross-validation, see the helpful tutorials cited here (Ghojogh & Crowley, 2023;
Song, Tang, & Wee, 2021).

2 Methods

2.1 Logistic Regression Models

Logistic regression is a widely used statistical model for binary classification
problems and models the probability that a given observation (e.g., a set of par-
ticipants’ responses to a given questionnaire), belongs to a particular category.
The equation for logistic regression is :

P (Y = 1|X) =
1

1 + e−(β0+β1x1+...+βmxm)
(1)

Here, P (Y = 1|X) represents the probability that the participant belongs in
class 1 given their response matrix (X). The intercept term (β0), is the value of
the log-odds when all predictor variables are zero. The coefficients (β1, . . . , βm)
associated with each of the predictor variables (x1, . . . , x⇕) represent the change
in the log-odds of the dependent variable for a one-unit change in the corre-
sponding predictor variable for a total of m predictors.
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Regularization Techniques Two of the techniques discussed in this paper,
LASSO and Elastic Net, are regularization techniques. Regularization is a com-
mon method used to combat issues of overfitting found in models estimated
with maximum likelihood estimation (like logistic regression). Each regulariza-
tion technique works to combat overfitting by intentionally introducing a small
amount of bias into the model such that a generic regularization function, within
the context of classification, takes the following form:

LReg(β) = Llogistic(β)− λP(β) (2)

where LReg is the penalized optimization function, Llogistic is the negative log
likelihood, λ is a regularization parameter (i.e., a tuning parameter), and P is
a penalty function that will vary across the regularization technique. The goal
of regularization is to find the optimal balance between bias (generalizability
of the model) and variance (specific model fit Helwig, 2017). The magnitude
of the lambda (λ) penalty determines this balance. A larger lambda will lead
to a sparser and more generalizable model. One popular technique utilized to
determine the value of the lambda parameter is cross-validation. As mentioned
above, cross-validation occurs when the data is split into multiple subsets, the
model is developed (i.e. trained) on a subset, and evaluated (i.e., validated) on
another. This process is iterative, allowing for the selection of the lambda penalty
that minimizes prediction error across different subsets.

One optimal model, in the context of this paper, is one that produces the
most accurate classifications. Accuracy can be calculated using the following
equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP is the number of individuals who were correctly classified as having
a diagnosis of misophonia, TN is the number of individuals who were correctly
classified as not having a diagnosis of misophonia, FP is the number of individ-
uals who were classified as having a diagnosis but did not truly have a diagnosis
in the labeled data, and FN are the number of individuals who were incorrectly
classified as not having a diagnosis when a diagnosis was present in the labeled
data. It is worth noting that accuracy may not be the best optimization criteria
given the unbalanced nature of the data (i.e., the number of observations in class
0 is much larger than the number in class 1). In practice, researchers may want
to use a weighted accuracy or an F-score in their own research, depending on
the relative importance of a false positive versus a false negative. For example,
a clinician attempting to predict suicide attempts may prioritize a false positive
(i.e., saying the individual is likely to attempt suicide when they do not actually
attempt) over a false negative (i.e., saying the individual will not attempt when
they actually will). Non-weighted accuracy was included for ease of explanation.
However, we will also evaluate each model in terms of an F-score to illustrate
the differences between these metrics. The equation for calculating an F-score is
seen below.

F1 =
TP

TP + .5(FP + FN)
(4)
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The F1 score is a measure of a model’s ability to balance precision (accuracy of
positive predictions) and recall (correct identification of positive instances). The
equation provided modifies the traditional F1 score by scaling the sum of false
positives (FP) and false negatives (FN) by 0.5, reducing their weight in the final
score. This adjustment can be useful when false positives and false negatives are
not equally important or should be penalized less.

LASSO. LASSO (Tibshirani, 1996) is one of the penalized regression techniques
that perform variable selection. LASSO can handle data with multicollinearity,
be applied to various types of data (e.g., continuous, categorical, mixed type),
and is adaptable to sparse data (i.e., multiple predictors have zero or near-zero
coefficients; Foucart, Tadmor, & Zhong, 2023; Mendez-Civieta, Aguilera-Morillo,
& Lillo, 2021). The parameter estimates (i.e., the β coefficients) for LASSO can
be obtained by maximizing the penalized log-likelihood function:

LLASSO(β) =

n∑
i=1

[yixiβ − log(1 + exiβ)]− λ

m∑
j=1

|βj | (5)

where LLASSO(β) is is the loss function and is comprised of two summations.
The first summation represents the logistic regression log likelihood and n is
the number of observations in the data, yi represents the actual binary out-
come of the i-th observation, xi is the vector of predictor variables for the i-th
observation, β is the vector of coefficients (including the intercept term), and
log(1 + exiβ) is the log of the logistic function denominator, which ensures that
the probabilities are correctly bounded between 0 and 1. The second summa-
tion is the LASSO penalty (or the ℓ1 regularization term) which adds a penalty
proportional to the absolute value of the coefficients and m is the number of
predictors in the initial model. Here λ is the regularization hyperparameter that
controls the degree of shrinkage such that larger values lead to the selection of
fewer variables and

∑m
j=1 |βj | is the sum of the absolute values of the coefficients

for all predictor variables (note that the summation begins at 1, indicating that
the intercept, β0, is excluded from regularization and must be included in the
final. For a more detailed discussion of LASSO, see Tibshirani’s (1996) paper
. Regularization techniques are useful for variable selection because they add a
penalty for large coefficients, effectively shrinking less important variables to-
wards zero and thus eliminating them from the model. This helps in improving
model interpretability and preventing overfitting, particularly in scenarios with
a large number of predictors or multicollinearity.

As with all methods, researchers may be interested in the recommended sam-
ple size LASSO. One conservative estimate suggests that researchers should have
10 observations per candidate variable (e.g., with 10 variables, a researcher would
need 100 observations; Peduzzi, Concato, Feinstein, & Holford, 1995; Peduzzi,
Concato, Kemper, Holford, & Feinstein, 1996). However, this recommendation
is made more generally for regression, and thus, does not generalize as specifi-
cally to regularization techniques where not all variables are included in the final
model. Recent simulation studies have investigated the performance of LASSO in
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small sample sizes (e.g., 50 – 100 participants) and found that methods perform
well (Bain et al., 2023; Kirpich et al., 2018; Wen et al., 2019).

To utilize LASSO for variable selection, we use the cv.glmnet() function
from the glmnet package in R (Friedman et al., 2010). More information on
the hyperparameters of the function can be found in Table 1. This function
determines the magnitude of lambda through a k-fold cross-validation approach.

lasso.model <- cv.glmnet(x = predTrain ,

y = outcomeTrain , type.measure = "class",

alpha=1, family="binomial", nfolds = 10)

Through this model, we can obtain the chosen lambda value. To obtain a full list
of all evaluated lambda values, use lasso.model$lambda. One can also plot the
k-fold cross-validation procedure to obtain λ using plot(lasso.model) (Figure
2). There are two lambda values that are particularly of interest. The first can
be obtained with lasso.model$lambda.min. This lambda value is responsible
for producing the model with minimal cross-validated error. The second can be
obtained with lasso.model$lambda.1se, or the 1se rule. This lambda value
is responsible for producing the model that has a cross-validated error within
one standard error of the minimum. There are advantages to each. Breiman
and colleagues (2017) as well as Chen and Yang (2021) suggest that researchers
should use the 1se rule to select lambda to reduce the instability of the model
while maintaining a parsimonious model. However, this gain in stability comes
with a loss in accuracy (an increase in misclassification error of one standard
error). In addition, some research has shown that the 1se rule performs poorly
in regression (Chen & Yang, 2021) as opposed to a classification tree, so we
used the value that minimized cross-validation error (lambda min). To obtain
our lambda min value, specify lasso.model$lambda.min. Using this specified
lambda value, we can build a LASSO model using the glmnet() function with
the following code, which will produce the coefficients as seen in Table 2.

