A Guide to Specifying Effects in Latent Change Score Models with Moderated Mediation

Authors

  • Holly P. O'Rourke, PhD University of California at Riverside Author
  • Chanler D. Hilley, PhD Kennesaw State University Author

DOI:

https://doi.org/10.35566/jbds/orourke

Keywords:

Latent Change, Mediation, Moderation, Moderated Mediation, Conditional Indirect Effects

Abstract

Latent change score (LCS) models are discrete-time longitudinal models that concurrently investigate growth over time and dynamic (lagged) relations among variables. Bivariate LCS models can be extended to multivariate scenarios with mediators and moderators, and mediation paths can be constrained or freely estimated across time. We provide a decision-making guide for model specification based on variable scale of measurement and hypothesized change processes. We then simulate two examples to illustrate how LCS models can be specified to estimate moderated mediation effects where the indirect effect from mediation is conditional upon values of the time-invariant moderator. We provide simulated data and annotated Mplus and R lavaan code.

References

Altman, D. G., & Royston, P. (2006). The cost of dichotomising continuous variables. BMJ, 332(7549), 1080.1. doi: https://doi.org/10.1136/bmj.332.7549.1080 DOI: https://doi.org/10.1136/bmj.332.7549.1080

Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review, 40(1), 37. doi: https://doi.org/10.2307/2094445 DOI: https://doi.org/10.2307/2094445

Baltagi, B. H. (2021). Econometric Analysis of Panel Data. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-030-53953-5 DOI: https://doi.org/10.1007/978-3-030-53953-5

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. doi: https://doi.org/10.1037/0022-3514.51.6.1173 DOI: https://doi.org/10.1037//0022-3514.51.6.1173

Buil, J. M., Van Lier, P. A. C., Brendgen, M. R., Koot, H. M., & Vitaro, F. (2017). Developmental pathways linking childhood temperament with antisocial behavior and substance use in adolescence: Explanatory mechanisms in the peer environment. Journal of Personality and Social Psychology, 112(6), 948–966. doi: https://doi.org/10.1037/pspp0000132 DOI: https://doi.org/10.1037/pspp0000132

Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2021). Testing moderation in business and psychological studies with latent moderated structural equations. Journal of Business and Psychology, 36(6), 1009–1033. doi: https://doi.org/10.1007/s10869-020-09717-0 DOI: https://doi.org/10.1007/s10869-020-09717-0

Cronbach, L. J., & Furby, L. (1970). How we should measure “change”: Or should we? Psychological Bulletin, 74(1), 68–80. doi: https://doi.org/10.1037/h0029382 DOI: https://doi.org/10.1037/h0029382

Cáncer, P. F., & Estrada, E. (2023). Effectiveness of the deterministic and stochastic bivariate latent change score models for longitudinal research. Structural Equation Modeling: A Multidisciplinary Journal, 30(4), 618–632. doi: https://doi.org/10.1080/10705511.2022.2161906 DOI: https://doi.org/10.1080/10705511.2022.2161906

Cáncer, P. F., Estrada, E., & Ferrer, E. (2023). A dynamic approach to control for cohort differences in maturation speed using accelerated longitudinal designs. Structural Equation Modeling: A Multidisciplinary Journal, 30, 761–777. doi: https://doi.org/10.1080/10705511.2022.2163647 DOI: https://doi.org/10.1080/10705511.2022.2163647

Cáncer, P. F., Estrada, E., Ollero, M. J. F., & Ferrer, E. (2021). Dynamical properties and conceptual interpretation of latent change score models. Frontiers in Psychology, 12, 696419. doi: https://doi.org/10.3389/fpsyg.2021.696419 DOI: https://doi.org/10.3389/fpsyg.2021.696419

Estrada, E., Bunge, S. A., & Ferrer, E. (2023). Controlling for cohort effects in accelerated longitudinal designs using continuous- and discrete-time dynamic models. Psychological Methods, 28(2), 359–378. doi: https://doi.org/10.1037/met0000427 DOI: https://doi.org/10.1037/met0000427

Goldsmith, K. A., MacKinnon, D. P., Chalder, T., White, P. D., Sharpe, M., & Pickles, A. (2018). Tutorial: The practical application of longitudinal structural equation mediation models in clinical trials. Psychological Methods, 23(2), 191–207. doi: https://doi.org/10.1037/met0000154 DOI: https://doi.org/10.1037/met0000154

Gonzalez, O., & Valente, M. J. (2023). Accommodating a latent XM interaction in statistical mediation analysis. Multivariate Behavioral Research, 58(4), 659–674. doi: https://doi.org/10.1080/00273171.2022.2119928 DOI: https://doi.org/10.1080/00273171.2022.2119928

Gradinger, P., Yanagida, T., Strohmeier, D., & Spiel, C. (2015). Prevention of cyberbullying and cyber victimization: Evaluation of the ViSC social competence program. Journal of School Violence, 14(1), 87–110. doi: https://doi.org/10.1080/15388220.2014.963231 DOI: https://doi.org/10.1080/15388220.2014.963231

