Determining Relative Importance with Independent Variable Groups: An Alternative Dominance Analysis Method

Authors

DOI:

https://doi.org/10.35566/jbds/luchman

Keywords:

Relative Importance Analysis, Dominance Analysis, Shapley Value Decomposition, Owen Value Decomposition

Abstract

Grouping independent variables (IVs) in relative importance analyses like dominance analysis (DA) can reduce computation time and improve analysis feasibility. A side effect of grouping IVs is that determining the importance of individual IVs within groups is not possible. This work proposes an extension of DA where the researcher can group IVs yet still compare individual IVs. The proposed extension extends from Owen values, a variant of the Shapley value solution concept from Cooperative Game Theory. Owen values are used to generate within-group DA statistics and designations which can be used for relative importance analysis of individual IVs in IV groups. This manuscript provides an analytic example with data in the R statistical computing environment that shows how within-group DA statistics and designations are determined. The manuscript concludes by discussing how to group IVs into IV groups and potential extensions to the method to simplify the IV grouping process.

References

Antal, D. (2025). dataset: Create data frames for exchange and reuse [Computer software manual]. (R package version 0.4.1) doi: https://doi.org/10.32614/CRAN.package.dataset

Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129–148. doi: https://doi.org/10.1037/1082-989X.8.2.129

Bittmann, F. (2024). A primer on dominance analysis. doi: https://doi.org/10.20944/preprints202404.1606.v1

Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114(3), 542–551. doi: https://doi.org/10.1037/0033-2909.114.3.542

Budescu, D. V., & Azen, R. (2004). Beyond global measures of relative importance: Some insights from dominance analysis. Organizational Research Methods, 7(3), 341–350. doi: https://doi.org/10.1177/1094428104267049

Grömping, U. (2007). Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 61(2), 139–147. doi: https://doi.org/10.1198/000313007X188252

Gu, X. (2023). Evaluating predictors’ relative importance using bayes factors in regression models. Psychological Methods, 28(4), 825–842. doi: https://doi.org/10.1037/met0000431

Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 7(3), 238–257. doi: https://doi.org/10.1177/109442810426651

Kruskal, W. (1987). Relative importance by averaging over orderings. The American Statistician, 41(1), 6–10. doi: https://doi.org/10.1080/00031305.1987.10475432

LeBreton, J. M., Tonidandel, S., & Krasikova, D. V. (2013). Residualized relative importance analysis: A technique for the comprehensive decomposition of variance in higher order regression models. Organizational Research Methods, 16(3), 449–473. doi: https://doi.org/10.1177/1094428113481065

Luchman, J. N. (2021). Determining relative importance in stata using dominance analysis: domin and domme. The Stata Journal, 21(2), 510–538. doi: https://doi.org/10.1177/1536867X211025837

Luchman, J. N. (2024). domir: Tools to support relative importance analysis [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=domir (R package version 1.2.0, https://jluchman.github.io/domir/)

McLaurin, F. A., West, S. J., & Thomson, N. D. (2025). Exploring the relationship between facets of childhood trauma and violent injury risk during adulthood: A dominance analysis study. Child Abuse & Neglect, 161, 107307. doi: https://doi.org/10.1016/j.chiabu.2025.107307

Miller, B. K., Kirby, E. G., & Stevens, K. B. (2025). Dominance analysis of bright and dark dispositional predictors of socially desirable responding. Psychological Reports, 128(6), 4799–4819. doi: https://doi.org/10.1177/00332941241226908

Owen, G. (1977). Values of games with a priori unions. In Essays in mathematical economics and game theory (pp. 76–88). Springer.

Shapley, L. S. (1953). A value for n-person games. In Contributions to the theory of games II (pp. 307–317). Princeton University Press.

Thomas, D. R., Zumbo, B. D., Kwan, E., & Schweitzer, L. (2014). On Johnson’s (2000) relative weights method for assessing variable importance: A reanalysis. Multivariate Behavioral Research, 49(4), 329–338. doi: https://doi.org/10.1080/00273171.2014.905766

Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. Journal of Business and Psychology, 26(1), 1–9.

Yin, K., & Zhou, L. (2025). The relative importance of peace of mind, grit, and classroom environment in predicting willingness to communicate among learners in multi-ethnic regions: a latent dominance analysis. BMC Psychology, 13(1), 1–17. doi: https://doi.org/10.1186/s40359-025-02676-2

Downloads

Published

2026-01-18

Issue

Section

Theory and Methods

How to Cite

Luchman, J. (2026). Determining Relative Importance with Independent Variable Groups: An Alternative Dominance Analysis Method. Journal of Behavioral Data Science, 6(1), 1-27. https://doi.org/10.35566/jbds/luchman