lasso.model.min <- glmnet(x = predTrain ,

y = outcomeTrain , alpha=1,

family="binomial",

lambda = lasso.model$lambda.min)

Out of the original 106 predictor variables, only 16 were selected via LASSO,
thus a sparse model has been obtained. It is important to examine what variables
were selected by the model to ensure that they are theoretically justified. Ideally
researchers would make this decision about all variables, however, for the sake of
space within this paper, we have chosen to only examine two of the 16 selected
items. One selected item, MQ4 reads: “In comparison to other people, I am
sensitive to the sound of people making nasal sounds.” As nasal and throat
sounds are often thought to be triggers for those with misophonia, this item
makes theoretical sense to be a predictor of the diagnosis. For another selected
item, S5 7, participants were asked, “Please rate your typical reaction to the
following stimuli, if produced by another person: Throat clearing.” This item is
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Table 1. Hyperparameters of the cv.glmnet() function and their corresponding defi-
nitions.

Parameter Description

x A matrix of predictor (or input) variables.
y The vector containing the response (or outcome) variable.
type.measure The optimization measure to be used within the internal cross-validation

procedure. By setting this to “class” misclassification error is optimized.
alpha The Elastic Net mixing hyperparameter. Because the same function is

used to implement ridge, LASSO, and Elastic Net, the value for alpha
determines which regularization technique is run. Alpha is constrained
between 0 and 1, with a value of 0 implementing ridge regression, 1
implementing LASSO regression, and anything in between implementing
an Elastic Net regression.

family The type of regression to be implemented. By setting this hyperparam-
eter to “binomial” an MLE regression is implemented.

nfolds The number of partitions implemented in the internal k-fold cross-
validation.

Figure 2. Cross-validated estimate of the mean squared prediction error for LASSO as
a function of the log λ. The upper axis indicates the number of non-zero coefficients in
the regression model at the given log λ. The dashed vertical line illustrates the location
of the CV minimum and the one standard error rule locations for λ.

theoretically justifiable for the same reason as above, reactions to throat sounds
are a symptom of the disorder.

The coefficient estimates obtained through a LASSO approach are biased
by the nature of the algorithm (Yarkoni & Westfall, 2017), and thus research
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Table 2. A table containing the variables selected by the LASSO model and their
corresponding estimated coefficients. The table also includes the full item for that
particular variable. If items share a common stem, we have grouped them together.

Variable Coefficient Full Item

(Intercept) -5.741

MQ4 0.154 In comparison to other people, I am sensitive to the sound
of people making nasal sounds (e.g., inhale, exhale, sniffing,
etc.).

Once you are aware of the sound(s), because of the sound(s), how often do
you:

MQ11 0.039 Cover your ears?

MQ12 0.137 Feel anxious or distressed?

MQ13 0.112 Become sad or depressed?

MQ17 0.045 Become physically aggressive?

Please rate your typical reaction to the following stimuli, if produced by
another person:

S5 7 0.087 Throat clearing

S5 24 -0.032 Car engine

S5 25 0.318 Clock ticking

S5 31 0.159 Pacing

S5 32 0.024 Nail biting

S5 35 0.123 Strong smells

S5 36 0.089 Seeing someone chew gum

Please indicate your level of agreement to the following statements:

S5 56 0.124 I can feel physical pain if I cannot avoid a sound.

S5 57 0.419 Sometimes in response to sounds I feel rage that is difficult
to control.

S5 75 0.252 Some sounds have caused me to use violence towards myself
or others.

S5 78 -0.018 It does not matter who is making the sounds, my reactions
are the same.

recommends recalculating them using a standard regression before interpreting
the coefficients of the model. To do that, one could use the following code.

selected <- trainDat %>% select(MQDX , MQ4 , MQ11 ,

MQ12 , MQ13 ,MQ17 , S5_7,S5_24, S5_25, S5_31,

S5_32, S5_35, S5_32,S5_35, S5_36, S5_56,

S5_57, S5_75, S5_78)

logistic.model <- glm(MQDX ~ .,

family=binomial(link = "logit"),

data = selected)
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In this code, we first use the select() function from the dplyr package to select
only the variables with non-zero coefficients in the lasso.model.min as well as our
outcome variable, MQDX (Wickham et al., 2023). We then use these variables
to build a standard logistic regression model using the glm() function.

A comparison of the biased coefficients obtained from the LASSO model and
the corrected coefficients obtained in the standard logistic model can be seen in
Table 3. Obtaining the predicted classification prior to calculating accuracy is
crucial. Accuracy values (Equation 3) are then determined using the coefficients
estimated from both the LASSO model (incorrectly biased) and the logistic
model. The following code can be used to obtain the accuracy values from the
logistic model as well as the F-score from the model. Note that the F-score
is obtained using the F1 Score() function from the MLmetrics package (Yan,
2024).

Table 3. A table containing the variables selected by the LASSO model and the coef-
ficient estimates obtained directly from the LASSO model as well as the re-estimated
(non-biased) coefficients obtained by creating a typical logistic model using the selected
variables.

Variable LASSO Estimate Logistic Estimate

(Intercept) -5.741 -8.802

MQ4 0.154 0.361

MQ11 0.039 0.480

MQ12 0.137 0.760

MQ13 0.112 -0.193

MQ17 0.045 0.143

S5 7 0.087 -0.057

S5 24 -0.032 -1.154

S5 25 0.318 1.051

S5 31 0.159 0.538

S5 32 0.024 0.245

S5 35 0.123 0.110

S5 36 0.089 0.285

S5 56 0.124 0.387

S5 57 0.419 0.867

S5 75 0.252 0.186

S5 78 -0.018 -0.600

pp.logistic <- predict(logistic.model ,

data.frame(predTest),

type = "response")

pc.logistic <- ifelse(pp.logistic > .5, 1, 0)

a.logistic <- mean(outcomeTest == pc.logistic)
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f1.logistic <- F1_Score(pc.logistic , outcomeTest)

In the first line of code, using the predict() function, the logistic.model
object and our predTest data (reminder that this is the holdout sample created
during cross-validation earlier) we can create our predictions. By specifying type
= "response", the function will return predicted probabilities. In our second
line, the predicted probabilities are transformed into predicted classes such that
if the probability of them belonging to class 1 is at least 0.5, they are assigned to
class 1 otherwise class 0. The third line calculates accuracy. The value obtained
using the coefficient estimates from the LASSO model is an accuracy score of
0.86. The value obtained using the coefficient estimates from the logistic model
is 0.89. The F-score for both the LASSO model and the logistic model is 0.92.
Note that the accuracy changes across models, but the F-score remains the same.
This indicates that the models likely differ only in their true negative results, as
that measure is not included in the calculation of the F-score.

Despite the strong performance of LASSO on this data, LASSO does have
limitations (Algamal & Lee, 2015). First, it is unable to select more variables
than there are observations. Second, LASSO will select a single variable in the
presence of multicollinearity regardless of that variable’s predictive capacity. Zou
and Hastie (2005) proposed a new regularization technique called Elastic Net to
combat these first two limitations.