Griffiths, S., Kievit, R. A., & Norbury, C. (2022). Mutualistic coupling of vocabulary and non-verbal reasoning in children with and without language disorder. Developmental Science, 25(3), e13208. doi: https://doi.org/10.1111/desc.13208 DOI: https://doi.org/10.1111/desc.13208

Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31(4), 328–339. doi: https://doi.org/10.1177/0165025407077754 DOI: https://doi.org/10.1177/0165025407077754

Grimm, K. J., An, Y., McArdle, J. J., Zonderman, A. B., & Resnick, S. M. (2012). Recent changes leading to subsequent changes: Extensions of multivariate latent difference score models. Structural Equation Modeling: A Multidisciplinary Journal, 19(2), 268–292. doi: https://doi.org/10.1080/10705511.2012.659627 DOI: https://doi.org/10.1080/10705511.2012.659627

Hamagami, F., & McArdle, J. J. (2001). Advanced studies of individual differences linear dynamic models for longitudinal data analysis. In G. A. Marcoulides & R. E. Schumacker (Eds.), New Developments and Techniques in Structural Equation Modeling (pp. 223–266). Psychology Press. doi: https://doi.org/10.4324/9781410601858-13 DOI: https://doi.org/10.4324/9781410601858-13

Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1–22. doi: https://doi.org/10.1080/00273171.2014.962683 DOI: https://doi.org/10.1080/00273171.2014.962683

Hayes, A. F. (2018). Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Communication Monographs, 85(1), 4–40. doi: https://doi.org/10.1080/03637751.2017.1352100 DOI: https://doi.org/10.1080/03637751.2017.1352100

Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd ed.). New York ; London: The Guilford Press.

Hilley, C. D., & O’Rourke, H. P. (2022). Dynamic change meets mechanisms of change: Examining mediators in the latent change score framework. International Journal of Behavioral Development, 46(2), 125–141. doi: https://doi.org/10.1177/01650254211064352 DOI: https://doi.org/10.1177/01650254211064352

Hsiao, C. (2014). Analysis of panel data (3rd ed.). New York, NY: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139839327

Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5(5), 602–619. doi: https://doi.org/10.1177/0193841X8100500502 DOI: https://doi.org/10.1177/0193841X8100500502

Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409–426. doi: https://doi.org/10.1007/BF02291366 DOI: https://doi.org/10.1007/BF02291366

Könen, T., & Karbach, J. (2021). Individual differences in intervention-related changes. Advances in Methods and Practices in Psychological Science, 4(1), 251524592097917. doi: https://doi.org/10.1177/2515245920979172 DOI: https://doi.org/10.1177/2515245920979172

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Routledge.

MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384–389. doi: https://doi.org/10.3758/BF03193007 DOI: https://doi.org/10.3758/BF03193007

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104. doi: https://doi.org/10.1037/1082-989X.7.1.83 DOI: https://doi.org/10.1037//1082-989X.7.1.83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128. doi: https://doi.org/10.1207/s15327906mbr3901_4 DOI: https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. Personality and Social Psychology Review, 19(1), 30–43. doi: https://doi.org/10.1177/1088868314542878 DOI: https://doi.org/10.1177/1088868314542878

MacKinnon, D. P., Valente, M. J., & Gonzalez, O. (2020). The correspondence between causal and traditional mediation analysis: the link is the mediator by treatment interaction. Prevention Science, 21(2), 147–157. doi: https://doi.org/10.1007/s11121-019-01076-4 DOI: https://doi.org/10.1007/s11121-019-01076-4

McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analysis. In Structural Equation Modeling: Present and Future. A Festschrift in Honor of Karl Joreskog (pp. 341–380). Lincolnwood, IL: Scientific Software International.

McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577–605. doi: https://doi.org/10.1146/annurev.psych.60.110707.163612 DOI: https://doi.org/10.1146/annurev.psych.60.110707.163612

McArdle, J. J., & Grimm, K. J. (2010). Five steps in latent curve and latent change score modeling with longitudinal data. In K. Van Montfort, J. H. Oud, & A. Satorra (Eds.), Longitudinal Research with Latent Variables (pp. 245–273). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-642-11760-2_8 DOI: https://doi.org/10.1007/978-3-642-11760-2_8

McArdle, J. J., & Hamagami, F. (1996). Multilevel models from a multiple group structural equation perspective. In Advanced structural equation modeling: Issues and techniques (pp. 89–124). Psychology Press.

McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized clinical trial in reasoning training. Psychology and Aging, 23(4), 702–719. doi: https://doi.org/10.1037/a0014349 DOI: https://doi.org/10.1037/a0014349

Miočević, M., O’Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2018). Statistical properties of four effect-size measures for mediation models. Behavior Research Methods, 50(1), 285–301. doi: https://doi.org/10.3758/s13428-017-0870-1 DOI: https://doi.org/10.3758/s13428-017-0870-1

Muthén, L. K., & Muthén, B. O. (2017). Mplus. Los Angeles, CA: Muthén & Muthén.