Elastic Net. Elastic Net differs from LASSO through the use of an additional
penalty to the regression equation. Elastic Net implements both the ℓ1 penalty,
or the LASSO penalty, and the ℓ2 penalty, or the ridge penalty, to the regression
equation. With the inclusion of both penalties, the optimization function for
Elastic Net is as follows:

LElasticNet(β) =

n∑
i=1

[yixiβ − log(1 + exiβ]− λ1

m∑
j=1

β2
j − λ2

m∑
j=1

|βj | (6)

The first summation represents the log likelihood and is exactly the same as
was seen in Equation 4. The second summation is new to the reader as it is
the ridge penalty, which adds a penalty proportional to the squared value of
the coefficients (Hoerl & Kennard, 1970). Here λ1 is the regularization hyperpa-
rameter that controls the degree of shrinkage such that larger values lead to the
selection of fewer variables. The third summation is the LASSO penalty, which
only differs from Equation 4 in that we now use λ2 (instead of just λ) to denote
the regularization hyperparameter that controls the degree of shrinkage from the
LASSO penalty. The values for λ1 and λ2 can be equal or can be set to differ-
ent values to allow differential application of the penalties. By incorporating the
ridge penalty, Elastic Net can select multiple correlated variables while removing
irrelevant ones (Algamal & Lee, 2015). For more on the ridge penalty, see work
by McDonald (2009). This makes Elastic Net more suitable than LASSO for
datasets with highly correlated predictors, such as dummy-coded variables.

Sample size considerations should also be made when researchers are consid-
ering using Elastic Net. The recommendations are similar to those for LASSO in
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that conservative estimates suggests that researchers should have 10 observations
per candidate variable similar to LASSO (Peduzzi et al., 1995, 1996). However,
this recommendation comes from the general regression literature, and thus,
may not hold with regularization. Recent simulation studies have investigated
the performance of Elastic Net in small sample sizes (e.g., 50 – 100 participants)
and found that methods perform well (Bain et al., 2023; Kirpich et al., 2018;
Wen et al., 2019).

We can obtain our lambda.min value using the cv.glmnet() function, just
as we did for LASSO. However, we change the value for alpha from alpha = 1
to alpha = 0.5. We can then use this value to build our final Elastic Net model
(the second piece of code below). We can then use the variables with non-zero
coefficients from our final Elastic Net model (en.model.min) to build a standard
logistic regression model (logistic.en.model) to get unbiased coefficients, as
was done for LASSO. Two of the selected items include MQ11, and S5 11. MQ11
reads, “Once you are aware of the sound(s), because of the sound(s), how often
do you actively avoid certain situations, places, things, and/or people in antic-
ipation of the sound(s).” Individuals with misophonia are known to employ a
variety of coping strategies (including avoidance) to deal with their triggering
sounds, so this variable makes sense theoretically. S5 11 reads, “Please rate your
typical reaction to the following stimuli, if produced by another person: Repeti-
tive barking.” This item is interesting, because some research has found that not
all sounds must be human made to be triggers for individuals with misophonia,
for example, this is a sound most often made by dogs, not people. However, it
is theoretically sound.

elasticNet <- cv.glmnet(x = predTrain ,

y = outcomeTrain , type.measure = "class",

alpha =0.5, family="binomial", nfolds = 10)

en.model.min <- glmnet(x=predTrain y=outcomeTrain ,

alpha =0.5, family="binomial",

lambda = elasticNet$lamda.min)
selected <- trainDat %>% select(MQDX , MQ4 , MQ11 ,

MQ12 , MQ13 , MQ15 , MQ16 , MQ17 , S5_2, S5_7, S5_11,

S5_24, S5_25, S5_27, S5_31, S5_32, S5_35, S5_36,

S5_38, S5_40, S5_42, S5_53, S5_56, S5_57, S5_68,

S5_74, S5_75, S5_78, S5_82)

logistic.en.model <- glm(MQDX ~.,

family=binomial(link = "logit"),

data = selected)

Coefficient estimates from the Elastic Net model and unbiased coefficients
from a standard logistic model can be seen in Table 4. An accuracy of 0.88 was
obtained using the coefficient estimates from the Elastic Net model, while an
accuracy of 0.80 was obtained using the coefficient estimates from the logistic
model. The F-score obtained using the coefficient estimates from the Elastic Net
model is 0.94, while the logistic model produces an F-score of 0.88. The code
below illustrates how to obtain the 0.80 accuracy value and 0.88 F-score from
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the unbiased logistic regression model. The only change the reader would need
to make to obtain the estimates from the final Elastic Net model instead would
be to substitute en.model.min for logistic.en.model.

pp.en.logistic <- predict(logistic.en.model ,

data.frame(predTest), type = "response")

pc.en.logistic <- ifelse(pp.logistic > .5, 1, 0)

a.en.logistic <- mean(outcomeTest == pc.logistic)

f1.en.logistic <- F1_Score(pc.en.logistic ,

outcomeTest)

Table 4. A table containing the variables selected by the Elastic Net model and their
corresponding estimated coefficients obtained directly from the Elastic Net model as
well as the coefficients estimated by implementing a logistic model (non-biased coeffi-
cients).

Variable Elastic Net Estimate Logistic Estimate

(Intercept) -5.796 -1732.902
MQ4 0.133 15.606
MQ11 0.046 20.788
MQ12 0.119 81.502
MQ13 0.103 -6.765
MQ15 0.057 101.386
MQ16 0.075 5.368
MQ17 0.086 145.615
S5 2 0.023 -6.618
S5 7 0.091 12.560
S5 11 -0.051 -190.866
S5 24 -0.095 -39.021
S5 25 0.262 31.171
S5 27 0.031 94.479
S5 31 0.165 58.559
S5 32 0.092 97.889
S5 35 0.147 56.132
S5 36 0.088 38.234
S5 38 0.036 30.691
S5 40 0.048 111.532
S5 42 0.032 42.788
S5 53 -0.020 12.132
S5 56 0.190 94.590
S5 57 0.259 -87.586
S5 68 0.081 126.088
S5 74 0.018 5.356
S5 75 0.197 -17.256
S5 78 -0.089 -101.315
S5 82 0.033 -2.060
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Elastic Net also has some limitations. Namely, it may struggle with datasets
containing many more variables than observations, it is sensitive to outliers, and,
given that it is designed for linear relationships, it may not capture complex
non-linear relationships between predictors and the response variable effectively
(Wang, Cheng, Liu, & Zhu, 2014).

Genetic Algorithm (GA) Unlike LASSO and Elastic Net, which utilize in-
ternal regression models as embedded methods, the genetic algorithm (GA) op-
erates as a wrapper method. As a reminder, this means that the user must
specify which model it should use (i.e., a user could wrap the GA around a logis-
tic regression model or something more complex like a random forest or SVM,
depending on the nature of their data). As mentioned, wrapper methods each
follow their own algorithmic strategy to explore potential solutions (i.e., poten-
tial sets of variables to select). One wrapper method that may be familiar to
readers is stepwise regression, which builds a model iteratively by either adding
or removing variables based on a given criteria (e.g., Akaike Information Criteria;
AIC). It uses a greedy approach, selecting the variable at each step that yields
the greatest immediate improvement in the chosen criterion (e.g., the largest
decrease in AIC). The GA also operates a greedy algorithm; however, its search
strategy differs.

Instead of adding or removing a single variable (as is done in stepwise re-
gression), the GA, inspired by the principles of natural selection and evolution,
mimics the process of biological evolution to refine potential solutions iteratively.
Through crossover, mutation, and selection mechanisms, the GA explores and
evolves a population of potential solutions over successive generations, gradu-
ally improving the overall quality of solutions. Figure 3 illustrates the general
structure of the genetic algorithm, depicting its iterative process of generating,
evaluating, and evolving solutions. Each iteration refines the population, guiding
the search towards promising regions of the solution space.

Figure 3. The basic algorithmic steps of the Genetic Algorithm.
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For a comprehensive understanding of the genetic algorithm and its applica-
tion to variable selection, interested readers are encouraged to refer to the work
by Bain et al. (2023). Their research provides detailed insights into the underly-
ing principles, implementation strategies, and practical considerations associated
with the GA’s use in solving two-group classification problems.

There are no accepted sample size recommendations for the GA for variable
selection. The required sample size depends heavily on the complexity of the
underlying model, the number of predictors, and the strength of the signals. As
a rough guideline, samples sizes in the range of 100-500 are often used, but larger
samples may be necessary for high-dimensional problems (Cateni et al., 2010;
Leardi, 2000).

For this paper, logistic regression is chosen as the model around which the
GA will wrap. The optimization function used in this paper is the Hubert and
Arabie (1985) Adjusted Rand Index (ARI). ARI is a measure of agreeability
between predicted classifications and true (or known) classifications and can be
calculated in the following way:

ARI =
RI −RIExpected

max(RI)−RIExpected
(7)

RI =
a+ d

a+ b+ c+ d
(8)

RIExpected =
2(a+ b)(a+ c)

(a+ b+ c+ d)2
(9)

Here, a is the number of pairs of individuals (or observations) that are in the
same class in both the true labels and the predicted labels, b is the number
of pairs of individuals that are in the same class in the true labels but are in
different classes in the predicted labels, c is the number of pairs of individuals
that are in different classes in the true labels but are in the same class in the
predicted labels, and d is the number of pairs of individuals that are in different
classes in both the true labels and predicted labels.

The implementation of the GA used in this tutorial comes from the ga()

function in the GA package (Scrucca, 2013, 2017). To implement the GA, the
following code can be run:

ga.solution <- ga(fitness = function(vars)

gaOpt(vars=vars , IV.train=data.frame(predTrain),

DV.train=outcomeTrain),

type = "binary", nBits = ncol(predTrain),

names = colnames(predTrain), seed = 123456 ,

run=5

)

Here, we set type to binary to indicate that we want binary representations
of decision variables. This hyperparameter may need to change depending on
the nature of the variables of interest. Second, we set nBits to be equal to
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the number of predictor variables to indicate that all variables in the dataset
could be selected. A seed is set for reproducibility. The run hyperparameter has
been set to five, indicating that the algorithm should terminate if there is no
improvement in the optimization function after five iterations. Note that one of
the parameters in this function is the gaOpt() function. The gaOpt() function is
a self-defined, user-specified function that could take on a different name. How-
ever, regardless of the name, the function must be passed as a hyperparameter in
the ga() function. The R code needed to implement this optimization function
with a logistic regression model can be seen below. For more information on the
hyperparameters of the GA function and their default values, see Table 5.

Table 5. A table containing the hyperparameters of the ga() function and their cor-
responding definitions and default values.

Parameter Description

fitness The hyperparameter containing the optimization function is passed. No
default is set.

type The type of ga that needs to be run is dependent upon the nature of the
outcome variable. ”binary” is selected.

crossover The type of crossover performed. The default for a binary implementation
is found via the ga Crossover() function.

popSize An R function to generate the initial population. To access available
functions, run ga Population().

pcrossover The probability of crossover, default of 0.8 is used.
pmutation The probability of mutation, default of 0.1 is used.
elitism The number of best fitted chromosomes to survive at the end of each

generation, default of max(1, round(popSize*0.05)) is used.
nBits A value specifying the number of bits in a potential solution, set equal to

the number of predictors.
names The variable names.
maxIter The maximum number of iterations to run before the GA search is halted,

default of 100 is used.
keepBest A logical argument specifying if best solutions at each iteration should

be saved, default FALSE.
seed A number allowed to control randomness for reproducibility.
run The number of consecutive generations that can occur without any im-

provement before the GA is halted, default is modified from maxiter to
5.

gaOpt <- function(vars , IV.train , DV.train ){

varNames <- colnames(IV.train)

selectedVarNames <- varNames[vars == "1"]

gaSolutionData <- IV.train[,selectedVarNames]

gaDat <- cbind(gaSolutionData , DV.train)

gaMod <- glm(DV.train ~ ., family = "binomial",

data = gaDat)
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gaProbabilities <- predict(gaMod , IV.train ,

type = "response")

gaPredictedClasses <-

ifelse(gaProbabilities >= .8, 1, 0)

ari <- adjustedRandIndex(gaPred , DV.train)

return(ari)

}

The glm() function is the same function we used to calculate logistic re-
gression models previously. The adjustedRandIndex() function comes from the
mclust package (Scrucca, Fop, Murphy, & Raftery, 2016). The gaOpt() function
takes us through the steps of finding the ARI for the selected subset of variables.
First, the names of all candidate variables are acquired, then the names of the
variables selected by the GA are found, and we select only those columns from
our train data. Since we had previously removed the dependent variable (the
misophonia diagnosis) from the dataset, we must recombine our selected vari-
ables and our outcome variable into one matrix (line 5 above, here called gaDat).
Next, the logistic regression model is built using these selected variables. Then
the predicted probabilities are obtained, transformed into predicted classes (such
that an individual is given a positive misophonia diagnosis if their probability of
diagnosis is at least .8, which was chosen because only about 20% of our sample
belongs to class 1). Finally, the ARI of the model is calculated and returned to
the ga() function. To view the selected subset of variables from the ga() func-
tion, one calls, ga.solution@solution[1,]. Note, the returned solution (given
by ga.solution@solution) contains many potential subsets of variables, but
by referencing only the first row (using the indexing [1,]), the optimal subset
of variables as determined by the GA can be accessed. Two of the selected items
include item MQ18 and S5 3. Variable MQ18 reads, “Once you are aware of the
sound(s), because of the sound(s), how often do you become physically aggres-
sive” which is theoretically justifiable as individuals with misophonia are known
to have disproportional, often violent, reactions to their triggers. Variable S5 3
reads,“Please rate your typical reaction to the following stimuli, if produced by
another person: Swallowing,” which is justifiable as it pertains to throat noises.

allVarNames <- colnames(predTrain)

selectedVarNames <-

allVarNames[ga.solution@solution [1 ,]==1]

selectedVars <-

data.frame(predTest[,selectedVarNames],

outcomeTest)

ga.model <- glm(outcomeTest~., family="binomial",

data=selectedVars)

Since the ga() function does not have a specified method for model building, but
rather simply returns a list of variable selections, one must first build a model
to obtain an accuracy value for the selected variables. Given that the internal
model we specified was a logistic regression model, it makes sense to use a simple
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logistic model, which can be built using the following code. The coefficients from
this model can be seen in Table 6. After building the model, an accuracy and
F-score can be obtained using the following code:

p <- predict(ga.model , newx = predTest)

c <- ifelse(p >= .8, 1,0)

accuracy <- mean(c == outcomeTest)

f1 <- F1_Score(c,outcomeTest)

Table 6. A table containing the variables selected by the GA and their corresponding
estimated coefficients in the logistic regression model.