O’Rourke, H. P., Fine, K. L., Grimm, K. J., & MacKinnon, D. P. (2022). The importance of time metric precision when implementing bivariate latent change score models. Multivariate Behavioral Research, 57(4), 561–580. doi: https://doi.org/10.1080/00273171.2021.1874261 DOI: https://doi.org/10.1080/00273171.2021.1874261

O’Rourke, H. P., & MacKinnon, D. P. (2015). When the test of mediation is more powerful than the test of the total effect. Behavior Research Methods, 47(2), 424–442. doi: https://doi.org/10.3758/s13428-014-0481-z DOI: https://doi.org/10.3758/s13428-014-0481-z

O’Rourke, H. P., & MacKinnon, D. P. (2018). Reasons for testing mediation in the absence of an intervention effect: A research imperative in prevention and intervention research. Journal of Studies on Alcohol and Drugs, 79(2), 171–181. doi: https://doi.org/10.15288/jsad.2018.79.171 DOI: https://doi.org/10.15288/jsad.2018.79.171

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185–227. doi: https://doi.org/10.1080/00273170701341316 DOI: https://doi.org/10.1080/00273170701341316

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raykov, T. (1999). Are simple change scores obsolete? an approach to studying correlates and predictors of change. Applied Psychological Measurement, 23(2), 120–126. doi: https://doi.org/10.1177/01466219922031248 DOI: https://doi.org/10.1177/01466219922031248

Rosseel, Y. (2012). lavaan : An R package for structural equation modeling. Journal of Statistical Software, 48(2). doi: https://doi.org/10.18637/jss.v048.i02 DOI: https://doi.org/10.18637/jss.v048.i02

Sardeshmukh, S. R., & Vandenberg, R. J. (2017). Integrating moderation and mediation: A structural equation modeling approach. Organizational Research Methods, 20(4), 721–745. doi: https://doi.org/10.1177/1094428115621609 DOI: https://doi.org/10.1177/1094428115621609

Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6(2-3), 144–164. doi: https://doi.org/10.1080/15427600902911247 DOI: https://doi.org/10.1080/15427600902911247

Serang, S., Grimm, K. J., & Zhang, Z. (2019). On the correspondence between the latent growth curve and latent change score models. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 623–635. doi: https://doi.org/10.1080/10705511.2018.1533835 DOI: https://doi.org/10.1080/10705511.2018.1533835

Simone, M., & Lockhart, G. (2019). Empirical sample size guidelines for use of latent difference score mediation. Structural Equation Modeling: A Multidisciplinary Journal, 26(4), 636–645. doi: https://doi.org/10.1080/10705511.2018.1540934 DOI: https://doi.org/10.1080/10705511.2018.1540934

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290. doi: https://doi.org/10.2307/270723 DOI: https://doi.org/10.2307/270723

Usami, S., Hayes, T., & McArdle, J. J. (2016). Inferring longitudinal relationships between variables: Model selection between the latent change score and autoregressive cross-lagged factor models. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 331–342. doi: https://doi.org/10.1080/10705511.2015.1066680 DOI: https://doi.org/10.1080/10705511.2015.1066680

Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure–mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18(2), 137–150. doi: https://doi.org/10.1037/a0031034 DOI: https://doi.org/10.1037/a0031034

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54(3), 426–482. doi: https://doi.org/10.1090/S0002-9947-1943-0012401-3 DOI: https://doi.org/10.1090/S0002-9947-1943-0012401-3

Zaccoletti, S., Camacho, A., Correia, N., Aguiar, C., Mason, L., Alves, R. A., & Daniel, J. R. (2020). Parents’ perceptions of student academic motivation during the COVID-19 lockdown: A cross-country comparison. Frontiers in Psychology, 11, 592670. doi: https://doi.org/10.3389/fpsyg.2020.592670 DOI: https://doi.org/10.3389/fpsyg.2020.592670

Zhu, S., Sagherian, K., Wang, Y., Nahm, E.-S., & Friedmann, E. (2021). Longitudinal moderated mediation analysis in parallel process latent growth curve modeling in intervention studies. Nursing Research, 70(3), 184–192. doi: https://doi.org/10.1097/NNR.0000000000000503 DOI: https://doi.org/10.1097/NNR.0000000000000503

Downloads

Published

2025-11-03

Issue

Section

Tutorials

How to Cite

O'Rourke, H., & Chanler D. Hilley. (2025). A Guide to Specifying Effects in Latent Change Score Models with Moderated Mediation. Journal of Behavioral Data Science, 5(2), 1-27. https://doi.org/10.35566/jbds/orourke

Most read articles by the same author(s)