Variable Coefficient Variable Coefficient

(Intercept) 72.896 S5 42 -8.713
MQ4 -7.952 S5 45 8.668
MQ6 -3.454 S5 46 -10.066
MQ8 -5.707 S5 49 -1.448
MQ17 -6.154 S5 50 5.708
MQ18 21.166 S5 51 -0.198
S5 2 9.767 S5 52 -8.592
S5 3 -3.703 S5 53 -2.791
S5 4 -0.814 S5 55 -13.721
S5 6 3.907 S5 57 3.470
S5 7 -18.858 S5 58 -2.086
S5 8 1.915 S5 60 -16.660
S5 9 14.258 S5 62 4.408
S5 10 10.305 S5 63 5.143
S5 11 -11.589 S5 64 -0.372
S5 12 43.946 S5 65 4.143
S5 13 -36.764 S5 66 -8.781
S5 18 10.628 S5 68 -13.752
S5 19 2.410 S5 69 7.001
S5 20 -6.446 S5 72 12.343
S5 21 -0.442 S5 73 19.055
S5 23 3.657 S5 76 -9.715
S5 25 2.824 S5 77 -4.178
S5 26 1.490 S5 78 5.347
S5 27 4.120 S5 79 -7.315
S5 31 -4.880 S5 81 7.567
S5 32 -14.408 S5 83 -4.304
S5 33 -11.206 S5 84 -1.235
S5 38 5.880 S5 86 5.970
S5 41 11.462 S5 87 -14.504

Accuracy and F-score values of 1 are obtained, indicating a perfect fit, as
with the past models built in this tutorial. Current literature indicates that the
GA is prone to overfitting (Frohlich, Chapelle, & Scholkopf, 2003; Leardi, 2000;
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Loughrey & Cunningham, 2005), suggesting the model would not fit quite as
well if a new sample was collected, despite the accuracy of the model fit for the
test sample used in this tutorial.

2.2 Support Vector Machines

Support Vector Machines (SVM) are a class of supervised learning models widely
employed in classification and regression tasks (Fernandez et al., 2011; Karat-
zoglou, Meyer, & Hornik, 2006). SVMs operate by finding the optimal hyperplane
that maximizes the margin between different classes of data points. By maximiz-
ing the margin between classes, SVM achieves good generalizability and is robust
to outliers (Singla & Shukla, 2020; Xu, Caramanis, & Mannor, 2009). SVM can
handle both linearly separable and non-linearly separable data by using a ker-
nel function that artificially projects the original data into a higher-dimensional
space (Karatzoglou et al., 2006).

Elastic SCAD SVM SVM, by itself, is a classification algorithm. However,
researchers have created implementations of SVM that simultaneously perform
classification and variable selection (Becker et al., 2011; Bierman & Steel, 2009;
Tharwat & Hassanien, 2019). This tutorial uses an approach like LASSO and
Elastic Net in that it selects variables via the addition of a penalty that comes
from the penalizedSVM package (Becker et al., 2011). The penalty utilized in
this tutorial is the Elastic smoothly clipped absolute deviation (SCAD) penalty,
which when included in an SVM, reads:

SVMESCAD = minb,w[sign(w
Tx+ b) +

p∑
j=1

PSCADλ1(Wj) + λ2∥w∥22] (10)

where λ1 controls the degree of shrinkage applied by the SCAD (PSCADλ1(Wj))
penalty and λ2 controls the degree of shrinkage applied by the Elastic Net
(λ2∥w∥22) penalties. Higher values of either λ increase the degree of shrinkage
applied by their given penalty. For more information on the SCAD penalty, see
work by Becker et al. (2011). Just as with Elastic Net, the λ1 and λ2 values can
be equal or set individually to differentially apply the penalties. The initial part
of the equation (sign(wTx+b) is the base equation for an SVM where w is the
weight vector, x is the input feature vector, b is the bias term vector, sign(.) is
the sign function, which returns +1 if the argument is positive, -1 if negative,
and 0 if zero. All hyperparameters are set to default values in this tutorial. In
addition, data needs to be restructured for this function. For a clearer under-
standing of the additional hyperparameters in the svmfs() function, see Table
7.

Generally, research shows that SVMs improve as sample sizes increase (Bain
et al., 2023). However, some research has shown that sample sizes as small as 80
produce adequate classification models (average RMSEA below 0.01; Figueroa,
Zeng-Treitler, Kandula, & Ngo, 2012), though the required size may increase as
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Table 7. A table containing the hyperparameters of the svmfs() function as well as
their corresponding definitions.

Parameter Description

x Matrix of the input or predictor variables where the columns are the
variables, and the rows are the observations.

y A numerical vector of class labels, -1, 1.
fs.method The feature (or variable) selection method. Available methods in-

clude ’scad’, ’1norm’ used for LASSO, ’DrHSVM’ for Elastic Net,
and ’scad+L2’; for Elastic SCAD.

bounds For an interval grid search a list of values for lambda1 and lambda
2 must be provided to the model.

grid.search The inner validation method used to obtain the values for lambda1
and lambda2.

inner.val.method Whether or not the plots of DIRECT algorithm should be shown.
show Specification of how hyperparameters should be recoded or if no

recoding should occur.
parms.coding By specifying a seed, the results become reproducible. It is included

here for the sake of those readers following along.
seed Matrix of the input or predictor variables where the columns are the

variables, and the rows are the observations.

models become more complex (Guo, Graber, McBurney, & Balasubramanian,
2010). We are aware of no sample size recommendations exist for a penalized
SVM such as this. The svmfs() function can be applied in the following manner.

Bounds <- t(data.frame(log2lambda1=c(-10, 10),

log2lambda2=c( -10 ,10)))

colnames(bounds)<-c("lower", "upper")

svm.model <- svmfs(x=predTrain , y = svmTrainOutcome ,

fs.method = "scad+L2", bounds=bounds ,

grid.search = "interval", inner.val.method = "cv",

show = "none", parms.coding = "none",

seed =123456)

The output of the model created using the svmfs() function has its own
nomenclature that requires explanation. First, rather than referring to the coef-
ficients as coefficients, the model uses the w parameter (coming from the term
beta weight). The b parameter illustrates the intercept of the SVM hyperplane
and can be thought of like the b0 of a regression model. The xind parameter tells
the user the index (or column location) of the variables selected in the dataset.
The full output can be seen in Table 8. Two items selected by this model were
MQ16 and S5 66. Variable MQ16 reads, “Once you are aware of the sound(s),
because of the sound(s), how often do you have violent thoughts” and S5 66
reads, “Some sounds are so unbearable that I have shouted at people for making
them, to make them stop”. Both of these items are related to typical responses
to triggers by those with misophonia and therefore make theoretical sense.
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To examine the accuracy of this model, the same predict function can be
used as was implemented previously, but the outputted predictions will require
some restructuring, as they come in the form of a factor with underlying numeric
values 1 and 2 and they need to have numeric values of 0 and 1. The Elastic
SCAD SVM model obtained an accuracy of 0.83 and an F-score of 0.91. The
code required to calculate that accuracy and F values are below.

Table 8. A table containing all calculated coefficients of all variables in the Elastic
SCAD SVM.

Variable Coefficient Variable Coefficient

(Intercept) -1.209 S5 38 0.003
MQ3 0.002 S5 39 0.003
MQ5 0.003 S5 40 0.001
MQ8 0.003 S5 41 -0.002
MQ11 0.002 S5 42 0.002
MQ12 0.003 S5 43 0.002
MQ16 0.003 S5 49 0.002
MQ17 0.003 S5 53 -0.003
MQ18 0.002 S5 55 0.003
S5 1 0.001 S5 56 0.007
S5 2 0.005 S5 57 0.005
S5 7 0.006 S5 59 0.003
S5 10 -0.003 S5 65 -0.005
S5 11 -0.002 S5 66 0.001
S5 13 -0.001 S5 68 0.004
S5 24 -0.005 S5 69 0.001
S5 25 0.006 S5 72 0.001
S5 26 0.002 S5 74 0.005
S5 28 0.002 S5 75 0.007
S5 31 0.005 S5 78 -0.008
S5 32 0.005 S5 82 0.005
S5 35 0.005 S5 83 0.006
S5 37 0.002 S5 85 0.003

esvm.predictions <- predict(svm.model ,

newdata = svmTestPreds)

esvm.predictions.formatted <-

as.numeric(esvm.predictions$pred.class)-1
esvm.accuracy <-

mean(esvm.predictions.formatted == outcomeTest)

esvm.f1 <- F1_Score(esvm.predictions.formatted ,

outcomeTest)

Limitations of SVM include the researcher’s selection of the kernel function,
computation time, and dimension constraints. By default, the svmfs() function
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utilizes a linear kernel function. Since the kernel is chosen a priori by the re-
searcher, an optimal function must be used for optimal results. SVM models are
computationally more expensive than a simpler classification technique (e.g., lo-
gistic regression) and will take longer to compute. SVM models face the same
degree of freedom problem as LASSO and Elastic Net, which are limited by the
number of observations. As such, an ideal dataset for SVM would contain more
observations than variables.

2.3 Tree Based Models

Random Forest Another powerful classifier is a decision (or classification) tree
(Breiman et al., 2017; Strobl et al., 2009). An example can be seen in Figure 4.
From this decision tree, it can be concluded that anyone whose score on variable
S5 57 is less than 3 and score on variable S5 60 is less than 3 does not qualify
for a misophonia diagnosis. Decision trees are not only powerful classifiers, but
they also produce an output that is easy to interpret. However, decision trees are
prone to overfitting – so much so that overfitting is almost guaranteed (Bengio,
Delalleau, & Simard, 2010). One of the most efficient ways to avoid overfitting
is by using multiple trees (i.e., creating a random forest). Random forest creates
many decision trees using a randomly selected subset of the data to create each
individual tree. The results of all trees are then aggregated to predict the desired
outcome. Some major benefits of a random forest classifier are that it can be used
with an outcome variable that has any number of levels (Brieuc, Waters, Drinan,
& Naish, 2018), meaning that unlike logistic regression, which only works with
binary variables, random forest could handle a variable with 3, 4, or even 10
different levels. However, these trees are only used for classification, meaning
that they do not perform variable selection. Thus, researchers have had to adapt
the classifier to perform variable selection. The utilization of random forest in the
Boruta package performs well in many different conditions (Kursa & Rudnicki,
2010), and, therefore, is the implementation demonstrated in this tutorial.

The Boruta package contains a series of functions pertaining to variable se-
lection techniques using different measures of importance to select the variables.
A measure of importance simply indicates a given variable’s value to the model’s
overall strength. The more useful variables, meaning that they are stronger pre-
dictors of the outcome variable, are deemed more important and thus are more
likely to be selected than those of lesser importance (i.e., less predictive power).
Note that in this paper, mean decreased accuracy is the metric used to calculate
variable importance. The Boruta package also has its own sample size sugges-
tions. The original paper implementing the the package states that for typical
problems, samples of 5-200 are often sufficient, assuming the number of true pre-
dictors is not extremely small compared to the total (Kursa & Rudnicki, 2010).
It notes that as problems get more complex, the sample size should increase.

A simple regression formula statement is used to run the model: outcome
predictors. Because all predictors will be used, a shortcut can be implemented
using a period (.) in place of predictors as seen in the code below. If not, all
variables were to be included in the model, the user would need to type all the
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Figure 4. An example of a decision tree built on the misophonia data using the ctree()
function.

relevant predictors names in the formula statement concatenated with addition
symbols (+). Knowing this, the model can then be built using the following code:

set.seed (123456)

boruta.model <- Boruta(as.factor(MQDX) ~. ,

data=trainDat)

The Boruta() function classifies variables as either important, unimportant,
or of tentative importance. Regarding the misophonia dataset, 15 were deemed
important, 74 were deemed unimportant, and the remaining 17 were placed in
the tentative category. For a list of all variables that were classified in each
category and a visualization of the boruta.model output, see Table 9. Figure
5 illustrates the variability of the importance score calculated for each variable
during the Boruta process and their ultimate classification. A model can be built
using either a) all variables that were not deemed unimportant (non-rejected
variables) or b) only the confirmed important variables. For the purpose of this
tutorial, only variables that have been confirmed important are included in the
model. Two items that were confirmed important are MQ16 and S5 59. Variable
MQ16 was justified in the SVM section as it pertains to having violent thoughts.
S5 59 reads “If I cannot avoid certain sounds I feel helpless.” Helplessness is often
associated with anxiety (i.e., learned helplessness) which is often co-diagnosed
with misophonia, and as such, this variable is theoretically justified.

This model is then built using the randomForest() function since Boruta
implements a random forest model internally. The model is built in the following
way.
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Table 9. A table containing the classifications of importance for each variable as
determined by the Boruta() function. Note that the implementation of Boruta used
in this paper utilized mean decreased accuracy as the metric to calculate variable
importance.

Variables Items

Confirmed Important MQ12, MQ13, MQ16, S5 3, S5 34, S5 35, S5 39, S5 40,
S5 53, S5 56, S5 57, S5 59, S5 60, S5 67, S5 75

Rejected MQ1, MQ2, MQ3, MQ4, MQ5, MQ6, MQ7, MQ8, MQ10,
MQ11, MQ14, MQ15, MQ18, MQ20, S5 1, S5 4, S5 6,
S5 7, S5 8, S5 9, S5 10, S5 11, S5 12, S5 13, S5 14, S5 15,
S5 16, S5 17, S5 19, S5 20, S5 23, S5 24, S5 26, S5 28,
S5 29, S5 30, S5 32, S5 33, S5 36, S5 37, S5 41, S5 42,
S5 43, S5 44, S5 45, S5 46, S5 47, S5 48, S5 49, S5 50,
S5 51, S5 52, S5 54, S5 55, S5 58, S5 64, S5 65, S5 66,
S5 68, S5 70, S5 71, S5 72, S5 73, S5 74, S5 76, S5 77,
S5 78, S5 79, S5 80, S5 82, S5 83, S5 84, S5 86, S5 87

Tentative MQ17, MQ19, S5 2, S5 5, S5 18, S5 21, S5 22, S5 25,
S5 27, S5 31, S5 38, S5 61, S5 62, S5 63, S5 69, S5 81,
S5 85

set.seed (123456)

finalBoruta <- getConfirmedFormula(boruta.model)

selectedModel <- randomForest(finalBoruta ,

data=trainDat)

The predictive accuracy of the random forest model can be calculated using the
predict() function, just as it has been for other models. An accuracy of .88 was
obtained for this model and an F-score of 0.93. The algorithm may not perform
well with highly unbalanced classifications or in situations where a given level
contains a very small number of classifications.

2.4 Comparing All Models

For a comparison of the accuracy values and F-scores obtained by all techniques
implemented in this tutorial, see Table 10. From this, we can state that the GA
produced the most accurate model. However, there was no difference in the ac-
curacy of the LASSO non-biased (e.g., the standard regression model built using
variable selected via the LASSO), Boruta, and Elastic Net models. Depending
on the purpose of your model, you may want to use a performance metric other
than accuracy. Within the context of our motivating example, it may be worth
examining the following:

– Sensitivity: Given the individual truly has misophonia, how likely is the
classifier to realize that?

– Specificity: Given the individual truly does not have misophonia, how likely
is the classifier to realize that?
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Figure 5. A plot containing the Z-score transformed estimates of variable importance
scores for each variable in the Boruta() model. Blue boxplots correspond to mini-
mal, average, and maximum Z-scores of a shadow attribute. Red and green boxplots
represent Z-scores of rejected and confirmed attributes respectively. Note that the im-
plementation of Boruta used in this paper utilized mean decreased accuracy as the
metric to calculate variable importance.

– Positive predictive value: Given the classifier claims the individual to
have misophonia, how likely is it that the individual really has misophonia?

– Negative predictive value: Given the classifier claims the individual does
not have misophonia, how likely is it that the individual really does not have
the disease?

While accuracy serves as a useful general indicator of model performance,
it can be misleading, particularly when dealing with unbalanced datasets where
one class is significantly more prevalent than the other. In such cases, a model
can achieve high accuracy by simply predicting the majority class, even if it
performs poorly on the minority class. Therefore, it’s essential to consider al-
ternative performance metrics that provide a more nuanced understanding of
a model’s strengths and weaknesses. For instance, sensitivity (the true positive
rate) measures the proportion of actual positives that are correctly identified,
while specificity (the true negative rate) quantifies the proportion of actual neg-
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Table 10. A table containing the predictive accuracy values obtained by all models
built in this tutorial paper. Methods are listed such that the accuracy values are ordered
from least accurate to most accurate. Significance is determined relative to the previous
model (i.e., Elastic SCAD SVM was determined to have a statistically significant better
accuracy than Elastic Net non-biased) according to a McNemar’s Chi-squared test with
continuity correction. Note significant differences were not evaluated for F-scores.

Method Cross-validated
Accuracy

Cross-validated F-Score

Elastic Net non-biased 0.797 0.881
Elastic SCAD SVM 0.828** 0.905
LASSO 0.859** 0.918
Elastic Net 0.875 0.938
Boruta 0.875 0.930
LASSO non-biased 0.891 0.916
GA 1*** 1

Note: * p < .05, ** p < .01, *** p < .0001

atives that are correctly classified. These metrics are crucial when the cost of
misclassification differs for each class, such as in medical diagnosis where failing
to identify a true case (low sensitivity) can have more severe consequences than
a false positive (low specificity). Precision reflects the proportion of predicted
positives that are actually positive, while recall is synonymous with sensitivity.
Another valuable metric is the Area Under the Curve (AUC) of the Receiver Op-
erating Characteristic (ROC) curve, which comprehensively measures a model’s
ability to discriminate between classes across various thresholds. Researchers
should carefully consider their research question’s specific goals and context to
select the most appropriate performance metrics, ensuring a balanced and in-
sightful evaluation of their models.

Given that our example pertains to diagnosis, it is possible that one may fa-
vor sensitivity over specificity in that we want to minimize the number of missed
cases. However, it is also possible that we would want to minimize the number of
false diagnoses to save individuals the cost of unnecessary intervention. A con-
fusion matrix (discussed briefly in Appendix B) might be useful. Alternatively,
one could use the AUC of the ROC curve. One should carefully consider these
factors when deciding on the performance metric by which to evaluate a model.

Examining the selected variables reveals interesting method-dependent pat-
terns. Elastic SCAD SVM selected many more variables than LASSO, but had
a worse accuracy. Given this outcome, it may not be ideal to use all variables
selected by Elastic SCAD SVM in this dataset. There was only one variable
(S5 57) that was selected by all five methods. So, there is a clear method ef-
fect on the variables that are deemed to be important. Within the context of
our example, we could interpret this to mean that the question, “Sometimes
in response to sounds, I feel rage that is difficult to control,” is an incredibly
important predictor for misophonia and may capture a defining characteristic of
the disorder. Beyond improving predictive accuracy, understanding why certain
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variables are deemed important can provide valuable insights into the underly-
ing mechanisms or factors driving the outcome of interest. This insight could
guide future research exploring the role of emotional regulation in misophonia
and potentially inform the development of targeted interventions. Furthermore,
the identification of unexpected or previously overlooked variables as important
predictors can spark new research questions and hypotheses. This iterative pro-
cess of variable selection, model building, and hypothesis generation can lead to
a more nuanced and comprehensive understanding of complex phenomena. By
carefully examining the selected variables, researchers can generate hypotheses,
refine theoretical models, and ultimately gain a deeper understanding of complex
human behavior and health outcomes.

3 Discussion

This tutorial provided an overview and a practical guide for the implementation
of LASSO (Friedman et al., 2010), Elastic Net (Friedman et al., 2010), a ge-
netic algorithm (Scrucca, 2013, 2017), Elastic SCAD SVM (Becker et al., 2009),
and random forest via Boruta (Kursa & Rudnicki, 2010) in R v. 4.2.1. Proper
analysis of the output as well as comparisons on the predictive accuracy of each
method are also discussed. More information on R, other useful machine learning
software, and some of these functions were provided in the Appendices. Lastly,
an OSF project containing all code implemented in this tutorial, additional code
the reader may find useful, and the data used is available. For a full link to the
project, see the availability of data and materials section of this paper.

Variable selection allows researchers to find parsimonious models that are also
good predictive or classifying models. Given R’s increasing popularity among
researchers due to the software’s free and open access nature, it is valuable to
the field to provide more guidance on the variable selection methods available in
R. In addition, the extent to which some of these methods overfit data should not
be ignored when implementing them on real-world data. Suppose a researcher is
concerned with creating a generalizable model. In that case, it is recommended
that the results be validated not only through some form of cross-validation
but also through the collection of a new sample. Through this tutorial, we aim
to push the field towards more transparent guidelines and standardization for
the use of variable selection techniques and machine learning in psychological
research.

While variable selection offers numerous advantages, it’s crucial to acknowl-
edge its potential ethical implications, particularly in sensitive applications like
clinical diagnosis or risk assessment (Obermeyer, Powers, Vogeli, & Mullainathan,
2019). If biased or incomplete data is used for training, variable selection algo-
rithms can perpetuate and even amplify existing societal biases, leading to unfair
or discriminatory outcomes (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan,
2021). For example, if a dataset used to predict criminal recidivism is skewed
towards certain demographics, the selected variables might unfairly target indi-
viduals from those groups, even if the variables are not causally related to re-

https://osf.io/pr6j8/?view_only=c778e322f1d54429990067580e615afb
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cidivism. Similarly, in clinical diagnosis, relying on variables that are correlated
with social determinants of health rather than underlying biological mechanisms
could result in misdiagnosis or inadequate treatment for marginalized popula-
tions (Vyas, Eisenstein, & Jones, 2020). Therefore, researchers must carefully
consider the potential for bias in their data and strive to develop and implement
variable selection techniques that prioritize fairness and equity.

Beyond enhancing model performance, variable selection holds significant po-
tential for translational impact in the social and health sciences. By identifying
the most influential predictors, researchers can better understand the underlying
mechanisms driving complex phenomena, leading to more effective interventions,
treatments, and public health strategies. For instance, in personalized medicine,
variable selection can help tailor treatments to individual patients based on
their unique genetic, environmental, and lifestyle factors . Identifying key risk
factors for chronic diseases through variable selection in public health can in-
form targeted prevention programs and resource allocation strategies. Moreover,
in developing psychological interventions, variable selection can aid in identify-
ing the most effective treatment components and tailoring therapies to specific
patient needs and characteristics (Vyas et al., 2020). By focusing research and
interventions on the most impactful variables, variable selection can contribute
more effective and efficient solutions to pressing social and health challenges.

There are many ways a researcher can define accuracy. When interested in
classification, an optimal model is one with minimal classification error, as we
have highlighted throughout this tutorial (Huang, 2015). However, previous re-
search notes that if classification is not the goal, minimal error can be concep-
tualized as selecting variables with the highest relevance to the given outcome
(Peng, Long, & Ding, 2005). With this in mind, it is important that variables
are not falsely discovered (i.e., a variable that is not relevant is selected; Type
I error in selection). An interested reader is pointed to the knockoff package
(Candés, Fan, Janson, & Lv, 2018) and work by Zimmermann, Baillie, Kor-
maksson, Ohlssen, and Sechidis (2024). Another important aspect of variable
selection, especially for the applied researcher, is the stability of a model (i.e.,
how robust a particular model is to small changes in the data). We discussed one
way to address this concern through the concept of cross-validation, however,
there are additional ways one might go about addressing this concern (Bommert
& Lang, 2021; Nogueira, Sechidis, & Brown, 2018). The field would benefit from
additional tutorial papers discussing the balance of these issues with accuracy
to help guide the applied researcher.

Many additional R packages will perform variable selection using random
forest as well as SVMs, but only one of each was demonstrated in this tutorial.
The demonstrated methods in the current tutorial were selected because they are
commonly used in the psychological sciences, are powerful techniques for classifi-
cation (e.g., diagnosing individuals with misophonia) and variable selection, and
are all freely available to researchers in R. In a similar vein, we have included
only five machine learning methods here but many more exist, and additional
tutorials should be provided to applied researchers about how best to implement
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them following research demonstrating each algorithm’s performance to indicate
which algorithm is best for addressing certain research questions. For the inter-
ested reader, a comparison of the performance of each method demonstrated in
this tutorial can be found in Bain et al. (2023).

4 Conclusion

This tutorial presented an overview and a practical guide for implementing five
variable selection techniques: LASSO (Friedman et al., 2010), Elastic Net (Fried-
man et al., 2010), a genetic algorithm (Scrucca, 2013, 2017), Elastic SCAD SVM
(Becker et al., 2009), and random forest via Boruta (Kursa & Rudnicki, 2010)
in R. Proper analysis of the output as well as comparisons on the predictive
accuracy of each method are also discussed. More information on R, other useful
machine learning software, and some of these functions were provided in the
Appendices. Lastly, an OSF project containing all code implemented in this tu-
torial, additional code the reader may find useful, and the data used is available.
For a full link to the project, see the availability of data and materials section
of this paper.

This paper highlighted the increasing availability of large and complex datasets
in the social and health sciences, requiring a move beyond traditional variable
selection techniques like stepwise regression. This tutorial demonstrates that
modern machine learning methods offer powerful and accessible alternatives for
identifying the most informative variables, improving model accuracy, and gain-
ing a deeper understanding of complex phenomena. By embracing these ad-
vancements and continuing to explore the ethical and interpretive dimensions of
variable selection, researchers can enhance the rigor, reproducibility, and, ulti-
mately, the translational impact of their work. We encourage readers to consult
the documentation for each method for further examples and details. The user is
to refer to each method’s full documentation for additional examples and details.
We hope that this tutorial makes these methods more easily accessible to the
everyday psychological researcher, opens doors to applications of variable selec-
tion in new areas, and leads to a decreased presence of less powerful methods
(e.g., stepwise selection) in the literature.

Availability of Data and Materials

The accompanying code and data utilized in this tutorial can be found here:
https://osf.io/pr6j8/?view only=c778e322f1d54429990067580e615afb. Ad-
ditional supplementary information such as a glossary of key terms, R package
recommendations, etc. are also available through OSF.
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Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting Dropout Student:
An Application of Data Mining Methods in an Online Education Program.
European Journal of Open, Distance and E-Learning , 17 (1), 118–133. doi:
https://doi.org/10.2478/eurodl-2014-0008

Zimmermann, M. R., Baillie, M., Kormaksson, M., Ohlssen, D., & Sechidis, K.
(2024). All that Glitters Is not Gold: Type-I Error Controlled Variable
Selection from Clinical Trial Data. Clinical Pharmacology & Therapeutics,
115 (4), 774–785. doi: https://doi.org/10.1002/cpt.3211

Zou, H., & Hastie, T. (2005). Regularization and Variable Selection Via the
Elastic Net. Journal of the Royal Statistical Society Series B: Statis-
tical Methodology , 67 (2), 301–320. doi: https://doi.org/10.1111/j.1467-
9868.2005.00503.x

https://doi.org/10.3390/ijerph20105760
https://doi.org/10.1111/j.1365-2656.2006.01141.x
https://doi.org/10.1002/sim.3943
https://doi.org/10.1002/jclp.22098
https://doi.org/10.1177/1745691617693393
https://doi.org/10.2478/eurodl-2014-0008
https://doi.org/10.1002/cpt.3211
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x


146 C.M. Bain et al.

Appendix A

Table 1. Demographic information for the sample used in the illustrative example.

Variable n (%)

Age (Years) M = 18.96, SD = 1.7

Gender
Male 104 (30.3%)
Female 239 (69.7%)
Ethnicity
White 263 (76.7%)
Black/African American 32 (9.3%)
Latino/Hispanic 46 (13.4%)
Asian/Asian American 28 (8.2%)
American Indian/Alaska Native 26 (7.6%)
Native Hawaiian/Other Pacific Islander 2 (0.6%)
Other 2 (0.6%)
Education
Less than high school 2 (0.6%)
High school graduate 129 (37.6%)
Some years of college/university (no
degree)

194 (56.6%)

Vocational training 2 (0.6%)
Associates degree 8 (2.3%)
Bachelor’s degree 5 (1.5%)
Master’s degree 1 (0.3%)

Appendix B

The random forest output contains different information than any other tech-
nique discussed in this paper because it performs a type of cross-validation in-
ternally through looking at something called Out of Bag error (OOB; sometimes
referred to as the out-of-bag estimate). The OOB is an approach to measuring
the prediction error of a random forest model or of other decision tree mod-
els. OOB error is the mean prediction error of a given sample, using only the
trees which did not have that sample in their bootstrapped sample. This sounds
potentially confusing, but it simply means that the OOB error is the average
prediction error of a given sample of data when that sample of data is treated
as a test sample rather than a train sample (i.e., a tree is evaluated on that data
since it has yet to see it). OOB error is also used for other machine learning mod-
els implementing something called bootstrap aggregation (bagging). Bagging is
the official term for only considering a random sample of the data when random
forest creates each tree. It is unique in that it is a random sample that allows
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for repetition, meaning that the records for a single participant could be repre-
sented more than once in the sample. For more on the theory behind bagging,
see work by Ghojogh and Crowley (2023). In addition to the OOB error rate,
the output provides a confusion matrix, something that is often used to discuss
the performance of a classification method. A confusion matrix follows the form
below:

Table 2. Confusion Matrix with Signal Detection Theory Terminology

True 0 True 1

Predicted 0 Correct Rejection Miss
Predicted 1 False Alarm Hit

It is ideal to have a high number of both hits and correct rejections and a low
number of both false alarms and misses. It is possible that one may wish to allow
for more false alarms so as to decrease miss rates in some cases (e.g., a doctor
would likely rather have a false positive screening for cancer than miss a cancer
diagnosis). In other cases, one may want to minimize false alarms (e.g., in the
court system, it is ideal to minimize the number of innocent people who are sent
to jail). Thus, it is incredibly beneficial to understand each of these statistics
when evaluating the performance of a classification model, as they both factor
into calculating accuracy. The randomForest() output provides a classification
error representing the proportion of a given class which has been misclassified
(e.g., a true 0 that was classified as 1 or the reverse). For the model demonstrated,
there is no classification error for either class since perfect accuracy occurred.
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